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In this paper we continue our program of computing Casimir self-entropies of idealized electrical bodies.

Here we consider an electromagnetic δ-function sphere (“semitransparent sphere”) whose electric

susceptibility has a transverse polarization with arbitrary strength. Dispersion is incorporated by a

plasma-like model. In the strong-coupling limit, a perfectly conducting spherical shell is realized. We

compute the entropy for both low and high temperatures. The transverse electric self-entropy is negative as

expected, but the transverse magnetic self-entropy requires ultraviolet and infrared renormalization

(subtraction), and, surprisingly, is only positive for sufficiently strong coupling. Results are robust under

different regularization schemes. These rather surprising findings require further investigation.

DOI: 10.1103/PhysRevD.96.085007

I. INTRODUCTION

The usual expectation, based on the notion that entropy

is a measure of disorder, is that entropy should be positive.

However, there are circumstances in which entropy can

take on negative values. For example, negative entropy is

often discussed in connection with biological systems [1].

More interesting physically is the occurrence of negative

entropy in black-hole and cosmological physics [2–5].

In Casimir physics, perhaps the first appearance of

negative entropy occurred in connection with the descrip-

tion of the quantum vacuum interaction between parallel

conducting plates. If dissipation is present, the entropy of

the interaction is positive at large distances, aT ≫ 1, where

a is the separation between the plates and T is the

temperature, but turns negative for short distances.

Considered as a function of temperature, the sign of the

entropy changes as the temperature decreases, becoming

negative if the dissipation of free electrons is present [6–8],

but does tend to zero as the temperature tends to zero, in

accordance with the Nernst heat theorem if the residual

relaxation is taken into account [9,10]. Although perhaps

surprising, this was not thought to be a problem because

this phenomenon only referred to the interaction part of the

free energy, and the total entropy of the system was

expected to be positive. Somewhat later it was discovered

that negative Casimir entropies also occurred purely geo-

metrically, for example between a perfectly conducting

sphere and a perfectly conducting plane without dissipation

[11–13], or between two spheres [14,15]. When the

distance times the temperature (in natural units) is of order

unity, typically a negative entropy region was present.

Since the effect was dominant in the dipole approximation,

this led to a systematic study of the phenomenon of

negative entropy arising between polarizable particles,

characterized by electric and magnetic polarizabilities, or

between such particles and a conducting plate. For appro-

priate choices of these polarizabilities, these nanoparticles

behaved like small conducting spheres. We found that

sometimes the entropy started off negative for small aT,
before eventually turning positive, and sometimes the

entropy was first positive, turned negative for a while,

and then turned positive again as aT increased [16,17]. The

combined effects of both geometry and dissipation were

considered in Refs. [18,19].

The occurrence of negative entropy, geometrically

induced, sharpened the puzzle. Again, the suspicion was

that the self-entropies of the bodies were much larger, and

positive, yielding positive entropies always for the whole

system. This was borne out to some extent in the case of

perfect conducting spheres. There it turned out that although

the self-entropy of a conducting plate vanishes, the self-

entropy of a conducting sphere is positive and is such that it

precisely cancels the most negative interaction entropy

between a sphere and a plate [20,21]. More specifically,

the two electromagnetic mode contributions to the entropy,

the transverse electric (TE) and transverse magnetic (TM)

terms, had opposite signs: as expected [22], the TE was

always negative, and the TM positive, the latter dominating

the former.

In this paper, we carry the sphere self-entropy problem

much further. We consider a simple model of an electro-

magnetically coupled sphere, represented by a δ-function

shell, with arbitrary coupling λ. In the limit as the coupling

tends to infinity, this precisely corresponds to a perfectly

conducting sphere. This model generalizes the previously
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described electromagnetic δ-function plate [23], and our

electromagnetic δ-function sphere [24], considered at zero

temperature. (The closely related plasma spherical shell was

considered earlier in Refs. [25,26].) As in our previous

works, we model the dispersive property of the shell by a

plasma model. We discover that the finite-temperature

problem is much more complex than might have been

anticipated. Although it is generally supposed that the

divergences in the self-free energy are confined to the

zero-temperature contribution, this is not the case: the TM

contribution to the entropy has both infrared and ultraviolet

divergences, which violate the Nernst heat theorem, and

hence require some sort of subtraction or “renormalization.”

(In this paper, by “renormalization” we mean subtraction of

these divergences.)When this is done, the TM self-entropy is

no longer always positive. It is positive only for sufficiently

strong coupling,while theTE self-entropy is always negative

as expected. So we have encountered new phenomena that

will require further work to understand.

The outline of this paper is as follows. In Sec. II we set

up the formalism and obtain the general expressions for the

free energy of the δ-function sphere. The expressions are

regulated by point-splitting in time and in the angle on the

sphere. We also model the dispersive properties of the shell

with a plasma model, characterized by a dimensionless

coupling λ0. In Sec. III we consider the strong-coupling

limit, that of a perfectly conducting spherical shell. Because

of the appearance of an infrared singularity, a renormaliza-

tion of the temperature-dependent part of the free energy is

required. After a temperature-dependent infrared-sensitive

term is removed, the high- and low-temperature results of

Balian and Duplantier [27] are recovered. Finite coupling

behaviors are studied first in Sec. IV using the uniform

asymptotic expansion for the spherical Bessel functions:

at low temperature, this approach only yields the zero-

temperature structure with divergences as seen in Ref. [24].

The low-order contributions to the entropy can actually be

found exactly in Sec. V, but again the Oðλ20Þ TE and the

Oðλ0Þ TM parts exhibit divergences which violate the

Nernst theorem and must be renormalized away. The low-

temperature behavior is studied for both the TE and TM

modes in Sec. VI. The TE low-temperature entropy has a

simple functional dependence on the coupling, while the

TM mode again requires infrared renormalization, and

exhibits a dependence on the coupling which is non-

monotonic, being positive for strong coupling, but chang-

ing to negative as the coupling gets weaker. Finally, the

high-temperature limit is discussed in Sec. VII, now using

analytic regulation and the Chowla-Selberg formula. It is

seen that the order of limits is important; we consider both

the limits aT ≫ λ0 ≫ 1, and λ0 ≫ aT ≫ 1, where only the

latter corresponds to the perfect conductor. The TM mode

again requires a temperature-dependent renormalization.

The results of this paper are summarized in Sec. VIII. In the

last section of the paper we offer some concluding remarks.

We use natural units ℏ ¼ c ¼ kB ¼ 1, and Heaviside-

Lorentz electromagnetic units.

II. ELECTROMAGNETIC δ-FUNCTION PLATE

As in Ref. [20], we can express the Casimir self-free

energy of an object with permittivity ε ¼ 1þ V in symbolic

form

F ¼ T

2

X

∞

n¼−∞

Tr lnð1 − Γ0VÞ; ð2:1Þ

expressed as a sum over Matsubara frequencies ζn ¼ 2πnT,
where the trace is over spatial coordinates and internal

variables (tensor indices). HereΓ0 is the free electromagnetic

Green’s dyadic, which satisfies

�

−
1

ζ2n
∇ × ∇ × −1

�

Γ0ðr − r0Þ ¼ 1δðr − r0Þ: ð2:2Þ

It is convenient to define a divergence-free Green’s dyadic,

which differs from this by a δ-function term [28]:

Γ0
0ðr − r0Þ ¼ Γ0ðr − r0Þ þ 1δðr − r0Þ;∇ · Γ0

0 ¼ 0: ð2:3Þ

This dyadic can be resolved in terms of vector spherical

harmonics

Xlm ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þ
p LYlmðΩÞ; L ¼ r ×

1

i
∇; ð2:4Þ

as follows:

Γ0
0ðr − r0Þ ¼

X

nlm

½−ζ2ng0l ðr; r0ÞXlmðΩÞX�
lmðΩ0Þ

− ∇ × g0l ðr; r0ÞXlmðΩÞX�
lmðΩ0Þ × ∇⃖

0�; ð2:5Þ

where in spherical coordinates r ¼ ðr;ΩÞ ¼ ðr; θ;ϕÞ.
For the case of a sphere of radius a described by a

semitransparent potential, V¼λδðr−aÞð1− r̂r̂Þ, the poten-

tial is tangent to the surface of the sphere. (This transversality

is required by Maxwell’s equations [23].) The trace is then

worked out by using the following orthonormality properties

of the vector spherical harmonics [29]:

Z

dΩX�
l0m0ðΩÞXlmðΩÞ ¼ δll0δmm0 ; ð2:6aÞ

Z

dΩfðr0ÞX�
l0m0ðΩÞ∇ × gðrÞXlmðΩÞ ¼ 0; ð2:6bÞ

Z

dΩ∇0 × fðr0ÞX�
l0m0ðΩÞ · ð1 − r̂ r̂Þ · ∇ × gðrÞXlmðΩÞ

¼ δll0δmm0
1

rr0
∂

∂r0
ðr0fðr0ÞÞ ∂

∂r
ðrgðrÞÞ: ð2:6cÞ
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The trace in Eq. (2.1) is carried out by expanding the

logarithm, doing the trace in each order, and resuming to get

F ¼ T

2

X

∞

n¼−∞

X

∞

l¼1

ð2lþ 1Þ½lnð1þ λζ2na
2g0l ða; aÞÞ

þ lnð1 − λ∂rr∂r0r
0g0l ðr; r0ÞÞjr¼r0¼a�: ð2:7Þ

The free reduced spherical Green’s function is

g0l ðr; r0Þ ¼
1

κrr0
slðjζnjr<Þelðjζnjr>Þ; ð2:8Þ

where r<ð>Þ represents the lesser or greater of r and r0,
and the modified Ricatti-Bessel functions are

slðxÞ ¼
ffiffiffiffiffi

πx

2

r

Ilþ1=2ðxÞ;

elðxÞ ¼
ffiffiffiffiffi

2x

π

r

Klþ1=2ðxÞ; ð2:9Þ

which have a Wronskian equal to one.

The final form of the expression we must evaluate for the

free energy of a semitransparent sphere is defined by 1)

inserting point-splitting in (imaginary) time, with param-

eter τ, and in the spatial directions transverse to the normal

of the sphere, with angle parameter δ, and 2) by using the

“plasma-model” dispersion relation for the coupling,

λ ¼ λ0=ðζ2naÞ, where λ0 is a dimensionless constant.

These two processes are precisely those followed in

Ref. [20]. The regulated free energy is (x ¼ jζnja)

F ¼ T

2

X

∞

n¼−∞

eiζnτ
X

∞

l¼1

ð2lþ 1ÞPlðcos δÞ

×

�

ln

�

1þ λ0
elðxÞslðxÞ

x

�

þ ln

�

1 − λ0
e0lðxÞs0lðxÞ

x

��

:

ð2:10Þ

The first term here is the TE free energy and the second is

the TM free energy. These two contributions, which reduce

to the familiar result for a perfectly conducting shell in the

limit λ0 → ∞, are just those discussed earlier in Ref. [30]

[see Eq. (96) there], with the following identifications of

the coupling constants there: λTE ¼ λ0a, λ
TM ¼ −λ0a=x

2.

In the notation of Ref. [23], λ0 ¼ ζpa. It is important to

keep this a dependence in computing the self-stress on the

sphere from S ¼ − ∂

∂a
F; but here we are interested in the

entropy, S ¼ − ∂

∂T
F, so for notational convenience we keep

the coupling as λ0.

III. STRONG COUPLING

Since the spherical-shell entropy problem has mostly

been considered in the perfectly conducting limit, we begin

with that situation. In strong coupling, λ0 → ∞, the free

energy reduces to

F∞ ¼ T

2

X

∞

n¼−∞

eiζnτ
X

∞

l¼1

ð2lþ 1ÞPlðcos δÞ

× ln
elðxÞslðxÞe0lðxÞs0lðxÞ

x2
; ð3:1Þ

where the coupling has disappeared because

X

∞

l¼1

ð2lþ 1ÞPlðcos δÞ ¼ −1ðδ ≠ 0Þ and

X

∞

n¼−∞

einx ¼ 0ðx ≠ 0 mod 2πÞ: ð3:2Þ

To isolate divergences we use the uniform asymptotic

expansion (UAE) [31], which gives for the leading behav-

ior of the logarithm
1
;

ln elðxÞslðxÞe0lðxÞs0lðxÞ ∼ − ln 4 −
t6

4ν2
þ t6

32ν4
ð4 − 54t2

þ 120t4 − 71t6Þ þOðν−6Þ;
ν → ∞; ð3:3Þ

where x ¼ νz, t ¼ ð1þ z2Þ−1=2, and ν ¼ lþ 1=2. Note that

there are no odd orders of ν−1 in this expansion. This

expression is actually valid at n ¼ 0 where t ¼ 1 [see

Eq. (3.14) below].

A. Leading term

The leading term in the expansion of Eq. (3.1),

F
ð0Þ
∞ ¼ T

2

X

∞

n¼−∞

eiζnτ
X

∞

l¼1

ð2lþ 1ÞPlðcos δÞð− ln 4x2Þ; ð3:4Þ

would be thought as a priori irrelevant, since it does not

refer to the sphere, in view of Eq. (3.2). However, if we take

it seriously, we write it as

F
ð0Þ
∞ ¼ T

2

X

∞

n¼−∞

eiζnτ ln 4ζ2na
2: ð3:5Þ

The n ¼ 0 term is not defined here, so we regularize this

infrared divergence by replacing ζ2n by ζ2n þ μ2, where

dimensionlessly, p ¼ μa, with μ being a photon “mass.”
2

1
This is an astoundingly good approximation. Even for l ¼ 1

the discrepancy between the two sides of Eq. (3.3) is within 0.1%
for all x.

2
In Ref. [32], the case of a massive field was considered. As

noted there, when the a2 heat-kernel coefficient is nonzero, as is
the case here, the massless limit cannot be taken.
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We will assume p is smaller than any other scale in the

problem. Thus, the n ¼ 0 term is simply

F
ð0Þ
∞;n¼0 ¼

T

2
ln 4p2; ð3:6Þ

but for n ≠ 0, p will be neglected. Then, the sum can be

expressed in terms of polylogarithms, where we now

abbreviate α ¼ 2πaT (~τ ¼ τ=a):

F
ð0Þ
∞;n≠0 ¼ 2T

∂

∂β

X

∞

n¼1

ð2αnÞβ cos αn~τjβ¼0

¼ 2Tℜ
∂

∂β
½ð2αÞβLi−βðeiα~τÞ�jβ→0: ð3:7Þ

At β ¼ 0, Li0ðzÞ ¼ z=ð1 − zÞ, while it can be shown for

small τ that

∂

∂β
Li−βðeiα~τÞjβ¼0 ¼

1

iα~τ
½lnð−iα~τÞ þ γ� − 1

2
ln 2π; ð3:8Þ

so we find that

F
ð0Þ
∞ ¼ T

2
ln 4p2 −

1

2τ
− T ln

2α

2π
¼ −

1

2τ
þ T ln

2πp

α

¼ −
1

2τ
þ T ln

μ

T
: ð3:9Þ

The same result is easily obtained by use of the Euler-

Maclaurin sum formula,

X

∞

n¼0

0gðnÞ ¼
Z

∞

0

dngðnÞ −
X

∞

k¼1

B2k

ð2kÞ! g
ð2k−1Þð0Þ; ð3:10Þ

where the prime means that the n ¼ 0 term is counted with

half weight. This formula provides a formal asymptotic

expansion in terms of the Bernoulli numbers. Even more

simply, a corresponding answer is found when we use

analytic regulation (we will return to this technique later in

Sec. VII), defining

F
ð0Þ
∞;n≠0 ¼−T

X

∞

n¼1

ð2lþ 1Þ ln4n2α2 ¼ 11

6
T

∂

∂β

X

∞

n¼1

ð2nαÞβjβ→0

¼ 11

6
T½ζð0Þ ln2α− ζ0ð0Þ� ¼−

11

12
T ln

2α

2π
; ð3:11Þ

or

F
ð0Þ
∞ ¼ 11

12
T ln

2πp

α
ð3:12Þ

which uses the replacement
P

∞
l¼1ð2lþ 1Þ → − 11

12
rather

than −1 obtained from the point-splitting cutoff. Aside

from this fact the ultraviolet finite answer obtained is the

same as that given in Eq. (3.9). Evidently, with the infrared

sensitive term included, this contribution is independent of

the sphere’s radius (which is obvious a priori); that fact,

together with the sensitivity of the coefficient to the choice

of regulation scheme, implies that this contribution is

unphysical, and should be disregarded (subtracted).

B. Low-temperature behavior

To see the low-temperature dependence of the free

energy, and thus the entropy, we return to the exact strong

coupling formula (3.1). As we see from the Euler-

Maclaurin formula, to get a temperature correction to the

zero-temperature energy we need a contribution odd in n.
In fact, the lowest-order odd term in the logarithm occurs

for l ¼ 1, where lnð−e1e01s1s01Þ ∼… − 1
3
x3 þ � � �, where

the leading omitted terms are even in x. Then the Euler-

Maclaurin formula immediately leads to the leading low-

temperature correction to the free energy

ΔF∞ ¼ T
B4

4!
3 · 2ð2πTaÞ3 ¼ −

ðπaÞ3
15

T4; aT ≪ 1;

ð3:13Þ

as first found in Ref. [27]. [See also Sec. 9.5 of Ref. [33].]

C. High-temperature behavior

To get the high-temperature behavior, we need to

consider n ¼ 0 separately from n ≠ 0. The former is

F∞;n¼0 ¼
T

2

X

∞

l¼1

ð2lþ 1ÞPlðcos δÞ ln
�

1 −
1

ð2lþ 1Þ2
�

¼ −
T

2

X

∞

k¼1

1

k

X

∞

l¼1

Plðcos δÞ
ð2lþ 1Þ2k−1 : ð3:14Þ

The k ¼ 1 term here is divergent as δ → 0. The balance of

F∞;n¼0 sums to

F∞;n¼0 → −T

�

1

2
−
1

4
γ þ 7

12
ln 2 − 3 lnG

�

¼ −
T

2
ð0.027537Þ; ð3:15Þ

where G is Glaisher’s constant, lnG ¼ 1
12
− ζ0ð−1Þ. For

n ≠ 0, the Oðν−2Þ term in the UAE expansion of the

logarithm seen in Eq. (3.3) is given as

F
ð2Þ
∞ ¼ −T

X

∞

n¼1

cos ζnτ
X

∞

l¼1

Plðcos δÞ
2lþ 1

ν6

ðν2 þ ζ2na
2Þ3 ;

ð3:16Þ

where the sum on n is readily carried out to yield (for

simplicity, we have set τ ¼ 0)
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F
ð2Þ
∞ ¼ −

T

2

X

∞

l¼1

PlðcosδÞ
�

−
1

2ν
þ 1

32aT

�

3 coth
ν

2aT

þ 3

2

ν

aT
csch2

ν

2aT
þ 1

2

�

ν

aT

�

2

coth
ν

2aT
csch2

ν

2aT

��

:

ð3:17Þ

The first term in curly brackets in this expression precisely

cancels the k ¼ 1 term in Eq. (3.14). For large ν=2aT (this

is the low-temperature limit) the hyperbolic cotangent in

Eq. (3.17) tends to one, so we should remove that limiting

term, which amounts to the zero-energy term,

FT¼0
∞ ¼ −

T

2

X

∞

l¼1

Plðcos δÞ
3

32aT
¼ 3

64a
−

3

64aδ
: ð3:18Þ

In the same limit, the balance of Eq. (3.17) vanishes

exponentially fast. The finite part of this is, as noted

in Ref. [28], within 2% of the exact Boyer result

[27,28,34] for a perfectly conducting spherical shell,

EB ¼ −0.04617=a. The divergent term appearing here

does not appear in other ways of regulating the zero-point

energy. Including higher terms in the UAE, and computing

the remainder, indeed gives exactly the Boyer result, at

zero temperature.

For high temperature, we evaluate what is left in

Eq. (3.17) via the Euler-Maclaurin formula. The integral

gives the leading term:

F00;T→∞
∞ ¼ −

T

32

Z

∞

3=4aT

dx½3ðcoth x − 1Þ þ 3x csch2x

þ 2x2 coth x csch2x�

¼ −
T

32

�

3

4aT

�

3þ 5 coth
3

4aT
þ 3

4aT
csch2

3

4aT

�

− 8 ln

�

2 sinh
3

4aT

��

ð3:19aÞ

→ −
T

16

�

3 − 4 ln
3

2aT

�

−
9

128a
þOðT−5Þ:

ð3:19bÞ

The last limit assumes aT ≫ 1. The remaining terms in the

Euler-Maclaurin series are easily evaluated using Borel

summation:

X

∞

n¼0

Bnþ1

nþ 1
xn ¼

Z

∞

0

dte−t
1

xt

�

xt

ext − 1
− 1

�

¼ −1 −
1

x
ln x −

1

x
ψ

�

1

x

�

; ð3:20Þ

where ψ is the digamma function. This yields the final

contribution to the free energy:

F000;T→∞
∞ ¼ T

4

�

ln
2

3
þ ψ

�

3

2

��

þ 3

128a
: ð3:21Þ

Adding this result to that in Eqs. (3.15), (3.18), and (3.19b),

we see that the finite temperature-independent part cancels,

leaving for the high-temperature limit apart from a diver-

gent constant

FT→∞
∞ ∼ T

�

−
1

4
ln aT −

3

16
−
13

12
ln 2þ 3 lnG

�

¼ −
T

4
ðln aT þ 0.768584Þ; aT ≫ 1; ð3:22Þ

a result first obtained by Balian and Duplantier [27]. (See

also Refs. [33,35].) (To understand this high-temperature

limit better, we will break this up into TE and TM parts in

Sec. VII C).

To obtain the next term in the high-temperature expan-

sion, we consider the order ν−4 term in Eq. (3.3). This term

can be written as

F
ð4Þ
∞ ¼ −

T

16

X

∞

l¼1

ν3gðyÞ; ð3:23Þ

where, with y ¼ ν=2Ta and α ¼ 2πTa,

gðyÞ ¼ 1

2ðα=πÞ6
�

2

�

d

dy2

�

2

þ 9y2
�

d

dy2

�

3

þ 5y4
�

d

dy2

�

4

þ 71

120
y6
�

d

dy2

�

5
��

−
1

y2
þ 1

y
coth y

�

: ð3:24Þ

The leading contribution comes from the first, integral,

term in the Euler-Maclaurin formula:

F
ð4Þ;T→∞
∞ ∼ −

T

16

�

α

π

�

4
Z

∞

3π=2α→0

dxx3gðxÞ ¼ −
1

3840a2T
;

ð3:25Þ

or all together,

FT→∞
∞ ∼ −

T

4
ðln aT þ 0.7686Þ − 1

3840a2T
; ð3:26Þ

again as first derived in Ref. [27].

IV. FINITE COUPLING BEHAVIORS

Now let us return to Eq. (2.10) with finite coupling λ0,

and approximate the logarithm using the UAE:

ln

��

1þ λ0

x
elðxÞslðxÞ

��

1−
λ0

x
e0lðxÞs0lðxÞ

��

∼
X

∞

k¼1

aðkÞðtÞ
ð2νÞk ;

ν≫ 1; ð4:1Þ
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where the first four expansion coefficients are

að1ÞðtÞ ¼ 2λ0t; ð4:2aÞ

að2ÞðtÞ ¼ −λ20t
2; ð4:2bÞ

að3ÞðtÞ ¼ λ0

3
ð−3t7 þ 2λ20t

3Þ; ð4:2cÞ

að4ÞðtÞ ¼ λ20
2
ð2t8 − λ20t

4Þ; ð4:2dÞ

with again t ¼ ð1þ z2Þ−1=2, x ¼ νz. Here we have dealt

with the infrared divergence in the TM contribution by

replacing 1=z2t → t, as discussed in Ref. [24], because

this substitution does not change the ultraviolet behavior.

The idea was that the error introduced is compensated

by the remainder, and this substitution is sufficient to

capture the divergence structure. However, this would not

be expected to be valid for the n ¼ 0 term, so we will return

to this point later, when discussing the temperature

dependence. Note that this expansion is not a power-series

expansion in the coupling λ0.

The first-order term in this expansion is

Fð1Þ ¼ 2λ0T
X

∞

n¼0

0 cos ζnτ
X

∞

l¼1

Plðcos δÞ
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ζ2na
2=ν2

p :

ð4:3Þ

For low temperature, we again evaluate the sum on n using

the Euler-Maclaurin sum formula (3.10). The integral term

there is all there is, because the n summand is even about

n ¼ 0. (This will result in no temperature dependence

being revealed, as we saw in the previous section.) That

integral is immediately seen to be

Fð1Þ ¼ λ0

2πa

X

∞

l¼1

ð2lþ 1ÞPlðcos δÞK0ðν~τÞ; ~τ ¼ τ=a:

ð4:4Þ

Since only the τ cutoff is essential here, we set δ → 0 and

have

Fð1Þ ¼ λ0

πa

X

∞

l¼1

νK0ðν~τÞ: ð4:5Þ

This sum, in turn, may be evaluated using the Euler-

Maclaurin formula around l ¼ 1. The integral term gives

Fð1aÞ ¼ λ0

πa

�

1

~τ2
þ 9

16

�

−1þ 2γ þ 2 ln
3~τ

4

��

: ð4:6Þ

The remainder terms involve, with gðlÞ ¼ νK0ðν~τÞ,

1

2
gð1Þ ¼ −

3

4

�

ln
3~τ

4
þ γ

�

; ð4:7aÞ

g0ð1Þ ¼ −γ − 1 − ln
3~τ

4
; ð4:7bÞ

gð2k−1Þð1Þ ¼ ð2k − 3Þ!
ð3=2Þ2k−2 ; k > 1: ð4:7cÞ

The resulting series is Borel-summable:

FðxÞ ¼ x
X

∞

k¼2

B2k

ð2k − 3Þ!
ð2kÞ! x2k−3

¼ x

Z

∞

0

dt
e−t

ðxtÞ3
�

xt

ext − 1
− B0 − B1xt −

B2

2
ðxtÞ2

�

¼ 1

12x2

�

−9 − 6xþ ð6þ 6xþ x2Þðγ þ ln xÞ

− 12x2ð1 − γÞζ
�

−1; 1þ 1

x

�

− 12x2ζð1;0Þ
�

−1; 1þ 1

x

��

; ð4:8Þ

where the integral is evaluated at x ¼ 2=3, by analytically

continuing in the power of xt in the denominator. The

numerical value Fð2=3Þ ¼ −0.00058434. Adding together

the components, we obtain

Fð1Þ ¼ λ0

πa

�

1

~τ2
þ 11

24
ln ~τ − 0.345879

�

: ð4:9Þ

The second term in the UAE gives

Fð2Þ ¼ −λ20T
X

∞

l¼1

Plðcos δÞ
2ν

X

∞

n¼0

0 cos ζnτ
1

1þ ζ2na
2=ν2

:

ð4:10Þ

Evaluating the n sum again by the Euler-Maclaurin for-

mula, the integral there gives

Fð2Þ ¼ −
λ20
8a

X

∞

l¼1

Plðcos δÞe−ν~τ ¼
λ20
8a

�

1 −
1

Δ

�

;

Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δ2 þ ~τ2
p

: ð4:11Þ

There are no remainder terms, because the n summand

is even.
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The third term

Fð3Þ ¼−
λ0T

3

X

∞

n¼0

0 cosζnτ
X

∞

l¼1

PlðcosδÞ
ð2νÞ2

�

−
3

ð1þζ2na
2=ν2Þ7=2

þ 2λ20

ð1þ ζ2na
2=ν2Þ3=2

�

; ð4:12Þ

is most easily evaluated when τ ¼ 0. As before the n sum

can be replaced by an integral, and the sum on l is easily
carried out, with the result

Fð3Þ ¼ λ0

30πa
ð4 − 5λ20Þ

�

1 −
3

2
ln 2þ 1

2
ln δ

�

: ð4:13Þ

The fourth term, and those thereafter, are finite:

Fð4Þ ¼ λ20
128a

�

π2

8
− 1

�

ð5 − 4λ20Þ: ð4:14Þ

The above analysis, based on the uniform asymptotic

expansion, and the Euler-Maclaurin summation formula,

exhibits no temperature dependence in the free energy. This

is because the n summand is even in n, so the Euler-

Maclaurin formula (or the Abel-Plana formula) allows the

sum to be replaced by an integral, which precisely

corresponds to the zero-temperature energy.

V. LOWEST-ORDER COUPLING CONTRIBUTION

TO THE FREE ENERGY

As in strong coupling, to get the low-temperature

correction, we must return to the exact expression

(2.10). In this section we will consider low orders in the

coupling, which can be treated exactly. We will first

consider the first order in λ0 contributions.

A. TE Oðλ0Þ behavior
The TE contribution to the free energy in Eq. (2.10) may

be expanded to first order in λ0 as

FTE
ð1Þ ¼ λ0

T

2

X

∞

n¼−∞

eiζnτ
X

∞

l¼1

ð2lþ 1ÞPlðcos δÞ
elðxÞslðxÞ

x
:

ð5:1Þ

We can evaluate this exactly. We use the summation

theorem [36]

X

∞

l¼0

ð2lþ 1ÞPlðcos δÞelðxÞslðyÞ ¼
xy

ρ
e−ρ;

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 − 2xy cos δ

q

ð5:2Þ

to evaluate the l-sum as

X

∞

l¼1

ð2lþ 1ÞPlðcos δÞelðxÞslðxÞ ¼
x

u
e−jxju − e0ðxÞs0ðxÞ;

ð5:3Þ

where u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1 − cos δÞ
p

≈ δ. Then the sum over

Matsubara frequencies is (α ¼ 2πTa, ~τ ¼ τ=a)

FTE
ð1Þ ¼ λ0

T

2

X

∞

n¼−∞

einα~τ
�

1

u
e−jnjαu þ 1

2jnjα ðe
−2jnjα − 1Þ

�

:

ð5:4Þ

This is readily evaluated to be

FTE
ð1Þ ¼

λ0

2πa

�

1

u2þ ~τ2
þ1

2
ln
~τ

2
þ 1

12
α2−

1

2
ln
sinhα

α

�

: ð5:5Þ

The free energy diverges as τ and δ tend to zero, but the

entropy is finite:

STEð1Þ ¼ −
∂FTE

∂T
¼ −λ0

�

α

6
þ 1

2α
−
1

2
coth α

�

: ð5:6Þ

For low temperature, the entropy tends to −λ0α
3=90, a

result which will be rederived below, while for high

temperature,

STEð1Þ ∼ −λ0

�

α

6
−
1

2
þ 1

2α

�

: ð5:7Þ

B. TE Oðλ20Þ behavior
We can also exactly calculate the TE Oðλ20Þ behavior.

Squaring the identity (5.2) and integrating over angles, we

obtain [w ¼ 2x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1 − cos θÞ
p

, where θ is the angle in the

sum rule]

X

∞

l¼0

ð2lþ 1Þe2l ðxÞs2l ðxÞ ¼
x2

2

Z

4x

0

dw

w
e−w; ð5:8Þ

which, unfortunately, loses the angular point-splitting

regulator. So now the second-order TE free energy is given

by the expression

FTE
ð2Þ ¼−

λ20T

4

X

∞

n¼0

0 cos nα~τ

�
Z

4nα

0

dw

w
e−w−

2

x2
e20ðxÞs20ðxÞ

�

:

ð5:9Þ

Because this expression exhibits no ultraviolet divergence,

we can set τ to zero. Let us consider the second term (the

l ¼ 0 contribution), first. Since e20ðxÞs20ðxÞ ¼ e−2xsinh2ðxÞ,
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it is immediately evaluated as

FTE
a ¼ λ20α

8πa

�

1þ 1

2α2

�

π2

6
− 2Li2ðe−2αÞ þ Li2ðe−4αÞ

��

:

ð5:10Þ

Let us similarly consider the low-temperature limit of the

first term in Eq. (5.9); we use the Euler-Maclaurin formula

to evaluate it, but because the summand is singular at

n ¼ 0, we do so about n ¼ 1:

FTE
b ¼ −

λ20α

8πa

�
Z

∞

0

dnfðnÞ −
Z

1

0

dnfðnÞ þ 1

2
fð0Þ

þ 1

2
fð1Þ −

X

∞

k¼1

B2k

ð2kÞ! f
ð2k−1Þð1Þ

�

: ð5:11Þ

We can disregard the first term here, the integral from 0 to

∞, because when the variable is changed from n to nα, the
integral is seen to be independent of T, and hence does not

contribute to the entropy. The second integral from 0 to 1 is

λ20α

8πa

Z

1

0

dnfðnÞ¼ λ20α

8πa

�
Z

4α

η

dw

w
e−wþ 1

4α
ðe−4α−1Þ

�

¼ λ20α

8πa

�

1

4α
ðe−4α−1ÞþEið−4αÞ−Eið−ηÞ

�

;

ð5:12Þ

where Ei is the exponential integral function, and we have

regulated the divergence at cos θ ¼ 1 (w ¼ 0) by inserting a

small positive number η. To evaluate the fð0Þ term we again

need to insert the photon mass parameter p, and then we

obtain

λ20α

8πa

1

2
fð0Þ ¼ λ20α

16πa
ln
4p

η
: ð5:13Þ

The 1
2
fð1Þ term is

−
λ20α

16πa

Z

4α

η

dw

w
e−w¼−

λ20α

16πa
½Eið−4αÞ−Eið−ηÞ�: ð5:14Þ

The terms in the Bernoulli series are also readily worked

out to all orders:

fð2k−1Þð1Þ ¼ Γð2k − 1; 4αÞ: ð5:15Þ

The leading terms in the Bernoulli expansion are readily

evaluated by Borel summation,

−
X

∞

k¼1

B2k

ð2kÞ! ð2k − 2Þ! ¼ −

Z

∞

0

dt

t2
e−t

�

t

et − 1
− 1þ t

2

�

¼ 1

2
ln 2π − 1: ð5:16Þ

Then, adding all these components, we find through Oðα4Þ
the second-order TE free energy to be

ΔFTE
ð2Þ ¼ −

λ20
8πa

�

α

2
ln
2πp

α
þ α4

270

�

; ð5:17Þ

where the Δ symbol signifies that temperature-independent

constants have been dropped. Although the α2 and α3 terms

canceled, as has the collinear cutoff η, there persists a linear

term in T and a T lnT term dependent on the photon-mass

infrared cutoff, which if present would violate the Nernst

heat theorem. We have seen precisely such terms appearing

in the strong-coupling limit, Eq. (3.9), and will see addi-

tional power divergences in the TM contribution to the free

energy already in order λ0. As we will see below, such

divergences are to be omitted. In particular, we will not see

this term when we consider the general low-temperature

expansion in Sec. VI A.

We can easily extend this calculation to all orders in α.

The key observation is that in Oðα2kÞ, k ≥ 1, all contribu-

tions cancel except that from the B2k term in the Bernoulli

sum and the contribution from the l ¼ 0 term (5.10). This is

a consequence of the identity

X

n−1

k¼0

�

n

k

�

Bk ¼ 0; n > 1: ð5:18Þ

Adding up the remainder, leads to the temperature depend-

ence of the free energy in second order:

ΔFTE
ð2Þ ¼

λ20
8πa

�

αþ 1

2α

�

π2

6
− 2Li2ðe−2αÞ þ Li2ðe−4αÞ

�

−
1

4
hð4αÞ − 1

2
ln
2πp

α

�

; ð5:19Þ

where

hðxÞ ¼ x

Z

x

0

dt

t2

�

t

et − 1
− 1þ 1

2
t

�

; ð5:20Þ

which has the limits

hðxÞ∼ x2

12
−

x4

2160
; x≪ 1;

hðxÞ∼x

2
lnx−Ax; A¼ 0.63033; x≫ 1: ð5:21Þ

The limiting behaviors of the free energy are
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ΔFTE
ð2Þ ∼

λ20
8πa

�

− α4

270
; α ≪ 1;

1.63033α − 1
2
α ln 4α; α ≫ 1.

ð5:22Þ

The second-order TE free energy is shown in Fig. 1. Note

that because ΔFTE
ð2Þ has a negative slope, the corresponding

entropy contribution is positive, unlike the first-order

contribution.

C. TM Oðλ0Þ behavior
Extracting the weak-coupling behavior of the TM con-

tribution is considerably more subtle. The expression we

wish to evaluate is

FTM
ð1Þ ¼ −λ0T

X

∞

n¼0

0 cos nα~τ

×
X

∞

l¼1

ð2lþ 1ÞPlðcos δÞ
1

nα
e0lðnαÞs0lðnαÞ: ð5:23Þ

We first note that the n sum is divergent because of an

infrared divergence at n ¼ 0. To regulate this, we again

insert the small photon mass parameter p. Then the n ¼ 0

contribution is immediately worked out:

FTM
n¼0 ¼

λ0α

4πa

�

−
1þ u2=4

p2u3
þ 1þ u2 þ ~τ2

2u3

�

: ð5:24Þ

For the rest, we ignore the photon mass, and use the

summation formula (5.2) to write FTM
n≠0 ¼ FTM

a þ FTM
b ,

where

FTM
a ¼ λ0T

X

∞

n¼1

cos nα~τ
e00ðnαÞs00ðnαÞ

nα
; ð5:25aÞ

FTM
b ¼ −λ0T

X

∞

n¼1

cos nα~τ
e−unα

4u3ðnαÞ2

× ½4þ u2 þ uð4 − 3u2Þnαþ u4ðnαÞ2�: ð5:25bÞ

Because e00ðxÞs00ðxÞ ¼ − 1
2
ð1 − e−2xÞ, we can readily evalu-

ate the subtracted l ¼ 0 term:

FTM
a ¼ λ0

4πa
½ln ~τ þ ln α − αþ lnð2 sinh αÞ�: ð5:26Þ

The n sums in the remaining part FTM
b;n≠0 are straightfor-

ward, leading to, for small u and ~τ,

FTM
b ¼ −

λ0

8πa

�

2

3

π2

u3α
−

4

u2

�

1þ ~τ

u
arctan

~τ

u

�

þ 1

u

��

~τ2

u2
þ 1

�

αþ π2

6α

�

þ 2 lnðu2 þ ~τ2Þα2 − ~τ

u
arctan

~τ

u

− 1þ 1

1þ ~τ2=u2
−
α2

9

�

: ð5:27Þ

When Eqs. (5.24), (5.26), and (5.27) are combined, we are

left with divergent terms that depend on temperature, as

well as a finite remainder:

FTM
ð1Þ ¼ −

λ0

2πa

�

1

u3

�

π2

6α
þ α

2p2

��

1þ u2

4

�

þ
�

−
1

u2

�

1þ u2

4

��

1þ ~τ

u
arctan

~τ

u

�

−
1

2
ln ~τ þ 1

2
lnðu2 þ ~τ2Þ þ 1

4

1

1þ ~τ2=u2

�

−
1

2
ln
2 sinh α

α
−
α2

36

�

: ð5:28Þ

Interestingly, with this way of regulating the infrared

divergence, the τ-dependent and finite terms linear in α

have canceled between FTM
n¼0 and FTM

n≠0.

The entropy is obtained from the free energy by differ-

entiating with respect to α:

S ¼ −2πa
∂

∂α
F; ð5:29Þ

so we see that the terms in FTM
ð1Þ linear in α and inverse linear

in α violate the Nernst heat theorem, and therefore seem

unphysical. So, there is motivation for simply omitting

those terms. We might think that it is the dimensional

quantities τ and aδ which are the fixed regulators, which

would suggest a scaling argument for removing these terms

as irrelevant, but this is incorrect, since a direct calculation

[24] of the stress tensor shows that the principle of virtual

work, requiring that the stress on the sphere be the negative

derivative of the free energy with respect to a, shows that
the quantities τ and δ must be regarded as constant, so that

terms in Eq. (5.28) depending on ~τ possess a dependence.

FIG. 1. The negative of the TE free energy in second order

in λ0, apart from a factor of λ20=ð8πaÞ. The solid line shows

the numerically computed free energy (5.19) compared with the

low-temperature approximation (dotted curve) and the high-

temperature approximation (dashed curve), given in Eq. (5.22).
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However we shall subsequently see two further justifica-

tions for “renormalizing” these terms away. The infrared

and ultraviolet divergent terms encountered here are quite

different from the logarithmic terms seen in Eqs. (3.9) and

(5.17). The present divergent terms are power divergences,

and so are more convincingly removed. Adopting such a

prescription leaves only the finite terms in the free energy

and the entropy

F̂TM
ð1Þ ¼ λ0

4πa

�

ln
2 sinh α

α
þ α2

18

�

;

ŜTMð1Þ ¼ −
λ0

2

�

cothα −
1

α
þ α

9

�

: ð5:30Þ

Unfortunately, this TM contribution to the entropy, like the

TE contribution (5.6), is always negative, and the sum of

the two is linear in the temperature:

Ŝð1Þ ¼ STEð1Þ þ ŜTMð1Þ ¼ −
2

9
λ0α: ð5:31Þ

The first-order renormalized entropy is displayed in Fig. 2.

Both contributions to the entropy are now negative.

The same result (5.28) is obtained if instead of direct

summation, the Euler-Maclaurin formula (around n ¼ 1,

because the summand is not analytic at the origin) is used.

However, remarkably, the Abel-Plana formula gives

directly the finite part with all the divergences confined

to the temperature-independent part. This is actually not

surprising, because analytic regularization techniques omit

power divergences. The Abel-Plana formula

X

∞

n¼0

0fðnÞ¼
Z

∞

0

dtfðtÞþ i

Z

∞

0

dt
fðitÞ−fð−itÞ

e2πt−1
; ð5:32Þ

concentrates all the divergent terms in the first temperature-

independent integral. All the temperature dependence is

contained in

ΔFTM
ð1Þ ¼−iλ0T

Z

∞

0

dn
cosnα~τ

e2nπ−1

1

nα

×

�

−e00ðinαÞs00ðinαÞþ
∂

∂x

∂

∂y

xy

ρ
e−iρþðc:c:Þ

�

x¼y¼nα

;

ð5:33Þ

where ρ is defined in (5.2), which is just the Minkowski

version of the Euclidean form in Eq. (5.25). Now, because

we have sines and cosines instead of real exponentials,

contributions are finite, and we can set τ → 0:

ΔFTM
ð1Þ ¼ λ0

πa

Z

∞

0

dx

x

1

ex=aT − 1

�

1 − cos2xþ x2

3

�

: ð5:34Þ

This may be easily shown, for example by Borel summa-

tion, to yield precisely the free energy and entropy shown

in Eq. (5.30).

VI. LOW-TEMPERATURE BEHAVIOR

In this section we consider arbitrary finite coupling λ0,

but examine the behavior of the free energy for low

temperature. This can be readily extracted by use of the

Euler-Maclaurin formula (3.10), which will concentrate all

the ultraviolet divergences in the temperature-independent

part of the free energy. The integral term in Eq. (3.10),

as noted before, contributes only to the temperature-

independent part.

A. TE low-temperature behavior

As noted in Sec. III the lowest-order appearance of an

odd term in ζn occurs for l ¼ 1:

e1ðxÞs1ðxÞ
x

∼
1

3
−

2

15
x2 þ 1

9
x3 þ � � � ; x ≪ 1: ð6:1Þ

The leading low-temperature correction comes by expand-

ing the logarithm in powers of λ0. The kth-order term

arising from the Bernoulli series in the Euler-Maclaurin

formula is

ΔFTE;T→0

ðkÞ ¼ −T
B4

4!
ð2πTÞ3

�

∂

∂x

�

3

× 3ð−1Þkþ1a3λk0

�

1

3

�

k−1 x3

9

	

	

	

	

x¼0

¼ −a3
�

−
λ0

3

�

k π3T4

15
: ð6:2Þ

When this is summed over all k we get

ΔFTE;T→0ðλ0Þ ¼
ðπaÞ3
15

T4
1

1þ 3=λ0
→

ðπaÞ3
15

T4; ð6:3Þ

where the last replacement is the strong-coupling limit

(which may be directly confirmed). The corresponding

entropy is

FIG. 2. The TE and “renormalized” TM contributions to the

entropy in first order in the coupling. Both the TE and the TM

contributions are negative, leading to a sum which is negative and

linear in the temperature.
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STE;T→0ðλ0Þ ¼ −
α3

30

1

1þ 3=λ0
; ð6:4Þ

which for Oðλ0Þ coincides with the result found at the

end of Sec. VA, and in Oðλ20Þ agrees with the entropy

computed from the Oðα4Þ term in Eq. (5.17), which
constitutes further evidence of the irrelevance of the
infrared-sensitive logarithmic term there. Comparing with
the total low-temperature correction (3.13), we see that the
strong-coupling limit of the TM contribution must be

ΔFTM;T→0
∞ ¼ −

2

15
ðπaÞ3T4: ð6:5Þ

The corresponding entropies, S ¼ −∂F=∂T, are negative
for the TE contribution, and positive for the TM. As for the
plate [20], the latter overwhelm the former.

It might well be objected that since the summand is not

analytic at n ¼ 0, it would be better to apply the Euler-

Maclaurin formula about n ¼ 1, as in Eq. (5.11). Doing so

in this case yields exactly the same result as found here, but

in the next subsection, we will see that an expansion about

n ¼ 1 is essential to get the result in the TM case, where the

singularity at the origin is more severe.
These strong-coupling results were given in Sec. 9.5.1 of

Ref. [33] and inRef. [37], howeverwith an additionalT3 term
in the free energy subtracted in the case of the TE contri-
bution, and the same term added to the TM contribution, so
that the total contribution remains unchanged. These sub-
tractions, motivated by the heat-kernel analysis of the Weyl
expansion, were justified by requiring, perhaps dubiously,
that such a term not be present at high temperature. We will
see exactly that term when we study the high-temperature
strong-coupling limit in Sec. VII C. It seems not possible to
make such a subtraction here because we are considering
arbitrary coupling, where the geometrical considerations
applied in Ref. [33] must be generalized [38].

B. TM low-temperature behavior

For the TM free energy we write

FTM¼T
X

∞

n¼0

0gðnÞ;

gðnÞ¼ cosnα~τ
X

∞

l¼1

ð2lþ1ÞPlðcosδÞ ln
�

1−
λ0

x
e0lðxÞs0lðxÞ

�

:

ð6:6Þ
For small x, the quantity in the logarithm is singular,

e0lðxÞs0lðxÞ
x

∼ −
lðlþ 1Þ

ð2lþ 1Þx2 −
3þ 2lðlþ 1Þ

ð4l2 − 1Þð2lþ 3Þ
þOðx2 or x2l−1Þ; x ≪ 1: ð6:7Þ

The special role of l ¼ 1 is evident. To define the n ¼ 0

term as before we introduce the photon mass parameter p,
so up to terms that vanish with p,

1

2
gð0Þ ¼ 1

2

X

∞

l¼1

ð2lþ 1ÞPlðcos δÞ ln
λ0lðlþ 1Þ
ð2lþ 1Þp2

: ð6:8Þ

Because α is also very small, we have the leading term

1

2
gð1Þ ≈ 1

2

X

∞

l¼1

ð2lþ 1ÞPlðcos δÞ ln
λ0lðlþ 1Þ
ð2lþ 1Þα2 ; ð6:9Þ

and the integral term gives

−

Z

1

0

dngðnÞ¼−
X

∞

l¼1

ð2lþ1ÞPlðcosδÞ
�

ln
λ0lðlþ1Þ
ð2lþ1Þα2þ2

�

:

ð6:10Þ

Adding to these the contribution of the first term in the

Bernoulli series gives

FTM
OðTÞ ∼ T ln

2πp

α
: ð6:11Þ

This term is, of course, identical to the T lnT term we found

in strong coupling in Eq. (3.9), and should be omitted for

the same reasons.

It is easy to check that the terms of OðT3Þ coming from

the integral, the 1
2
gð1Þ term, and the first Bernoulli term all

cancel. The surviving T4 behavior again receives canceling

contributions from these three places, but arises entirely

from the exceptional l ¼ 1 term, where

ln

�

1 − λ0
e01ðxÞs01ðxÞ

x

�

∼ ln
2λ0

3x2
þ x2

�

3

2λ0
þ 7

10

�

−
2

3
x3 þ � � � : ð6:12Þ

Thus the leading contribution to the TM free energy is

FTM
OðT4Þ ∼ −

2

3
Tα33

�

−
B4

4!
6

�

¼ −
2

15
ðπaÞ3T4; ð6:13Þ

just as stated above, in Eq. (6.5).

So we have recovered the strong-coupling limit. Still in

the low-temperature context, we can develop an expansion

in ξ ¼ α
ffiffiffiffiffiffiffiffi

2λ0=3
p , which we regard as arbitrary.

3
This arises

again entirely from the l ¼ 1 term in the angular momen-

tum expansion. (Higher terms in l will yield only higher-

order terms in T.) This is achieved by expanding

3
We recall that in the δ-function plate, we developed the TM

free energy in terms of a strong-coupling expansion, as a series in
T=λ0 [20].
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ln

�

1þ
�

3

2λ0
þ 7

10

�

x2 −
2

3
x3
�

¼
X

∞

p¼1

ð−1Þp−1 1
p

��

3

2λ0
þ 7

10

�

x2 −
2

3
x3
�

p

: ð6:14Þ

This leads to the Bernoulli term (about n ¼ 1)

FTM
B ¼ −3T

X

∞

k¼1

B2k

ð2kÞ! α
2k−1

�

∂

∂α

�

2k−1 X∞

p¼1

ð−1Þp−1
p

×
X

p

r¼0

�

p

r

��

3

2λ0
þ 7

10

�

p−r
�

−
2

3

�

r

α2pþr; ð6:15Þ

where the derivative amounts to inserting the factor

ð2pþ rÞ!=ð2pþ r − 2kþ 1Þ!. Because only r ¼ 1 can

result in α3 dependence (with the remaining α’s absorbed

in the definition of ξ), we are led to

FTM
B ¼ −

4λ20
9πa

X

∞

k¼1

B2k

ð2kÞ!
X

∞

p¼1

ð−1Þp ð2pþ 1Þ!
ð2p − 2kþ 2Þ! ξ

2pþ2:

ð6:16Þ
The sum on p may be readily carried out:

k ¼ 1∶
X

∞

p¼1

ð−1Þp ð2pþ 1Þ!
ð2pÞ! ξ2pþ2 ¼ −ξ4

3þ ξ2

ð1þ ξ2Þ2 ;

ð6:17aÞ

k > 1∶
X

∞

p¼1

ð−1Þp ð2pþ 1Þ!
ð2p − 2kþ 2Þ! ξ

2pþ2

¼ ð−1Þkþ1ð2k − 1Þ!ξ2kð1þ ξ2Þ−k

× cosð2k arctan ξÞ: ð6:17bÞ
Now we notice that

ξ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ξ2
p ei arctan ξ ¼ ξ

1 − iξ
; ð6:18Þ

so then we have

FTM
B ¼ 4λ20

9πa

�

B2

2

ξ4ð3þ ξ2Þ
ð1þ ξ2Þ2 þ

X

∞

k¼2

ð−1Þk B2k

2k

1

2

×

�

ξ2k

ð1þ iξÞ2k þ
ξ2k

ð1 − iξÞ2k
��

: ð6:19Þ

Finally, the sum on k may be recast as an integral,

FTM;T→0ðξÞ¼ 4λ20
9πa

�

B2

2

ξ4ð3þξ2Þ
ð1þξ2Þ2

þℜ

Z

∞

0

dt

t
e−t

�

−1þ 1

12
x2t2þxt

2
cot

xt

2

�

−
ξ4

2ð1þ ξ2Þþ
1

2
½ξ2− lnð1þ ξ2Þ�

�

; ð6:20Þ

where

x ¼ ξ

1þ iξ
; ξ ¼ α

ffiffiffiffiffiffiffiffiffiffiffiffi

2λ0=3
p ; ð6:21Þ

and where we have now added in as the last two terms the

contributions from the 1
2
gð1Þ term and the integral term in

the Euler-Maclaurin formula, respectively. (The latter is
worked out similarly to the way we computed the deriv-
atives in the Bernoulli sum.) For strong coupling

FTM;T→0ðξÞ ∼ −
4λ20
9πa

�

ξ4

120
þ ξ6

252
þ ξ8

240
þ � � �

�

∼ −
α4

120πa
; ξ ≪ 1; ð6:22Þ

which reproduces Eq. (6.13), of course. For weak coupling

FTM;T→0ðξÞ¼ 4λ20
9πa

�

ξ2

12
þ γ− lnξþ

X

∞

n¼1

ð−1Þn
ξ2n

ζð2nþ1Þ
�

∼
λ0

18πa
α2þ 4λ20

9πa
ðγ− lnξÞ; ξ≫ 1; ð6:23Þ

where the first term exactly agrees with the small-
temperature limit of that found in Eq. (5.30), without the
divergent terms seen in Eq. (5.28). We can sum the weak-
coupling expansion into a closed form:

FTM;T→0ðξÞ¼
�

2λ0

3

�

2
�

ξ2

12
− lnξ−ℜψ

�

1þ i

ξ

��

; ð6:24Þ

which can be shown numerically to coincidewith Eq. (6.20).

Two lessons are thus learned: the subtraction (renormaliza-

tion) procedure leading to the perturbative free energy and

entropy(5.30)apparently isvalid,and the freeenergydevelops

a positive slope (the entropy becomes negative) for large
enoughξ, i.e. for small enoughcoupling.The low-temperature

FIG. 3. The absolute value of the TM free energy for low

temperature, as a function of the coupling defined through ξ ¼
α

ffiffiffiffiffi

3
2λ0

q

. The overall factor ð2λ0=3Þ2=πa has been pulled out. The

dotted and dashed lines are the large and small coupling limits,

respectively. For strong coupling, the slope is negative, and hence

the entropy is positive, but for sufficiently weak coupling, the

entropy changes sign. The cusp indicates where the free energy

changes sign.
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TMfree energy is plotted in Fig. 3 as a function of ξ. Now it is
seen that the free energy starts with a negative slope as a
functionof temperature, for largecoupling,butatξ ¼ 1.75271
the sign of the slope changes, so the corresponding entropy

turns negative. The change occurs for λ0 ¼ 0.488282α2.

VII. HIGH-TEMPERATURE LIMIT

Finally, we return to high temperature, both for finite and
large coupling, where unlike in Sec. III we consider the TE
and TM contributions separately. These limits are captured
completely by the uniform asymptotic expansion for the
Bessel functions, in contrast to the low-temperature limit,
and because the structures encountered in the sums are
quadratic forms, it is particularly convenient to abandon the
point-splitting regularization adopted heretofore, and use
analytic regularization and the generalized Chowla-Selberg
asymptotic formulas. In contrast, point-splitting yields
formulas that are rather complicated to evaluate. We start
by examining the TE contribution.

A. TE contribution

The high-temperature behavior is captured from the uni-
form asymptotic expansion, which can be written, as in
Eq. (4.1)

ln

�

1þ λ0

x
elðxÞslðxÞ

�

∼
X

∞

k¼1

a
ðkÞ
TEðtÞ
ð2νÞk ; ν ≫ 1; ð7:1Þ

where the first four expansion coefficients are

a
ð1Þ
TEðtÞ ¼ λ0t; ð7:2aÞ

a
ð2Þ
TEðtÞ ¼ −

1

2
λ20t

2; ð7:2bÞ

a
ð3Þ
TEðtÞ ¼ λ0

t3

2
ð1 − 6t2 þ 5t4Þ þ λ30

t3

3
; ð7:2cÞ

a
ð4Þ
TEðtÞ ¼ −

λ20t
4

2
ð1 − 6t2 þ 5t4Þ − λ40t

4

4
; etc: ð7:2dÞ

It seems the most effective way to extract the high-

temperature dependence is through the use of the Chowla-

Selberg formula as generalized by Elizalde [39,40]. That is,

we will discard the point-split regularization we have used

hitherto, and use the formula

X

∞

n¼0

X

∞

l¼0

1

½cðlþ bÞ2 þ dα2ðnþ aÞ2�s ≡ E2ðs; c; dα2; b; aÞ

¼ ðdα2Þ−s
ΓðsÞ

X

∞

m¼0

ð−1Þm
m!

ΓðsþmÞ
�

c

dα2

�

m

ζð−2m; bÞζð2sþ 2m; aÞ

þ ðdα2Þ−s
2

�

πdα2

c

�

1=2 Γðs − 1=2Þ
ΓðsÞ ζð2s − 1; aÞ

þ 2πs

ΓðsÞ cosð2πbÞc
−s=2−1=4ðdα2Þ−s=2þ1=4

×
X

∞

n¼1

X

∞

m¼0

ns−1=2ðmþ aÞ−sþ1=2Ks−1=2

�

2π

ffiffiffiffiffiffiffiffi

dα2

c

r

nðmþ aÞ
�

: ð7:3Þ

Here, the various parameters, a, b, c, and d are introduced
so that the desired structures can be obtained by appropriate
differentiation. Afterwards, we set a¼1, b¼3=2, c¼d¼1.
We shift the n > 0 and l > 0 sums so they start at zero. Due
to the prefactor of ν in the summand for the free energy,
there is always one derivative with respect to b, so the
second term above does not contribute. Neither does the
last term, because b is an integer plus one-half. Thus, only
the first term in Eq. (7.3) survives.

1. High-temperature, fixed coupling

Let us start with the first term in the uniform asymptotic
expansion (7.2). Note that the leading term in the uniform
asymptotic expansion is exact for n ¼ 0. By zeta-function
regularization, the n ¼ 0 term yields

F
ð1ÞTE
n¼0 ¼ λ0T

2
ζð0; 3=2Þ ¼ −

λ0α

4πa
; ð7:4Þ

while the remainder of the n sum gives

F
ð1ÞTE;T→∞

n>0 ¼ −λ0T
1

2ðs − 1Þ
∂

∂b
E2ðs − 1; 1; α2;b; 1Þjs→1=2:

ð7:5Þ

The m ¼ 0 term in the Chowla-Selberg formula (7.3) now
gives immediately

F
ð1ÞTE;T→∞

n>0;m¼0 ¼ λ0α
2

24πa
; ð7:6Þ
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while the m ¼ 1 term gives

F
ð1ÞTE;T→∞

n>0;m¼1 ¼ −
λ0

4πa

11

12

�

γ − ln αþ 1

2s − 1

�

; ð7:7Þ

where the divergent term is irrelevant, since it is T
independent. In this way, we find

ΔFð1ÞTE;T→∞ ¼ λ0

4πa

�

α2

6
− αþ 11

12
ln α

�

; ð7:8Þ

which is nearly that expected from the exactOðλ0Þ result (5.5):

T → ∞∶ ΔFð1ÞTE ∼
λ0

4πa

�

α2

6
− αþ ln α

�

: ð7:9Þ

The missing contribution to the logarithmic term comes from

the Oðλ0Þ part of a
ð3Þ
TE . Using the Chowla-Selberg formula

again, but now also differentiating with respect to c and d as
well, we find

F
ð3ÞTE;T→∞

Oðλ0Þ ¼ λ0

4πa

1

12
ln α: ð7:10Þ

There are no higher-power temperature corrections in Oðλ0Þ
(beyond that displayed, the temperature corrections are
exponentially small). Indeed, when the m ¼ 2 contribution
from the lowest-orderUAE is added to them ¼ 1 contribution
from the second-order UAE, and them ¼ 0 contribution from
the third-order UAE (not displayed in the above formulas),
which would potentially give a contribution to the free energy

of order α−2, we obtain zero.

Next, we look at the T→∞ contribution coming from að2Þ:

Fð2ÞTE;T→∞¼−
λ20T

4

X

∞

n¼0

0
X

∞

l¼1

ν

ðν2þn2α2Þs ; s→1; ð7:11Þ

where the n ¼ 0 contribution is

F
ð2ÞTE;T→∞

n¼0 ¼ −
λ20α

16πa
½−22s−1 þ ð22s−1 − 1Þζð2s − 1Þ�;

ð7:12Þ

which is divergent as s → 1. This divergence is canceled by

another divergence occurring in the remaining contributions,

F
ð2ÞTE;T→∞

n>0 ¼ −
λ20T

8

α2−2s

1 − s
ζð2s − 2Þ þ � � � : ð7:13Þ

When these are added together, we obtain a finite result:

Fð2ÞTE;T→∞ ¼ −
λ20T

8

�

−2þ γ þ ln
2α

π

−
11

12
ζð2Þ 1

α2
þOðα−4Þ

�

: ð7:14Þ

Herewe have kept a subdominant term that will not contribute

in the high-temperature, fixed λ0 regime, because we will see

this is important in strong coupling.

All that remains are the higher-order terms in λot, which
for fixed λ0 only contribute at n ¼ 0. (Again the UAE is

exact in this case.) These give a contribution linear in T
which is easily summed:

F
ð>2ÞTE;T→∞

n¼0 ¼ T
X

∞

l¼1

ν

�

ln

�

1þ λ0

2ν

�

−
λ0

2ν
þ λ20

8ν2

�

¼ T

�

−
1

24
−
13

24
ln 2þ 1

2
lnGþ λ0

2
−
λ0

4
ln 2π

−
λ20
8
ð1 − γ − 2 ln 2Þ þ λ0

2
lnΓ

�

3þ λ0

2

�

− ζð1;0Þ
�

−1;
3þ λ0

2

��

: ð7:15Þ

Adding Eqs. (7.9), (7.14), and (7.15) together, we find

FTE;T→∞ðλ0Þ ∼
1

2πa

�

α

�

−
1

24
−
13

24
ln 2þ 1

2
lnG

�

þ λ0

�

α2

12
þ 1

2
ln α −

α

4
ln 2π

�

þ 1

8
λ20α

�

1 − ln
α

2π

�

þ 1

2
λ0α lnΓ

�

3þ λ0

2

�

− αζð1;0Þ
�

−1;
3þ λ0

2

�

þ 11

96

λ20
α
ζð2Þ

�

:

ð7:16Þ

The leading term for the high-temperature, fixed coupling

regime, is just that given in Eq. (7.6):

FTE;T→∞ðλ0Þ ∼
λ0

24πa
α2; aT ≫ 1: ð7:17Þ

Particularly interesting here is the strong-coupling limit,

λ0 → ∞:

FTE;T→∞

λ0→∞ ∼
1

2πa

�

−
λ20α

16

�

1þ 2 ln
α

λ0π

�

þ λ0

12
ðα2þ 6 lnαÞ

−
α

24
ð1þ 2 ln2− 12 lnGþ 11 lnλ0Þþ

11

12

λ20
α

π2

48

�

;

aT ≫ λ0 ≫ 1: ð7:18Þ

Although the λ0α term canceled, the high-temperature TE

free energy does not possess a strong-coupling limit

independent of λ0. This is because this result is valid for

aT ≫ λ0 ≫ 1. That is, we are taking the high-temperature

limit before we pass to strong coupling. To reverse the order

of limits, we have to consider additional terms.
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2. Strong-coupling limit

To get the entropy in the limit λ0 ≫ aT ≫ 1 we have to

add the leading correction, because we only included the

n ¼ 0 term in Eq. (7.15):

FTE
corr1 ¼ T

X

∞

n;l¼1

2ν
X

∞

k¼3

ð−1Þk−1
k

�

λ0

2ν

�

k

tk

¼ 1

2πa

�

−
λ30
12

ln αþ 2α3fðλ0=2αÞ −
11

12
αgðλ0=2αÞÞ

�

;

ð7:19Þ

where the first term arises by taking a limit in the k ¼ 3

term, and the sum over the remaining k sum yields

fðxÞ ¼ −
1

24

�

x − 3x2 − 6x3 þ 8γx3 þ 6x2 ln 2π −
3ζð3Þ
π2

− 12ζð1;0Þð−2; 1þ xÞ þ 24xζð1;0Þð−1; 1þ xÞ
�

→

1

9
x3ð4 − 3γ − 3 ln xÞ þ 1

8
x2ð1 − 2 ln 2πxÞ

−
1

12
xþ ζð3Þ

8π2
þ � � � ; ð7:20Þ

and

gðxÞ ¼ π2

12
x2 − γx − lnΓð1þ xÞ

→

π2

12
x2 þ ð1 − γ − ln xÞx − 1

2
ln 2πx; ð7:21Þ

where the last forms correspond to the strong-coupling

limit, x ¼ λ0
2α

≫ 1. When these are substituted into

Eq. (7.19), the λ30 ln α term cancels, and the leading term

in gðxÞ cancels the subleading term in Eq. (7.14),

ΔFTE;T→∞

corr1 ¼ 1

2πa

�

−
λ20
α

11

12

π2

48
þ α

λ20
16

�

1− 2 ln
πλ0

α

�

− α2
λ0

12
þ α3

ζð3Þ
4π2

þ 11

24
ðλ0 þ αÞ lnπλ0

α
þ � � �

�

;

ð7:22Þ

where the omitted terms are either independent of T or go to

zero as λ0 → ∞.

We also have to keep the next term in the UAE, which

gives

FTE;T→∞

corr2 ¼T

2

X

∞

n;l¼1

2ν
X

∞

k¼2

ð−1Þk−1λk0
�

t

2ν

�

kþ2

ð1−6t2þ5t4Þ

→

3

64πa
α−

λ0

48πa
lnα; ð7:23Þ

where again the strong-coupling limit is displayed. Note

that the last term here cancels the contribution (7.10).

When these corrections (7.22) and (7.23) are added to the

previous result (7.18), we recover the expected perfect-

conductor limit for the TE contribution given below:

FTE;T→∞
∞ ¼ 1

2πa

�

α3
ζð3Þ
4π2

−
11

24
α ln

α

2π
−
13

24
α ln 2

þ 1

2
α lnGþ 5

96
α

�

: ð7:24Þ

In Sec. 9.5.2 of Ref. [33] the free energy for a Dirichlet

spherical shell was given. If the l ¼ 0 term is subtracted

from that, FTE;D
l¼0 ¼ ðT=2Þ ln 2aT, this coincides with our

result, except for the leading α3 term. This is precisely the

term that is subtracted off by the procedure advocated in

that reference, as mentioned already at the end of Sec. VI A.

The objection to this term is that it grows as the area of the

sphere; however, such a subtraction does not seem possible

in our general analysis, in which the perfect conductor

boundary conditions are only obtained as a limit.

B. TM contribution

For n ≠ 0, the UAE again should capture the leading

high-temperature contribution. As in Eq. (7.1),

ln

�

1 −
λ0

x
e0lðxÞs0lðxÞ

�

∼
X

∞

k¼1

a
ðkÞ
TMðtÞ
ð2νÞk ; ν ≫ 1; ð7:25Þ

where the first four expansion coefficients are

a
ð1Þ
TMðtÞ ¼

λ0

z2t
; ð7:26aÞ

a
ð2Þ
TMðtÞ ¼ −

λ20

2z4t2
; ð7:26bÞ

a
ð3Þ
TMðtÞ ¼ −

λ0

2z2
tð1 − 6t2 þ 7t4Þ þ λ30

3z6t3
; ð7:26cÞ

a
ð4Þ
TMðtÞ ¼

λ20
2z4

ð1 − 6t2 þ 7t4Þ − λ40
4z8t4

: ð7:26dÞ

Wewill here content ourselves with the consideration of the

Oðλ0Þ contribution. For n ¼ 0 we have to use the small-

argument expansion (6.7) regularized by putting in a small

photon mass p as before. To lowest order in λ0, the part

sensitive to p vanishes using zeta-function regularization:

FTM
n¼0;p ¼−

λ0T

2p2

X

∞

l¼1

lðlþ1Þ

¼−
λ0T

8p2
½ð1−22Þζð−2Þ− ð1−20Þζð0Þ� ¼ 0: ð7:27Þ
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This leaves only the finite remainder

FTM;T→∞

n¼0 ¼ λ0T

4

X

∞

l¼1

�

9

ð2lþ3Þð2l−1Þþ1

�

¼ λ0α

4πa
; ð7:28Þ

again using zeta-function regularization. This is the linear-

in-T behavior expected from the exact result (5.30).

For n > 0 we use the UAE (7.26) which gives the

leading term

FTM;T→∞

ð1Þ;n>0 ¼ λ0T
X

∞

n¼0

X

∞

l¼0

ν

ðnþ1Þ2α2 t
−2s;

ν¼ lþb; s→ 1=2; ð7:29Þ

with t−2 being the quadratic form seen in Eq. (7.3), where

this may be evaluated by differentiating with respect to d,
and then using the m ¼ 0 term in the Chowla-Selberg

formula:

F
ð1ÞTM;T→∞

m¼0 ¼ λ0α
2

72πa
; ð7:30Þ

which is exactly the expected quadratic T dependence seen

in Eq. (5.30).

The m ¼ 1 term here gives in the same way a contri-

bution to the logarithm term:

F
ð1ÞTM;T→∞

m¼1 ¼ λ0

4πa

11

12
ln α: ð7:31Þ

However, there is a similar contribution coming from the

order Oðλ0Þ part of the a
ð3Þ
TM term

F
ð3ÞTM;T→∞

n>0 ¼−
λ0T

8

X

∞

n;l¼0

ν

ðnþ1Þ2α2 t
2sð1−6t2þ7t4Þ;

s→ 1=2: ð7:32Þ

Again by differentiating with respect to parameters we find,

in the large-temperature limit, that only the m ¼ 0 term in

the Chowla-Selberg formula contributes, yielding

Fð3ÞTM;T→∞ ¼ −
λ0

4πa

23

12
ln α: ð7:33Þ

When this is added to the previously found logarithmic

term (7.31) we obtain exactly the expected result from the

exact calculation:

FTM;T→∞

Oðλ0Þ log ¼ −
λ0

4πa
ln α: ð7:34Þ

The net result is just as anticipated from Eq. (5.30),

ΔFTM
Oðλ0Þ ∼

λ0

4πa

�

αþ α2

18
− ln α

�

: ð7:35Þ

The fact that we get the same result as in Sec. V C, without

the divergent terms seen in Eq. (5.28), is strong evidence

that the minimal subtraction scheme there is valid.

C. Strong-coupling TE and TM contributions

In Sec. III we rederived the entropy for a perfectly

conducting sphere at high temperatures. Now we want to

extract the TE and TM contributions for such a sphere.

These seem not to have been presented previously. The

former is given by

FTE
∞ ¼ T

2

X

∞

n¼−∞

eiζnτ
X

∞

l¼1

ð2lþ 1ÞPlðcos δÞ ln
slðxÞelðxÞ

x
:

ð7:36Þ

The zero Matsubara frequency contribution is

FTE
∞;n¼0 ¼

T

2

X

∞

l¼1

ð2lþ 1ÞPlðcos δÞ ln
1

2lþ 1
; ð7:37Þ

where again we note that the UAE is exact in this case.

Proceeding analytically, we drop the point-splitting cutoff,

and find

FTE;T→∞

∞;n¼0 ¼ −
T

2

∂

∂β

X

∞

l¼1

ð2lþ 1Þ1þβjβ¼0

¼ −
T

2

�

1

12
þ 1

6
ln 2 − lnG

�

: ð7:38Þ

For n > 0 we can use the Chowla-Selberg formula (7.3),

starting from the leading factor in the UAE,

F
ð1ÞTE;T→∞

∞;n>0 ¼ 2T
X

∞

n¼1

X

∞

l¼1

ν
∂

∂β
ðn2α2þν2Þ−β=2

	

	

	

	

β¼0

−
11

24
T ln2

¼T

�

−α2ζ0ð−2Þ−11

24
ln

α

2π
−
11

24
ln2

�

: ð7:39Þ

The second-order term in the UAE yields

F
ð2ÞTE;T→∞

∞;n>0 ¼ T
X

∞

n;l¼1

2ν
t2

8ν2
ð1 − 6t2 þ 5t4Þ

¼ 3

32
T þOðT−1Þ: ð7:40Þ

(This result can also be obtained by the hyperbolic method

used in Sec. III.) Adding these components together gives

FTE;T→∞
∞ ¼ T

�

ζð3Þ
4π2

α2 −
11

24
ln

α

2π
−
13

24
ln 2þ 5

96
þ 1

2
lnG

�

;

ð7:41Þ

which coincides with the λ0 ≫ aT ≫ 1 limit in Eq. (7.24).

Again, recall that the leading a2T3 term here is subtracted

from the free energy by the method advocated in Sec. 9.5 of

Ref. [33]. The same term would be added to the TM
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contribution, so there is no effect on the total free energy. If

one were only interested in the perfect conductor limit, such

a procedure seems sensible, but here, with the context of an

arbitrarily coupled semitransparent sphere, it seems unrea-

sonable to implement.

The TM contribution is again more subtle. For n ¼ 0 we

use the small argument expansion (6.7), and replace x by p,

FTM;T→∞

∞;n¼0 ¼T

2

X

∞

l¼0

ð2lþ1Þln lðlþ1Þ
ð2lþ1Þp2

¼T

�

11

12
ln2pþ 1

12
ln2þ 1

24
−
1

2
lnG

�

þF0; ð7:42Þ

where the finite term displayed is the negative of that seen

in Eq. (7.38), and the remainder is evaluated as follows:

F0 ¼ T

2

X

∞

l¼1

ð2lþ 1Þ ln
�

1 −
1

ð2lþ 1Þ2
�

¼ −
T

2

X

∞

k¼1

1

k

1

22k−1

X

∞

l¼1

1

ðlþ 1=2Þβð2k−1Þ

¼ −T

�

1

8ðβ − 1Þ þ
13

12
ln 2 − 3 lnG

�

; ð7:43Þ

where we have regulated the first term in the k sum by

introducing an analytic parameter β which tends to 1. [This

same sum, regulated by angular point-splitting, was

encountered previously in Eq. (3.14).] The singularity here

as β → 1 will be canceled by that in the n > 0 contribu-

tions. The latter are captured by the UAE, as usual, which

give, for the leading term

F
ð1ÞTM;T→∞

∞;n>0 ¼ 2T
X

∞

n;l¼1

ν ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2α2 þ ν2
p

2n2α2

¼ T

�

α2ζ0ð−2Þ − 11

24
ln

α

2π
−
11

24
ln 2

�

: ð7:44Þ

The second-order contribution contains a pole when evalu-

ated using the Chowla-Selberg formula (7.3),

F
ð2ÞTM;T→∞

∞;n>0 ¼ T
X

∞

n;l¼1

2ν

�

−
t2

8ν2
ð1 − 6t2 þ 7t4Þ

�

¼ T

�

1

8ðβ − 1Þ −
9

32
−
1

4
ln

α

2π

�

; ð7:45Þ

the pole here (having been regulated in precisely the same

way) cancels that in Eq. (7.43). Adding all these compo-

nents (7.42), (7.43), (7.44), and (7.45) together gives

FTM;T→∞
∞ ¼ T

�

−α2
ζð3Þ
4π2

−
17

24
ln

α

2π
þ 11

12
lnp

−
23

96
þ 5

2
lnG −

13

24
ln 2

�

: ð7:46Þ

The sum of FTE
∞ and FTM

∞ , Eqs. (7.41) and (7.46) should

yield Eq. (3.22); in fact,

FTE;T→∞
∞ þ FTM;T→∞

∞ ¼ 11

12
T ln

2πp

α
þ FT→∞

∞ : ð7:47Þ

The infrared divergent term is exactly the same as that seen

in Eq. (3.12). As argued in Sec. III, that term should be

subtracted to obtain the physically meaningful free energy

or entropy.

VIII. SUMMARY AND DISCUSSION

In this paper we have investigated the self-entropy of a

spherical shell,modeled beyond that of a perfect conductor, as

a δ-function (“semitransparent”) shell of radius a. This study
was motivated by our desire to better understand the mys-

terious phenomenon of negative entropy. Earlier, we had

considered a similar model of the δ-function plate, where the

TE entropy was always negative while the TM entropy was

positive, and larger in magnitude, but both approached

zero in the strong-coupling limit [20]. Apparently the only

limit previously studied for the shell was that of a perfect

conductor, without anymode decomposition inRefs. [27,35],

while the mode decomposition can be found in Ref. [33].

Here we accomplished a full analysis, for arbitrary coupling,

which exhibits many surprising features. We will now give a

summary of our findings.

In Sec. II we derived the general expressions (2.10) for the

free energy of an electromagnetic δ-function sphere, decom-

posed into the TE and TM modes. Cancellations occur

between the different mode contributions. In Sec. III, which

was devoted to strong coupling (perfectly conducting spheri-

cal shell), we rederived the total (TE plus TM) free energy

correction for low temperature [Eq. (3.13)],

ΔFT→0
∞ ∼ −

ðπaÞ3
15

T4; aT ≪ 1 ð8:1Þ

(where theΔ refers to the fact this is the correction to the zero-

temperature Boyer energy [34]), and for high temperature

[Eq. (3.26)],

FT→∞
∞ ∼ −

T

4
ðln aT þ 0.7686Þ; aT ≫ 1: ð8:2Þ

However, to obtain these known results [27], we removed a

contribution that was infrared sensitive which arose from the

leading ln ζ2na
2 term (ζn ¼ 2πnT being the Matsubara

frequency), which seems rather a generalization of a contact

term [Eq. (3.9)],

F
ð0Þ
∞ ¼ T ln

μ

T
; ð8:3Þ

for point-splitting regularization, while this result is multi-

plied by 11=12 if analytic regularization is used. Here, μ is a
photon mass, introduced to define the TM mode at zero

frequency.
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We then considered the opposite limit: weak coupling.

The TE and TM modes can be exactly evaluated to first

order in the coupling λ0. The TE self-entropy is [Eq. (5.6)]

(α ¼ 2πaT)

STEð1Þ ¼ −
λ0

2

�

1

3
α − coth αþ 1

α

�

: ð8:4Þ

However, the TM self-entropy exhibits both infrared and

ultraviolet divergences, which were regulated by point-

splitting in the angular and temporal directions, and by the

introduction again of a photon mass. If these divergent

terms are simply removed (which is done automatically by

analytic regularization, as through the use of the Abel-Plana

formula) the result is [Eq. (5.30)]

STMð1Þ ¼ −
λ0

2

�

1

9
αþ coth α −

1

α

�

; ð8:5Þ

which is, like the TE contribution always negative. Notice

that the total entropy is linear in the temperature in this

order, as shown in Fig. 2.

In order λ20 the TE free energy exhibits an infrared

divergence, similar to that in Eq. (8.3). This also must be

removed in order to avoid a violation of the Nernst theorem,

although here, doing so leads to a positive contribution to

the entropy.

Next we explored the low-temperature behavior for finite

coupling. For the TE contribution, a simple formula was

obtained that interpolates between the weak- and strong-

coupling regimes [Eq. (6.4)]:

STEðλ0Þ ∼ −
α3

30

1

1þ 3=λ0
; aT ≪ 1; ð8:6Þ

which shows no sign of the infrared divergence in Oðλ20Þ
mentioned just above. A more complicated formula was

found for the TM part [Eq. (6.24)]:

STMðλ0Þ ¼
4

9
λ20

�

1

12
ξ2 − ln ξ −ℜψð1þ i=ξÞ

�

;

ξ ¼
ffiffiffiffiffiffiffi

3

2λ0

s

α; α ≪ 1; ξ arbitrary: ð8:7Þ

This also yields the known strong- and weak-coupling

results.

Finally, we considered the high-temperature limit, for

arbitrary coupling, for both TE and TM contributions.

In this situation, we changed our strategy, and instead

of point-splitting, we regulated the double sum over

Matsubara frequencies and angular momentum by use of

the generalized Chowla-Selberg formula in the form given

by Elizalde [39,40], which is particularly convenient for

high temperature, since the uniform asymptotic expansions

of the Bessel functions capture all the essential physics

there. For the TE part, we obtained a rather complicated

formula [Eq. (7.16)] for the free energy for fixed λ0 and

high temperature, which, unsurprisingly, says that the

dominant high-temperature entropy is that given by the

Oðλ0Þ contribution. If we want to take the strong-coupling

limit, additional terms in the UAE must be included.

Because of the increased complexity of the TM contribu-

tions, we only extracted, and reproduced, the Oðλ0Þ
entropy, the process of which, however, vindicated the

minimal subtraction procedure used in the exact calcula-

tion. The coda consisted of computing, directly in strong

coupling, the TE and TM contributions, which should add

up to the result (8.2). This they do, except for an extra term

[Eq. (7.47)]

ΔFIR
∞ ¼ 11

12
T ln

2πp

α
; p ¼ μa: ð8:8Þ

This term is the same as the “contact term” (8.3), which

should be removed a priori.

One might think that these surprising findings are a

consequence of our use of the plasma model to describe

the dispersive character of the coupling. However, if the

perhaps more realistic Drude model is used, or even a

model of a bound electron so that a characteristic frequency

of the binding is introduced, the situation is not more

satisfactory. Although these modifications change the

infrared behavior, they do not change the ultraviolet

behavior, and the appearance of divergent terms in the

entropy, and negative TM and total entropies, remains

present.

At zero temperature, it is typically argued [41] that the

order λ0 contribution to the energy should be discarded,

since it can be canceled by a counterterm. This is

probably only possible for the T ¼ 0 contribution, and

not for the temperature correction. It is true that if the

Oðλ0Þ term were removed from the low-temperature result

(6.24) the TM entropy would become positive in

that regime for all coupling. However, this would wreck

the internal consistency of the problem, in particular

the passage to the strong-coupling limit described in

Sec. VII B. Therefore, this does not appear to be a viable

resolution to our difficulty.

IX. CONCLUSIONS

So after somewhat elaborate calculations, we have

obtained unsettling results. Contrary to expectations, the

TM entropy for a δ-function sphere fails to be finite, both in

the infrared and in the ultraviolet. If these divergent terms are

merely subtracted (which is somewhat justified by the

congruence of the results with analytic calculations based

on theAbel-Plana and theChowla-Selberg formulas)we find

that the TM entropy and the total entropy are not necessarily

positive. In fact the total entropy is positive only if the

coupling is sufficiently strong. The perfectly conducting

limit is satisfactory, and overcomes the negative interaction

entropy between a perfectly conducting sphere and a
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perfectly conducting plate, but apparently for sufficiently

imperfect reflectors, this positivity breaks down. The non-

monotonicity of the entropy means also that the specific heat

need not be positive. The significance of these surprising

thermodynamic findings merits further study.

ACKNOWLEDGMENTS

We thank Steve Fulling for discussions. We are grateful
to the Norwegian Research Council, Project No. 250346
for support of this research. L. Y. thanks the Avenir
Foundation and the Carl T. Bush Foundation for support.

[1] E. Schrödinger, What is Life–The Physical Aspect of the

Living Cell (Cambridge University Press, Cambridge,

England, 1944).

[2] M. Cvetič, S. Nojiri, and S. D. Odintsov, Black hole

thermodynamics and negative entropy in de Sitter and

anti–de Sitter Einstein-Gauss-Bonnet gravity, Nucl. Phys.

B628, 295 (2002).

[3] S. Nojiri and S. D. Odintsov, The final state and thermo-

dynamics of dark energy universe, Phys. Rev. D 70, 103522

(2004).

[4] M. R. R. Good, K. Yelshibekov, and Y. C. Ong, On hori-

zonless temperature with an accelerating mirror, J. High

Energy Phys. 03 (2017) 013.

[5] M. R. R. Good and E. V. Linder, Slicing the vacuum: New

accelerating mirror solutions of the dynamical Casimir

effect, arXiv:1707.03670.

[6] V. B. Bezerra, G. L. Klimchitskaya, and V.M.Mostepanenko,

Thermodynamical aspects of the Casimir force between real

metals at nonzero temperature, Phys. Rev. A 65, 052113

(2002).

[7] V. B. Bezerra, G. L. Klimchitskaya, and V.M.Mostepanenko,

Correlation of energy and free energy for the thermal

Casimir force between real metals, Phys. Rev. A 66,

062112 (2002).

[8] V. B. Bezerra, G. L. Klimchitskaya, V. M. Mostepanenko,

and C. Romero, Violation of the Nernst heat theorem in the

theory of the thermal Casimir force between Drude metals,

Phys. Rev. A 69, 022119 (2004).

[9] I. H. Brevik, J. B. Aarseth, J. S. Høye, and K. A. Milton,

Temperature dependence of the Casimir force for metals, in

Proceedings of the 6th Workshop on Quantum Field Theory

Under External Conditions (QFEXT03), edited by K. A.

Milton (Rinton Press, Princeton, NJ, 2004).

[10] I. Brevik, S. A. Ellingsen, and K. A. Milton, Thermal

corrections to the Casimir effect, New J. Phys. 8, 236

(2006).

[11] V. B. Bezerra, G. L. Klimchitskaya, V. M. Mostepanenko,

and C. Romero, Lifshitz theory of atom-wall interaction

with applications to quantum reflection, Phys. Rev. A 78,

042901 (2008).

[12] A. Canaguier-Durand, P. A. M. Neto, A. Lambrecht, and

S. Reynaud, Thermal Casimir effect in the Plane-Sphere

geometry, Phys. Rev. Lett. 104, 040403 (2010).

[13] A. Canaguier-Durand, P. A. M. Neto, A. Lambrecht, and

S. Reynaud, Thermal Casimir effect for Drude metals in the

plane-sphere geometry, Phys. Rev. A 82, 012511 (2010).

[14] P. Rodriguez-Lopez, Casimir energy and entropy in the

sphere-sphere geometry, Phys. Rev. B 84, 075431 (2011).

[15] P. Rodriguez-Lopez, Casimir energy and entropy between

perfect metal spheres, Int. J. Mod. Phys. Conf. Ser. 14, 475

(2012).

[16] K. A. Milton, R. Guérout, G.-L. Ingold, A. Lambrecht, and

S. Reynaud, Negative Casimir entropies in nanoparticle

interactions, J. Phys. Condens. Matter 27, 214003 (2015).

[17] G.-L. Ingold, S. Umrath, M. Hartmann, R. Guérout, A.

Lambrecht, S. Reynaud, and K. A. Milton, Geometric origin

of negative Casimir entropies: A scattering-channel analy-

sis, Phys. Rev. E 91, 033203 (2015).

[18] S. Umrath, M. Hartmann, G.-L. Ingold, and P. A. M. Neto,

Disentangling geometric and dissipative origins of negative

Casimir entropies, Phys. Rev. E 92, 042125 (2015).

[19] M. Bordag and I. G. Pirozhenko, Casimir entropy for a ball

in front of a plane, Phys. Rev. D 82, 125016 (2010).

[20] Y. Li, K. A. Milton, P. Kalauni, and P. Parashar, Casimir

self-entropy of an electromagnetic thin sheet, Phys. Rev. D

94, 085010 (2016).

[21] K. A. Milton, Li Yang, P. Kalauni, P. Parashar, R. Guérout,

G.-L. Ingold, A. Lambrecht, and S. Reynaud, Negative

entropies in Casimir and Casimir-Polder interactions,

Fortschr. Phys. 65, 1600047 (2017).

[22] J. S. Høye, I. Brevik, and K. A. Milton, Presence of negative

entropies in Casimir interactions, Phys. Rev. A 94, 032113

(2016).

[23] P. Parashar, K. A. Milton, K. V. Shajesh, and M. Schaden,

Electromagnetic semitransparent δ-function plate: Casimir

interaction energy between parallel infinitesimally thin

plates, Phys. Rev. D 86, 085021 (2012).

[24] P. Parashar, K. A. Milton, K. V. Shajesh, and I. Brevik,

Electromagnetic δ-function sphere, arXiv:1708.01222

[Phys. Rev. D (to be published)].

[25] M. Bordag and N. Khusnutdinov, On the vacuum energy of

a spherical plasma shell, Phys. Rev. D 77, 085026 (2008).

[26] G. Barton, Casimir energies of spherical plasma shells,

J. Phys. A 37, 1011 (2004).

[27] R. Balian and B. Duplantier, Electromagnetic waves near

perfect conductors. 2. Casimir effect, Ann. Phys. (N.Y.) 112,

165 (1978).

[28] K. A. Milton, L. L. DeRaad, Jr., and J. Schwinger, Casimir

self-stress on a perfectly conducting spherical shell,

Ann. Phys. (N.Y.) 115, 388 (1978).

[29] J. Schwinger, L. L. DeRaad, Jr., W.-y. Tsai, and K. A.

Milton, Classical Electrodynamics (Perseus, New York,

1998).

[30] K. A. Milton, Local and global Casimir energies:

Divergences, renormalization, and the coupling to gravity,

Lect. Notes Phys. 834, 39 (2011).

CASIMIR SELF-ENTROPY OF A SPHERICAL … PHYSICAL REVIEW D 96, 085007 (2017)

085007-19



[31] NIST Digital Library of Mathematical Functions, http://

dlmf.nist.gov/, Release 1.0.11 of 2016-06-08.

[32] M. Bordag, K. Kirsten, and D. Vassilevich, On the ground

state energy for a penetrable sphere and for a dielectric ball,

Phys. Rev. D 59, 085011 (1999).

[33] M. Bordag, G. L. Klimchitskaya, U. Mohideen, and V. M.

Mostepanenko, Advances in the Casimir Effect (Oxford

University, New York, 2009).

[34] T. H. Boyer, Quantum electromagnetic zero point

energy of a conducting spherical shell and the Casimir

model for a charged particle, Phys. Rev. 174, 1764

(1968).

[35] L. P. Teo, Electromagnetic Casimir effect on the boundary

of a D-dimensional cavity and the high temperature

asymptotics, J. Math. Phys. (N.Y.) 54, 073504 (2013).

[36] I. Klich, Casimir’s energy of a conducting sphere and of a

dilute dielectric ball, Phys. Rev. D 61, 025004 (1999).

[37] B. Geyer, G. L. Klimchitskaya, and V. M. Mostepanenko,

Thermal Casimir effect in ideal metal rectangular boxes,

Eur. Phys. J. C 57, 823 (2008).

[38] D. V. Vassilevich, Heat kernel expansion: User’s manual,

Phys. Rep. 388, 279 (2003).

[39] E. Elizalde, On the zeta-function regularization of a two-

dimension series of Epstein-Hurwitz type, J. Math. Phys.

(N.Y.) 31, 170 (1990).

[40] E. Elizalde, Ten Physical Applications of Spectral Zeta

Functions (Springer, New York, 1995).

[41] N. Graham, R. L. Jaffe, V. Khemani, M. Quandt, O.

Schroeder, and H. Weigel, The Dirichlet Casimir problem,

Nucl. Phys. B677, 379 (2004).

MILTON, KALAUNI, PARASHAR, and LI PHYSICAL REVIEW D 96, 085007 (2017)

085007-20


