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Casimir self-entropy of a spherical electromagnetic 6-function shell
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In this paper we continue our program of computing Casimir self-entropies of idealized electrical bodies.
Here we consider an electromagnetic é-function sphere (“semitransparent sphere”) whose electric
susceptibility has a transverse polarization with arbitrary strength. Dispersion is incorporated by a
plasma-like model. In the strong-coupling limit, a perfectly conducting spherical shell is realized. We
compute the entropy for both low and high temperatures. The transverse electric self-entropy is negative as
expected, but the transverse magnetic self-entropy requires ultraviolet and infrared renormalization
(subtraction), and, surprisingly, is only positive for sufficiently strong coupling. Results are robust under
different regularization schemes. These rather surprising findings require further investigation.
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I. INTRODUCTION

The usual expectation, based on the notion that entropy
is a measure of disorder, is that entropy should be positive.
However, there are circumstances in which entropy can
take on negative values. For example, negative entropy is
often discussed in connection with biological systems [1].
More interesting physically is the occurrence of negative
entropy in black-hole and cosmological physics [2-5].

In Casimir physics, perhaps the first appearance of
negative entropy occurred in connection with the descrip-
tion of the quantum vacuum interaction between parallel
conducting plates. If dissipation is present, the entropy of
the interaction is positive at large distances, a7 > 1, where
a is the separation between the plates and 7 is the
temperature, but turns negative for short distances.
Considered as a function of temperature, the sign of the
entropy changes as the temperature decreases, becoming
negative if the dissipation of free electrons is present [6—8],
but does tend to zero as the temperature tends to zero, in
accordance with the Nernst heat theorem if the residual
relaxation is taken into account [9,10]. Although perhaps
surprising, this was not thought to be a problem because
this phenomenon only referred to the interaction part of the
free energy, and the total entropy of the system was
expected to be positive. Somewhat later it was discovered
that negative Casimir entropies also occurred purely geo-
metrically, for example between a perfectly conducting
sphere and a perfectly conducting plane without dissipation
[11-13], or between two spheres [14,15]. When the
distance times the temperature (in natural units) is of order
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unity, typically a negative entropy region was present.
Since the effect was dominant in the dipole approximation,
this led to a systematic study of the phenomenon of
negative entropy arising between polarizable particles,
characterized by electric and magnetic polarizabilities, or
between such particles and a conducting plate. For appro-
priate choices of these polarizabilities, these nanoparticles
behaved like small conducting spheres. We found that
sometimes the entropy started off negative for small aT,
before eventually turning positive, and sometimes the
entropy was first positive, turned negative for a while,
and then turned positive again as a7 increased [16,17]. The
combined effects of both geometry and dissipation were
considered in Refs. [18,19].

The occurrence of negative entropy, geometrically
induced, sharpened the puzzle. Again, the suspicion was
that the self-entropies of the bodies were much larger, and
positive, yielding positive entropies always for the whole
system. This was borne out to some extent in the case of
perfect conducting spheres. There it turned out that although
the self-entropy of a conducting plate vanishes, the self-
entropy of a conducting sphere is positive and is such that it
precisely cancels the most negative interaction entropy
between a sphere and a plate [20,21]. More specifically,
the two electromagnetic mode contributions to the entropy,
the transverse electric (TE) and transverse magnetic (TM)
terms, had opposite signs: as expected [22], the TE was
always negative, and the TM positive, the latter dominating
the former.

In this paper, we carry the sphere self-entropy problem
much further. We consider a simple model of an electro-
magnetically coupled sphere, represented by a §-function
shell, with arbitrary coupling A. In the limit as the coupling
tends to infinity, this precisely corresponds to a perfectly
conducting sphere. This model generalizes the previously
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described electromagnetic d-function plate [23], and our
electromagnetic §-function sphere [24], considered at zero
temperature. (The closely related plasma spherical shell was
considered earlier in Refs. [25,26].) As in our previous
works, we model the dispersive property of the shell by a
plasma model. We discover that the finite-temperature
problem is much more complex than might have been
anticipated. Although it is generally supposed that the
divergences in the self-free energy are confined to the
zero-temperature contribution, this is not the case: the TM
contribution to the entropy has both infrared and ultraviolet
divergences, which violate the Nernst heat theorem, and
hence require some sort of subtraction or “renormalization.”
(In this paper, by “renormalization” we mean subtraction of
these divergences.) When this is done, the TM self-entropy is
no longer always positive. It is positive only for sufficiently
strong coupling, while the TE self-entropy is always negative
as expected. So we have encountered new phenomena that
will require further work to understand.

The outline of this paper is as follows. In Sec. II we set
up the formalism and obtain the general expressions for the
free energy of the J-function sphere. The expressions are
regulated by point-splitting in time and in the angle on the
sphere. We also model the dispersive properties of the shell
with a plasma model, characterized by a dimensionless
coupling 4. In Sec. III we consider the strong-coupling
limit, that of a perfectly conducting spherical shell. Because
of the appearance of an infrared singularity, a renormaliza-
tion of the temperature-dependent part of the free energy is
required. After a temperature-dependent infrared-sensitive
term is removed, the high- and low-temperature results of
Balian and Duplantier [27] are recovered. Finite coupling
behaviors are studied first in Sec. IV using the uniform
asymptotic expansion for the spherical Bessel functions:
at low temperature, this approach only yields the zero-
temperature structure with divergences as seen in Ref. [24].
The low-order contributions to the entropy can actually be
found exactly in Sec. V, but again the O(43) TE and the
O(4y) TM parts exhibit divergences which violate the
Nernst theorem and must be renormalized away. The low-
temperature behavior is studied for both the TE and TM
modes in Sec. VI. The TE low-temperature entropy has a
simple functional dependence on the coupling, while the
TM mode again requires infrared renormalization, and
exhibits a dependence on the coupling which is non-
monotonic, being positive for strong coupling, but chang-
ing to negative as the coupling gets weaker. Finally, the
high-temperature limit is discussed in Sec. VII, now using
analytic regulation and the Chowla-Selberg formula. It is
seen that the order of limits is important; we consider both
the limits aT > 4y > 1, and 4y > aT > 1, where only the
latter corresponds to the perfect conductor. The TM mode
again requires a temperature-dependent renormalization.
The results of this paper are summarized in Sec. VIII. In the
last section of the paper we offer some concluding remarks.
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We use natural units # = ¢ = kz = 1, and Heaviside-
Lorentz electromagnetic units.

II. ELECTROMAGNETIC §-FUNCTION PLATE

As in Ref. [20], we can express the Casimir self-free
energy of an object with permittivity € = 1 + V in symbolic
form

T (6]
F== > Trin(1-TyV),

n=—0oo

(2.1)

expressed as a sum over Matsubara frequencies ¢, = 2znT,
where the trace is over spatial coordinates and internal
variables (tensor indices). Here I is the free electromagnetic
Green’s dyadic, which satisfies

[—CLZVXVX—I:|FO(I'—I'/)—15(1‘—1'/). (2.2)

n

It is convenient to define a divergence-free Green’s dyadic,
which differs from this by a d-function term [28]:
If(r—r)=Ty(r-r)+15(r-1r),V-Iy =0. (2.3)

This dyadic can be resolved in terms of vector spherical
harmonics

1
X, = ————LY,,(Q) =rx-
1 ) m(Q) l

as follows:

Ly/(r=t) =[G (r, ¥) X (Q)X;, ()

nlm

= Vxg)(r. )X (Q)X],

f (@) x V], (2.5)
where in spherical coordinates r = (r, Q) = (7,0, ¢).

For the case of a sphere of radius a described by a
semitransparent potential, V=16(r—a)(1—£t), the poten-
tial is tangent to the surface of the sphere. (This transversality
is required by Maxwell’s equations [23].) The trace is then
worked out by using the following orthonormality properties
of the vector spherical harmonics [29]:

[ 49X, (@10 @) = dn (260

/ dQf(”)X;, (QV x g(r)X,,(Q) =0,  (2.6b)

/dQV’ X f(X)X5, (Q)- (1= FF) -V x g(r) X, (Q)

(rg(r)). (2.6¢)

i 1 a / /
- 511/5mm/WW(rf(r)) )

r
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The trace in Eq. (2.1) is carried out by expanding the
logarithm, doing the trace in each order, and resuming to get

ZZzH

nf—oo =

(1 +182a? g?(a,a))

+1n<1 _larrar’r.%(r’r))'r:r’:a]' (27)
The free reduced spherical Green’s function is
g(r.r’) = (I€ulr<)ei(ICulr>), (2.8)

where r_.) represents the lesser or greater of r and r,
and the modified Ricatti-Bessel functions are

si(x) = \/?IIH/Z(X)’
e)(x) = \/%KIH/Z(X)’

which have a Wronskian equal to one.

The final form of the expression we must evaluate for the
free energy of a semitransparent sphere is defined by 1)
inserting point-splitting in (imaginary) time, with param-
eter 7, and in the spatial directions transverse to the normal
of the sphere, with angle parameter 6, and 2) by using the
“plasma-model” dispersion relation for the coupling,
A =2/(&a), where 1y is a dimensionless constant.
These two processes are precisely those followed in
Ref. [20]. The regulated free energy is (x = |{,|a)

(2.9)

[Se]

Z ’WZ (214 1)P;(cos )

n:—oo =1

X {m (142 H00) (14 SN

(2.10)

The first term here is the TE free energy and the second is
the TM free energy. These two contributions, which reduce
to the familiar result for a perfectly conducting shell in the
limit 4, — oo, are just those discussed earlier in Ref. [30]
[see Eq. (96) there], with the following identifications of
the coupling constants there: ATF = Jya, A™ = —Jya/x°.
In the notation of Ref. [23], 4y = {,a. It is important to
keep this a dependence in computing the self-stress on the
sphere from § = — (%F ; but here we are interested in the
entropy, S = — % F, so for notational convenience we keep
the coupling as A.

III. STRONG COUPLING

Since the spherical-shell entropy problem has mostly
been considered in the perfectly conducting limit, we begin
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with that situation. In strong coupling, 4, — oo, the free
energy reduces to

F el Z (21 + 1)P,(cos 5)

[Se]

Nlﬂ
Ms

(X) ((x )e (x)s7(x)
2 , (3.1)
where the coupling has disappeared because
> (21 +1)Py(cos8) = —1(6 #£0) and
=1
Z e =0(x#0 mod2r).  (3.2)

n=——0o0

To isolate divergences we use the uniform asymptotic
expansion (UAE) [31], which gives for the leading behav-
ior of the logarithml;

(6 (6
22 3
—711%) + O(v7%),

(3.3)

Ine;(x)s;(x)e)(x)s)(x) ~ —In4 — (4 — 5412

+ 120¢*

v — o0,

where x = vz,t = (1 +z2)7"/2, and v = [ + 1/2. Note that
there are no odd orders of v~! in this expansion. This

expression is actually valid at n =0 where r =1 [see
Eq. (3.14) below].

A. Leading term
The leading term in the expansion of Eq. (3.1),

D et Zzz+ )P;(cos5)(—In4x?), (3.4)

would be thought as a priori irrelevant, since it does not
refer to the sphere, in view of Eq. (3.2). However, if we take
it seriously, we write it as

T
=3 > ernacial, (3.5)

n=—0o0

The n = 0 term is not defined here, so we regularize this
infrared divergence by replacing {2 by (2 4 u?, where
dimensionlessly, p = pa, with y being a photon “mass.”

"This is an astoundingly good approximation. Even for [ = 1
the discrepancy between the two sides of Eq. (3.3) is within 0.1%
for all x.

’In Ref. [32], the case of a massive field was considered. As
noted there, when the a, heat-kernel coefficient is nonzero, as is
the case here, the massless limit cannot be taken.
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We will assume p is smaller than any other scale in the
problem. Thus, the n = 0 term is simply

FO

—14, 3.6
co,n=0 " 211p ( )

but for n # 0, p will be neglected. Then, the sum can be
expressed in terms of polylogarithms, where we now
abbreviate a = 2zaT (7 = 7/a):

© _,n0 Z"" 5
Foonzo =2T P 1= (2an)f cos ant|;_,
a A iat
= 2P0 (L (g (37

At =0, Lig(z) = z/(1 — z), while it can be shown for
small 7 that

0 1 . 1
(9_,BL1_ (€)oo = e — [In(—ia7) + 7] —§1n27r, (3.8)
so we find that
FO Dy o201 272
2 2t 2n 2t
1
- 4+ Tm" :
21+ nT (3.9)

The same result is easily obtained by use of the Euler-
Maclaurin sum formula,

i’g =/ dng(n

n=0

8

2k 1) >’

(3.10)
k=1

where the prime means that the n = 0 term is counted with
half weight. This formula provides a formal asymptotic
expansion in terms of the Bernoulli numbers. Even more
simply, a corresponding answer is found when we use
analytic regulation (we will return to this technique later in
Sec. VII), defining

S 118
FO o==T> 21+ 1) Indr’e? = STy
n=1
= ricom2a-g©) =~ Srm2. (3
- e T " :
or
o 11 2zp
Foo =—=Tln 3.12
12 o (3.12)

which uses the replacement » (2] + 1) — —1} rather
than —1 obtained from the point-splitting cutoff Aside
from this fact the ultraviolet finite answer obtained is the
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same as that given in Eq. (3.9). Evidently, with the infrared
sensitive term included, this contribution is independent of
the sphere’s radius (which is obvious a priori); that fact,
together with the sensitivity of the coefficient to the choice
of regulation scheme, implies that this contribution is
unphysical, and should be disregarded (subtracted).

B. Low-temperature behavior

To see the low-temperature dependence of the free
energy, and thus the entropy, we return to the exact strong
coupling formula (3.1). As we see from the Euler-
Maclaurin formula, to get a temperature correction to the
zero-temperature energy we need a contribution odd in n.
In fact, the lowest-order odd term in the logarithm occurs
for I =1, where In(—ees;s}) ~...—1x’ +---, where
the leading omitted terms are even in x. Then the Euler-
Maclaurin formula immediately leads to the leading low-
temperature correction to the free energy

(ma)’

AF, =T
® 15

T4, aT < 1,

B, 5
a 3-2(27Ta)’ = —
(3.13)

as first found in Ref. [27]. [See also Sec. 9.5 of Ref. [33].]

C. High-temperature behavior

To get the high-temperature behavior, we need to
consider n = 0 separately from n # 0. The former is

T 1
F, _o=— 20+ 1)P o)1 l———
oo,n=0 212:1:( + ) I(COS )n< (2[+1)2>
| P(cos )
:_Ezkz (20 +1 2" r

k=1 " I=1

(3.14)

The k = 1 term here is divergent as § — 0. The balance of
F o —o sums to

11
Feon—o = T( y+—ln2 31nG>

2 4 12
= L 0.027537), (3.15)
where G is Glaisher’s constant, InG = 55 — {’(—1). For

n#0, the O(v2?) term in the UAE expansmn of the
logarithm seen in Eq. (3.3) is given as

P;(cos ) 8
:—TZCOSC,, Z A1 P EA

=1

(3.16)

where the sum on n is readily carried out to yield (for
simplicity, we have set 7 = 0)
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1 v
oo -~ A - h——
E P, cos6){ —1—32 [3cot ST

3 v v v\? v
22 csch?—— th— csch?
24 TCSC 2a T+2( > N2 24 TH

(3.17)

The first term in curly brackets in this expression precisely
cancels the k = 1 term in Eq. (3.14). For large v/2aT (this
is the low-temperature limit) the hyperbolic cotangent in
Eq. (3.17) tends to one, so we should remove that limiting
term, which amounts to the zero-energy term,

~

FI=0 — _ —Z (cos ) > _ 3 (3.18)

32aT 64a 64as’

l\.)

In the same limit, the balance of Eq. (3.17) vanishes
exponentially fast. The finite part of this is, as noted
in Ref. [28], within 2% of the exact Boyer result
[27,28,34] for a perfectly conducting spherical shell,
Ep = —0.04617/a. The divergent term appearing here
does not appear in other ways of regulating the zero-point
energy. Including higher terms in the UAE, and computing
the remainder, indeed gives exactly the Boyer result, at
zero temperature.

For high temperature, we evaluate what is left in
Eq. (3.17) via the Euler-Maclaurin formula. The integral
gives the leading term:

T o0
32 J3/4ar
+ 2x% coth x csch?x]

T3 33 3
=~ |2 (3+5c0th—— + —csch?
2[ <+ ot T T qar ™ 4T>

~sin(2sinn 2 )|

T 9
T 16 (3 41“%) T 128a

F//,T—>oo _

0 =

dx[3(coth x — 1) + 3x csch?x

(3.19a)

o(T™3).
(3.19b)
The last limit assumes a7 > 1. The remaining terms in the

Euler-Maclaurin series are easily evaluated using Borel
summation:

(3.20)

where y is the digamma function. This yields the final
contribution to the free energy:
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T, 2 3 3
1, T— oo

0 =—|ln-

1 {n3+w<2)] + 580

Adding this result to that in Egs. (3.15), (3.18), and (3.19b),
we see that the finite temperature-independent part cancels,
leaving for the high-temperature limit apart from a diver-
gent constant

(3.21)

1 3013
FIoo o T(—lnaT == =22 +3InG
( gnal —qg et on )

T
=~ (InaT +0768584).  aT> 1. (3.22)

a result first obtained by Balian and Duplantier [27]. (See
also Refs. [33,35].) (To understand this high-temperature
limit better, we will break this up into TE and TM parts in
Sec. VIIC).

To obtain the next term in the high-temperature expan-
sion, we consider the order »™* term in Eq. (3.3). This term
can be written as

(3.23)

T,
-—> vg(y)
162~

where, with y = v/2Ta and a = 2znTa,

1 d\2 d\3 d\*
= 2[E) 192 (L) 54
90) 2(Ot/ﬂ)c"[ <dy2> o <dy2> o <dy2>
+ TLe( 4 ! + 1coth

1207 a2 2 Ty

The leading contribution comes from the first, integral,
term in the Euler-Maclaurin formula:

(4),T—o0 T (a\* /00 3 o 1
FOT-= = (¢ d S
16 <n> a0 Y ™) = = 352027

(3.25)

(3.24)

or all together,

T
FIo ~ =2 (InaT +0.7686) - (3.26)

3840a’T’

again as first derived in Ref. [27].

IV. FINITE COUPLING BEHAVIORS

Now let us return to Eq. (2.10) with finite coupling 4,
and approximate the logarithm using the UAE:

(1+2em0) (12t ) | ~3- G2

v>1, (4.1)

In
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where the first four expansion coefficients are

al (1) = 24t (4.2a)
a?(t) = =231, (4.2b)
3)(+) — 4o 7 2.3
ab(t) = g(—?)t +2251). (4.2¢)
12
a® (1) = > D@28 - 2214, (4.2d)

with again ¢ = (14 z2)"/2, x = vz. Here we have dealt
with the infrared divergence in the TM contribution by
replacing 1/z°t — ¢, as discussed in Ref. [24], because
this substitution does not change the ultraviolet behavior.
The idea was that the error introduced is compensated
by the remainder, and this substitution is sufficient to
capture the divergence structure. However, this would not
be expected to be valid for the n = 0 term, so we will return
to this point later, when discussing the temperature
dependence. Note that this expansion is not a power-series
expansion in the coupling 4.
The first-order term in this expansion is

= 2/10TZ cos é‘anPl (c088) ——— = 4‘2 oy
v

(4.3)

For low temperature, we again evaluate the sum on 7 using
the Euler-Maclaurin sum formula (3.10). The integral term
there is all there is, because the n summand is even about
n=0. (This will result in no temperature dependence
being revealed, as we saw in the previous section.) That
integral is immediately seen to be

Z (21 4 1)P(cos §)Ky(v7),  T=r1/a.
l
(4.4)

Since only the 7 cutoff is essential here, we set § — 0 and
have

(4.5)

i o0
) =20 § K (U7).
ma 4= vKo(v7)

This sum, in turn, may be evaluated using the Euler-
Maclaurin formula around / = 1. The integral term gives

o 9 37
”a[ +16< 1—|—2y+21nz>}

The remainder terms involve, with g(I) = vKy(v7),

Flla) — (4.6)
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; (1) = —2 (m%w) (4.7a)
g’(]) =—y—1 —IHST (4-7b)
g2 (1) = % k> 1. (4.7¢)

The resulting series is Borel-summable:
2k — 3
F(X _'XZBZIC( 2k_3

o et xt B,
= dt —— |——— — By — Byxt — — (xt)?
x/o (xt)? th ey (xt)
1
T 12

122 =pe( =114 1
12x%(1 y)Z:( 1,1+x>

1
— 12x%¢(10) (-1, 1 +—)],
X

where the integral is evaluated at x = 2/3, by analytically
continuing in the power of x¢ in the denominator. The
numerical value F(2/3) = —0.00058434. Adding together
the components, we obtain

{ =9 —6x + (6 + 6x + x?)(y + Inx)

(4.8)

A 1
F) =22 M- 0345879] . 4.9
za 2 24 nt (49)
The second term in the UAE gives
=1 P(cos 8) o 1
F? = -22T e YR Y e —
; 2u ; 1+ &2a? /02
(4.10)

Evaluating the n sum again by the Euler-Maclaurin for-
mula, the integral there gives

2) /1(2) . —1/%_/12 1
F ——8—aZPl(cos5)e =eell-%)

(4.11)

There are no remainder terms, because the n summand
is even.
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The third term

/1 P 1) 3
FO) = of Z cos{,T Z ,((co)sz ) [_<H_C%a2/yz)7/2

=1
iy
.
(1+Ga? /)7

(4.12)

is most easily evaluated when 7 = 0. As before the n sum
can be replaced by an integral, and the sum on / is easily
carried out, with the result

4o

FG) =
30rza

1
(4—5&3)(1 —%ln2—|—51n6). (4.13)

The fourth term, and those thereafter, are finite:

yrae s
o = o (g_ 1)(5 _4).

The above analysis, based on the uniform asymptotic
expansion, and the Euler-Maclaurin summation formula,
exhibits no temperature dependence in the free energy. This
is because the n summand is even in n, so the Euler-
Maclaurin formula (or the Abel-Plana formula) allows the
sum to be replaced by an integral, which precisely
corresponds to the zero-temperature energy.

(4.14)

V. LOWEST-ORDER COUPLING CONTRIBUTION
TO THE FREE ENERGY

As in strong coupling, to get the low-temperature
correction, we must return to the exact expression
(2.10). In this section we will consider low orders in the
coupling, which can be treated exactly. We will first
consider the first order in A, contributions.

A. TE O(4y) behavior

The TE contribution to the free energy in Eq. (2.10) may
be expanded to first order in 4, as

—/10—2 ’gﬂzoo:2l+lPlcosé) (> (>

n=-—0o =1

(5.1)

We can evaluate this exactly. We use the summation
theorem [36]

Z (21 + 1)P;(cosb)e;(x)s;(y) = ge‘”,
1=0 P

p= \/x2 +y? —2xycosd
(5.2)
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to evaluate the [-sum as
D21+ P eosd)er(x)s ) = e = eox)so(x).
— u
(5.3)

where u = /2(1 —cosd) ~5. Then the sum over

Matsubara frequencies is (« = 2zTa, T = 7/a)

l 1
einat —\n\au = (p2nla _ NI.
tog 3 ¢ e e e )

Nlﬂ

(5.4)

This is readily evaluated to be

o 11 1 , 1 _sinha
FE=0 (0 4l @ .6
1)~ 27q <u = +2n2+12“ 2" ) (5:5)

The free energy diverges as 7 and § tend to zero, but the
entropy 1is finite:

OFTE 11
sE= T ) (a—l————cotha> (5.6)

)= " 7ar 6 2a 2

For low temperature, the entropy tends to —Aya®/90, a
result which will be rederived below, while for high
temperature,

B. TE O(43) behavior
We can also exactly calculate the TE O(43) behavior.
Squaring the identity (5.2) and integrating over angles, we
obtain [w = 2x4/2(1 — cos @), where @ is the angle in the

sum rule]
2 4
2 0 w

i(Zl + 1)e7(x)

which, unfortunately, loses the angular point-splitting
regulator. So now the second-order TE free energy is given
by the expression

(5.8)

Because this expression exhibits no ultraviolet divergence,

we can set 7 to zero. Let us consider the second term (the

I = 0 contribution), first. Since e3(x)s3(x) = e~>*sinh?(x),
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it is immediately evaluated as

AZ 1 2 . .
FIE — Ao {1 + 32 [% — 2Liy(e72%) + L12(6_4a)] }

8ra
(5.10)

Let us similarly consider the low-temperature limit of the
first term in Eq. (5.9); we use the Euler-Maclaurin formula
to evaluate it, but because the summand is singular at
n =20, we do so about n = 1:

FE = - e [ |7 angto = [ angio + 3 510)

8ra
>~ By (
> o

k=1

2k—‘>(1)]. (5.11)

We can disregard the first term here, the integral from O to
00, because when the variable is changed from # to na, the
integral is seen to be independent of 7', and hence does not
contribute to the entropy. The second integral from O to 1 is

22 I A2 da 1
Zo% dnf(n) _ A% {/ —We_w+—(e_4" - 1)}
0 " 4a

8ra 8za w
/1(2)0( | ) .
—% |:E(€ —1)+E1(—4a)—E1(—17) s

(5.12)

where Fi is the exponential integral function, and we have
regulated the divergence at cos @ = 1 (w = 0) by inserting a
small positive number 5. To evaluate the f(0) term we again
need to insert the photon mass parameter p, and then we
obtain

/1%0{1 Ba  4p

sra2’ ) = Toma "y (5:13)
The 1 (1) term is
Ra [4adw Ba . .
- D v — — 0% [Ei(—4a)—Ei(—y)]. (5.14
[ e = o) i) (514

The terms in the Bernoulli series are also readily worked
out to all orders:

FE=D(1) =T(2k — 1, 4a). (5.15)

The leading terms in the Bernoulli expansion are readily
evaluated by Borel summation,

PHYSICAL REVIEW D 96, 085007 (2017)

i": /°°dt Lt 14!
Ze —14=
0 12 e —1 2

(5.16)

1
:§1n27r— 1.

Then, adding all these components, we find through O(a*)
the second-order TE free energy to be

2
AFIE _ A aln2ﬂp+
270

@ 8ra |2 «a

where the A symbol signifies that temperature-independent
constants have been dropped. Although the @® and o terms
canceled, as has the collinear cutoff #, there persists a linear
term in 7 and a T'In T term dependent on the photon-mass
infrared cutoff, which if present would violate the Nernst
heat theorem. We have seen precisely such terms appearing
in the strong-coupling limit, Eq. (3.9), and will see addi-
tional power divergences in the TM contribution to the free
energy already in order 4;. As we will see below, such
divergences are to be omitted. In particular, we will not see
this term when we consider the general low-temperature
expansion in Sec. VI A.

We can easily extend this calculation to all orders in a.
The key observation is that in O(a?*), k > 1, all contribu-
tions cancel except that from the B,; term in the Bernoulli
sum and the contribution from the / = 0 term (5.10). This is
a consequence of the identity

5(0)e o

k=0

(5.17)

n> 1. (5.18)

Adding up the remainder, leads to the temperature depend-
ence of the free energy in second order:

ﬂz 1 [#% .
a5 =8 L [ - 2L + Lin(e )

20| 6
1. 2zp
——h4 —=In—>», 5.19
4 (4a) 2 a} (5.19)
where
x dt t 1
h = — -1 t, 5.20
(x) x/) 1 [e’—l +2] (5:20)
which has the limits
X2 X
o |
")~ 3600 *<b
h(x)~)2—clnx—Ax, A=063033, x>1. (521)

The limiting behaviors of the free energy are
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107 F
104}
G-g 10 Exact
.:T’ 1072 ] - Low Temperature
----- High Temperature
1075
1078 . . . .
0.1 1 10 100
a
FIG. 1. The negative of the TE free energy in second order

in g, apart from a factor of A3/(8za). The solid line shows
the numerically computed free energy (5.19) compared with the
low-temperature approximation (dotted curve) and the high-
temperature approximation (dashed curve), given in Eq. (5.22).

AFTE a<xk 1,

A { 276
A 5.22
@ 8za | 1.63033a —Laln4a, 522

a>1.

The second-order TE free energy is shown in Fig. 1. Note
that because AF (TZE) has a negative slope, the corresponding

entropy contribution is positive, unlike the first-order
contribution.

C. TM O(4y) behavior

Extracting the weak-coupling behavior of the TM con-
tribution is considerably more subtle. The expression we
wish to evaluate is

F(Tll\f = —AOTZ " cos nat

n=0

i2l+ 1P, cosé) e,(na)sl(na) (5.23)

We first note that the n» sum is divergent because of an
infrared divergence at n = 0. To regulate this, we again
insert the small photon mass parameter p. Then the n = 0
contribution is immediately worked out:

M _ loa( u* + 72
n=0 —

1+”2/4 F1 > (5.24)

4ra pu’ 2u?

For the rest, we ignore the photon mass, and use the

summation formula (5.2) to write F1Y = FiM + FjM,
where
(o8] / /
FIM — 4T z Colna)so(na) 5.05
B 0 ; cos nat o (5.25a)
™ S B e~ una
Fb = —AoT;COS HGTW
X [4 +u? + u(4 = 3u*)na + u*(na)?).  (5.25b)
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Because e (x)sy(x) = —1 (1 — ™), we can readily evalu-

ate the subtracted [ = O term:

A
FM = 2 In7 + Ina — a + In(2sinh a)].

2
dra (5.26)

The n sums in the remaining part F}! 4o are straightfor-
ward, leading to, for small u and 7,

1 o’
-l4+——-—>". 5.27
+l—l-i'z/u2 9} (5.27)

When Eqgs. (5.24), (5.26), and (5.27) are combined, we are
left with divergent terms that depend on temperature, as
well as a finite remainder:

A 1 (2 « u?
FM _ _ 70 )1+
) 27m{u <6a+ >< * 4)
1 u? 7 7
+ == (1+—(1+—arctan—
u 4 u u
1 1 1 1
—~In7+ - +7)+-—"m—
5%+ n(u”+7 )+41 +%2/u2}

2na_%

1. 2sinha az}‘ (5.28)

Interestingly, with this way of regulating the infrared
divergence, the z-dependent and finite terms linear in «
have canceled between F}M, and F}X.

The entropy is obtained from the free energy by differ-
entiating with respect to a:

0
S =-2ra—F,

o (5.29)

so we see that the terms in F' (Tll\)’[ linear in @ and inverse linear

in a violate the Nernst heat theorem, and therefore seem
unphysical. So, there is motivation for simply omitting
those terms. We might think that it is the dimensional
quantities 7 and aé which are the fixed regulators, which
would suggest a scaling argument for removing these terms
as irrelevant, but this is incorrect, since a direct calculation
[24] of the stress tensor shows that the principle of virtual
work, requiring that the stress on the sphere be the negative
derivative of the free energy with respect to a, shows that
the quantities 7 and 6 must be regarded as constant, so that
terms in Eq. (5.28) depending on 7 possess a dependence.
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However we shall subsequently see two further justifica-
tions for “renormalizing” these terms away. The infrared
and ultraviolet divergent terms encountered here are quite
different from the logarithmic terms seen in Egs. (3.9) and
(5.17). The present divergent terms are power divergences,
and so are more convincingly removed. Adopting such a
prescription leaves only the finite terms in the free energy
and the entropy

. y) 2sinha a2
™ _ 70 il
F)' = 4za (m « 18)’

) A 1
S =-2 <coth a——+ g) . (5.30)

Unfortunately, this TM contribution to the entropy, like the
TE contribution (5.6), is always negative, and the sum of
the two is linear in the temperature:

N A 2
™
S(l) = S’(I‘IFS + S(]) = —6/1061.

(5.31)
The first-order renormalized entropy is displayed in Fig. 2.
Both contributions to the entropy are now negative.

The same result (5.28) is obtained if instead of direct
summation, the Euler-Maclaurin formula (around n = 1,
because the summand is not analytic at the origin) is used.
However, remarkably, the Abel-Plana formula gives
directly the finite part with all the divergences confined
to the temperature-independent part. This is actually not
surprising, because analytic regularization techniques omit
power divergences. The Abel-Plana formula

i,f(n):/owdtf(f)+i/ooodﬂw’

n=0 -

(5.32)

concentrates all the divergent terms in the first temperature-
independent integral. All the temperature dependence is
contained in

FIG. 2. The TE and “renormalized” TM contributions to the
entropy in first order in the coupling. Both the TE and the TM
contributions are negative, leading to a sum which is negative and
linear in the temperature.
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™ o cosnar 1
AF(1> ——lloTA dﬂmﬁ

X {—eg(ina)s{)(ina) +%(%%ye_i”+(c.c.) ,

X=y=na

(5.33)

where p is defined in (5.2), which is just the Minkowski
version of the Euclidean form in Eq. (5.25). Now, because
we have sines and cosines instead of real exponentials,
contributions are finite, and we can set 7 — 0:

A o dx 1 x2
™ _ 0 _ 2
AF[Y ﬂaA T <1 cos’x + 3>. (5.34)

This may be easily shown, for example by Borel summa-
tion, to yield precisely the free energy and entropy shown
in Eq. (5.30).

VI. LOW-TEMPERATURE BEHAVIOR

In this section we consider arbitrary finite coupling 4,
but examine the behavior of the free energy for low
temperature. This can be readily extracted by use of the
Euler-Maclaurin formula (3.10), which will concentrate all
the ultraviolet divergences in the temperature-independent
part of the free energy. The integral term in Eq. (3.10),
as noted before, contributes only to the temperature-
independent part.

A. TE low-temperature behavior

As noted in Sec. III the lowest-order appearance of an
odd term in ¢, occurs for [ = 1:
ef(x)sy(x) 12 , 1,

x 3715 ot T
The leading low-temperature correction comes by expand-
ing the logarithm in powers of A;. The kth-order term
arising from the Bernoulli series in the Euler-Maclaurin
formula is

B 3
AFTET=0 — 722 (277)3 <ﬁ>

x<<1l. (6.1)

(k) 41 Ox
1\ -1 53
3(=1 k+1 3/11{ - -
X ( ) a4y 3 9 —0
Ao\ k314
Y S R 6.2
a ( 3) 5 (6.2)
When this is summed over all £ we get
3 1 3
AFTE'T_'O(JO) — (ﬂ(l) T4 (”a) T4, (63)

_)
15 " 1+3/4y 15

where the last replacement is the strong-coupling limit
(which may be directly confirmed). The corresponding
entropy is

085007-10



CASIMIR SELF-ENTROPY OF A SPHERICAL ...
o 1
301+3/4°

which for O(4y) coincides with the result found at the
end of Sec. VA, and in O(43) agrees with the entropy
computed from the O(a*) term in Eq. (5.17), which
constitutes further evidence of the irrelevance of the
infrared-sensitive logarithmic term there. Comparing with
the total low-temperature correction (3.13), we see that the
strong-coupling limit of the TM contribution must be

STET=0(}g) = — (6.4)

AFQMT=0 = —%(m)w. (6.5)
The corresponding entropies, S = —0F /0T, are negative
for the TE contribution, and positive for the TM. As for the
plate [20], the latter overwhelm the former.

It might well be objected that since the summand is not
analytic at n = 0, it would be better to apply the Euler-
Maclaurin formula about n = 1, as in Eq. (5.11). Doing so
in this case yields exactly the same result as found here, but
in the next subsection, we will see that an expansion about
n = 1 is essential to get the result in the TM case, where the
singularity at the origin is more severe.

These strong-coupling results were given in Sec. 9.5.1 of
Ref.[33]and in Ref. [37], however with an additional 7> term
in the free energy subtracted in the case of the TE contri-
bution, and the same term added to the TM contribution, so
that the total contribution remains unchanged. These sub-
tractions, motivated by the heat-kernel analysis of the Weyl
expansion, were justified by requiring, perhaps dubiously,
that such a term not be present at high temperature. We will
see exactly that term when we study the high-temperature
strong-coupling limit in Sec. VII C. It seems not possible to
make such a subtraction here because we are considering
arbitrary coupling, where the geometrical considerations
applied in Ref. [33] must be generalized [38].

B. TM low-temperature behavior

For the TM free energy we write

F™ _ TZ /g(n)’
n=0

g(n) =cos na%i(Zl—k 1)P;(cosd)In (1 —%eﬁ(x)sﬁ(x)) .

=1

(6.6)
For small x, the quantity in the logarithm is singular,
ep(x)si(x) W(l+1)  3420(1+1)
x 21+ 1)x*> (42 =1)(21 +3)
+0(x* or x*1), x<1l. (6.7)

The special role of [ =1 is evident. To define the n =0
term as before we introduce the photon mass parameter p,
so up to terms that vanish with p,

PHYSICAL REVIEW D 96, 085007 (2017)

Aol(1+1)

“ernp Y

—Z (214 1)P;(cos 8) In

[\)

Because a is also very small, we have the leading term

1 & Aol(l+1)

=Y (2 )P ( —_— .

Zz:: [+ 1)P;(cosd)In 2+ e (6.9)
and the integral term gives
— Aol(l+1)

d (214 1)P;(cosd) |In-——5+2].

- e ==3 et e i)
(6.10)

Adding to these the contribution of the first term in the
Bernoulli series gives

27tp

FY ~Th=—
a

or) ~ (6.11)
This term is, of course, identical to the 7' In 7 term we found
in strong coupling in Eq. (3.9), and should be omitted for
the same reasons.

It is easy to check that the terms of O(T?) coming from
the integral, the § g(1) term, and the first Bernoulli term all
cancel. The surviving T* behavior again receives canceling
contributions from these three places, but arises entirely
from the exceptional / = 1 term, where

ln(l —/loel(X)SI(X)> ~ln2—/10—|—x2 <i+l>
X X
(6.12)

Thus the leading contribution to the TM free energy is

2 B 2
F™ 27433 (—4—?6) =——(7a)’T*, (6.13)

o(T*) 3 15

just as stated above, in Eq. (6.5).

So we have recovered the strong-coupling limit. Still in
the low- temperature context, we can develop an expansion
in &= \/7 which we regard as arbitrary.” This arises

0

again entirely from the / = 1 term in the angular momen-
tum expansion. (Higher terms in [ will yield only higher-
order terms in 7'.) This is achieved by expanding

We recall that in the §-function plate, we developed the TM
free energy in terms of a strong-coupling expansion, as a series in
T/ [20].
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(6.14)

= 1 3 7 2 .]»
_ IRV Bl I (IR I B § b

> (G ) 5]
This leads to the Bernoulli term (about n = 1)

FIM = —3TZ Ba 2k—1< )”‘“i -

p=1

p -

PN(3 I\ 2\ .
> 4] (-3 (615
X,0<r><zﬂo+w) (5) @ e

where the derivative amounts to inserting the factor
2p+r)!/(2p +r—2k+1)!. Because only r=1 can
result in &’ dependence (with the remaining a’s absorbed
in the definition of &), we are led to

42 & By 2p+1)!
FM = _ "0 2k (-1 ————
9ﬂa;(2k)!; (2p —2k+2)!

§2p+2

(6.16)

The sum on p may be readily carried out:

io: 2p+ ) é:2p+2 54 3+§2

p=1 (1 +§2)27
(6.17a)
(2p + 1)! o
Z( 1 (2p =2k +2)! §p+
— (_ )k+l(2k _ )|é:2k(1 _,_52)—](
x cos(2k arctan ¢). (6.17b)
Now we notice that
E e &
[ arctan — , 6'18
Jite. I-ig (619
so then we have
™ M [BE(BHE) & Bl
F 97m{2 (14&)? +Z D 2k 2
§2k é:Zk
it o) (©19)

Finally, the sum on k& may be recast as an integral,

423 (B (3+&2
FTM,T—>0(§) 977:(1{ 24:( (+§2‘§) )
odt _, 1 xt  xt
+§HA 76 |:—1+Ex2t2+5()0t3:|
(e R TS| MECED
2(1+8) 2 ’ '
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where
_ & g=—2 (6.21)
S 1+iE /21/3 '

and where we have now added in as the last two terms the
contributions from the § g(1) term and the integral term in
the Euler-Maclaurin formula, respectively. (The latter is
worked out similarly to the way we computed the deriv-
atives in the Bernoulli sum.) For strong coupling

2 4 6 8
FTM,T—»O(&)N_ﬂ(é__’_é__Ff__'_ )

9ra \120 ~ 252 240
o £<1 (6.22)
1207a’ ’ '
which reproduces Eq. (6.13), of course. For weak coupling
2 re2
oo =8 £ “san)
/1_00{2 +— 4% O(y—Ing), &1 (6.23)
18za” " 9ma ’ '

where the first term exactly agrees with the small-
temperature limit of that found in Eq. (5.30), without the
divergent terms seen in Eq. (5.28). We can sum the weak-
coupling expansion into a closed form:

FTMvT"O(cf):(%> E—Z—mg 5]11//(1—1— 5)} (6.24)

which can be shown numerically to coincide with Eq. (6.20).

Two lessons are thus learned: the subtraction (renormaliza-
tion) procedure leading to the perturbative free energy and
entropy (5.30) apparently is valid, and the free energy develops
a positive slope (the entropy becomes negative) for large
enough ¢, i.e. for small enough coupling. The low-temperature

[F(OI
¢

120
§2
2

FIG. 3. The absolute value of the TM free energy for low
temperature, as a function of the coupling defined through & =

a, /2%0. The overall factor (24,/3)?/za has been pulled out. The

dotted and dashed lines are the large and small coupling limits,
respectively. For strong coupling, the slope is negative, and hence
the entropy is positive, but for sufficiently weak coupling, the
entropy changes sign. The cusp indicates where the free energy
changes sign.
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TM free energy is plotted in Fig. 3 as a function of £&. Now it is
seen that the free energy starts with a negative slope as a
function of temperature, forlarge coupling, butaté = 1.75271
the sign of the slope changes, so the corresponding entropy
turns negative. The change occurs for 1, = 0.488282a°.

VII. HIGH-TEMPERATURE LIMIT

Finally, we return to high temperature, both for finite and
large coupling, where unlike in Sec. III we consider the TE
and TM contributions separately. These limits are captured
completely by the uniform asymptotic expansion for the
Bessel functions, in contrast to the low-temperature limit,
and because the structures encountered in the sums are
quadratic formes, it is particularly convenient to abandon the
point-splitting regularization adopted heretofore, and use
analytic regularization and the generalized Chowla-Selberg
asymptotic formulas. In contrast, point-splitting yields
formulas that are rather complicated to evaluate. We start
by examining the TE contribution.

A. TE contribution

The high-temperature behavior is captured from the uni-
form asymptotic expansion, which can be written, as in
Eq. (4.1)

PHYSICAL REVIEW D 96, 085007 (2017)

n +;e,(x)sl(x) N; 20 v>1, (7.1)
where the first four expansion coefficients are
as (1) = Aot (7.2a)
TE — M0 .
1
2
af(n) = - 54t (7.2b)
A
a (1) = 05 (1 ~ 61 +51%) + 4 7. (7.2¢)
/122*4 A4t4
ang(t) = =" (1 =62 +5) =0, ete.  (724)

It seems the most effective way to extract the high-
temperature dependence is through the use of the Chowla-
Selberg formula as generalized by Elizalde [39,40]. That is,
we will discard the point-split regularization we have used
hitherto, and use the formula

[e] [e] 1
ZZ = E,(s;c,da’;b,a)
= c(l+b)* + da*(n + a)?)*

) D N o b5 4 2ma

T ,;) RS )<daz> {(=2m, b){(2s +2m. a)
@)™ (mda*\ V2T (s —

H (1) et

2rt
I'(s)

oo oo

da?
X Z Z n V2 (m+ a) VK ) (27[\ / Tn(m + a)).

n=1 m=0

Here, the various parameters, a, b, ¢, and d are introduced
so that the desired structures can be obtained by appropriate
differentiation. Afterwards, we seta=1,b=3/2,c=d=1.
We shift the n > 0 and / > O sums so they start at zero. Due
to the prefactor of v in the summand for the free energy,
there is always one derivative with respect to b, so the
second term above does not contribute. Neither does the
last term, because b is an integer plus one-half. Thus, only
the first term in Eq. (7.3) survives.

1. High-temperature, fixed coupling

Let us start with the first term in the uniform asymptotic
expansion (7.2). Note that the leading term in the uniform
asymptotic expansion is exact for n = 0. By zeta-function
regularization, the n = 0 term yields

)C—s/2—1/4(daZ)—s/2+1/4

(7.3)

Yol e0.3/2) = -2

FTE _ _ Ao
na

n=0 (74)
while the remainder of the n sum gives

o0 19
FTET—e S (s —

>0 = OTﬁab - L La*b, 1)

(7.5)

The m = 0 term in the Chowla-Selberg formula (7.3) now
gives immediately

2
()TET—c0 __ A0@
n>0,m=0 24ra ’

(7.6)
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while the m = 1 term gives
Ao 11
4ral12

where the divergent term is irrelevant, since it is T
independent. In this way, we find

A [ 11
—m(g—a‘i‘ﬁlna), (78)

which is nearly that expected from the exact O(1) result (5.5):

()TE,T-»00
Fn>0,m:1 -

~Ina +#>, (7.7)

AF(I)TE,T—mo

2
o (% —a+ lna>. (7.9)

T - c0: AFWTE
4Jm

The missing contribution to the logarithmic term comes from

the O(4y) part of a%). Using the Chowla-Selberg formula
again, but now also differentiating with respect to ¢ and d as
well, we find

—o Ao 1
FOIBT=e - 20 " jp g,

O(k) dra 12 (7.10)

There are no higher-power temperature corrections in O(4)
(beyond that displayed, the temperature corrections are
exponentially small). Indeed, when the m = 2 contribution
from the lowest-order UAE is added to the m = 1 contribution
from the second-order UAE, and the m = 0 contribution from
the third-order UAE (not displayed in the above formulas),
which would potentially give a contribution to the free energy
of order a2, we obtain zero.

Next, we look at the 7 — co contribution coming from a(?):

FQTET—eo — _T0° N/NT 7 1, (7.11
4 ”Z:: ;(v2+n2a2)s T (7.11)
where the n = 0 contribution is
F(2_)"(1;E,T—>oo _ j’(%a [ 22s-1 + (223—1 _ 1)C(2S — 1)]’
n= " 167a
(7.12)

which is divergent as s — 1. This divergence is canceled by
another divergence occurring in the remaining contributions,

FOTET~e0 _ ﬂzT o
n>0 - 8 1—s

Z(2s —2) + (7.13)

When these are added together, we obtain a finite result:

2
F(Z)TE.T—mo — _%_T <_2 +7+ lnz_a
8 b4

11 1

-5+ O(a—4)>. (7.14)
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Here we have kept a subdominant term that will not contribute
in the high-temperature, fixed 1, regime, because we will see
this is important in strong coupling.

All that remains are the higher-order terms in 4,¢, which
for fixed Ay only contribute at n = 0. (Again the UAE is
exact in this case.) These give a contribution linear in T
which is easily summed:

(>2 TE T—o0 0 /10 /1(2)
F.- =T E
[ ( V) w e ]

B 1 13 Ao Ao
—T[ i 241n2+21nG+3 Zl n2r

2 3
_%0(1 —y-2In2) —l—%lnl“( HO)

2
3+4
o) R0

Adding Egs. (7.9), (7.14), and (7.15) together, we find

(7.15)

1 1 13
FTE,T—)oo(/lo) N% {a|:_ﬁ ﬂln2 —+ 21[1 G:|

4

1 a 1 3+ 4o
+§lga(1—lng>+§/10alnl“< > >

344 1143
— a¢(10) <_1,—;0) 420 (2)}

96 a
The leading term for the high-temperature, fixed coupling
regime, is just that given in Eq. (7.6):

)
+/10[12+21na —1n27z]

(7.16)

A
FTET=0(30y 202, al > 1.

N
24ra (7.17)

Particularly interesting here is the strong-coupling limit,
Ao — o0:

FrET=e 11 i 1 4+2In-2 +'1 (a® +6Ina)
A= Tonal 16 o) 12

1127
(14212 121G+ 11InJg) + =27
24( +ein NG+ 11Ind) +5 7 2%

alT > Ag> 1. (7.18)

Although the Jya term canceled, the high-temperature TE
free energy does not possess a strong-coupling limit
independent of 4. This is because this result is valid for
aT > Ay > 1. That is, we are taking the high-temperature
limit before we pass to strong coupling. To reverse the order
of limits, we have to consider additional terms.
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2. Strong-coupling limit

To get the entropy in the limit 4q > aT > 1 we have to
add the leading correction, because we only included the
n =0 term in Eq. (7.15):

Fgfm_TZu (1 (’Io)z
g 2v

L[4 5 1
_%[ 121naz—|—2a f(ﬂo/Za)—l—ag(gO/za))

(7.19)

where the first term arises by taking a limit in the k = 3
term, and the sum over the remaining k sum yields

3(3)

1
flx) = ~51 {x —3x% — 6x3 4 8yx® + 6x%In27 —
— 12800 (=2, 1 + x) + 24xL 10 (=1,1 + x)

1 1
- §x3(4 -3y —31Inx) +§x2(1 —21n27x)

1 4€)
and
(x) _2 —yx=InI'(1 +x)
glx) = 12x yX I
’ +(1- In x) 11 2 (7.21)
LA — -
12x nx)x > n2mx, .

where the last forms correspond to the strong-coupling
X = ;—g > 1. When these are substituted into
Eq. (7.19), the A3 Ina term cancels, and the leading term
in g(x) cancels the subleading term in Eq. (7.14),

limit,

1 211 72 2 7A
AFTET—NX)__ __()__ 1_21 _0
corrl 27m{ a1248 16 a
35() y) 17777/10
12 +24(0+a)na+ ,

(7.22)

where the omitted terms are either independent of 7" or go to
zero as Ay — oo.

We also have to keep the next term in the UAE, which
gives

k42
FIET=e ZuZ (=1)k= w( ) (1-612+5t*)

3 Ao
— o—
64ra  48ra

Ina, (7.23)
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where again the strong-coupling limit is displayed. Note
that the last term here cancels the contribution (7.10).
When these corrections (7.22) and (7.23) are added to the
previous result (7.18), we recover the expected perfect-
conductor limit for the TE contribution given below:

FlET=o n———aln?2

42 249 T 4

1[4“(3) o oa 13

2ra

1 5
+5 alnG—i——a] (7.24)

2 96
In Sec. 9.5.2 of Ref. [33] the free energy for a Dirichlet
spherical shell was given. If the / = 0 term is subtracted
from that, F."3” = (T/2)1n2aT, this coincides with our
result, except for the leading & term. This is precisely the
term that is subtracted off by the procedure advocated in
that reference, as mentioned already at the end of Sec. VI A.
The objection to this term is that it grows as the area of the
sphere; however, such a subtraction does not seem possible
in our general analysis, in which the perfect conductor
boundary conditions are only obtained as a limit.

B. TM contribution

For n # 0, the UAE again should capture the leading
high-temperature contribution. As in Eq. (7.1),

%o oo o aru(1)
In (1 —;el(x)sl(x) ~ ; 2 v>1, (7.25)
where the first four expansion coefficients are
I o
a(Tl\)/l(t) == (7.26a)
z°t
2
@ __ %
apy(t) = v (7.26b)
3) 0 %
ar(t) = =11 = 62 +71*) + 3th3 , (7.26¢)
(4) 6 2 4 A

We will here content ourselves with the consideration of the
O(Jy) contribution. For n = 0 we have to use the small-
argument expansion (6.7) regularized by putting in a small
photon mass p as before. To lowest order in 4, the part
sensitive to p vanishes using zeta-function regularization:

FM __%il(l+ 1)
=1
__;310—1;[“—22){(—2)—(1—20)5(0)]_0 (7.27)
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This leaves only the finite remainder

FTM,T—>oo o /IOT 9 +1 :j.()_a

=— _—— (7.28)
4 — {(21—5—3)(21— 1) dra
again using zeta-function regularization. This is the linear-
in-T behavior expected from the exact result (5.30).

For n > 0 we use the UAE (7.26) which gives the
leading term

FTMT—>oo: ii
>0 g I’l—l—l ’
b,

v=I+ s—1/2, (7.29)
with 772 being the quadratic form seen in Eq. (7.3), where
this may be evaluated by differentiating with respect to d,
and then using the m =0 term in the Chowla-Selberg

formula:

2
M- A

Fl = 7.30
m=0 TNra’ (7.30)
which is exactly the expected quadratic 7 dependence seen

in Eq. (5.30).
The m = 1 term here gives in the same way a contri-
bution to the logarithm term:

) M, T— 00

(T =2 _Ina (7.31)

However, there is a similar contribution coming from the

order O(/g) part of the a(ﬁ\),[ term

(3)TM.T—c0 _ ﬂoT v 2 2 4
F — g ———1t° (1 =617+ 71%),
n>0 8 p O(n 1)2 2 ( )

s—1/2. (7.32)
Again by differentiating with respect to parameters we find,
in the large-temperature limit, that only the m = 0 term in
the Chowla-Selberg formula contributes, yielding

F(3)TM,T—>00

=-2 " ha (7.33)

When this is added to the previously found logarithmic
term (7.31) we obtain exactly the expected result from the
exact calculation:

TM,T-c0 __ /10

———Ina.

Do = = (7.34)

The net result is just as anticipated from Eq. (5.30),

/1 2
™ a
AF, 000) ™ Ina < +18 lna)

The fact that we get the same result as in Sec. V C, without
the divergent terms seen in Eq. (5.28), is strong evidence
that the minimal subtraction scheme there is valid.

(7.35)
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C. Strong-coupling TE and TM contributions

In Sec. III we rederived the entropy for a perfectly
conducting sphere at high temperatures. Now we want to
extract the TE and TM contributions for such a sphere.
These seem not to have been presented previously. The
former is given by
T o0 ) o0
FTE =3 :Z et ;(2[—!— )P, c0s5)1

n=—0o0

The zero Matsubara frequency contribution is

T o0
Fl¥img =75 (21 + 1)Pi(cosd)In
=1

1
—_ 7.37
21+ 1 ( )
where again we note that the UAE is exact in this case.

Proceeding analytically, we drop the point-splitting cutoff,
and find

Fanms™ =355 221+ Do
T
T 7.38
2 ( !

For n > 0 we can use the Chowla-Selberg formula (7.3),
starting from the leading factor in the UAE,

()TE,T->00 1 0 2.2 2\—p/2 11
F o % =2T v—(n*a®+1*)7P/ ——TIn2
" ;; op p=0
11, a 11
=T|-a?’¢'(-2)——In———1In2 7.39
[“g()mz 24“} (7.39)
The second-order term in the UAE yields
(2)TE.T—o0 - 2 2 4
Foo,n>0 :Tan:lZyg(l—@‘ +5t )
R (7.40)
32 ‘

(This result can also be obtained by the hyperbolic method
used in Sec. III.) Adding these components together gives

3, 1. a 13 5 1
F&E,T—)oo - T C( ——In——-—"1In2 InG|,
42 T2 og g e tge e

(7.41)

which coincides with the Ay > aT > 1 limit in Eq. (7.24).
Again, recall that the leading a>T* term here is subtracted
from the free energy by the method advocated in Sec. 9.5 of
Ref. [33]. The same term would be added to the TM
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contribution, so there is no effect on the total free energy. If
one were only interested in the perfect conductor limit, such
a procedure seems sensible, but here, with the context of an
arbitrarily coupled semitransparent sphere, it seems unrea-
sonable to implement.

The TM contribution is again more subtle. For n = 0 we
use the small argument expansion (6.7), and replace x by p,

TM,T— 0
oo,n=0

gi@l—l—l)lnM

— (21+1)p?

1 1 1
=T|—In2p+-—In2
[12n PRty

1
—ElnG} +F, (7.42)

where the finite term displayed is the negative of that seen
in Eq. (7.38), and the remainder is evaluated as follows:

, T 1
F _52(21+1)1n<1—m>

=1

TR 1 & 1
22 KT 2 i 12T

+ 31n2 31nG]

1

AETEST
where we have regulated the first term in the £ sum by
introducing an analytic parameter f which tends to 1. [This
same sum, regulated by angular point-splitting, was
encountered previously in Eq. (3.14).] The singularity here
as f# — 1 will be canceled by that in the n > O contribu-
tions. The latter are captured by the UAE, as usual, which
give, for the leading term

(7.43)

Yo w)
s TMT—»oo_zTZl/ln ‘o + 12

oon>0 2n2a

a 11
=T\’ (-2 ——1 ———1In2]|. 44

[aC( A TE T ] (7.44)
The second-order contribution contains a pole when evalu-
ated using the Chowla-Selberg formula (7.3),

S 2
(2)TM, T—o0 t ) 4
F =T u|—— (1 =6t +7t
g v [ 7 ( + )}

o0,n>0
n,l=1

1 9 1
S (R A Pl (7.45)
8(p—-1) 32 4 27r
the pole here (having been regulated in precisely the same

way) cancels that in Eq. (7.43). Adding all these compo-
nents (7.42), (7.43), (7.44), and (7.45) together gives

17, a 11
FZQM,T—)OOZT _ 2€< ) _1 . _1
[ ey T TR

23 5 13
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The sum of FLF and FIM, Egs. (7.41) and (7.46) should
yield Eq. (3.22); in fact,
272']?
— Tl -r FT—»oo
12 +

The infrared divergent term is exactly the same as that seen
in Eq. (3.12). As argued in Sec. III, that term should be
subtracted to obtain the physically meaningful free energy
or entropy.

FEOE,T—wo + FTM,T—wo (747)

VIII. SUMMARY AND DISCUSSION

In this paper we have investigated the self-entropy of a
spherical shell, modeled beyond that of a perfect conductor, as
a o-function (“semitransparent’) shell of radius a. This study
was motivated by our desire to better understand the mys-
terious phenomenon of negative entropy. Earlier, we had
considered a similar model of the 5-function plate, where the
TE entropy was always negative while the TM entropy was
positive, and larger in magnitude, but both approached
zero in the strong-coupling limit [20]. Apparently the only
limit previously studied for the shell was that of a perfect
conductor, without any mode decomposition in Refs. [27,35],
while the mode decomposition can be found in Ref. [33].
Here we accomplished a full analysis, for arbitrary coupling,
which exhibits many surprising features. We will now give a
summary of our findings.

In Sec. I we derived the general expressions (2.10) for the
free energy of an electromagnetic d-function sphere, decom-
posed into the TE and TM modes. Cancellations occur
between the different mode contributions. In Sec. III, which
was devoted to strong coupling (perfectly conducting spheri-
cal shell), we rederived the total (TE plus TM) free energy
correction for low temperature [Eq. (3.13)],

(za)®
= (8.1)

(where the A refers to the fact this is the correction to the zero-
temperature Boyer energy [34]), and for high temperature
[Eq. (3.20)],

AFT0 ~ — T4, aT < 1

T

FIz®~ — 1 (InaT + 0.7686), al > 1. (8.2)
However, to obtain these known results [27], we removed a
contribution that was infrared sensitive which arose from the
leading In2a® term (¢, = 27nT being the Matsubara
frequency), which seems rather a generalization of a contact
term [Eq. (3.9)],

FO =Tmk, (8.3)

T

for point-splitting regularization, while this result is multi-
plied by 11/12 if analytic regularization is used. Here, u is a
photon mass, introduced to define the TM mode at zero
frequency.
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We then considered the opposite limit: weak coupling.
The TE and TM modes can be exactly evaluated to first
order in the coupling 4y. The TE self-entropy is [Eq. (5.6)]
(a = 2raT)

Ao (1 1
S<TIFS =-22 (—a— cotha +—>. (8.4)
a

2 \3
However, the TM self-entropy exhibits both infrared and
ultraviolet divergences, which were regulated by point-
splitting in the angular and temporal directions, and by the
introduction again of a photon mass. If these divergent
terms are simply removed (which is done automatically by
analytic regularization, as through the use of the Abel-Plana
formula) the result is [Eq. (5.30)]

Sy = —%0 <$a+cotha—é), (8.5)
which is, like the TE contribution always negative. Notice
that the total entropy is linear in the temperature in this
order, as shown in Fig. 2.

In order /1% the TE free energy exhibits an infrared
divergence, similar to that in Eq. (8.3). This also must be
removed in order to avoid a violation of the Nernst theorem,
although here, doing so leads to a positive contribution to
the entropy.

Next we explored the low-temperature behavior for finite
coupling. For the TE contribution, a simple formula was
obtained that interpolates between the weak- and strong-
coupling regimes [Eq. (6.4)]:

a 1
301 +3/4
which shows no sign of the infrared divergence in O(13)

mentioned just above. A more complicated formula was
found for the TM part [Eq. (6.24)]:

STE(2) ~ alT <1, (8.6)

4 1 .
S™(29) = §/1(2) [1252 —Iné-NRy(1+i/¢)],
3 .
E= /=, a<k 1, & arbitrary. (8.7)
2o

This also yields the known strong- and weak-coupling
results.

Finally, we considered the high-temperature limit, for
arbitrary coupling, for both TE and TM contributions.
In this situation, we changed our strategy, and instead
of point-splitting, we regulated the double sum over
Matsubara frequencies and angular momentum by use of
the generalized Chowla-Selberg formula in the form given
by Elizalde [39,40], which is particularly convenient for
high temperature, since the uniform asymptotic expansions
of the Bessel functions capture all the essential physics
there. For the TE part, we obtained a rather complicated
formula [Eq. (7.16)] for the free energy for fixed 4, and
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high temperature, which, unsurprisingly, says that the
dominant high-temperature entropy is that given by the
O(J) contribution. If we want to take the strong-coupling
limit, additional terms in the UAE must be included.
Because of the increased complexity of the TM contribu-
tions, we only extracted, and reproduced, the O(4,)
entropy, the process of which, however, vindicated the
minimal subtraction procedure used in the exact calcula-
tion. The coda consisted of computing, directly in strong
coupling, the TE and TM contributions, which should add
up to the result (8.2). This they do, except for an extra term
[Eq. (7.47)]

1. 2
AFR = — T =L
a

— (8.8)

p = pa.

This term is the same as the “contact term” (8.3), which
should be removed a priori.

One might think that these surprising findings are a
consequence of our use of the plasma model to describe
the dispersive character of the coupling. However, if the
perhaps more realistic Drude model is used, or even a
model of a bound electron so that a characteristic frequency
of the binding is introduced, the situation is not more
satisfactory. Although these modifications change the
infrared behavior, they do not change the ultraviolet
behavior, and the appearance of divergent terms in the
entropy, and negative TM and total entropies, remains
present.

At zero temperature, it is typically argued [41] that the
order A, contribution to the energy should be discarded,
since it can be canceled by a counterterm. This is
probably only possible for the 7 = 0 contribution, and
not for the temperature correction. It is true that if the
O(y) term were removed from the low-temperature result
(6.24) the TM entropy would become positive in
that regime for all coupling. However, this would wreck
the internal consistency of the problem, in particular
the passage to the strong-coupling limit described in
Sec. VII B. Therefore, this does not appear to be a viable
resolution to our difficulty.

IX. CONCLUSIONS

So after somewhat elaborate calculations, we have
obtained unsettling results. Contrary to expectations, the
TM entropy for a 6-function sphere fails to be finite, both in
the infrared and in the ultraviolet. If these divergent terms are
merely subtracted (which is somewhat justified by the
congruence of the results with analytic calculations based
on the Abel-Plana and the Chowla-Selberg formulas) we find
that the TM entropy and the total entropy are not necessarily
positive. In fact the total entropy is positive only if the
coupling is sufficiently strong. The perfectly conducting
limit is satisfactory, and overcomes the negative interaction
entropy between a perfectly conducting sphere and a
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perfectly conducting plate, but apparently for sufficiently
imperfect reflectors, this positivity breaks down. The non-
monotonicity of the entropy means also that the specific heat
need not be positive. The significance of these surprising
thermodynamic findings merits further study.
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