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Electromagnetic -function sphere
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We develop a formalism to extend our previous work on the electromagnetic 6-function plates to a spherical
surface. The electric (4,) and magnetic (4,) couplings to the surface are through -function potentials defining
the dielectric permittivity and the diamagnetic permeability, with two anisotropic coupling tensors. The
formalism incorporates dispersion. The electromagnetic Green’s dyadic breaks up into transverse electric and
transverse magnetic parts. We derive the Casimir interaction energy between two concentric §-function
spheres in this formalism and show that it has the correct asymptotic flat-plate limit. We systematically derive
expressions for the Casimir self-energy and the total stress on a spherical shell using a §-function potential,
properly regulated by temporal and spatial point splitting, which are different from the conventional temporal
point splitting. In the strong-coupling limit, we recover the usual result for the perfectly conducting spherical
shell but in addition there is an integrated curvature-squared divergent contribution. For finite coupling, there
are additional divergent contributions; in particular, there is a familiar logarithmic divergence occurring in the
third order of the uniform asymptotic expansion that renders it impossible to extract a unique finite energy

except in the case of an isorefractive sphere, which translates into 4, = —4,.
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I. INTRODUCTION

Having established the surprising result that a pair of
parallel neutral perfect conductors experiences an attractive
force due to fluctuations in the quantum electromagnetic
field [1], Casimir suggested that this attraction should
persist for a spherical shell, and could contribute to the
stabilization of the electron [2]. On the contrary, when
Boyer first did the calculation, he found a repulsive result
[3], which was confirmed subsequently by many authors,
for example in Refs. [4-8],
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where a is the radius of the perfectly conducting sphere
(pcs). This is a rather unique result in the litany of Casimir
self-energies, in that it is finite and unambiguous, resulting
from precise cancellations between interior and exterior
contributions and between transverse electric (TE) and
transverse magnetic (TM) modes. For example, although a
finite scalar Casimir self-energy for an infinitesimally thin
spherical shell imposing Dirichlet boundary conditions
may be unambiguously extracted [7,9,10], divergent terms
are omitted in doing so. And for other shapes, such as
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rectangular [11-14] or tetrahedral [15] cavities, only the
interior contributions can be included, although a unique
self-energy can be extracted, exhibiting a universal behavior.
In these cases, well-known divergences, identified through
heat-kernel analyses, remain. The situation becomes even
murkier with real materials. For example, a dielectric sphere
exhibits an unremovable logarithmic divergence [16,17],
which cannot be removed even after accounting for
dispersion [18]; only when the speed of light is the same
inside and outside the sphere is the Casimir self-energy finite
[19,20]. In the dilute limit, ¢ — 1 <« 1, where & is the
permittivity, a finite result in the second order of the coupling
is extractable [21,22]
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In the next order, however, the above-mentioned divergence
appears.

Clearly, there are issues still to be understood involving
quantum vacuum self-energies. In an effort to establish better
control over the calculations and at the same time have a
flexible formulation, we considered diaphanous materials
modeled by d-function contributions to the electric permittiv-
ity and the magnetic permeability in Refs. [23,24]. We
considered an infinitesimally thin translucent plane surface
and learned that the permittivity and permeability potentials
were necessarily anisotropic. Here, we adapt that formalism to
spherical geometry; in addition, we regulate the frequency
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integrals and angular momentum sums by introducing tem-
poral and spatial point-splitting regulators, which turned out to
be extremely effective in geometries with curvature and corner
divergences [25,26]. Specifically, we keep both temporal and
spatial point-splitting cutoffs, which were proposed as a tool
for a systematic analysis in the context of the principle of
virtual work in Refs. [27,28]. (For other works using
o-function potentials in planar geometry see Ref. [29].)

In this paper, we will work in natural units # = ¢ = 1. In
the next section, we derive general formulas for the energy
(and free energy at nonzero temperature) when dispersion
is present. In Sec. III, we summarize the concept of the J-
function potential as introduced in Ref. [23]. We obtain the
nontrivial boundary conditions imposed by the §-function
potentials on the fields, in the presence of a spherical
boundary, from Maxwell’s equations in Sec. IV, and set up
Green’s dyadics for Maxwell’s equations, with the appro-
priate boundary (matching) conditions. In Sec. V, we verify
the Green’s dyadic structure by evaluating the Casimir
interaction energy between two concentric J-function
spheres, where the asymptotic flat-plate limit, i.e. a large
radius and small angle, reproduces the interaction energy
between two parallel 5-function plates. [This coincides with
the proximity force approximation (PFA) for the spherical
surfaces.] For the case of a purely electric potential, con-
tributing only to the permittivity, and with the choice of a
plasma model to represent the frequency dependence of that
coupling, we analyze the resulting electromagnetic vacuum
energy in Sec. VI. We first analyze the self-energy of a -
function plate for both strong and finite coupling. In the
strong coupling case, the divergences cancel between trans-
verse electric and transverse magnetic mode. However, for
the finite coupling case, we see a logarithmic divergence
appearing in the third order of the coupling parameter in
addition to an inverse power of the point-splitting parameter.
For the spherical shell, in the strong coupling we recover the
familiar result of Boyer [3], but with a divergent term, due to
the square of the curvature of the sphere, whose form depends
on the precise nature of the point-splitting cutoff. This
divergence is not observed in the conventional temporal
point-splitting cutoff. For finite coupling, the divergence
structure is more complicated, and there emerges the familiar
logarithmic dependence on the cutoff, which first appears in
third order in the strength of the potential. Because the scale
of this logarithm is ambiguous, no unique finite part can be
computed. We verify these results by computing in Sec. VII,
directly from the stress tensor, the pressure on the spherical
shell. Finally, in Sec. VIII, we see how the results are
modified when both potentials, electric and magnetic, are
included. Apart from strong coupling, the only possible finite
case is that for isorefractivity, when the electric and magnetic
coupling are equal in magnitude but opposite in sign,
corresponding to eu = 1. In the Conclusion, we discuss
our results in light of recent literature, which might bear on
some of the issues raised here.
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We have extended our study to the finite temperature
analysis of a §-function shell [30], which shows a discom-
forting negative entropy behavior in addition to temper-
ature-dependent divergences. In the 7 = 0 study we can
avoid these subtleties and gain more insight into the
divergence structure depending only on the point-splitting
cutoff parameter.

II. FORMALISM

It is convenient to consider the general finite temper-
ature case first. The free energy, including the bulk
contributions, is

(2.1)

F:—g zfx’: TrinT,

n=-—oo

where Green’s dyadic for an arbitrary electromagnetic
system at temperature 7' in the presence of a dispersive
dielectric and diamagnetic material satisfies the differ-
ential equation

Lyl vx—e,)
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in terms of the Matsubara frequency ¢, = 2znT. The
entropy is

rrr=1, rl=- (2.2)
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from which we identify the internal energy

=3 Z g"ag TrinT

=3 Z £, Tl a? I. (2.4)

The differential Eq. (2.2) allows us to transfer the
derivative to the first factor in the trace, and then
subsequently that equation implies
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At zero temperature, this reduces to the expected general
formula for a dispersive medium [31,32], where { = —iw
is the imaginary frequency,
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E=U(T=0)
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(2.6)

which is what would be obtained by integrating the
dispersive form of the energy density [33],

_1/d , d )
utr) = 5 (OB + ).
For the case of anisotropic permittivity and permeability,
provided the corresponding tensors are invertible, the
same steps, starting from either the variational approach
or from the electromagnetic energy density, lead to the
following expression for the internal energy:

(2.7)
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(2.8)

This has a readily applicable form for calculating the Casimir
self-energies of single objects, while the Casimir interaction
energy between two objects is more conveniently evaluated
using the multiple scattering expression [34]. It is consistent
with the variational statement, at zero temperature,

_ [=d¢l d 41 -,
5E—/_w2ﬂ2dé,Tr[5e-l’ o CZVXFXV . (29
From this, it is quite direct to obtain the Lifshitz formula for
parallel dielectric plates, as was done in Ref. [35] for the pure
permittivity case. The above discussion may not apply in the
case of dissipation; see Refs. [36,37].

Henceforth we specialize to the case of zero temperature.
In this paper, we will be primarily considering self-energies
in addition to the interaction energy, so regulation of
integrals is necessary. Then, if we use point splitting in
both time and space, the Casimir energy less the bulk
(empty space) contribution, is

1 [eode .

E—EOI—E —ie’&Trlnrral
1 [d¢e -1 dar dr,
= [= BxxT =T 20 x 1 6),
2/2;: it / x| =T e (X +8)

(2.10)

where 7 and § are infinitesimal point-splitting parameters in
time and space, to be taken to zero at the end of the
calculation. Trace in matrix indices is implicit here. In the
second integral above, we have integrated by parts.
Substituting, from Eq. (2.2),

dr dar-! de 1 dp™!

Qs r i F_rdCF+FC2VX ac vxTI

+ % (' +Tel).

(2.11)
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Then, just as above, we obtain the zero-temperature,
regulated form of the internal energy (2.8)

w0 df e — 1 ¢ de
E-E = [ & Tr|el + 241
0 /_00271' ice r{e toa

11_ du!
——Vx—VxI-T}], 2.12
spvxdovaron). e
where the trace includes a point-split integration over

position.

A remark about other methods of regularization: one
could also use subtraction procedures, Pauli-Villars regu-
larization, dimensional regularization, or analytic (zeta-
function) techniques. These will, of course, change the
form of the divergent terms, but we would expect finite
remainders to remain the same. From our point of view,
point splitting is the most natural and convenient method to
employ to avoid the divergences when two fields are
evaluated at the same point. Further, it allows us to make
ready connection with heat kernel results.

III. ELECTROMAGNETIC
6-FUNCTION POTENTIAL

The §-function potential model we use in this paper was
introduced and extensively explored, for the planar geom-
etry, in Ref. [23].

An electromagnetic J-function potential describes an
infinitesimally thin material with electric permittivity € and
magnetic permeability g defined in terms of a §-function,

e(x;m) =1+ 2A,(s;0)8(s — s0), (3.1a)

p(x;w) =1+ 4,(s:0)6(s = s0). (3.1b)
where s represents the coordinate normal to the surface.
We choose isotropic electric 4, and magnetic A, suscep-
tibilities of the material in the plane of the surface by

requiring 2, = diag(25, 45, A)) and 4, = diag(AL, 2L, 21).
The choice of isotropy in the plane of the surface ensures the
separation of TE and TM modes.

In Ref. [23], we derived the conditions on the electric and
magnetic fields at the boundary of such a material starting
from the first-order Maxwell’s equations. We showed that a
consistent set of boundary conditions on the fields only
included the properties of the materials confined to the
surface (shown below for a spherical o-function surface).
Additional constraints on the components of the material
properties transverse to the surface Al were obtained from
Maxwell’s equations that lead to a necessarily anisotropic
nature of the electromagnetic properties for materials
described by a §-function potential. Specifically, we found
A'=0and /12 = 0. One must consider these discussions in
light of Refs. [38,39]. The Al components do not appear in
the boundary conditions. However, releasing the afore-
mentioned conditions would require overconstraining the
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electric and magnetic fields according to Maxwell’s equa-
tions. We shall extend this discussion further in Sec. V.

IV. ELECTROMAGNETIC 6-FUNCTION SPHERE

Consider an infinitesimally thin spherical shell at the
interface of two spherically symmetric media, as shown in
Fig. 1. The electric permittivity and magnetic permeability
for this are of the form

e(r) = et (1)1, + €l (r)i#, (4.1a)
u(r) = (N1, + @l (r)#s, (4.1b)
where
e (r) =14 (e - 1)o(a-r)
+ (2= 1)0(r—a) + 2515(r —a),  (4.22)
plI(r) =14 (w2l = 1)0(a - r)
+ (et =100 —a) +25716(r =), (4.20)

Here | and || refer to perpendicular and parallel to the
radial direction 7 (which defines the direction of the surface
vector at each point on the sphere).

In Heaviside-Lorentz units, the monochromatic compo-
nents [proportional to exp(—iwt)] of Maxwell’s equations
in the absence of charges and currents are

VxE = ioB, (4.3a)

-VxH=iwD+P), (4.3Db)
whichimply V- B = 0,and V- (D + P) = 0, where P is an
external source of polarization.

In the following we assume that the fields D and B are
linearly dependent on the electric and magnetic fields E
and H as

D(x,w) = e(x;w) - E(x,w), (4.4a)

€, H>

Aes Ag

FIG. 1. A §-function sphere described by electric and magnetic
couplings, 4, and 4, at the interface of two spherically
symmetric media.
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B(x,w) = p(x;0) - H(x, w). (4.4b)

A vector field can be decomposed in the basis of the vector
spherical harmonics as

V(r) = Vi (X (0.4). (4.5)
Im

where i=1,2,r and X\ = (W¥,,,(0.).9,,,(0.4). Y n (0.60))
are the basis vectors [40]:

\le (6’ ¢) = VYlm (9’ ¢)7

0+1)

@, (0. ¢) = 0 £ X VY, (6.4).

Ylm (9’ ¢) = lem (9’ ¢)

Maxwell’s equations in Eqs. (4.3a)—(4.3b) thus decouple
into two modes: the TM mode involves the field compo-
nents (EV), H?) EM),

10 0+ 1), _
L) = B ) 4 Bl (469
19 () (1)

;ErHlm (r) = iw[D,,, (r) + P,/ (r)], (4.6b)
I+ 1 o .

D020 = i)+ PO (4e)

and the TE mode
(H(l), E®), H(r)),

involves the field components

10 NIED I
2 ) () =YD )~ il )+ PR,
(4.7a)
%%rEgi)(r) — —iwB))) (1), (4.7b)
(I+1
¥E§ﬁ](z) = —iwB")(r). (4.7¢)

A. Boundary conditions

The boundary conditions on the electric and magnetic
fields E and H are obtained by integrating across the
o-function boundary. We get additional contributions to the
standard boundary conditions at the interface of two media
due to the presence of the S-function sphere. The only
requirement on the electric field E and magnetic field H is
that they are free from any J-function type singularities,
which is evident from the second-order differential equa-
tion of the fields. The boundary conditions on the fields are
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™
Ep(n| ™" = iwAfH) (),
HY ()| ™" = iodtEY(a),
r r=a+ l(l + 1) 1
D ()| " = YRR E ),

We evaluate quantities that are discontinuous on the o-

function sphere using the averaging prescription, introduced

earlier in Refs. [41,42]. In addition we get the constraints
MED(@)=0 and AHD(a)=0, (4.9

which implies that optical properties of the magneto-electric
o-function sphere are necessarily anisotropic unless

Egm( )=0 and H = 0. The constraints in Eq. (4.9) are
not obvious from the second-order equations for the fields.

However, they will appear in the same form if we try to obtain

boundary conditions on E§m>, g:n) from their respective

second-order differential equations upon integration. If we
do not take these constraints into account, it may appear that
,1!,_(, have consequences on the optical properties of the
o-sphere. (See the discussion in Sec. V.)

The Maxwell equations in Egs. (4.6) and (4.7), which
are in first-order form, can be combined to yield

PHYSICAL REVIEW D 96, 085010 (2017)

e

HO (|~ = —iwdt B2 a), (4-82)

E?(r) ’f“* — —iwAtH)(a) (4.8b)
r Z=a+ l(l + 1)

By (n)| " = N2 ). (4.8¢)

The remaining field components can be expressed in terms
of H?(r) and E)(r).

Im

B. Green’s dyadics

We use the Green’s function technique to obtain the
electric and magnetic fields E(x;iw) and H(x; i),

E(x;iw) = /d3xT(x,x’;iw)-P(x’;iw) and

H(x; iw) = /d3x’<l)(x,x’; i) - P(x;iw), (4.11)
in terms of the electric Green’s dyadic T'(x,x’) and
magnetic Green’s dyadic ®(x,x’) respectively. [We have
used the same notation as one of the basis vectors of the
vector spherical harmonics, but the two have different
arguments.] Green’s dyadics can be expanded in terms of
the vector spherical harmonics as

the second-order differential equations [with & =
diag(e*, e*, ell) and p = diag(u*, pu*, ph)]
510 1 = _XL0.9)n(r. /)X, (0.9).  (4122)
- _ 2,1 H(2> Im
{ aret(r) 5r+€||(z) 2 ™| (r)]” im ()
o PGy P (r) = XT,(0.¢)i(r. )X, (0.).  (4.12b)
~io 5 L0 +io\/I(1+1) EIOR (4.10a) -
o 1 0 L+ 5 @) where X7 (0,¢) is the transpose and X, (0,¢) is the
T or ut(r) ar + wl(z) (r) | rEp, (r) complex conjugate of the basis vector. The reduced Green’s
52 matrices ¥,(r, ") and ¢;(r, r") can be solved in terms of
=Py, (r) (4.10b)  gcalar Green’s functions g (r,r') and gF(r,r)
|
(1) (r)
VI
rsrorraT ol (w+1)5/_1\\5%%%7"9{{ (1)
Y= (4.13)
0 wg 0 (2)
NAGS
S e ! e |
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and
110 . E
O F;ml"gl O
_ 1109 4, H [(I+1) 4
¢ =io | g9 0 gl |
(+1) | g
0 ’ ﬂg 0

(4.14)

where we have suppressed the r and ' dependence and, &
is (). In Eq. (4.13) we have omitted a contact term
involving &(r — 1),

8(r—r)

1)
The magnetic Green’s function ¢/ (r,r’) and the electric
Green’s function ¢ (r, r’) satisfy

10 1 10 (I+1) 1
g | )
:@, (4.15)
10 1 10 +1) 1 ,
{_;Erﬂl—(r);ar o m—a)zeJ—(r)} gk (r,r)
8(r—r
=%, (4.15b)

g (r,rsi¢) =

where the scattering coefficient 65" and absorption co-
efficients o*® are

seatt _ ({2 kk—CA7KK] .

<> T T A AL J4) (K—1K) + ALK ALK oo
e Mg e 3 4

(4.19)

lé—»oo

ﬂé—»oo

[CAFTT—¢Aki]
= — —_— == —>
b= (14225 /4) (k=) + CAHK—CAHK] 2t oo

(4.19b)

scatt __

2 Clieroler.) + oFmi(Erier))
2 ClErakiér.) + o (e
2 o (k).
2 o K(r)icr),

PHYSICAL REVIEW D 96, 085010 (2017)
where the material properties e (r) and ™ (r) are defined

in Egs. (4.2a)—(4.2b).

C. Magnetic and electric Green’s functions

We obtain the boundary conditions on the magnetic
Green'’s functions using Eqs. (4.8a)—(4.8c¢) for the TM mode,

L1190

At =d zogerdt| o @16
110 =a+
g_L;E I’g{-] e = Czl‘é‘g{{ r=a- (416]3)

Similarly, using Egs. (4.8a)—(4.8c) for the TE mode, the
boundary conditions on the electric Green’s function are

110
Elr=a+ _ 3L E
9i r:ai_ - ’Ig F;Ergl r:a7 (4.17a)
110 r=at
et I )
Here { = —iw is the imaginary frequency obtained after a

Euclidean rotation.

The general solution for the spherical magnetic scalar
Green’s function for a system shown in Fig. 1 is given in
Ref. [43]. In this paper, we are particularly interested in the
case when the media surrounding the o-function sphere is
vacuum, as shown in Fig. 2. In this case, the magnetic
scalar Green’s function is

r,r <a,
a<r,r,
(4.18)
r<a<r,
' <a<r,
! b b
012 =072
(1 —i—é’zﬂel/lj/él) (ik —ik) Moo

= — — — 1 ,
(1 + 2227 /4) (K —1K) + CAF K~k 2t —oo
(4.19¢)

where we have suppressed the argument and subscript to
save typographical space. We use the modified spherical
Bessel functions i;(7) and k;(¢) [44] that are related to the
modified Bessel functions as
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Aes Ag

FIG. 2. A o-function sphere in vacuum.

(1) = |51 00). (4.20a)
k(1) = \/ZKH%(I). (4.20b)

In particular i;(z) = igl) (1), which is the modified spherical
Bessel function of the first kind, and together with k;(¢)
are a satisfactory pair of solutions in the right half of
the complex plane. We have also used bars to define the
following operations on the modified spherical Bessel

functions:
- 1 0).
iy(1) = <;+5>1,(t),

k(1) = G + %) k;(1).

Solutions for the electric Green’s function can be obtained
from the magnetic Green’s function by replacing & <> u
and H — E.

We show the values of coefficients corresponding to a
perfectly conducting electric and magnetic spherical shell
in the rightmost listings in Eqgs. (4.19a)—(4.19c). Notice that
the spherical shell becomes completely transparent in this
extreme limit, and the total transmission is accompanied by
a phase change of .

It is crucial to emphasize the fact that even though
we explicitly considered materials with A and ,1'; in
Egs. (4.2a)—(4.2b), the solutions to the Green’s functions
of Eq. (4.18) are independent of Al and /IE because the
boundary conditions in Egs. (4.17a)—(4.17b) do not depend
on the parallel components of the coupling. The Green’s
functions of Eq. (4.18) determine the fields unambiguously
everywhere except on the 5-function plate, where we use an
averaging prescription. The implication is that there are no

observable consequences of lﬂ and /12.

(4.21)

(4.22)

PHYSICAL REVIEW D 96, 085010 (2017)

FIG. 3. Concentric é-function spheres with purely electric
material properties.

V. CASIMIR INTERACTION ENERGY
BETWEEN TWO CONCENTRIC ELECTRIC
6-FUNCTION SPHERES

As a check for the formalism developed for a §-function
sphere, we first calculate the Casimir interaction energy
between two concentric electric J-function spheres as
shown in Fig. 3, where 4, = 0. We set Al =0 to satisfy
the constraint given in Eq. (4.9). In the asymptotic flat-plate
limit, i.e. small angle and large radius (see Fig. 4), the
interaction energy between the concentric J-function
spheres should reproduce the interaction energy between
two o-function plates. This limit coincides with the PFA for
the spherical surfaces.

The Casimir interaction energy between two concentric
o-function spheres is

1 °°d€°o 1
E,,=— — Trin (1 — K), 5.1
5 2/_w2ﬂgm_z_lrn< )5

where the notation Tr implies a trace on both space coor-
dinates (Tr,) and matrix coordinates (tr). The kernel K is

FIG. 4. Flat-plate limit: For a very large radius and small-angle
approximation a spherical surface is locally flat.
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K(r,r)=y(r,r) -/li-l(ﬂ)5(r’ —ay) -y, (r,r)
A5 ()3 - a).

The interaction energy between two nonoverlapping objects
is always finite, and hence we have dropped the cutoff
parameters. Further, we can decompose Eq. (5.1) into the
TE and TM parts using the identity trln K = Indet K

1 fedl
ElZ_E/_w%Z@H—I)

x/d3x[ln(1—KE)+trln(1—KH)], (5.3)

(5.2)

where KE corresponds to the 22 component of the kernel,
which depends on the 22 component of the Green’s dyadic
givenin the (4.13), and K is rest of the matrix. The sum on m
is trivial as the magnetic Green’s function in Eq. (4.18) and the
corresponding electric Green’s function are independent of m.
One can verify that det K = 0, which implies that

PHYSICAL REVIEW D 96, 085010 (2017)
Trin (1 — K#) =1In (1 — TrK#). (5.4)

The coefficients in Egs. (4.19a)—(4.19¢) for this case take
the form

P Oekk e 15 (5.58)
<= 7 Tk —1k) + CA5K i
Z:/u‘II IE—oo0 I
scatt _ _ __ -, 3.5b
7L>< T Tk - k) + CAL1K] K (5-3b)
ST 1o
s it (k-1 __iizmg (550

71>< = %L Tk~ 1K) + (ALK

where the rightmost values are given for a perfectly con-
ducting spherical shell. The TE part of the interaction energy
between concentric o-function spheres is

75

d¢ Chai
ETE_—/ 3@+ 1)1 [1—
P2 e (@41 7+C/1elll(z:al)kl(cal) a) H’Clezlz(@z)kl@az)

and the TM part of the interaction energy is

1%<ca,>k%<4az>} (5.6)

&k

{h
E™ — 2l+1)In |1 -
12 / Z +1)n { Cﬁelll(cal)kz(&h)

In the asymptotic flat-plate limit, which is equivalent to
taking the uniform asymptotic expansion of the Bessel
functions for / — oo, and keeping the distance between two
spheres a constant, we obtain the TE and TM mode
interaction energies per unit area £ for two parallel
o-function plates:

1 [odl [~ d°k P‘ p
el / do f= k(1o ta_ ta 7).
2 )27 ) (27) ML+ 5

(5.8a)
2 J_ 1
e 5 [ 5 [ (™)
2 27 —oo (27) A+ Klez £
(5.8b)

which gives the correct perfect-conductor limit.

It is worth discussing the implication of the choice
Al'=0 here. We had pointed out in Eq. (4.9) that a &-
function boundary imposes constraints, A/ E() (a) = 0 and
/Ilngm (a) = 0. Additionally, the boundary conditions on
the fields given by Eqs. (4.82)—(4.8c) are independent of Al
and thus the reflection coefficients appearing in the Green’s

C}“eZII(Z:az)kl(Caz) (C >Z<Z:a2):| (57)

|

function are independent of Al. These observations sug-
gested a necessarily anisotropic nature of the J-function
material with 1. Based on the above observations, we
calculated the Casimir interaction energies using the
multiple scattering method in Eq. (5.1) for the TE and
TM modes for A = (A*, 2+, 0) requiring Al = 0, which for
the parallel plate case are given in Eq. (5.8). Let us explore
the case when we ignore this constraint and keep A # 0 in
A= (A+, 2+, A1), In this case, the interaction energy of the

TM mode would become
dg dk o Al
— 1 1— k2 el
2/ 21 (2n)2n[ (/H 2T

This would suggest the identification of a TM “reflection
coefficient” of a single J-function plate of the form
B
A+ TR

(5.9)

which is inconsistent with the reflection coefficients found
in the solutions of Green’s functions using the boundary
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conditions as explained below. First we note that the second
term is the added contribution due to the inclusion of the
nonzero Al in the Casimir interaction energy calculation.
But this is not satisfactory because the reflection coefficient
in Eq. (5.9) does not have a finite limit in A= 0. At best,
it suggests a weak behavior of Al. In other words, a
o-function material can only have high conductivity in
the surface of the material, which seems to be a physically
viable option for an infinitesimally thin material. Second
and more importantly, in Ref. [23] we showed by a direct
calculation of Green’s function for d-function plates that the
reflection coefficients do not depend on the Al, which is a
consequence of the fact that the boundary conditions are
not contingent on the Al. Thus, the appearance of Al in
Eq. (5.9) belies the adage that one can determine the
Casimir (Lifshitz) interaction energy once the reflection
coefficients are known. These observations strongly advo-
cate for Al = 0 as the consistent choice.

VI. SELF-ENERGY OF A
0-FUNCTION SPHERE

We are particularly interested in analyzing the self-energy
of a o-function sphere, which in general has divergent parts.
We will use the point-splitting regulator for evaluating the
self-energy. For a nonzero value of the point-splitting
regulator 6 (where ¢ has both temporal and spatial point-
splitting components) the energy remains finite but it
diverges in the limit 6 — 0. Using Maxwell’s equations
and the definition of Green’s dyadic in Eq. (4.11), we can
rewrite the bulk subtracted energy given in Eq. (2.12) for a
dispersive magneto-electric material as

dg [, e =1
E—Eo—z/ 5 [ A i tr[Ze r+§d—C r

d
L @xv) - 2ro]

i (6.1)

X'=x+8

Using the expansion of Green’s dyadics in vector
spherical harmonics and choosing the point splitting in
both temporal and spatial directions we can express the
self-energy in terms of the reduced Green’s dyadic

| [edfe -1
E—EO:E/ e 3 @1+ 1)Py(cos H)1,

—e 2 ULt 7

(6.2a)

where
= /oo rrdrtr
0
2¢ - 7+C— Y- v (PxV) -2
R o,
(6.2b)
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In the following, we shall continue with the choice of
purely electric é-function materials, i.e. 4, = 0. We also
need to choose a particular model to deﬁne the frequency-
dependent coupling constant in order to account for the
dispersion, which is relevant for the energy calculated from
Eg. (6.1). A sort of plasma model, 17 =¢,/¢?, is a
straightforward choice, where ¢, is an effective plasma
frequency. (This is identical to Barton’s hydrodynamical
model, where the parameter ¢, corresponds to the character-
istic wave number [45].) As we shall show below the second
and third terms in Egs. (6.2a)—(6.2b) cannot be discarded.!

A. Self-energy of an electric d-function plate

We first apply the energy expression in Eq. (6.1) to
calculate the self-energy of a purely electric §-function
plate (47 = 0 and A3 = {,/?). Keeping only the spatial
cutoff &, we obtain the energy per unit area,

_ ac k6,
£ 50_2/ 2 (2)2€

X/ dztr[% 7+C—§ Y- 270]

(6.3)

7=z

It is evident that the second term in the energy expression
(6.1) does not vanish in this case. In fact, this term cancels
the d-function piece coming from the first term. The self-
energy for the TE mode is

1 !
(E=E)TE = ) dK'K'z/ d(cos ff)cos*f3
-1

2 . . C
X / dae”“si sin P ,
0 ¢p+2

(6.4)
where k = \/k* +¢2. For an arbitrary coupling the TE
energy per unit area is

1 . Cpéj_ . gpﬁl
87[251 {n—sm > 2C1 5

$po1 NN
-I—pT<7r—2Sl<pT>>}

o £,00 . (£,0
pYL _ pYL pYL
> { T+2 5 C1< 5 )

()

Tt might be more realistic to use a Drude model, which
includes dissipation, A} = ¢ »/ (&% +¢&y), where y is a small
dissipative parameter. However, the analysis then becomes much
less straightforward. For zero temperature we would expect that
the effects due to y are very small, although they could be
significant at finite temperature, where the zero-frequency mode
plays a major role.

(€~ &) =

—i—cosé

(6.5)
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where Ci(x) and Si(x) are the standard cosine integral and sine integral functions, respectively. For the finite coupling, {,, and
in the 6| —0 limit our result is identical to the divergence structure obtained in the analysis of the self-energy of a 6-function
plate interacting with a scalar field [46],

¢ 7 (Cp0.1 1 ({,6.\2[4 $po1

E-¢& z 1-= (£ — (£ ——y—In(22 06,). 6.6
-l =gt {1-5 (555) +3 (52) -7 m(355) |} + o0 (66)

In the strong-coupling limit {,, — oo, keeping &, finite, we recover the inverse cubic divergence,
(E~EFn = (67

0/ime0 = 8785 .
The TM mode energy is
(E=E&)T ——/ dxi? / (cos B)(1 + sin? B)J (k8 | 51nﬂ)€— (6.8)
¢, + 2Kk cos 2p

In the strong-coupling limit £, — oo, we obtain an inverse third power of the point-splitting parameter as in Eq. (6.7) with
opposite sign. Thus in the strong-coupling limit the total energy per unit area shows no divergence.
To obtain the finite or weak coupling divergence structure for the TM, we first write the integrand as

1 & g+l 1 1 + sin? o )
(g 50 = —2 E ( > /1 d(COS ﬂ) WA dKK(l_q>J0 (K&J_ S1n ﬂ) (69)
We now carry out the « and cos f integrations for a fixed k%,
I & atl ] 2t qr 1 q q 1
= = g6 2acos T =2 = _1 ki -
(E=E)™ = 50 < ) (Hq)ﬂqé cos 2F 54 r 5 r 5): 2<q<2. (6.10)

We are only interested in looking at the divergence behavior of the TM self-energy of the §-function plate in the limit
0, — 0, so we shall evaluate the above expression for ¢ = 0, 1, 2. The above expression has a finite limit for ¢ = 0, 1 and
has a pole at ¢ = 2, which presumably could be removed by introducing a small photon mass. Keeping all the terms

together we find,

(5 gO)éL—K)

Notice that divergences in Eqgs. (6.6) and (6.11) do not
cancel between the TE and TM modes. We shall see a
similar behavior for the finite coupling case of the o-
function sphere.

B. Self-energy of a electric -function sphere

Next we consider the purely electric d-function sphere.
With the choice of the plasma model described above, the
TE and TM Green’s functions obtained here coincide with
those discussed in Refs. [47-50] with the identification of
ME =a?¢, = —x?2™ and the definition of modified
spherical Bessel functions in terms of modified Riccati-
Bessel functions as s; = xi; and ¢; = %xkl. Thus the results
found there, with errors corrected in Ref. [49], for the

Cp 1 Cp(sj_ 2 1 gpél Y 5 1 3
s (s () [zt () 5w (53) v ()] roen e

|
energy and the stress on the sphere, follow with the above
coupling constant identification.

The integral / defined in Eq. (6.2b) in this case becomes

o 2 2
1_/0 r2dr {2}'4—?{1, y6(r—a) —?Cp-yé(r—a) -2y

:Aw Rdr2(y—7,), (6.12)

where the d-function terms coming from the first and the
second terms cancel, similar to the d-function plate case. If
we fail to take the dispersion term into account, then
we would get additional contributions from the remaining
o-function term.
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The integrals for the TE and TM modes are couplings go to infinity. This implies that the self-energy of
a o-function shell that is both perfectly electrically con-
oo 20 scatt(E) . ducting and perfectly magnetically conducting is zero
JTE _ o 24 2_ 0(a — 2 g p y g y g
/0 rdrg (0(a = r)o,- "1 () including the divergences! Such a shell does not have
+0(r—a)s scan( )kz( ), any optical interaction up to a phase.
Ol><

Using the identities
™ = 2/oo rar {G(a — oyt
0

d ( ) /oo dxx?i?(x) = g [(x2 + I(1 + 1))i% = xiji) — x?i7],
- [(I+1 0
272 2
< (emien + " ien) 610
(1+1
+0(r —a)o; ™ <52k2(c )+ ( t )k,z(gr))} o N
r / dxx’k} (x) = —5[()62 + 11+ 1))k
(6.13) 0
— xk/k) — x*kP?], (6.14b)
The above expressions are valid for the general case where
both the electric and magnetic couplings can be present. ~ and the Wronskian W[i;(x),k;(x)] = —5%, and keeping

From Eqgs. (4.192)-(4.19c¢), it is evident that the integrand / ~ both temporal and spatial point splitting we obtain the
will vanish identically when both electric and magnetic ~ energies for the TE and TM modes as
|

ilr _
ETE _ _5/ ;iie - 12(21+ 1)P,(cos§)§d%1n [1 +§pa%xi,(x)k,(x)}, (6.15a)
- =1
d il _ 1 d 2 _ _
ETM — _E/ 256 lé’r Z(Zl + 1)P1(COS 6)Cd—é,ln |:—1 + Cpa;xil(x)lkl(x)l} s (615b)
- =1

where x = |{|a for a sphere of radius a.
Thus the total self-energy of an electric o-function sphere is

_ - dCe’CT—l cos in QM B ael(x)sl(x)
E= 2/_ 27 it ;(21+1)P1( 5)£dC1 {14_51’ X ][1 ¢y X ]’ (6.16)

where we have used the prevalent modified Riccati-Bessel functions. In Refs. [48,49], we tried to make sense of this
expression without serious regulation. Now, everything will be well defined, and we shall carefully study the cutoff
dependences.

1. Strong coupling

In the perfect conducting limit {,, — oo (strong coupling) we recover the standard result, which is the well-studied Boyer
problem [3-8],

1 © 0 ié‘r_l d !
E—E,= 4—2 21+ 1)P, cosa)/ dcé C—ln%

= —x it " d¢
1 & L e A A )
— Y (21+1)P)(cos b d S S AR — 6.17
Cdn g + 1)Pi(cos )/_oo ¢ it C{sl+el+s}+e; X ( )

Here, we carefully extract the divergent terms, and obtain the familiar finite remainder. First, we note that the In(1/x) term

does not contribute, because
©df © dg {r n
o (il N== 1C1/2 — 6.18

~/—oo ilt (e ) T ) ¢ sin- 2 7’ ( )

which is a constant, independent of the size of the sphere, so the corresponding contribution to the energy is irrelevant.
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To proceed, we use the uniform asymptotic expansions
for the Bessel functions to find for large v =/ + 1/2,
6
—In4 - t—
412
A 2 4
—— (4 =541 + 120¢
+ 320 ( +

/ /
Ine;e)s;s; ~

=71 + O(v°).

(6.19)

Here x = |¢{|a = vz and t = (1 + z?)~'/2. The order v~>
term gives rise to a divergent contribution to the energy in
the absence of a cutoff. With the above cutoff, that term
yields the energy contribution

E(2)_LiP(cosé)/mdzeim_lzi !
- 8rats ! o izt Tdz(1+2%)%

(6.20)

with 7 = 7/a. The 7 integral is easily evaluated, leaving

I & P
E® = —%; Pj(cos8)e™ (3 + 3vz + 177?)

1 o0
=~ <3 37 +T —> g P;(cosd)e
(6.21)

In the limit of small 7 and §, the sum on [/ is evaluated, using
the generating function for the Legendre polynomials,

Z (cosd)e —1+%, A=/ +7.

Thus the divergent term in the strong-coupling limit is

(6.22)

3

EQ - — _
64a  64aA’

(36% + 85°7> + 874). (6.23)
Geometrically, the divergent term, as 6 and 7 tend to zero,
corresponds to a surface integral of the curvature-squared
divergence, which is uncanceled between the TE and TM
modes, and between interior and exterior contributions. On
the other hand, the finite part, which arises entirely from the
omitted / = 0 term in the sum, 3/(64a), is within 2% of the
exact repulsive result [6].

This result seems rather surprising, since the conven-
tional wisdom is that this divergence is not present for a
perfectly conducting spherical shell of zero thickness [51].
Indeed, the a, heat kernel coefficient for this problem
vanishes. To elucidate this conundrum, we note that the
form of the temporal cutoff used here is a bit unconven-
tional. What was actually used in the time-split regulated
calculation in Ref. [6] was simply e™* rather than
(e — 1) /ivzz. We can verify that if the above calculation
is repeated for the former regulator, we instead find

PHYSICAL REVIEW D 96, 085010 (2017)

3 3 &
E? =~ — — — (5% + 46°7 + 87%).

64a 6da A’ (624)

Now, if the spatial cutoff is set to zero, 6 = 0, the divergent
term vanishes! This seems to be the content of the heat-
kernel approach. And, in fact, with a purely spatial
regulator,

(6.25)

This result was anticipated, for example, in Refs. [25,26]
(see also Refs. [52-54]) where it was found that for a single
curvature, the TE and TM integrated curvature squared
divergent contributions are for an arc of angle a

1 «a 1 5a

= - 2
71024a8’ c1024as (&%)

so when a = 2z, the sum of these two multiplied by 4 (two
curvatures, and inside and outside contributions) yields
the divergence found in Eq. (6.25), and further the ratio
of the TE and TM contributions, 1/5, is indeed found here
when the individual contributions are examined. [See
Eq. (6.27), below.]

Now to extract the finite part, we can follow the
procedure given in Refs. [9,10], and use the following
asymptotic evaluations of the integrals, with 7 = 0:

0 v Sw
oM — A dxin(=2¢ls]) ~ 7 = %
53x 9017
— — e 6.27
327695 200715015 (6:27)
© v s
O = /0 dx1n(2e;s;) ~ B RETTY
357 5657
- e 6.27b
+ 32769, 10485761° + ( )
so the total integral here is
3 O 2031x
_ TE ™ _ _ _ _
Q=0+ 64r  16348.° 209715205
(6.28)

Thus with spatial regulation the energy has the form

(6.29)

Z (21 + 1)Py(cos8)Q; + —
=0 8

where it is convenient to start the sum at [ =0, so we
subtract off the value of that term. Putting in the first three
terms of the asymptotic expansion gives us
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B 3 1 O L 6717x
48a 64as5 a \32768 4194304
3 0.0184335

" T6das . a (6:30)

To this we must add the remainder, obtained from
Eq. (6.29) by subtracting the first three asymptotic terms
given in Eq. (6.28) from Q;:

- 97
IZ (Ql o T 1638

20317
209715207

(6.31)

The sum converges rapidly; going out to / = 2 is sufficient
to give R = —0.000840, giving us for the energy

Eo 3 +0.046176
 64as a

(6.32)

where the finite part is the standard number for a perfectly
conducting sphere. Note that the first approximation we
had in Eq. (6.23) is high by only 1.5%.

2. Finite coupling

We now return to the general expression (6.16), and start
by analyzing the divergences occurring there as the cutoff
parameters ¢ and z approach zero. In doing so, we again use
the uniform asymptotic expansion for the Bessel functions;
we immediately encounter a difficulty in that the TM mode
contributions yield a spurious infrared divergence, because
of the 1/z behavior for small z. To cure this, we insert an
infrared cutoff as well: we replace

1 Vi+2 VZE+1
22t 22 Z+1

(6.33)

we could insert an arbitrary infrared cutoff parameter, but
that introduces unnecessary complications, since in prin-
ciple we will be adding back the same terms that we
subtract. This way we can treat the TE and TM modes on
the same footing.

The divergences occur in the asymptotic expansion of
the logarithm in Eq. (6.16), which we write as

¢oa gk
In <1 —l—%elsl 1 -"—e¢s 2 , (6.34)
where a simple calculation gives
D =2¢,at, (6.35a)
a? = -2a%1, (6.35b)
® =% (30 o228 6.35
a = T (— t + Cpa t ), ( . C)

PHYSICAL REVIEW D 96, 085010 (2017)

2 .2
ORI

5 (288 = attt),

(6.35d)

which result from remarkable cancellations between the
individual mode contributions. Let us label the contribu-
tions from each term in the asymptotic series by E®). Since
the integrals are regulated, we may integrate by parts, to
obtain

1 o0
:8_2 (21 + 1)27*P( cosé)/

dzewzr (k) (Z) .

—00

(6.36)

Then the first divergent term is

E<1>:¢_n/°° dz
Ar [ V1 +

where the [ sum evaluates to

9(z7,6) = f:

— _eiz%/Z +

‘*]1

Z (cosd)e™,  (6.37)

COS 5 vzt

1

2(cos z7 — cos 8)

. (6.38)

where the first term comes from the omitted / = 0 term.
The corresponding energy can be evaluated to

Em__g“_p/oo Zcosz%/2
b 4n —00 V1+Z2
__C_P = {:p z Z
= 2”K0(|r|/2) <214 2) (6.39)

To obtain the divergent contribution from the second part in
Eq. (6.37), we first set the spatial cutoff 6 = 0 and integrate
by parts to get

o _ & z 1

= d . 6.40
2 4An7 /_oo ‘ (14 2%)3/?sinz7/2 (6.40)
In the 7 — O limit, if we keep only the first term in the
expansion of the sine function, we get

m _&pl
Ba =% m

(6.41)
which has the expected quadratic divergence. However,
Eq. (6.40) is not well defined, because it possesses an
infinite number of poles along the real axis. The proper
interpretation is that the integral be understood as the
principal part from each pole. (The poles, however
encircled, would give an imaginary part.) We can write
the pole structure for zz > 0 as
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1 1 1 1 2 1)
b=t ) i)
sinzz/2  z7/2  z7/2 zz/2 7z/2—nn

n=1

+ f(z7/2),
(6.42)

where f(z7/2) has no singularities. The first term gives the
contribution given in Eq. (6.41). After carrying out the
principal part integral of the pole at z = 2nx/7, and then
carrying out the sum on n we obtain

1 [ | 1
= Lo Lol Ly L)
48 48 4z 48 8

(6.43)

To evaluate the contribution from the remainder function
f(z7/2), we first note that for small argument, f(x)~
- % In2 + 75, where the contribution from the first part will
exactly cancel the inverse 1/7 divergence in Eq. (6.43). The
contribution from the second part can be obtained by
splitting the integral at L, where 1 > L > 7/2, and the
integration from L to oo needs to be verified numerically.
Combining all pieces together we get the contribution from
the remainder term as

OSSR S S
2 g | 2n7 48 48

1. 7 0.08513
IHZ +

4

] . (6.44)

Adding all the contribution from Egs. (6.39), (6.41), (6.43),
and (6.44), we obtain the first-order asymptotic term as

EU):C_,,F 11

— +—InF-034 . 4
=507 =03 5879} (6.45)

T
It is clear from Eq. (6.39) that the spatial cutoff alone will
not render the integral convergent. The E(!) term is usually
omitted as being merely a “tadpole” term, in the language
of perturbative (in {,,) Feynman diagrams.
The second-order term can be evaluated by either doing
the z integral or the / sum first. In the former case,

2 © 5] . ~
E® = —LQZP,(COS 5)/ dze 1
87 = —oo
_ §2Cl . -t __ é:%’a 1
——?;Pl(cosé)e ——? —1+K s

(6.46)

where the last holds for very small z and 9, and

A =+/7* + 6% Like the similar divergent term that
appeared in the strong-coupling limit [Eq. (6.23)], this is
a surface-integrated curvature term.

Once again, the appearance of this divergence in E(?)
may cause surprise. It is not apparent in the heat kernel
analysis [17]. It was also not found in earlier analyses for
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the finite coupling scalar problem for the sphere [47,50],
which disagreed with calculations by Graham et al. [55,56].
But implicit in the earlier null results was, like we saw in
the strong-coupling limit, a conventional time-splitting
regulator. Indeed, if we repeat the above calculation with
only a conventional exponential point splitting, we find

1 & o o d
E® = ——Z/_Oo dze™? zd—z(—C?,a%z)

2
= 7T 6_7/2_71 :z:p_a
8 dr 2sinh7/2 8’

as 7 — 0. That is, we recover precisely the same finite part
seen in Eq. (6.46), but not the divergent term! As in the
strong-coupling limit, conventional temporal point splitting
hides the divergence here.

The last divergent contribution comes from a(®):

1 =Pi(coss) [ . -C
EG — _— 77/ dzeVT 2P [—37 1282428,
S22 AT et 3 4 et

(6.47)

=1 —o0
(6.48)
The sum on [,
1(z7.6) = Mei(ﬂﬂ)zf/{ (6.49)
—~ 20+1
+1
may be evaluated by integrating Eq. (6.38),
220 f(25.0) = g(:5.0) (6.50)
7,0) = g(z7, ). .
izt < 9z
For small 7 and & there are two branches:
F(Z8.6)~2In2— 1 —tino+Larcsin™, 6|7, (6.51a)
7, > 2 Harcs 5 27|, Sla
3 1 iz 1 |z7]
~=In2—-1-=1 — 4= h——
5 3 n6+sgn(z)[4 +2arccos 5 ]
5 < |z7l. (6.51Db)

For the purely spatial cutoff, i.e. 7 =0, we obtain

E®) Ng_; <—§+ 4’%512) <%ln2 -1 —%ln6>, (6.52)

which is identical to the result obtained if we carry out the
sum and integral in the opposite order [30]. Notice from
Eq. (6.51b) that we cannot set 6 = 0 in this case because of
the appearance of the Iné term. Apart from the different
cutoff, however, the order ¢ » term rescales the logarithmic
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divergence already seen in E() [Eq. (6.39)]. Again, with
the same caveat, the O({;) term is that seen previously
[47,48,50], corresponding to the familiar nonzero a, heat
kernel coefficient found in Ref. [17].

The occurrence of this logarithmic divergence, of course,
was to be expected. It would seem to pose a barrier to
computing a finite Casimir energy for an electromagnetic
o-function sphere, because one could multiply the cutoff §
by an arbitrary number, which would then change the finite
part. Only the strong-coupling limit, which is essentially
that of € — oo, yields a computable energy, that might,
somehow, have observable consequences.

We notice the similar logarithmic divergence occurring
in the finite coupling case of the S-function plate self-
energy, shown in Eqgs. (6.6) and (6.11). In the asymptotic
flat-plate limit, the self-energy of a spherical shell leads to
the self-energy of a S-function plate.

VII. STRESS ON THE §-SPHERE

The electromagnetic stress tensor is

1
TW = FMFY, — Zg””F“ﬂFaﬂ, (7.1)
s0, in particular, the radial-radial component of the stress
tensor is

1 1 1 1
T, =--E}—_B2+_E} +-B.
R N S
The Green’s dyadic construction (4.12b) leads to a TE and
TM decomposition of the pressure on the spherical surface.
All that is needed to work out the components is the identity

(7.2)

V2100 =00

Then we obtain results that are nearly the same as those
found earlier in Refs. [47-50]. The difference arises in the
TE mode which is, without the regulators inserted,

TTE — 871/ ng(ZH

1(1+) 19 10

X{_Cz_ 2 Tror For

The scalar Dirichlet case replaced the latter derivatives by

10 0
——r—

ror or’ (7.5)

Only the derivative terms contribute to the discontinuity in
the stress, so we are left with the total outward stress on the
sphere
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r=r'=a-+

STE = 4rza’T,,

r=r'=a—

(es51)

R o0
= - 21+ 1 dx ———.
TN ER) A evores

The reason for the discrepancy with the earlier-derived
result [47,49] is connected with the fact that this result is
obtained from the unregulated form of the TE part of the
energy (6.16) when differentiated with respect to a, holding
¢, fixed. (The form in Ref. [49] was obtained for 2™ =
¢ ,a* held fixed.)

How does this work in the presence of the regulators,
where the TE energy is

/ zCr
x In (1 +¢,a e’s’)?
X

If we differentiate with respect to —a, and integrate by parts
on {, we immediately obtain

(7.6)

— d
Z (21 + 1)P(cos 5)§dC

(7.7)

8ETE CP iyt .
o = 4”/ dye” ;(21+1)P1(c0s5)

(EZS I ) _ CTE
1+é‘pa%7s . (7.8)
Here, after differentiation, we have changed the integration
variable to y = {a, so that {t = yr/a = y7, and as before,
x = |y|. This is exactly the regulation we expect for the
stress, which originates from the vacuum expectation
value of the radial-radial component of the stress tensor.
Thus the use of the elaborated temporal regulator seems
vindicated.
This also works for the TM stress, which now exactly
coincides with that found earlier [47,49]. The regulated
form of the TM energy is

IVERUEIR d
™ _
EM=— Z_: (21 +1)P, cosé)é’dé,
Z-’117 /!
x In 1_?€zsz , (7.9)

so again when this is differentiated with respect to —a, and
integrated by parts in {, we obtain the expected regulated
TM stress:

ETM 0
9 = éV‘”/ dye’y’Z(21+l)P,(c055)

da  4na —

% (¢11)' — g™

{pa

- (7.10)
— X e
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The latter may also be obtained from Eq. (7.4) with the
replacement gf — g".

VIII. ELECTRIC AND MAGNETIC COUPLINGS

Finally we turn to the examination of the situation when
both electric and magnetic couplings are present.
According to the results of Sec. IV the energy in general
is given by

1

E—Ey=—2% (21+1)P(coss)
=1

©dl el —1 _d
% L0 AEAH,
X/_oozn ier Cac™

N

(8.1)

where (the L superscript on the couplings is omitted here)

CZ
AE =1 +Z/1€/19 + 8] (Aeers; = Ag4€)s)), (8.2a)
A = 1+ S0, + (€l hyersi = Aeels) 8.2b
= +Z Ag + E1(Agers; = Ace)s)), (8.2b)

which generalizes Eq. (6.16) and has the expected sym-
metry between the electric and magnetic couplings. From
this form it is apparent that a purely magnetically coupled
o-sphere behaves precisely the same as a purely electrical
one, just with the £ and H modes interchanged.

Let us now use the uniform asymptotic expansion to
extract the leading behavior of the logarithm in the energy
(8.1). We use the following plasma like dispersion relations
for the electric and magnetic couplings,

_& _&m
_CZ’ 5’_42'

The calculation follows very closely that summarized in
Sec. VIB 2. In particular, since we are interested only in
asymptotic behavior, as there, we replace z — 1/t asymp-
totically in the e}s] terms. Then using the notation of
Eq. (6.34),

e A (8.3)

a®

In AEAH ~ , (8.4)
; (2v)*
we obtain, with the abbreviations 1 = ¢ ,a, A= ¢na,

al) =214+ 1), (8.5a)

a® =22+ 72, (8.5b)

3) 7 N 23089
a = —t (/1+/1)+§t(/1 +47), (8.5¢)
A~ 1 A
a® =31+ 2)? —514(/14 + 4. (8.5d)
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This generalizes Eqgs. (6.35a)—(6.35d). It is interesting that
the first interference term between the electric and magnetic
terms occurs in the fourth coefficient, which means that the
terms corresponding to the divergences exhibit no such
interference. This further means that it is impossible to find
values of the couplings that will allow us to extract a finite
energy. That is, the divergences found in Sec. VI B 2 are the
same here, but with obvious changes in the coupling
constant dependence. There is one exception to this state-
ment of impossibility, when

A=A (8.6)
Then the first and last divergent terms vanish, and it would
be possible to isolate a unique finite part. This corresponds
to the familiar cancellation that occurs for a dielectric-
diamagnetic ball with the same speed of light inside and
outside, that is ey = 1 [57]. For further details on this
scenario see Ref. [58].

IX. CONCLUSIONS

In this paper, we have extended the electromagnetic o-
function potential formalism [23,24] to spherical geometry.
We modeled the spherical shell with the electric suscep-
tibility € — 1 and the magnetic susceptibility g — 1 using a
o-function. We have unambiguously obtained the boundary
conditions by integrating Maxwell’s equations across the o-
function sphere. Like in the case of the 5-function plate, the
polarizability 1!, corresponding to the radial polarizabilities
in the spherical case, are forbidden. We have provided
further argument in favor of this observation. The perfect
conductor limit is achieved by taking the limit 4, — oo for
the purely electric 5-function sphere, which corresponds
to the perfectly conducting spherical shell as considered
by Boyer [3]. In a similar limit, where both the electric
coupling 4, — co and magnetic coupling 1, — oo are
taken, the self-energy of the perfectly conducting mag-
neto-electric o-function shell identically vanishes. The
spherical shell in this case is transparent with the trans-
mission coefficient showing a phase change z.

The finite coupling takes dispersion into account. The
necessity of specifying the frequency dependence of the
couplings, representing the permittivity and the permeabil-
ity of the shell, is a consequence of the general formalism
employed, which requires knowledge of the dispersion. In
this paper, we have used a plasma-like model.

When there is only an electric coupling, the formulas
obtained earlier [47-50] are reproduced, but now with a
definite relation between the TE and TM coupling con-
stants. In the present work we examined the divergence
structure carefully. We first did so in the strong-coupling
limit, where we reproduced the classic Boyer result [3,6],
but now with a curvature-squared divergent term, which
accidentally cancels when only a simple exponential time-
splitting regulator is used, the latter corresponding to the
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familiar heat-kernel result. For finite coupling, we com-
puted the first three leading contributions resulting from the
uniform asymptotic expansion of the modified Bessel
functions; all three give divergent contributions. The first,
O(v™"), contribution, diverges as the logarithm of the
temporal point-splitting parameter; this term may be
regarded as a constant, and disregarded as a “tadpole”
contribution. The second, O(v~2), contribution, leading to
an inverse-linear dependence on the cutoff parameters, is
expected as a curvature-squared divergence once again, but
at least can be uniquely isolated. (For apparently accidental
reasons this divergence again cancels for the simple
exponential point-split temporal regulator, which is why
it does not show up in heat kernel analyses.) But in the third
term, of O(v~3), a logarithmic divergence occurs which can
only be regulated by a spatial point-split regulator. Because
of the scale ambiguity of such a logarithmic term, it is
impossible to subtract it off, and therefore impossible,
apparently, to compute a finite remainder.

This is in contrast to some earlier papers that obtained
seemingly discordant results. Graham, Quandt, and Weigel
[59] considered a dielectric shell, characterized by a Drude-
type dispersion relation, and a profile function. Although
they were unable to find a finite energy for such a shell,
they tuned the profile function with the radius of the sphere
so that the difference in energies between two such
spherical bodies is finite, and thereby computed a unique
force. This procedure seems artificial, and further they did
not correctly incorporate dispersion in their formalism as
we did here. In any case, since our shell is a -function, we
have no profile to tune.

Another, even more recent paper, is by Beauregard,
Bordag, and Kirsten [60]. They considered a §-function
potential, and claimed the divergences can be uniquely
subtracted, in contradistinction to statements by two of the
same authors, using a similar analysis, many years ago [17].
The new argument, based on the same heat-kernel expan-
sion given earlier, is that the divergent terms depend on
positive powers of the mass, so must be “renormalized
away” by the requirement that the Casimir energy must
vanish as the mass of the field goes to infinity. This is not
consistent with the conventional understanding of renorm-
alization. It also does not seem possible to adapt this idea
here, since we dealt with electromagnetism from the outset,
which must be characterized by a massless photon field.

So whatever the merits of these new proposals, they are
without bearing on our problem. We have encountered a
difficulty in extracting a finite Casimir energy for a sphere
for a purely electric §-function except in the special case of
a perfectly conducting shell, which we are calling strong
coupling. There are fascinating features noted in the cases
of the spherical shell having both electric and magnetic
properties; both in the perfectly conducting case, as
mentioned above, and the finite coupling case. In the
exceptional case, when the electric and magnetic couplings
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are equal and opposite, the contributions of the odd orders
in coupling in the asymptotic expansions vanish, which
mimics the case of the perfect conductor where a finite
result can be obtained. We shall discuss this case elsewhere.
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APPENDIX: ON A POSSIBLE CONNECTION
BETWEEN THE CUTOFF PARAMETER AND
SURFACE PRESSURE

There is reason to believe that among the various cutoff-
dependent terms it is the second-order contribution that is
of physical significance. The first-order terms are usually
considered to be without physical meaning, and when it
comes to higher-order terms, logarithms of cutoff param-
eters seem to be beyond measurability, even in principle.
Quantities lacking a possibility of experimental test should
naturally be deemed to be mathematical artifacts. The
divergent terms in the self-energy of the delta sphere in
our case may be considered to be an example of that sort.
When it comes to the second-order energy E (2), however, it
is easy to see that it is much closer to physical reality as it is
from dimensional reasons closely connected with the
concept of a surface pressure, obviously a concept having
physical meaning.

We shall now elaborate on this idea in more detail,
working from here with dimensional units.

1. Strong coupling

With use of the “new” cutoff parameter
(exp (ivzz) — 1)/ivzz, and setting 6 =0, one sees that
Eq. (6.23) reduces to

3nhc 8
g2 230 (i _8)
64a ( 3%)

If instead using the traditional cutoff parameter exp(ivz7),
one has from Eq. (6.24), assuming a purely spatial cutoff

(z =0),
g 3t (1Y
64a o

The important terms in the present context are the
cutoff terms, which are seen to be large and negative,

(A1)

(A2)
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corresponding to an inward force. The above two expres-
sions would simply be equivalent, if 7 = 7c/a could be
assumed to be a constant. Such an assumption would not
comply with our treatment above, however, which assumed
that 7, not 7, is constant. We therefore choose to start from

Eq. (A1), replacing E? by its cutoff-dependent part. Thus,

g, _hel

57 (A3)
This term is a constant, giving zero when differentiated
with respect to a. That is, this case does not correspond to a
surface tension at all.

We move on to the case of finite coupling which, at least
at first sight, should be a more natural situation in relation
to the surface pressure concept.

2. Finite coupling

We focus again on the cutoff-dependent part in
Eq. (6.46),

é’?,afl 1

E® — ,
8c A

(A4)

and include, as above, only the temporal cutoff so
that A — zc/a.

Differentiating with respect to a and keeping 7 constant,
we calculate

OE®  (Zan 1
=— —. A5
Oa 4c¢ et (45)
It corresponds to the surface pressure
1 9E® &nodl
f=-— = P (A6)
4dra* Oa 16zac ct

Remarkably enough, this force acts outwards. The deriva-
tive with respect to a does not in this case change the sign
of the expression.

If we nevertheless proceed to equate f to the hydrody-
namical surface pressure 46/a for a fluid shell (“soap-
bubble” geometry), we obtain

Céh 1
64rncet’

(A7)

Remarkably enough, we see that ¢ « 1/7, independently of
the value of a. Thus there is an analogy to the result recently
given in Ref. [61], dealing with the surface pressure on a
dielectric fluid ball. That derivation was based upon the
earlier quantum field theory given in Ref. [16] for the
Casimir force on a ball, and was found to give a positive
value for o.

Also in the present case we find it of interest to make a
simple numerical check and see what order of magnitude
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for cz results if one inserts reasonable physical values for
the other quantities present in the expression (A7). Let us
choose 6 = 73 dyn/cm, the conventional result for an air-
water surface, and choose ¢, =3 X 10'6 rad/s, a usual
value for the plasma frequency. Then, Eq. (A7) yields,
when we ignore the sign, the minimum length to be
ctr~04 A (A8)
anumber corresponding to atomic dimensions. The result is
strikingly similar to that obtained in Ref. [61], although the
model considered there was a compact ball instead of a thin
shell. One may be tempted to wonder, as we did in
Ref. [61]: is there a deeper link between quantum field
theory cutoff quantities and common quantities known
from hydromechanics?
Keeping 6 constant and omitting 7 in Eq. (A4), we would
have obtained, for finite coupling,

S n
64rncas’

(A9)

This equation is comparable to Eq. (A7), with the arc length
ad corresponding to the minimum distance cz.

3. Remarks on isorefractive media

As is known, a surface pressure occurs because of
imbalance between the two media separated by a fluid
interface: a molecule residing in the interface becomes acted
upon by different forces from neighboring particles on the
inside than from those on the outside. A noteworthy
exception is the case of isorefractive media, where the
product ey is the same on the two sides. It is illustrative to
consider the following simple example: let two spherical
fluid balls 1 and 2 of this sort be touching each externally at
one point, identified as the origin of coordinates. Any
disturbance in ball 1 at position r will need precisely the
same time to reach the origin as a disturbance at the inverted
position —r in ball 2. The imbalance becomes in this way
eliminated, and the effect of surface tension disappears.
Mathematically, if one calculates the Casimir surface
pressure on such a ball one finds the counterterm to be
simply zero; there occur no divergences in the conventional
temporal point-splitting cutoff. This effect was demon-
strated in the detailed calculations in Refs. [19,20,57].
The most typical case is when

en =1, (A10)
corresponding to a photon velocity in the medium equal to
the vacuum value c. It is instructive to note the expressions
for the interior and exterior energies, assuming for simplicity
the case where the relative permittivity y;, = p; /- is either
zero or infinity, in the first order of the uniform asymptotic
expansion:
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(1)77"16‘ 8 11 3

E)=—|- —+—, All
int Za[ 372 36z 64 (All)
a hc[ 8 11 3

Egq = ~— - . Al2
& 2a {37;%2 367 | 64 (A12)

Thus E;,, = —o0 and E,,; = +0c0 when 7 — 0 but their sum
is finite,

()_3flc

EW = g ) 27 Al
+ ext 6461 ( 3)

int
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It is also natural here to mention that the condition
(A10) is a precise analogy to the relativistic model
proposed by Lee for the color medium outside a hadron
bag [62] with noninteracting gluons playing the role of

photons.
Finally, returning to electrodynamics it is natural to
make a comparison with the case 4 = —A encountered in

Eq. (8.6). Also in this situation it turns out to be possible, as
noted, to isolate a unique finite part in the energy. The
analogy is not complete, though, since a negative 1 would
imply a negative value of {,, or ¢, in Eq. (8.3).
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