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Treatment of tris(3-cyano-2,4-pentanedionato)manganese(lll)
with KTp*, followed by [NEt,JCN affords [NEt,][(Tp*)Mn"(CN)s]
(1); subsequent treatment of 1 with divalent triflates (OTf) and 2,2'-
bipyridine (bpy) affords {Mn'"',M",} complexes (M" = Mn, 2; Ni, 3).
Magnetic measurements show that 1—3 exhibit Sy = 1, 3, and 4
spin ground states, respectively.

Cyanometalates find extensive use as reagents for the
rational construction of polynuclear complexes that exhibit
superparamagnetism like behavior,! spin crossover, and
optically responsive materials.”®¢ Using a synthetic strategy
known as a building block approach, molecular precursors
are allowed to self-assemble with intact structures into a
common structural archetype. The most common units for
constructing polynuclear cyanometalate complexes are those
containing tripodal ligands, L, with generalized [fac-LM"-
(CN),,] stoichiometry.'**~¢

Over the last five years, we have systematically investigated
the use of poly(pyrazolyl)borates as platforms for tuning the
magnetic and optical behavior of several structurally related
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tri-, tetra-, and octanuclear complexes. Tricyano- building
blocks such as [(Tp®)Fe™(CN);]™ (Tp® = pzTp, Tp, Tp*)
exhibit substantial orbital contributions to their St = '/,
ground state that are crucial for engineering polynuclear
complexes that exhibit slow relaxation of the magnetization
(i.e., single-molecule magnets, SMMs).'d™

In oxo-carboxylate complex chemistry, high spin (S = 2)
manganese(I1I) ions are used extensively as a source of single-
ion magnetic anisotropy in the design of SMMs.>® However,
surprisingly few cyanomanganate analogues have been de-
scribed with the best characterized example being a pentanuclear
complex containing [Mn"(tmphen)]*" (tmphen = 34,7 8-tetra-
methyl-1,10-phenanthroline) and hexacyanomanganate(I1I)
jons in a 3:2 ratio;'™* this trigonal bipyramidal complex exhibits
slow dynamics below 1.8 K (for a time scale of 1 s). Surprisingly,
however, no tricyano- analogues have been reported to date.
In the present Communication, we describe the synthesis
of the first tricyanomanganate(III) complex and its self-
assembly into well-defined {Mn"",M",} complexes.

Treatment of tris(3-cyano-2.,4-pentanedionato)manganese-
(IT) with KTp* followed by three equivalents of [NEt4JCN in
methanol affords [NEty][(Tp*)Mn(CN);] (1) as yellow
crystals.® The infrared spectrum of 1 contains intense 7y
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Figure 1. X-ray structures of 1 (left) and 2 (right). All cations, anions,
lattice solvents, and hydrogen atoms are eliminated for clarity.

and ¢y stretches [2552 and 2113 cm '] that are shifted to
higher energies relative to KTp* (2436 cm ') and [NEt,JCN
(2056 cm 1), respectively.**® For 1, the ¢y stretch is higher
in energy than those seen for [MnH(CN)z(bpy)z]-3H20 (2114
em™ ), [NEt,[Mn"(CN),] (2120 and 2078 cm~ ) K;[Mn"™-
(CN)¢]-H,0 (2112 and 2121 em™"), [NEtgyfMn™ (CN)G] H,0
(2094 cm” '), and [PPNJ;[Mn"™(CN)] (2096 cm™ "), suggest-
ing that chdrge delocalization (via m-back bonding) is less
efficient 40~ &4

Treatment of 1 with a 1:2 ratio of Mn(OTY), and bpy or
Nl(bpy)ngHz)z (OTf)2 in acetonitrile readily affords
(T )M (CN); LM (bpy) (0T, nH0 (M1 = M,
2; Ni, 3). The energies of the 7y stretches in 2 and 3 are
s1m11ar to those reported for {Mn"",Mn';} [2068—
2138 cm™ ' and Ni';[Mn"(CN)]- 12H,0 [2164 cm ™ '], while
intense 7y [2551 and 2552 cm™ '] absorptions are compar-
able to those found in infrared spectra of 1. We conclude that
Mn"'(u-CN)M" linkages are present in 2 and 3.°*4>*

Compound 1 crystalhzes in the trigonal P3, space group.*®
The C3,-symmetric anions have Mn—C and Mn—N distances
that range between 1.976(3) and 1.985(3) Aand2. 019(2) and
2.036(2) A, respectively, indicating that no Jahn—Teller
distortions are present (Figure 1 and Supporting Information
Figure S2).In 1, the average Mn—Cdistances |1 976(3)A] are
comparable to those in K3LMnIII(CN)6] [1.978(2) A] and
[PPN]5[Mn(CN)g] [2.020(2) A], while the C—Mn—C angles
are between 85.8(1)° [C17—Mnl1—CI18] and 91.7(1)° [C16—
Mnl—Cl18]; the N—Mn—N angles are between 8§7.56(8)°
[N3—Mnl—N5] and 89.65(9)° [NI—Mnl—N5].***** Close
Tp*—Tp* methyl [3.596(3) A] and cyanide-methyl contacts
[3.452(3) A] are also present in structures of 1 (Supporting
Information Figures S3—S4).%
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Figure 2. yT vs T plots for 1 (O), 2 (O), and 3 (») at Hy. = 1000 Oe (x
being the magnetic susceptibility defined as M/H per complex). The solid
black lines are the best fit and simulations obtained (see text).

Figure 3. Shapes of the three lowest energy orbitals of 1 obtained from
EHTB calculations: (left) d(z%), (middle) d(xz), and (right) d(yz) orbitals.

Crystals of 2 are found in the Pl space group and its
tetranuclear core consists of alternating di- and trivalent
manganese ions linked by cyanides.*® The Mn"" centers
(Mnl and MnlA) contain terminal cyanides (C18—N09) that
are related via inversion centers and adopt an anti orienta-
tion relative to the {Mn"",(u-CN),Mn' 2} pldne (Figure 1
and Supporting Information F1 ures S5— Com lex 2 is
structurally related to {FeIHzMI >} and {[ VI O],Mn 2} ana-
logues where a Tp* methyl projects toward the rectangular
face that is opposne to the terminal cyanide.*¢ The
{(Mn"",Mn'",} core is slightly larger than the corresponding
Fe'"! analogues due to longer average Mnl—C [1 970(6) A]
and Mn2—N[2.154(5) A] bonds; close bpy-Tp* ring contacts
[3.185(3) A] are also present.*®

At 300 K, the y T'product of 1is 1.1 cm® K mol ™!, which is
in good agreement with the expected value (1.0 cm® K mol ™)
for a complex containing a magnetically isolated Mn'" ion
with two unpaired electrons (Figure 2). On the other hand,
the experimental y 7 value is far from those seen for either
[PPN],[Mn"(CN),] or [PPN]s[Mn"(CN)¢] (4.49 and 1.98
cm® K mol '), suggesting that trivalent ions are present and
that orbital contributions to the spin ground state are nearly
absent in 1.%*%7¢ At low temperatures, the y7 product
follows Curie behavior down to 100 K and then decreases
toward a minimum value of 0.15 cm® K mol™" at 1.8 K. To
reproduce this thermal behavior, an anisotropic Heisenberg
Hamiltonian (H = DSy,°) was utilized; the calculated values
for ¢ and D/kg are 2.09(2) and +9.4(2) K, respectively
(Figure 2 and Supporting Information Figure S8).** The
surprisingly large value of D must be considered with caution
as antiferromagnetic intercomplex interactions probably act
to artificially enhance the estimated value. This assumption is
qualitatively supported by the M versus H data (below 8 K,
Supporting Information Figure S9) in that the same D value

was not reproduced using an anisotropic Heisenberg model.*
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Extended Hiickel tight-binding (EHTB) calculations® for 1
suggest that it adopts an St = 1 spin ground state, because
the d(xz) and d(yz) orbitals lie close to the d(z*) orbital (225
and 267 meV above, respectively). The shapes of these
orbitals (Figure 3) show that significant z-type spin density
is delocalized into the Tp* and cyanide ligands. Furthermore,
short H- - -H and H-: - - NC-Mn contacts (ca. 2.4 and 2.7 A)
are found between adjacent [(Tp*)Mn(CN);]™ anions in 1.
Below ca. 20 K these short contacts may allow for inter-
complex antiferromagnetic interactions that are, as suspected
(vide supra), partially responsible for the low temperature
behavior of the y T data seen for 1.

For 2, the room temperature y 7 value, 10.9 em® K mol ™!,
is close to that expected (10.75 cm® K mol™") for a
{Mn"";Mn",} complex containing noninteracting Mn'"
[S=1,C = 10cm’ K mol '] and Mn" [S = °/), C =
4.375 cm® K mol '] spins (Figure 2 and Supporting Informa-
tion S10). At lower temperatures the y7 values slowly
decrease toward a minimum of 6.5 cm® K mol™ ' at 14 K
and below this temperature, 7 increases, reaching a max-
imum of 6.9 cm® K mol ™! at 6 K. This thermal behavior
indicates that antiferromagnetic interactions are dominant
within the tetranuclear complex between adjacent S = 1
Mn""and S = °/, Mn" spins. At lower temperatures, the y 7'
value decreases and reaches 5.2 cm® K mol ™! at 1.85 K,
suggesting the presence of magnetic anisotropy and/or inter-
complex antiferromagnetic interactions. On the basis of the
molecular structure of 2, the magnetic data were first mod-
eled using an isotropic spin Hamiltonian [H = —2J(S;:S> +
S5+ S3 + S3-84 + S451] (eq 1), where J is the average
exchange constant in the tetranuclear unit and S; are the spin
operators for the respective manganese ions [S; = S; =
Svinam = 1; 2 = S4 = Svnap = 5/2]-Se MAGPACK™
simulation of the experimental data above 6 K gave a rough
estimation of J/kg at —4.8(1) K with g(Mn") = 2.10(2) and
gMn'") = 1.98(2) (Figure 2 and Supporting Information
Figure S10), and this simple model leads to an energy
difference between the St = 3 ground and St = 2 first
excited states of ca. 19.2 K. Attempts to model the magnetic
data with more parameters such as magnetic anisotropic or/
and intercomplex interactions were not able to improve
significantly the fit of the experimental data below 6 K.
The M versus H data support an St = 3 ground state for 2
as the magnetization is almost saturated at 7 T and 1.8 K and
reaches 6.3 ug (Supporting Information Figure S11).** Addi-
tionally, 2 does not exhibit slow relaxation of its magneti-
zation above 1.8 K, as judged from the lack of hysteresis in
the M versus H (Supporting Information Figure S10) and
frequency-independent ac susceptibility data in stark con-
trast to many reports on S = 2 Mn""-based SMMs. We infer
that the tricyanomanganate(IIT) ions do not bring enough
magnetic anisotropy to complex 2 for the observation of
SMM behavior.

The T product at 300 K of 3 is equal to 5.4 cm® K mol ™'
(Figure 2 and Supporting Information Figure S12). This
value is greater than the value anticipated for isolated Mn'™
and Ni! spins (4 cm® K mol ™' with g = 2.0). With decreasing
temperature, the experimental y 7" product increases mono-
tonically approaching a maximum of 9.2 cm®* K mol ' at 14 K.
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The large room temperature 7 product and its thermal
behavior indicate that ferromagnetic interactions are present
in 3. Below 14 K, the ¥ T values decrease toward a minimum
of 7.4 em® K mol " at 1.85 K (Figure 2),* suggesting that
additional antiferromagnetic intercomplex interactions or/
and magnetic anisotropy are present.

The magnetic data for 3 were also modeled using the
Heisenberg Hamiltonian given in eq 1 with $; = Sy =
Swicm = 1. The susceptibility was derived from application of
the van Vleck equation to the Kambe vector coupling
method.>" The data fitted well to ca. 25 K with J/kg =
+6.8(5) K, and g = 2.3(1). Alternative models have been
tried and additional intercomplex interactions treated in
terms of the mean field theory were added to the Heisenberg
tetranuclear model. Above 12 K, a good fit of the data is
obtained and values of J/kg = +9.0(2) K, zJ' kg = —0.38(5)
K and g = 2.3(12 are found (Figure 2 and Supporting
Information S12);** introduction of an anisotropic term,
2D(S*(Ni) + $°.(Mn)), into the Heisenberg Hamiltonian
(eq 1) was also tried and the susceptibility was calculated
using the MAGPACK program.® Simulations of the yT
versus 7T data between 1.8 and 300 K have been unsuccessful,
suggesting that magnetic anisotropy and intercomplex anti-
ferromagnetic interactions are likely present in 3. Never-
theless, the 7 versus T data demonstrate the presence of
ferromagnetic interactions between S = 1 Mn"" and § = 1
Ni'' spins suggesting that 3 exhibits an St = 4 ground state.
At 1.8 K and Hy. = 7 T, the magnetization value (7.1 ug)
approaches that expected for an St = 4 ground state (8 ug)
(Supporting Information Figure S13). Evidence for slow
relaxation of the magnetization in 3 was absent in the M
versus H and ac susceptibility data above 1.8 K, suggest-
ing misalignment of anisotropy tensors is operative in 3.%

In summary we have described the preparation, crystal
structures, and magnetic properties of a new paramagnetic tri-
cyanomanganate(III) and two of its tetranuclear {Mn",M",}
complexes. We have shown that the [(Tp*)Mn"(CN);] ™ unit
possesses an St = 1 spin state that antiferromagnetically and
ferromagnetically interacts with S = °/, Mn" and § = 1 Ni"!
spin centers, respectively. While slow dynamics are seen for Fe'"!
analogues of 3, [(Tp*)Fe™(CN);],[Ni"(bpy),].[OTf], - 2H,0,*
the weaker magnetic anisotropy of the [(Tp*)Mn'"(CN)]~
unit leads to St = 3 and St = 4 complexes without SMM
properties.
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