


allowing for proactive planning by the robot team. Transfer learning can accelerate the learning process across multiple cooperating robots,

allowing the robot team to shorten the exploration phase (learning the model) of a mission and lengthen the exploitation phase (applying the

model). Scenarios where transfer learning could be helpful include learningmodels for a robot with different onboard radios deployed to the same

environment as another robot; use of a new base station with new antenna gains in an environment that has been explored previously; deployment

to an environment that has already been explored but where atmospheric conditions have changed; etc. Preliminary work by the authors explored

simple transfer learning of communication models through hyperparameter transfer [17,28]. Based on flight-test data, those results demonstrated

poor transfer performance and motivated the need for the domain adaptation approach presented here.

MostGP-based transductive transfer learning has focused onmultitask learning, oftenviewing similar or related tasks as samples from the same

Gaussian process [29–31]. More recently, semiparametric Gaussian process approaches have naturally extended the GP framework for domain

adaptation from a source task to a target task. The adaptive transfer learningGP (AT-GP) is a prominent example of this approach [32,33]. TheAT-

GPuses a transfer kernel to learn task similarity, and it tunes the impact that the source task has on predictions for the target task. Unfortunately, the

AT-GP constrains the source and target tasks to the same kernel (function and hyperparameters), resulting in an implicit transfer even when the

tasks have zero or little correlation. In addition, the AT-GP formulation does not allow transfer from already learned source tasks to new target

tasks, only providing a method for simultaneously learning the two tasks. When transfer learning is employed in robotic learning tasks with the

objective of amortizing training costs, the additional computational complexity of learning the source’s hyperparameters is especially undesirable.

In this paper, we present forward adaptive transfer learning for Gaussian process regression (FAT-GP), which allows previously learned GP

models to be adapted forward as potential sources of knowledge for future learning tasks. FAT-GP combines the source task’s previously learned

model, the source task’s training data, and the target task’s training data to learn the target hyperparameters as well as the correlation between the

two tasks (Fig. 1). As a result, the new FAT-GP is able to use both the target task and source task training data to predict outputs of the target task

without needing to perform online the costly inversion of the large (N ≫ M) source task covariance matrix.

FAT-GP decouples the kernel and hyperparameter selection for the target task from those of the source task. Because the source task reuses

already learned hyperparameters, its large covariance matrix can be precomputed, reducing the computational complexity of the training. To

ensure that the joint covariance matrix is positive semidefinite, the cross-covariance kernel function is defined as a product of the task similarity

and a kernel function that averages over the length scales local to each of the tasks.

The forward adaptive Gaussian process is an example of the broad class of asymmetric learning algorithms where the learning transfer only

happens in one direction: from the source to the target. In contrast, symmetric learning such asmultitask learning also applies target task data back

to the source task. Asymmetric transfer learning with Gaussian processes has been used for visual domain adaptation [34–36]. Those works

focused on classification problems as opposed to the regression tasks of interest in this paper. A similar concept to the FAT-GP is focusedmultitask

learning [37], where asymmetric transfer is enabled during multitask learning by assuming there exist a primary (source) task and secondary

(target) tasks that can be modeled with covariance matrices that are the sum of two components: one that uses a kernel function with the same

hyperparameters as the primary task, and one that has separate learned hyperparameters that can “explain away” [37] the differences between the

tasks. The FAT-GP is not derivedwith the same underlying assumption, but it leads to a source task covariancewith similar form. Furthermore, the

FAT-GP uses a different approach to model the cross-task correlations.

Themain contribution of this work is providing a framework for robotic learning tasks to leverage previously learnedGPmodels, which can be

especially valuable when limited training data are available for the new task. Reusing previously learned models allows past experience, while

staying intact, to factor into new decisions, as and when relevant. This feedforward structure exploits the synergy between old and new learning

tasks in keeping with the idea of lifelong learning. At the same time, the FAT-GP algorithm seamlessly handles situations where the environment

undergoes a drastic change, and relearning from scratch is inevitable. Such a transfer learning algorithm would be useful while modeling time-

varying fields like temperature, winds, and other dynamic phenomena.

II. FAT-GP: Forward Adaptive Transfer Using Gaussian Processes

A. Target Task Prediction

Consider two regression tasks S and T, which operate on input and response variables x and y of the same dimensionality and may be related.

Additionally, we assume that S has S already been completed and a Gaussian process model GPS with hyperparameters θS has been learned (see

Appendix A). The goal of FAT-GP is to transfer relevant knowledge from source task to incomplete, target task T.

Gaussian processesmake the smoothness assumption,whereby the responsevariables yi have aGaussian joint distribution. In keepingwith this

perspective, FAT-GP assumes that the source and target task labels are jointly distributed as

Fig. 1 Overview of the FAT-GP algorithm that uses the a priori source task GP to learn the new target task GP.
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CTT KTS

KST CSS

��

(1)

where the mean and covariance matrices are denoted bymjoint andCjoint. Subscripts S and T represent components that are specific to source and

target tasks, respectively; and superscript T is the transpose of the matrix. The ondiagonal block matrices are given byC�⋅� � K�⋅� � σ2n�⋅�I, where

the covariance K�⋅� is defined by the choice of kernel function discussed later. CTT and CSS are square matrices with dimensions NT and NS,

respectively, and are defined over the task-specific training samples XS and XT . KST � KT
TS are the cross-covariance matrices, where KTS is a

NT × NS rectangular matrix. Thus, matrix Cjoint is a symmetric, square matrix with dimensionalityNT � NS. Similarly,mjoint is a column vector

of length NT � NS.
Because Cjoint is a kernel covariance matrix, it must be positive semidefinite (PSD). One way to ensure that Cjoint is PSD is to ignore task

separation between the two datasets and define CTT , CSS, and KTS using the same kernel function and hyperparameters. Let this formulation of

Cjoint be denoted by CD, such that

CD�xi; xj� � k�xi; xj; θ� � σ2nδij for i; j � 1; : : : ; ND (2)

where k is any valid kernel function with hyperparameters θ; ND � NT � NS; and xi and xj belong to XD � �XT
T ; X

T
S �

T . This is equivalent to

learning a single standardGP [1] by combining both tasks’datasets. However, this formulation gets rid of valuable context that the data come from

two different tasks with different distributions.
FAT-GPmaintains task boundaries by taking amodular approach with the design of the block diagonal matrices of the covariance matrix. FAT-

GP capitalizes on this contextual information so that prediction for a certain task is based on all training data for that task, and the influence of data

from the other potentially correlated task is controlled by a scaling factor λ ∈ �−1;�1�, which is one of the learned hyperparameters. Thus, the

joint covariance matrix is formulated as

Cτ�xi; xj� �

8

<

:

kτ�T��xi; xj; θτ�T�� � σ2nτ�T�δij

kS�xi; xj; θS� � σ2nSδij
λkcross�xi; xj; θS; θτ�T��

when xi; xj ∈ T and i; j � 1; : : : ; NT

when xi; xj ∈ S and i; j � 1; : : : ; NS

when xi ∈ T and xj ∈ S; i:e:; different tasks

(3)

where θτ�T� denotes target task hyperparameters learned during the FAT-GP training.
Because the kernel functions corresponding to the block diagonal matrices have different hyperparameters, the selection of the kernel function

for the cross-covariance block matrices has to be made carefully to ensure that Cτ is positive semidefinite. Results presented in [38] define the

kernel function for cross-covariance matrices as the convolution of the kernels used in the block diagonal matrices

kcross � kS � kτ�T� (4)

We multiply the cross-covariance matrices by a scalar λ ∈ �−1;�1�, which is a measure of the similarity of the two tasks to give

KTS � λKcross � KT
ST (5)

where theKcross is the cross-covariancematrix with elementsK
i;j
cross � kcross�xi; xj; θS; θτ�T��. Making use of theorem 1 from [33], it can be shown

that the Cτ is PSD when the cross-covariance matrices KTS and KST are defined as in Eq. (5).
The similarity measure, jλj ≤ 1, is an additional hyperparameter, which captures the correlation between the source and target task, and it is

learned along with θτ�T�. When the source GP is a previously learned model, a value of λ close to zero signifies that past experience is obsolete,

and the new model must be learned from scratch, possibly after extensive data collection. Thus, the joint covariance matrix for FAT-GP is

given by

Cτ �

�

CTT KTS

KST CSS

�

�

�
Cτ�T��XT ; XT� λKcross;τ�T��XT ; XS�

λKT
cross;τ�T��XT ; XS� CS�XS; XS�

�

(6)

where all the blockmatrices are functions of (source-specific-, task-specific-, and task-similarity-based) hyperparameters. Of these, the source

hyperparameters are known a priori. The remaining unknown hyperparameters, denoted by θτ � fθτ�T�; λg, are learned during training.
Consider, for example, a FAT-GPwhere both tasks use a Gaussian kernel with θS � fσ2fS; σ

2
nS; LSg and θτ�T� � fσ2fT ; σ

2
nT ; LTg, respectively. In

both tasks, σ2f�⋅� represents the signal variance, whereas L�⋅� is the diagonal matrix of length scales. Thus, the kernel functions for the ondiagonal

matrices is given by

k�⋅��xi; xj� � σ2f�⋅� exp

�

−
1

2
�xi − xj�

TL−1
�⋅� �xi − xj�

�

(7)

and the cross-covariance kernel is given by

kcross�xT;i; xS;j� � 2D∕2
�������������������

σ2fτ�T�σ
2
fS

q jLτ�T�j
1∕4jLSj

1∕4

jLτ�T� � LSj
1∕2

exp

�

−
1

2
�xT;i − xS;j�

T

�
Lτ�T� � LS

2

�
−1

�xT;i − xS;j�

�

(8)

whereD is the number of anisotropic input dimensions. If, however, theGP is isotropic (i.e., the same length scale is used for all input dimensions),

the cross-covariance kernel would be given by

kcross�xT;i; xS;j� �
�������������������

σ2fτ�T�σ
2
fS

q
�������������������

2lτ�T�lS

l2
τ�T� � l2S

s

exp

�

−
kxT;i − xS;jk

2

l2
τ�T� � l2S

�

(9)
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An important and notable characteristic of the cross-covariance kernel function inEqs. (8) and (9) is that they are nonstationary [5,39] in the task

domain, i.e., kernel function averages over the length scales local to each of the tasks. As a result, this kernel function implicitly captures the

covariance between two x inputs as a combination of the characteristics of both tasks.
Once the FAT-GP is trained and the hyperparameters are known (as explained in Sec. III.B), it can be used to predict the target task response y 0

T

for any unseen input variable x 0. The joint distribution of y 0 with yT and yS can bewritten by calculating the x
0 correlationwith the target aswell as

source training samples:

2

4

y 0

yT
yS

3

5 ∼N

0

@

"
mτ�T��x

0�

mτ�T��XT�

mS�XS�

#

;

"
kτ�x

0; x 0� kτ�x
0; XT� kτ�x

0; XS�

kτ�x
0; XT�

T CTT KTS

kτ�x
0; XS�

T KST CSS

#1

A (10)

The kernel functions kτ are interpreted based on the task assignment of their two inputs. Hence, because x 0 belongs to the target task, based on

Eq. (3),

kτ�x
0; x 0� � kτ�T��x

0; x 0�

kτ�x
0; XT� � kτ�T��x

0; XT�

kτ�x
0; XS� � λkcross�x

0; XS� (11)

Consequently, the prediction for y 0 is given by its conditional distribution

p�y 0jx 0; yT ; XT ; yS; XS; θτ; θS� � N �μ 0
τ; C

0
τ�

where

μ 0
τ � mτ�T��x

0� � � kτ�x
0; XT� kτ�x

0; XS� �C
−1
τ

��
yT

yS

�

−

�
mτ�T��XT�

mS�XS�

��

C 0
τ � kτ�x

0; x 0� � σ2nτ�T� − � kτ�x
0; XT� kτ�x

0; XS� �C
−1
τ

�
kτ�x

0; XT�

kτ�x
0; XS�

�

(12)

Equations (10–12) easily scale from predictions for individual target inputs x 0 to individual or joint prediction for multiple target inputs X 0.

B. Hyperparameter Learning

The unknown hyperparameters in Eqs. (5) and (12) are θτ � fθτ�T�; λg, where τ represents a forward transfer inference, and θτ�T� denotes target
task hyperparameters learned by FAT-GP. Unlike the conventional GP, FAT-GP learns the hyperparameters by maximizing the log marginal

likelihood of only the target response variables given the source data:

θ�τ � arg max
θτ

ln p�yT jyS; XT ; XS; θS; θτ� (13)

Using Bayes’s rule on Eq. (1), the marginal distribution of the response variables of the target task yT is conditionally inferred from the source

task as follows:

p�yT jyS; XT ; XS; θT ; θS� � N �μTjS; CTjS� (14)

where

μTjS � mT � KTSC
−1
SS�yS −mS�

CTjS � CTT − KTSC
−1
SSKST

This approach mitigates two problems encountered when maximizing the log likelihood of the joint distribution of the source and target

[Eq. (1)]. First, it avoids calculation and inversion of an ND � NS � NT size covariance matrix at each iteration of the maximization, instead

calculating and inverting CTjS, for which NT × NT . Second, and more importantly, because the source has already been learned, it focuses the

learning on the target.
Using the multivariate normal distribution from Eq. (14) in Eq. (13), the maximum likelihood estimator (MLE) is written as

θ�τ � arg max
θτ

ln

�
1

2πNT∕2jCTjSj
1∕2

exp

�

−
1

2
�yT − μTjS�

TC−1
TjS�yT − μTjS�

��

� arg max
θτ

�

−
1

2
�yT − μTjS�

TC−1
TjS

�yT − μTjS� −
1

2
ln jCTjSj −

NT

2
ln 2π

� (15)

The first term in Eq. (15) is theMahalanobis distance between the observed target response variables yT and the FAT-GP predictive distribution.

It quantifies the empirical risk of the learned FAT-GP. The second term is a regularization term that prevents overfitting. Themaximum likelihood

estimator finds θ�τ by trading off between these two components.
MLE can be performed using a gradient descent optimizer. This requires the computation of the derivative of the log marginal likelihood with

respect to each of the hyperparameters in θτ [1,40]. Note that the covariance matrix is dependent on the hyperparameters, but the response

variables yT are not:
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∂

∂θτ
ln p�yT jθτ� � −2

�
1

2
�yT − μTjS�

TC−1
TjS

∂�yT − μTjS�

∂θτ

�

−
1

2
�yT − μTjS�

T
∂C−1

TjS

∂θτ
�yT − μTjS� −

1

2

∂ ln jCTjSj

∂θτ

which can be reduced to

∂

∂θτ
ln p�yT jθτ� � �yT − μTjS�

TC−1
TjS

∂μTjS
∂θτ

�
1

2
�yT − μTjS�

TC−1
TjS

∂CTjS

∂θτ
C−1
TjS�yT − μTjS� −

1

2
Tr

�

C−1
TjS

∂CTjS

∂θτ

�

(16)

The cost for each iteration of the training optimization comprises calculatingCTjS and then inverting it. Equation (14) shows that the calculation
ofCTjS is dominated by the inversion ofCSS. If both θS and θT are unknown, the cost of evaluating Eq. (15) isO�N3

S � N3
T�, which is dominated by

theO�N3
S� cost of inverting the squarematrixCSS of dimensionNS�> NT�. However, in the FAT-GP formulation, θS is known a priori. Hence,C

−1
SS

can be precomputed. This reduces the computational complexity toO�N3
T � NSNT�. The final cost savingswill depend on the relative sizes of the

source and task training sets. Thus, rehashing transfer learning in the context of robot-based lifelong learning changes the computational
requirements, as summarized in Table 1.

C. Negative Transfer

Negative transfer is the phenomenon where providing other tasks to help learning actually hurts the learning of the target task [37]. Negative
transfer occurs when the transfer learning approach assumes a relationship between tasks that is not correct. As a result, the transfer learning
process correlates nonrelated characteristics of the source task to the target task. The FAT-GP algorithm is not guaranteed to prevent negative
transfer, but it includes mechanisms that can mitigate it.

FAT-GP mitigates negative transfer through two mechanisms, but it still enables it by a third. First, FAT-GP assumes the target task has different
hyperparameters than the source tasks. These hyperparameters are learned during the transfer process. It is possible that the target task learns the same
hyperparameters as the source, but it is not required. Thus, the resulting hyperparameters of the target task are not constrained by the source. Second, the
similarity measure λ describes the correlation between tasks. Avalue of λ � 0means the source task data have no correlation with the target task and
wouldnot beused inpredicting target taskoutputs.Because λ is learnedaspart of the transfer, FAT-GPalwayshas theoptionof ignoring the sourcedata if
a single taskGPdescribes the target training data best. Given these twomitigations, the results of the transfer learning are still influenced by the assumed
structure of the cross-task covarianceKTS and the cross-task kernel function kcross. For λ ≠ 0, the kernel function and associated hyperparameters of the
source tasks are coupled to the target task kernel.As a result, the learnedhyperparameterswill be influencedby the source task.Overall, empirical results
have yielded minimal to no negative transfer. The assessment of negative transfer is included in the simulation results provided in Sec. V.

It should be noted that the FAT-GP algorithm is also heavily dependent on the training data collected from the target task. Negative transfer
could occur if the relatively small dataset for the target task (compared to the data collected from the source task) is not representative of the
relationship between tasks. However, this issue is an instance of themore fundamental problem of learning aGaussian process over sufficient data
and is not limited to FAT-GP.

III. Simulation Examples

A. FAT-GP Demonstration via One-Dimensional Problems

This section uses one-dimensional (1-D) problems to illustrate how FAT-GP can harness previously learned models for learning new models
efficiently. More important, it highlights the improvement in performance that FAT-GP provides over the target GP, i.e., GP learned with the
limited target training samples. By selecting two 1-D signals that are related through transformation and where the similarity can be visually
verified, it is clear how forward adaptive transfer for Gaussian process regression reduces the target task’s validation error in spite of the limited
amount of training data.

In this example, shown in Fig. 2, the target and source tasks are related through an affine transformation. Figure 2a shows that the target signal yT is
obtained by scaling the source task yS by a factor of two. The source signal is learned using aGaussian process regression on a training set of 65 samples.
Theoutput isGPS,which is anonparametricmodel for the source task.Themeanandvarianceof themodel are representedby the solidblack line and the
shaded gray area in Fig. 2b, whereas the training samples are denoted by light dots. Finally, the points in the validation set are denoted by smaller dark
dots. Testing the prediction performance of GPS on this validation set of 30 samples results in a root-mean-squared error (RMSE) of 0.43.

The target learning task, on the other hand, has access toonly10 training samples, resulting in a highvalidationRMSEof 1.63.As shown inFig. 2c,
theGPT learns the peak and the trough near x � 0 and x � 1, respectively. However, due to the limited number of training samples, it fails to capture
any of the features for x ≤ −1 and x ≥ 1. In fact, the high variance at these x values signifies the GP’s lack of confidence in these predictions.
Combining these 10 target samples with the 65 source samples and results in the FAT-GP shown in Fig. 2d, which has a much lower RMSE of 0.85.

The FAT-GP algorithm learns the hyperparameters by combining the 10 target training samples, 65 source training samples, and source model
GPS. During this training process, it learns that the similarity between tasksT andS is λ � 0.99. Consequently, the source task heavily contributes
to target task, and the resulting FAT-GP is shown in Fig. 2d. This FAT-GP’s prediction achieves a much higher fidelity with the original target
signal in Fig. 2a, and this is reflected in the low validation RMSE of 0.85. In addition, the FAT-GP is also more confident in its estimates having
based its inference on a larger dataset of 75 samples.

As this example shows, including data from a similar task helps the GP regression confidently predict for x values not captured in its own
dataset. On one hand, this makes up for the low density of training data in regions of the target task that have been poorly sampled (for example,
between −1 and 1 on the X axis), and it reduces the uncertainty in the prediction. On the other hand, perhaps more importantly, the transfer
provides the target task information about completely unexplored regions of its task space, such as the regions between one and two. As expected,
the improvement does not extend to the regions where neither task has sampled. This can be seen by observing that FAT-GP continues to have a
high prediction variance between and −2, even after the forward adaptive transfer.

Table 1 Computational cost comparison between FAT-GP (whereNS > NT) and
symmetric multitask learning (e.g., AT-GP)

Source task learning Per iteration cost of computing C−1
SS Training cost

Simultaneously with target task [33] O�N3
S� O�N3

S � N3
T�

Completed previously (FAT-GP) Precomputed O�N3
T � NSNT�
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B. FAT-GP for Two-Dimensional Models

This section uses a simulation study to illustrate how FAT-GP would be useful in learning two-dimensional models in the presence of little

training data and limited exploration. In particular, this study is motivated by the problem of learning communication models for unmanned

aircraft [11,12,17,24]. Suchmodels are useful for a variety of applications such as spectrum characterization, radio emitter detection and tracking,

airborne meshed network formation, and communication-aware information gathering.
The source and target task are setup such that

yS � f�XS� � vS (17)

yT � g�f�XT�� � vT (18)

where the first term represents themean field, and the second term represents the geospatial variations. The variations vS and vT are sampled from

the same distributionN �0; Kvariation�. Becausewe aremotivated by communicationmodeling, themean field f�XS� describes an exponential path
loss and the variations represent interference or fading [27]. In Fig. 3, which shows the source and target tasks, their mean fields, and variations,

g�⋅� � 2 × �⋅�. The source GP is learned using a dense set of 2500 training samples, as shown in Fig. 4a. The mean prediction of this source GP

achieves a high fidelity with the original source task, which can be seen by comparing Fig. 4b with Fig. 3a.
Figure 5 presents two scenarios for learning the target taskwith a limited training set of size 50. In Fig. 5a, the samples are spread over the entire

environment, representing a situation where a low density of data is available. Figure 5b, on the other hand, represents the situation where, due to

the large scale of environments, target data are only available for part of the environment. In both these cases, FAT-GP can leverage the high-

fidelity source GP, which has captured inherent characteristics of the environment, and learn better models until more target data can be collected.
Figures 6 and 7 show a comparison of the target GPs and FAT-GPs learned using the two datasets shown in Fig. 5. In the first example, where

samples are available throughout the entire environment, the target GP shows an RMSE of 3.58. In spite of the high error, its confidence is high in

most of the region.Due to similarity between the tasks, FAT-GP learns a value of λ � 0.94 during the training.Using the sourceGPand source data

in its predictions, the FAT-GP reduces the RMSE to 2.97. Seeing the variability of the larger source dataset also causes the FAT-GP to adapt its

uncertainty so that it has very high confidence only locally around the target samples. The resulting predictive distribution outperforms the

overconfident target GP. Consequently, the mean standardized log loss (MSLL) of the FAT-GP with the target GP as the baseline is −0.2276.
In the second example, because the environment is observed only partially, the RMSE and variance predictions are higher than in the first

example. The higher RMSE of 5.75 is mostly due to the right half of the environment, where the target GP predicts a flat fieldwith a value equal to

the mean of the observed yT . As this region is outside the distance of correlation for all the training data, it also has the highest variance. The FAT-

GP,which learns λ � 0.96 and transfers source data proportionally, reduces the uncertainty of the unobserved half of the region, and it achieves an

RMSE of 4.46. Once again, because it outperforms the overconfidence target GP in terms of accuracy and uncertainty, the MSLL of the FAT-GP

with respect to the target GP is −0.11.
In both of these cases, the FAT-GPmakes use of the correlation between the source and target tasks tomake up for the limited information in the

small target dataset. In this manner, previous observations and models of the environment can help inform model updates, especially as the
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Fig. 2 Example where the target task T is a scaling of source task S, i.e., yT � 2yS.
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b) Source GP mean predictions

Fig. 4 Source GP learned using 2500 samples of the source task.
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b) Samples available in part of the environment

Fig. 5 Two scenarios with limited target training set of size 50 available.
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Fig. 3 True environments in source and target tasks.
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a) Target GP mean predictions
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c) FAT-GP mean predictions
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d) FAT-GP variance predictions

Fig. 6 Target GP and FAT-GP learned using 50 samples of the target task taken over the entire environment.

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

Dimension x
1

D
im

e
n
s
io

n
 x

2

S
o
u
rc

e
 M

e
a
n
 P

re
d
ic

ti
o
n

0

5

10

15

20

25

30

35

a) Target GP mean predictions

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

Dimension x
1

D
im

e
n
s
io

n
 x

2

S
o
u
rc

e
 M

e
a
n
 P

re
d
ic

ti
o
n

0

5

10

15

20

25

30

35

40

45

50

55

b) Target GP variance predictions
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c) FAT-GP mean predictions
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d) FAT-GP variance predictions

Fig. 7 Target GP and FAT-GP learned using 50 samples of the target task taken over half the environment.

WAGLE AND FREW 221

D
o
w

n
lo

ad
ed

 b
y
 U

N
IV

E
R

S
IT

Y
 O

F
 C

O
L

O
R

A
D

O
 B

O
U

L
D

E
R

 o
n
 J

u
ly

 1
3
, 
2
0
1
7
 | 

h
tt

p
:/

/a
rc

.a
ia

a.
o
rg

 | 
D

O
I:

 1
0
.2

5
1
4
/1

.I
0
1
0
4
3
7
 



environment is being explored for updated observations.However, efficient and beneficial transfer largely depends on the locations atwhich target
samples are taken. The choice of target locations not only affects the information they provide about the task itself but also helps learn the
correlations between the tasks effectively. Hence, future work must focus on transfer planning, which is active learning based on the combined
objectives of transfer and target learning.

IV. Relationship Between FAT-GP and Target GP

The FAT-GP combines information from the target with transferred information from the source to learn a model of the target task. To
understand what is transferred, how the target and transfer components interact, and when the transfer boosts the target performance, it is
important to understand the relationship between FAT-GP with the conventional target GP.

The target GP learns the target task using only the limited target task training data, contains the standard GP hyperparameters, and is trained
using maximum likelihood estimation on the target data:

Hyperparameters:

θT � fσ2fT ; σ
2
nT ; LT ;mTg (19)

Training:

θ�T � arg max
θT

ln p�yT jXT ; θT�

Similarly, the prediction for target test sample x 0 is given by the standard GP equations:

μT�x
0� � mT�x

0� � kT�x
0; XT�CT�XT ; XT�

−1�yT −mT�XT��

σ2T�x
0� � kT�x

0; x 0� � σ2nT − kT�x
0; XT�CT�XT ; XT�

−1kT�XT ; x
0�

This GP provides a baseline for the performance that can be obtained without transfer. On the other hand, FAT-GP τ uses a priori source
hyperparameters, and then it learns θτ�T� and λ using source and target data.

A. Impact of Transfer on Mean and Variance Prediction

To investigate the benefits of transfer, we analyze how the mean predictions from both these GPs compare. Using properties of positive
semidefinite matrices and equations defined in Sec. III, it can be shown that the FAT-GP mean prediction comprises two components:

μ 0
τ �

�

mτ�x
0��

kτ�x
0; XT�C

−1
TT�yT −mτ�XT��

�

|																												{z																												}

Target component

�

�kτ�x
0; XT�C

−1
TTKTS − kτ�x

0; XS��×

�CSS − KSTC
−1
TTKTS�

−1
×

�KSTC
−1
TT�yT −mτ�XT�� − �yS −mS�XS���

|																																						{z																																						}

Transfer component

(20)

Figure 8 shows these target and transfer components as solid lines. The mean predictions for FAT-GP and target GP are also shown using solid
and dashed lines. The target component is very close to the dashed target GP prediction because they both represent the information that is
available in the target training set, shown by darker dots at the bottom of the figure. The transfer component is primarily responsible for the
differences between the FAT-GP and the target GP. Note that its major contributions are in regions where no target samples are available; the gaps
are filled by transferring from the source GP. Finally, for x ≤ −2, where neither source nor target data are available, the FAT-GP cannot provide
meaningful predictions.

Analogous to Eq. (20), the variance prediction of the FAT-GP also comprises two components:

σ2τ �x
0� �

�
kτ�x

0; x 0� � σ2nτ�T�−

kτ�x
0; XT�C

−1
TTkτ�XT ; x

0�

�

|																							{z																							}

Target Component

−
�kτ�x

0; XT�C
−1
TTKTS − kτ�x

0; XS��×

�CSS − KSTC
−1
TTKTS�

−1
×

�KSTC
−1
TTkτ�XT ; x

0� − kτ�XS; x
0��

|																														{z																														}

Transfer Component

(21)
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Fig. 8 FAT-GP mean prediction components and its comparison to target GP.
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which can also be viewed as

σ2τ �x
0� � σ2fτ�T� � σ2nτ�T�

|									{z									}

prior variance

− kτ�x
0; XT�C

−1
TTkτ�XT ; x

0�
|																			{z																			}

Reduction in uncertainty due to target data

− �kτ�x
0; XT�C

−1
TTKTS − kτ�x

0; XS���CSS − KSTC
−1
TTKTS�

−1�KSTC
−1
TTkτ�XT ; x

0� − kτ�XS; x
0��

|																																																																																			{z																																																																																			}

Reduction in uncertainty due to transfer

(22)

The perspectives of Eqs. (21) and (22) are illustrated in Figs. 9 and 10, respectively. Note that, in Fig. 9, the FAT-GP variance prediction

represented by the darkest solid line is obtained by subtracting FAT-GP transfer component from the FAT-GP target component. The target

component of the variance prediction or uncertainty is low or zerowhere target samples are available, and it rises to σ2fτ�T� � σ2nτ�T� elsewhere. The

transfer component represents a reduction in uncertainty due to transferring, and analogously provides zero correction where no source data are

available.
More interestingly, however, it also provides zero correction where target samples are present. This alternating behavior is more clearly

apparent in Fig. 10, in which the components from Eq. (22) are represented. Here, the FAT-GP target component and FAT-GP transfer component

are both subtracted from the dashed line, reducing the uncertainty to give the solid FAT-GP variance prediction. Thus, the reduction in uncertainty

from the transfer counters only the uncertainty not corrected by the target data itself.
Analyzing how transfer behaves based on the relative positions of the target and source data samples reveals a link to the signal-to-noise ratio

(SNR) of the target task. As shown in Appendix C, how a source sample xS and a target sample xT reduce the uncertainty at an unseen sample x 0
depends on their relative positions, and it is captured in the coefficient of transfer b given by

b �

8

>>>>>><

>>>>>>:

σ2nτ�T�

σ2nτ�T� � σ2fτ�T�

cTScτ�T�σ
2
fτ�T�

σ2nτ�T� � σ2fτ�T�

−cS

when source and target are colocated at x 0

when target is close to x 0

when only a source is close to x 0

(23)
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Fig. 9 FAT-GP variance prediction components and its comparison to target GP.
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Fig. 10 Reduction of uncertainty in FAT-GP.
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where

cTS � exp

�

−
kxT − xSk

2

l2τ�T� � l2S

�

cS � exp

�

−
kx 0 − xSk

2

l2τ�T� � l2S

�

cτ�T� � exp

�

−
kxT − x 0k2

2l2τ�T�

�

Note that, here, “close to” implies being within the distance of correlation.
Because σ2fτ�T� and σ

2
nτ�T� represent the signal and noise variances, respectively, σ

2
fτ�T�∕σ

2
nτ�T� represents the signal-to-noise ratio of the target

portion of the FAT-GP. Hence, the first two cases in Eq. (23) can also be viewed as

b �

8

>><

>>:

1

1� SNR

cTScτ�T�SNR

1� SNR

when source and target are colocated at x 0

when target is close to x 0
(24)

Under this perspective, as shown in Fig. 11, when SNR < 1, the sourcewill contribute heavily to predictions evenwhen target data are available

in the same region. On the other hand, when SNR > 1, for colocated source and target data points, the contribution is muted with a growing SNR.

As the distance between the source data point and x 0 grows, the influence of the transfer is routed via the target data points close to x 0, and it is

dictated by a combination of the SNR and the correlation between the tasks.

B. Dissimilar Source and Target Tasks

When the target and source are dissimilar (i.e., λ � 0), all cross-covariance terms go to zero. Then, the difference between the two GPs’mean

predictions is given by

μ 0
τ � mτ�T��x

0� � kτ�T��x
0; XT�C

−1
TT�yT −mτ�T��XT�� (25)

Comparing this against Eq. (20), we see that Eq. (25) has the same form as the mean prediction for the target GP. These predictions would be

equal if θτ�T� � θT , i.e., target hyperparameters learned in bothGPs are identical. To investigate this, we revisit the logmarginal likelihood that the

FAT-GP maximizes:

θ�τ � argmax
θT

−
1

2
�yT − μTjS�C

−1
TjS�yT − μTjS� −

1

2
ln jCTjSj −

NT

2
ln 2π (26)

When λ is set to zero, from Eq. (14), we see that KTS � 0 � KST , and this maximization becomes

θ�τ � argmax
θT

−
1

2
�yT −mT�

TC−1
TT�yT −mT� −

1

2
ln jCTT j −

NT

2
ln 2π (27)

which is themaximization used by the target GP to learn the hyperparameters. Therefore, the remaining hyperparameters θτ�T� that are learned are

the same as θT learned by the target GP. Hence, the difference between their mean predictions is given by

μ 0
τ − μ 0

T � 0 (28)

Thus, when the target and source task have no similarity (i.e., λ � 0), the learned FAT-GP is in fact the same as the target GP.
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Fig. 11 Coefficient of transfer b as a function of the SNR.
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V. Comparing the FAT-GP and Target GP

A. RMSE and MSLL Comparisons

Using an obsolete or incorrect model can have adverse effects on the performance of themission. This section uses the root-mean-squared error

and mean standardized log loss to quantify how different learning schemes involving source and target tasks compare to the FAT-GP. We

enumerate these different learning configurations here:
1) The first configuration is the source GP S: Only the source data {XS, yS} are used for training and prediction. This configurationmaps to the

scenariowhere a previously learnedGPmodel is considered plausible for the currentmission and used as is. Comparing this configuration to FAT-
GP will help illustrate the drawbacks of using outdated models:

Hyperparameters:

θS � fσ2fS; σ
2
nS; LS;mSg

Training:

θ�S � argmax
θS

ln p�ySjXS; θS�

Prediction:

μ 0
S � mS�x

0� � kS�x
0; XS�CS�XS; XS�

−1�yS −mS�XS��

C 0
S � kS�x

0; x 0� � σ2nS − kS�x
0; XS�CS�XS; XS�

−1kS�XS; x
0� (29)

2) The second configuration is no retraining N: Although only the source data are used for learning the hyperparameters during training, the
prediction combines these learned hyperparameters with the source and target data XD � fXT ; XSg. This configuration represents the scenario
where data collected after training are added to the training set under the assumption that the underlying distribution is unchanged. Comparing this
configuration with FAT-GP will help quantify the value of knowing the task assignment for the datasets:

Hyperparameters:

θS � fσ2fS; σ
2
nS; LS;mSg

Training:

θ�S � argmax
θS

ln p�ySjXS; θS�

Prediction:

μ 0
N � mS�x

0� � kS�x
0; XD�CS�XD; XD�

−1�yD −mS�XD��

C 0
N � kS�x

0; x 0� � σ2nS − kS�x
0; XD�CS�XD; XD�

−1kS�XD; x
0� (30)

3)The third configuration is all data trainingD:Asmentioned in Sec. III.A, this configuration ignores separation betweenXT andXS, and it uses
XD � �XT

T ; X
T
S �

T for learning hyperparameters. Like the no-retraining R configuration, this also helps quantify the value of knowing the task
assignment, but this incurs an additional training overhead:

Hyperparameters:

θD � fσ2f; σ
2
n; L;mDg (31)

Training:
θ�D � argmax

θD

ln p�yDjXD; θD�

Prediction:

μ 0
D � mD�x

0� � kD�x
0; XD�CD�XD; XD�

−1�yD −mD�XD��

C 0
D � kD�x

0; x 0� � σ2nD − kD�x
0; XD�CD�XD; XD�

−1kD�XD; x
0�

The learning configurations were compared by learningmodels for 1-D examples with 1) a shift between tasks such that yT � yS � 2, and 2) a

scaling yT � 2yS (i.e., Fig. 2). Each learner was provided with the same data: source GP, 65 source training samples, and 10 target training

samples. The experiment was repeated 20 times. Table 2 presents the RMSE andMSLL for each of the learning configurations, averaged over 20

runs. Because the source GP makes no use of target data, the MSLL values were calculated with the source GP as the baseline. All other

configurations were expected to improve over this baseline, i.e., have negative MSLL values.

Table 2 FAT-GP vs other GP configurations

Learning configuration

yT � yS � 2 yT � 2yS

RMSE MSLL RMSE MSLL

Source GP S 2.06 0 1.83 0
No retraining N 1.99 −4.62 1.75 −6.41
All data training D 1.95 −41.62 1.78 −36.97
Target GP T 0.75 −43.32 1.42 −38.18
FAT-GP τ 0.59 −40.16 0.57 −38.79
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Examining theMSLLvalues in the table shows that ignoring target data, as in the sourceGP case, results in theworst performance.Although the

no-retrainingN case improved over the sourceGP,models that learned hyperparameters from the target data did significantly better than the S and

N configurations. Although configurations T, τ, and D had comparable MSLL values, FAT-GP reduced the RMSE over the other learners.

B. Effect of Target Data Size on Transfer

To examine the effect of increasing target training data, theFAT-GPand the other learnerswere trained iteratively. Startingwith10 training samples

from the target task at iteration 1, a new random target training samplewas added at each iteration. This was repeated for 56 iterations until both the

source and target tasks had 65 measurements. The performance of the learners at each iteration was evaluated against a fixed validation set.

Figure 12 shows theMSLL and RMSE results of the five learners over 56 iterations. Increasing the target data has no impact on the source GP,

which shows up as a flat line in both plots. In the case of configuration N, as the proportion of the target data goes up, it begins to capture the

statistics of the target task, gradually improving its MSLL. However, as in Sec. VII.A, configurations T, τ, andD outperform S andN in terms of

theMSLL. Even so, Fig. 13 shows that the RMSE of learnerD is close to that ofN, with the targetGP and FAT-GP achieving amuch lower RMSE

by the last iteration.
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Fig. 13 Effect of target data size on the RMSE for FAT-GP and other learning configurations.
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Fig. 12 Effect of target data size on the MSLL for FAT-GP and other learning configurations.
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Fig. 14 FAT-GP vs target GP MSLL comparison.
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Figures 14 and 15 take a closer look at how the target GP and FAT-GP compare. Although the FAT-GP’s MSLL is marginally better than the
target GP, Fig. 15 shows that the FAT-GP has a lower RMSE compared to the target GP. In fact, in both examples, the target GP RMSE at the last
iteration is reached by FAT-GParound iteration 20. This highlights howFAT-GP can provide an efficient interimmodelwhilemore target task data
are being collected.

As the target task’s training set grows beyond 40, the big divide between the RMSE performance of the target and FAT-GP begins to narrow. As
the information in the target training set increases, the need to transfer knowledge decreases. This is reflected in Fig. 16,which shows change in the
mean components (discussed in Sec. V.A) between the first and last iterations. The top row reproduces the plots from Fig. 8 for comparison with
those in the bottom row, which are from the last iteration. Compared to iteration 1, the target GP (dashed line), FAT-GP (darkest solid line), and
FAT-GP’s target component all closelymatch the (light solid line) true target, whereas the (lowest line) transfer component ismostly a flat line. On
the lines of the SNR discussion in Sec. V.A, as the noise in the data goes down and the SNR grows, the contribution of transfer greatly diminishes.

VI. Conclusions

This paper describes a forward adaptive transfer learning method, FAT-GP, which allows robots to leverage previously learned Gaussian
process regression models and use them as sources of information in new learning tasks. This is especially valuablewhen limited training data are
available for the new target task. FAT-GP decouples the kernel and hyperparameter selection for the target task from those of the source task,
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Fig. 15 FAT-GP vs target GP RMSE comparison.
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Fig. 16 Evolution of FAT-GP’s mean components from iteration 1 with 10 target samples (shown in top row) to iteration 56 with 65 samples (shown in
bottom row).
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providing an inference framework that is desirable when dealing with real-world dynamic environments. Additionally, because the source task’s
large covariance matrix is precomputed, FAT-GP amortizes cost and is computationally cheaper than other GP approaches using transfer kernels.
Simulations studies on 1-D and two-dimensional examples show that similar source tasks can considerably improve the target’s performance.
More important, the FAT-GP exploits the correlations between the source and target to achieve a low error withmuch less target data, and can thus
serve as an efficient model in the interim as more target data are collected through exploration.

Appendix A: Gaussian Process

A Gaussian process is a collection of random variables, any finite number of which have a joint Gaussian distribution. The details of the
Gaussian process framework can be found in [1,2,40], and the main points are summarized in this appendix.

Once the GP is trained, the learned model can be used to predict the output y 0 at unseen state x 0. This prediction is in the form of a probability
density function (PDF), which comprises the expected value (mean) and the variance:

p�y 0� � N �μy�x
0�; σ2y�x

0�� ≜ GP�x 0jfx1:N; y1:N ; θg� (A1)

where θ are the hyperparameters of the Gaussian process, and {x1:N , y1:N , θ} is the training dataset ofN input–output pairs. This PDF is obtained
by calculating the joint distribution of the unseen state with the states of the training samples as follows:

μy�x 0� � k�x; x 0�T�K � σ2nI�
−1y

σ2y�x
0� � k�x 0; x 0� − k�x; x 0�T�K � σ2nI�

−1k�x; x 0� (A2)

Here, k�x; x 0� is theN × 1 vector of correlations of the new state with all the training points’ states, y is theN × 1 vector of measured variations
at the training points,K is anN × N kernel matrix with entries kij � k�xi; xj�, and σ

2
n is assumed to be the noise variance of the original process.

The GP computes correlations using a kernel function k�x; x 0�. The choice of the correlation function or kernel is a key design decision when
using a GP. Due to its infinite differentiability, a squared exponential or Gaussian kernel is popularly used. It is defined as

k�xi; xj� � σ2f exp

�

−
1

2
�xi − xj�

TL−1�xi − xj�

�

(A3)

where σ2f is the signal variance, andL is aD ×D diagonal matrix when x ∈ RD. The diagonal elements are given byL�d; d� � l2d, where ld is the
length scale of dimension d, where d � 1; : : : ; D. Furthermore, it is common to assume a spatial isotropic GP in which there is a single length
scale for all dimensions, e.g., L � ls � I, where I is the identity matrix.

Training aGaussian process involves learning σn, σf, andL, which are the hyperparameters θ of themodel. The hyperparameters are derived by
maximizing the log likelihood function of the Gaussian process for the n sample points in the training dataset:

θ � arg min
θ

ln p�yjθ�

� arg min
θ

�

−
1

2
yTC−1

N y −
1

2
ln jCN j −

N

2
ln 2π

�

(A4)

where CN�θ� � K�fxg1:n; σf; L� � σ2nI.

Appendix B: FAT-GP Mean Components

The mean prediction equation for the FAT-GP is given by

μ 0
τ � mT�x

0� � kτ�x
0; XD�Cτ�XD; XD�

−1�yD −mτ�XD��

� mT�x
0� � � kτ�x

0; XT� kτ�x
0; XS� �

�
CTT KTS

KST KSS

�−1�� yT

yS

�

−

�
mT�XT�

mS�XS�

��

Using the formula for inverses of block matrices, we get

Cτ�XD; XD�
−1 �

�
CTT KTS

KST KSS

�−1

�

"

C−1
TT � C−1

TTKTSMKSTC
−1
TT −C−1

TTKTSM

−KSTC
−1
TT M

#

where M � �CSS − KSTC
−1
TTKTS�

−1. Notice that

M � C−1
SjT � �CSS − KSTC

−1
TTKTS�

−1

which is given by

p�ySjyT ; XT ; XS; θT ; θS� � N �μSjT ; CSjT�
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where μSjT � mS � KSTC
−1
TT�yT −mT�:

CSjT � CSS − KSTC
−1
TTKTS

Plugging the inverse back into the mean prediction expression, we get

μ 0
τ � mT�x

0� � � kτ�x
0; XT� kτ�x

0; XS� �

2

4

C−1
TT � C−1

TTKTSC
−1
SjT

KSTC
−1
TT −C−1

TTKTSC
−1
SjT

−C−1
SjT

KSTC
−1
TT C−1

SjT

3

5

�

yT −mT�XT�

yS −mS�XS�

�

and expanding the expression, we get

μ 0
τ � mT�x

0� � kT�x
0; XT�C

−1
TT�yT −mT�XT�� � kT�x

0; XT�C
−1
TTKTSC

−1
SjTKSTC

−1
TT�yT −mT�XT�� − kT�x

0; XT�C
−1
TTKTSC

−1
SjT�yS −mS�XS��

− kS�x
0; XS�C

−1
SjTKSTC

−1
TT�yT −mT�XT�� � kS�x

0; XS�C
−1
SjT�yS −mS�XS��

Grouping the terms with common factors,

μ 0
τ � mT�x

0� � kT�x
0; XT�C

−1
TT�yT −mT�XT�� � �kT�x

0; XT�C
−1
TTKTS − kS�x

0; XS�� × �CSS − KSTC
−1
TTKTS�

−1

× �KSTC
−1
TT�yT −mT�XT�� − �yS −mS�XS���

This equation can also be written in terms of cross-covariance matrices and the similarity measure as

μ 0
τ � mT�x

0� � kT�x
0; XT�C

−1
TT�yT −mT�XT�� � �λkT�x

0; XT�C
−1
TTKcross�XT ; XS� − kS�x

0; XS��

× �CSS − λ2Kcross�XS; XT�C
−1
TTKcross�XT ; XS��

−1
× �λKcross�XS; XT�C

−1
TT�yT −mT�XT�� − �yS −mS�XS���

Appendix C: Impact of Signal-to-Noise Ratio on Variance Components

Equation (22) shows that the variance prediction of a FAT-GP contains two terms that reduce the uncertainty.
Figure 10 shows that the reduction due to transfer goes to zerowhen a target sample is colocatedwith a source sample. This section analyzes the

root of this interesting behavior.
To understand how training samples affect variance predictions, we examine the interactions between individual samples with an unseen input

sample x 0. The correlations of x 0 with a source task sample xS and a target task sample xT , for a given set of source and FAT-GP hyperparameters,

are given by

kτ�x
0; xT� � cτ�T�σ

2
fτ�T�

kτ�x
0; xS� � λcS

�������������������

σ2fτ�T�σ
2
fS

q
�������������������

2lτ�T�lS

l2
τ�T� � l2S

s

where

cS � exp

�

−
kx 0 − xSk

2

l2τ�T� � l2S

�

cτ�T� � exp

�

−
kxT − x 0k2

2l2τ�T�

�

Their correlation of the source and target samples can also be calculated as

k�xT ; xS� � λ

�������������������

σ2fτ�T�σ
2
fS

q
�������������������

2lτ�T�lS

l2τ�T� � l2S

s

exp

�

−
kxT − xSk

2

l2τ�T� � l2S

�

� λcTS

�������������������

σ2fτ�T�σ
2
fS

q
�������������������

2lτ�T�lS

l2τ�T� � l2S

s

where

cTS � exp

�

−
kxT − xSk

2

l2
τ�T� � l2S

�

WAGLE AND FREW 229

D
o
w

n
lo

ad
ed

 b
y
 U

N
IV

E
R

S
IT

Y
 O

F
 C

O
L

O
R

A
D

O
 B

O
U

L
D

E
R

 o
n
 J

u
ly

 1
3
, 
2
0
1
7
 | 

h
tt

p
:/

/a
rc

.a
ia

a.
o
rg

 | 
D

O
I:

 1
0
.2

5
1
4
/1

.I
0
1
0
4
3
7
 



Thus, the reduction due to transfer [last term in Eq. (22)] is written as

KSTC
−1
TTkτ�XT ; x

0� − kτ�XS; x
0� � λb

�������������������

σ2fτ�T�σ
2
fS

q
�������������������

2lτ�T�lS

l2
τ�T� � l2S

s

where b is a coefficient of transfer and is given by

b �
cTScτ�T�σ

2
fτ�T� − cSσ

2
fτ�T� − cSσ

2
nτ�T�

σ2fτ�T� � σ2nτ�T�

Depending on the relative positions of xS, xT , and x
0, the coefficient of transfer will differ.When the source and the target sample are colocated

with x 0, cTS � cS � cT � 1. Then, the coefficient of transfer is given by

b � −
σ2nτ�T�

σ2fτ�T� � σ2nτ�T�

When x 0 is outside the source’s distance of correlation (i.e., cS � 0), it influences x 0 via the target samples close to it. Here, the coefficient of
transfer is given by

b �
cTScτ�T�σ

2
fτ�T�

σ2nτ�T� � σ2fτ�T�

When x 0 is outside the distance of correlation of all target samples (i.e., cτ�T� � 0) but is close to a source sample, the source will impact x 0

proportional to

b � −cS

Thus, in the absence of target samples in the region of x 0, the variance prediction depends directly on the correlation between xS and x
0.
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