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Faithful conversion of propagating quantum
information to mechanical motion
A. P. Reed1,2*, K. H. Mayer2,3, J. D. Teufel3, L. D. Burkhart4, W. Pfa�4, M. Reagor4,5, L. Sletten1,2,
X. Ma1,2, R. J. Schoelkopf4, E. Knill3,6 and K. W. Lehnert1,2,3

The motion of micrometre-sized mechanical resonators can
now be controlled and measured at the fundamental limits
imposed by quantum mechanics. These resonators have been
prepared in their motional ground state1–3 or in squeezed
states4–6, measuredwith quantum-limited precision7, and even
entangled with microwave fields8. Such advances make it pos-
sible to process quantum information using the motion of
a macroscopic object. In particular, recent experiments have
combined mechanical resonators with superconducting quan-
tum circuits to frequency-convert, store and amplify propa-
gating microwave fields9–12. But these systems have not been
used to manipulate states that encode quantum bits (qubits),
which are required for quantum communication and modular
quantumcomputation13,14.Herewedemonstrate theconversion
of propagating qubits encoded as superpositions of zero and
one photons to the motion of a micromechanical resonator
with a fidelity in excess of the classical bound. This ability
is necessary for mechanical resonators to convert quantum
information between themicrowave and optical domains15–17 or
to act as storage elements in a modular quantum information
processor12,13,18. Additionally, these results are an important
step towards testing speculative notions that quantum theory
may not be valid for su�ciently massive systems19.

Quantum communication networks that use superconducting
qubits and modular quantum computing architectures require the
ability to store, amplify or frequency-shift propagating microwave
fields. A single electromechanical device provides all of these
functions by rapidly varying the parametric coupling between
mechanical motion and microwave fields. For example, the ability
to suddenly turn off the interaction between a microwave field
and mechanical motion allows the state of a field propagating
through a transmission line to be converted to, and trapped in,
the motional state of the resonator12. To use this capture process
in a general quantum information processor, one must work with
states that have non-Gaussian statistics, such as qubits encoded as
superpositions of zero and one photons. In contrast, any process
using only Gaussian states can be simulated efficiently on a classical
computer20. But in the regime that most of these devices operate,
the equations that describe the coupling are linear, ensuring that a
Gaussian state of the microwave field or mechanical resonator will
never evolve into a non-Gaussian state.

For electromechanical devices that manipulate propagating
microwave fields, accessing non-Gaussian mechanical states
requires either a source of non-Gaussian microwave fields or a

nonlinear detector such as a single-photon counter. Forgoing the
control of propagating fields, non-Gaussian mechanical states have
been accessed by resonantly coupling a mechanical system to a
qubit1. More recent work has shown that parametrically coupling
a mechanical resonator to a qubit via an intermediate cavity bus
may enable access to non-Gaussian states21. But in this integrated
device, the predicted transfer fidelity is low primarily because of
the intrinsic loss in the cavity. So far, the demands of fabricating
such hybrid devices have reduced the coherence of the mechanical
resonator, qubit or cavity far below the state of the art.

In this work, we convert non-Gaussian states from propagating
microwave fields to the motion of a micrometre-sized mechanical
resonator. We use an electromechanical device to capture, store
and amplify single photons generated by a superconducting qubit
and then determine the density matrix of the mechanical resonator
using quantum state tomography. We find that the quantum state
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Figure 1 | Diagram of the experiment. a, A simplified schematic shows the
electromechanical device connected to a photon source consisting of a
transmon qubit in a microwave cavity. Pumps (arrows) used to create the
capture (red) and amplification (blue) interactions are injected into the
transmission line. b, False-colour micrograph of the electromechanical
device where aluminium films (grey) are deposited on a sapphire substrate
(blue). c, Pumps are detuned below and above the LC circuit’s resonant
frequency ωLC by the mechanical resonant frequency ωm. Using a voltage
bias Vd.c., the LC circuit’s resonant response (dashed magenta) is tuned to
match the much narrower resonance of the microwave cavity (green solid)
at the frequency ωe

c .
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can be stored on a timescale exceeding 100 µs, an improvement
of over four orders of magnitude compared with previous work
that demonstrated the storage of a non-Gaussian state in an
electromechanical device1. To characterize how the capture process
affects arbitrary propagating qubit states, we capture superpositions
of zero and one photons. The degree to which this process preserves
quantum information is quantified by the average fidelity22, which
we find to be Favg=0.83+0.03

−0.06 where the limits are the 90% confidence
interval. This level of performance exceeds the fidelity achievable
using only classical resources, indicating that our electromechanical
device is suitable for the transduction of quantum information.

The electromechanical device consists of an inductor–capacitor
(LC) circuit that is tunable and coupled to a mechanical resonator
(Fig. 1a). The tunability and coupling arise from the upper
plate of the capacitor, which is a 100-nm-thick suspended and
tensioned aluminium membrane that is free to vibrate. The
fundamental drumhead-like vibrational mode of this membrane
forms the mechanical resonance at ωm/2π≈ 9.3MHz. If displaced
by the resonator’s zero-point motion of 6.4 fm, the circuit’s
resonant frequency shifts by g0/2π ≈ 280Hz. The circuit also
couples inductively to propagating microwave fields in a nearby
transmission line at a rate of κLC/2π≈ 3MHz. We tune the LC
circuit into precise resonance with a narrow-band and fixed-
frequency photon source by using a third electrode, biased at Vd.c.
relative to the membrane, to control the static separation between
the membrane and the microwave electrode9.

We connect the electromechanical device to an on-demand
source of single photons using the network depicted in Fig. 1a.
To efficiently generate single photons compatible with the narrow
bandwidth requirements12 of the electromechanical device, we
use a circuit quantum electrodynamics system23. It consists
of a transmon qubit with a transition frequency ωq/2π =
5.652GHz in a microwave cavity, whose resonance frequency is
ωg

c/2π=7.290GHz when the qubit is in the ground state, |g〉, and
ωe

c/2π= (ω
g
c−2χ)/2π=7.283GHz when it is in the excited state,

|e〉, where χ is the dispersive shift. We use a control pulse24 to
drive the transition |g〉|0〉→|e〉|1〉, where |0〉 and |1〉 correspond
to zero and one cavity photons, respectively. The cavity state then
evolves into a field propagating through the transmission line with
the centre frequency ωe

c and narrow bandwidth κc/2π=60 kHz.
The propagating microwave field is parametrically coupled to

the membrane’s motion by applying pumps to the LC circuit. To
capture the state of the propagating field12, we use a pump that
is detuned below (red-detuned) the LC resonance with detuning
∆r =−ωm. This pump creates an interaction that can exchange
the states of the input microwave field and the mechanical
resonator. For a given temporal envelope of the input field, the
coupling, Γr(t)=4g 2

0 nr(t)/κLC, must be modulated for optimal
capture efficiency9, where nr(t) is the number of photons induced
in the LC circuit by the pump. If instead we apply a blue-
detuned pump at ∆b=+ωm, a two-mode squeezer interaction is
created that amplifies both the motion of the resonator and the
incident microwave field8. During amplification, the LC circuit
emits a propagating field with a temporal envelope that rises
exponentially at a rate of Γb/2, where Γb(t)= 4g 2

0 nb(t)/κLC is set
by the average number of photons, nb(t), induced in the circuit
by the blue-detuned pump. Crucially, the state of the emitted field
depends on both the states of the resonator and the input field
before amplification25.

We exploit the parametric interactions in two protocols that are
used to characterize the capture process. Because the process maps
states at the input of the electromechanical device to the resonator,
we must determine the input state and compare it with the captured
state. To this end, we have developed ‘calibration’ and ‘capture’
protocols that enable us to determine the input and captured
states, respectively (Fig. 2a). We initially test the two protocols
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Figure 2 | Calibration and capture protocols. a, Timing diagrams depicting
the input coherent signal (green) of amplitude Vin and the pulse shapes of
the pumps, Γr(t) and Γb(t), used to create the capture or amplification
interaction. For the calibration protocol (top), the amplification pump is
coincident with the signal pulse. The capture protocol (bottom) has a
timing diagram similar to the calibration protocol, but the input signal is
coincident with a capture pulse that is temporally shaped for optimal
capture of the signal. At t=30 µs, the mechanical state is amplified and
converted back into a microwave field. b, The plots show the voltage
signals, V(t), measured at the detector and averaged over 500 repetitions
of each protocol when the pumps were either o� or on. During
amplification, Γb/2π=60 kHz, which results in a gain of 53 dB.

with coherent signals whose frequency and bandwidth are chosen
to match those created by the circuit quantum electrodynamics
system (Fig. 2b).

In the calibration protocol, the input field is amplified directly
and then measured. We implement this protocol by applying the
blue-detuned pump coincident with the input field. In this case,
the electromechanical device functions as a linear phase-preserving
amplifier whose input and output are the incident and reflected
microwave fields, respectively. These pulsed fields have different
envelopes; nevertheless, with an appropriate filter (Supplementary
Information) they are related by an energy gain of cosh2

(
r/2
)
,

where r=Γbτb and τb is the pump’s duration. If we regard the input
of the amplifier as the incident microwave field, the fluctuations
of the resonator’s motion are the source of the amplifier’s added
noise, reaching the quantum limit25 if the resonator is in its
ground state2.

After obtaining the input state, we use the capture protocol to
determine the resonator state. We first apply the red-detuned pump
coincident with the input field. Once it is captured, we then apply
the blue-detuned pump to amplify the resonator’s state. In contrast
to the calibration protocol, we now regard the amplifier’s input to be
the state of the resonator. The output is still the reflected field, but the
added noise is due to the vacuum fluctuations of the incident field.
When interpreted this way, we realize a linear phase-conjugating
amplifier with an energy gain of sinh2

(
r/2
)
.

Operating the electromechanical device as a low-noise amplifier
enables us to perform state tomography on both the input
microwave field and on the motion of the resonator. For each
repetition of the two protocols depicted in Fig. 3, we record a
voltage signal, V (t), at the detector during amplification. For each
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Figure 3 | Capture, storage and amplification of single propagating photons. a, The diagram shows the calibration protocol where the green decaying
sinusoid represents an input microwave field in the state ρe. Prior to injecting an input state, the mechanical mode described by ρm is cooled close to its
quantum ground state. A red cross indicates a mode is not measured. In modelling the density matrix of the measured mode, we trace over these
unmeasured modes. b, Histograms of 512,000 measured quadrature amplitudes X and Y for the input state are plotted such that the histograms form a
discretized and normalized joint probability distribution Pr(X,Y). The labels ‘no photon’ and ‘photon’ indicate whether single photons were generated or
not. c, The diagonal elements of ρe are obtained using a method of maximum likelihood state tomography (Supplementary Information). d, The diagram
shows the capture protocol where ρm,i is the initial mechanical state and τs is an adjustable storage time. After storage, the mechanical mode is in the final
state ρm,f. During amplification, the electrical mode is in a vacuum state ρ0. e, The figure shows the di�erence of the ‘photon’ and ‘no photon’ histograms
acquired using the capture protocol, highlighting the phase-symmetric character of a single-phonon state. f, Diagonal elements of ρm obtained at τs<3 µs.
g, The diagonal elements of ρm decay toward their thermal equilibrium values as a function of τs. A model (solid lines) of ρm yields a characteristic storage
time of τm= 137±6 µs (Supplementary Information).
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Figure 4 | Conversion of propagating qubits. a, The transmon qubit was prepared in the superposition state (1/
√
2)(|g〉+eiϕ |e〉) with a phase ϕ chosen

from the set {0,π/2,π, 3π/2}, as denoted by the green arrow plotted on a Bloch sphere. b, The plot shows measured Pauli component amplitudes, 〈σk〉, of
the qubit state as a function of its phase where k={x,y,z}. Readout of the qubit state was achieved by detecting the qubit-state-dependent shift of the
cavity and using the electromechanical device as a microwave amplifier (Supplementary Information). The solid lines are fits with the readout contrast of
60% as the only free parameter. c, Subtracted histograms (similar to Fig. 3e) of 20,480 measurements show the mechanical quadrature amplitudes, X and
Y, as the transmon qubit’s phase was varied. d, The plot shows the argument of the o�-diagonal density matrix element, ρ01, for both the input microwave,
ρe, and captured mechanical, ρm, states as a function of ϕ. The mechanical state changes linearly in ϕ, indicating that the conversion process is coherent.
The apparent opposite dependence of ϕ of the input and captured states is a result of the phase-conjugate amplification of the mechanical state compared
with the direct amplification of the input microwave state (solid lines indicate the expected behaviour).

voltage record, we extract a pair of quadrature amplitudes, X and
Y , for the state of either the resonator or input field (Supplementary
Information). Bymaking repeatedmeasurements ofV (t), we obtain
a set of quadrature amplitudes and use this information to extract
a density matrix ρ via a method of maximum likelihood state
tomography26 (Supplementary Information). We refer to the states
of the input microwave field and of the mechanical resonator as ρe
and ρm, respectively.

To test the conversion of non-Gaussian states, we inject single
photons into the electromechanical device. We also operate the
calibration and capture protocols (Fig. 3a,d) without generating

single photons. In this case, we inject a vacuum state to determine
the gain of the detector which we use to scale X and Y in units
of (quanta)1/2 (Supplementary Information). Prior to the execution
of each protocol, we cool the resonator close to its quantum
ground state2 with an occupancy of approximately 0.1 quanta
(Supplementary Information). For both protocols, the tomography
yields density matrix estimates containing significant elements only
on the diagonals (Fig. 3c,f). In particular, we find that the probability
of detecting a single photon is

[
ρe
]
11 = 0.33+0.02

−0.01 (Supplementary
Information). After capture, the probability of a single phonon
occupying themechanical mode is

[
ρm
]
11=0.26+0.01

−0.02. To distinguish
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the captured state from a thermal or coherent state, we calculate the
degree of second-order coherence g (2)m = 0.89+0.05

−0.17 (Supplementary
Information). For comparison, a thermal or coherent state ofmotion
yields g (2)m ≥ 1. After capturing single photons, we vary the storage
time τs and test the ability to mechanically store a non-Gaussian
state (Fig. 3g). We use a master equation formalism to model
the evolution of ρm with the characteristic storage time τm as
the only free parameter (Supplementary Information). We extract
τm=137±6 µs, which is about ten times longer than the time used
to capture the input photon state.

Having demonstrated the ability to capture single photons, we
then characterize how the capture process affects arbitrary qubit
states encoded as superpositions of zero and one photons. This
process is described by amapE between incident and captured states
whose quality is characterized by the average fidelity22

Favg=

∫
dΨ 〈Ψ |E(|Ψ 〉 〈Ψ |) |Ψ 〉 (1)

which measures how indistinguishable the output of the process is
from the input, averaged over all pure input states |Ψ 〉. To determine
Favg, it is sufficient to capture a set of states that includes a single-
photon state and superpositions of zero and one photons. We can
create superposition states by first preparing the transmon qubit in
the superposition (1/

√
2)
(
|g〉+eiϕ|e〉

)
, with varying phase ϕ, as

shown in Fig. 4a,b. By driving the transition |g〉|0〉→ |e〉|1〉, we
transfer the superposition state from the transmon to the cavity
and then let the cavity state evolve into the propagating field.
Operating the capture protocol on this set of states shows that
the phase of the qubit state is converted to the motion of the
mechanical resonator (Fig. 4c). More quantitatively, we follow the
procedure illustrated in Fig. 3, determining both ρe and ρm for this
set of states (Fig. 4d). From the input and output density matrices,
we calculate for arbitrary qubit states Favg = 0.83+0.03

−0.06, which is
consistent with a cascaded beamsplitter model of the capture
process (Supplementary Information). Crucially, the average fidelity
exceeds 2/3, the highest possible fidelity for transferring qubits using
only classical resources (Supplementary Information).

Converting microwave qubit states to mechanical motion
opens up new possibilities to process quantum information
using micrometre-sized mechanical resonators. To communicate
quantum information between remote modules in a network, such
resonatorsmay be the key element in the transduction ofmicrowave
quantum signals to telecommunications light15–17. For quantum
computation protocols that require the feed-forward of information,
such as teleportation27 and error correction schemes28, mechanical
resonators can act as on-demand memories for quantum states.
As microfabrication advances continue to reduce mechanical
dissipation, it could become possible to store a quantum state in the
motion of a macroscopic object for about one minute29,30.

Data availability. The data that support the plots within this paper
and other findings of this study are available from the corresponding
author upon reasonable request.
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