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Abstract
Recently released large-scale neuron morphological data has greatly facilitated the research in neuroinformatics. However,
the sheer volume and complexity of these data pose significant challenges for efficient and accurate neuron exploration.
In this paper, we propose an effective retrieval framework to address these problems, based on frontier techniques of deep
learning and binary coding. For the first time, we develop a deep learning based feature representation method for the
neuron morphological data, where the 3D neurons are first projected into binary images and then learned features using an
unsupervised deep neural network, i.e., stacked convolutional autoencoders (SCAEs). The deep features are subsequently
fused with the hand-crafted features for more accurate representation. Considering the exhaustive search is usually very time-
consuming in large-scale databases, we employ a novel binary coding method to compress feature vectors into short binary
codes. Our framework is validated on a public data set including 58,000 neurons, showing promising retrieval precision
and efficiency compared with state-of-the-art methods. In addition, we develop a novel neuron visualization program based
on the techniques of augmented reality (AR), which can help users take a deep exploration of neuron morphologies in an
interactive and immersive manner.
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Introduction

Investigating neuronmorphology is an important topic in neuro-
science since morphology plays a major role in determining
neurons’ connectivity and functional property. Recent advances
in neuroscience such as NeuroMorpho (http://neuromorpho.
org) and BigNeuron (https://github.com/BigNeuron) have
developed multiple reconstruction/tracing techniques for the
research of neuron morphology, resulting in an increasing
number of reconstructed neurons that are added to these
public repositories. However, the large-scale data size and
the complex neuron morphologies prevent the realization
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of the full potential of these data, e.g., efficiently finding
neurons sharing similar morphologies, identifying neuron
types, correlating neuron morphologies with properties, all
of which require a deep and exhaustive exploration of
neuron morphologies.

In recent years, multiple neuron morphological retrieval
methods have been developed to address the above
problems. For example, Wan et al. (2015) designed
BlastNeuron for automated comparison, retrieval and
clustering of 3D neuron morphologies. In the retrieval
stage, the BlastNeuron first employed several quantitative
measurements (Costa et al. 2010) as features to represent
each neuron, then searching similar neurons via the
normalization of the ranked scores in terms of the similarity
of feature vectors. Subsequently, Conjeti et al. (2016a, b)
and Mesbah et al. (2015) proposed a hashing based neuron
morphological retrieval framework, i.e., Hashing Forest, to
search among large neuron databases by generating binary
codes from the quantitative measurements. Li et al. (2017b)
developed an efficient neuron retrieval framework based
on the maximum inner product search (MIPS) and feature
hierarchy, where features can be grouped with different
similarity levels and compressed into short binary codes
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for more accurate retrieval. More recently, they designed
an interactive retrieval strategy to explore the continuously
expanding neuron databases (Li et al. 2017c). The online
binary coding can efficiently tackle the continuously
expanding databases, and the users’ feedback can improve
the initial retrieval results with higher accuracy.

Despite the above methods have achieved good per-
formance in many neuron retrieval and analytical tasks,
there are still challenges that need to be addressed, partic-
ularly at present time that neuroscience is transiting into
the era of Big Data. Firstly, current feature representation
methods are based on the quantitative measurements of
neurons, which are designed for the previous small-sized
data sets. These hand-crafted features cannot fully represent
neurons and are not suitable for the large-scale and contin-
uously expanding neuron databases. Secondly, large-scale
databases require more efficient and accurate retrieval algo-
rithms. Differentiating the fine-grained difference among
massive neurons, and searching similar samples on-the-fly,
both are tough problems in large-scale. Thirdly, there are
still no specific tools developed, which can immersively
visualize the retrieved neurons and help users implement a
comprehensive analysis of neuron morphologies.

To alleviate these challenges, we develop a novel
framework for accurate and efficient neuron analysis in
large-scale databases. As shown in Fig. 1, for the original
neuron data, we first design a neuronal projection method
to transform 3D neurons into 2D binary images with
three angles of view. Afterwards, a stacked convolutional
autoencoders (SCAEs) (Masci et al. 2011) is introduced
to automatically learn deep features from these 2D
images. Subsequently, we fuse the learned deep features
and the traditional hand-crafted features together as the
representation of each neuron. To further improve the
retrieval efficiency, binary coding is employed which can
compress the fused feature vectors into short binary codes,
and also preserve the similarity among original features.
According to Fig. 1, our framework can be separated into

four steps, i.e., neuronal projection, SCAEs based deep
feature learning, feature fusion, and binary coding. For
a query neuron that needs to search similar neurons in
a database, its original neuron data can be sequentially
processed and represented by tens of bits of binary codes.
Then the similarity searching can be treated as the Hamming
distance ranking between the binary codes of query neuron
and each neuron in the database. Additionally, to help users
take a deep understanding of neuron morphologies, we
develop a novel neuron visualization program through the
Microsoft HoloLens augmented reality (AR) headset. To the
best of our knowledge, this is the first work that applied deep
learning and augmented reality techniques for the analytics
of 3D neuron data.

The remaining paper is organized as follows: “Related
Work” briefly reviews relevant frontiers of neuron morphol-
ogy and large-scale image retrieval. Section “Methodology”
provides the algorithm details of deep feature representation
and binary coding. Followed by experimental results and discus-
sions in the Section of “Experiment”. Section “Augmented
Reality for Neuron Visualization” introduces our developed
AR program for neuron visualization. Finally, “Conclusions”
concludes the paper and presented future works.

RelatedWork

This paper mainly focuses on the neuron morphological
retrieval in large databases. In this section, we briefly
introduce related works on neuron morphology and large-
scale image retrieval.

NeuronMorphology

Neuron morphology is an important topic in the field
of neuroscience. It has a strong relevance with neuron’s
particular properties, such as brain regions, cell types, devel-
opmental stages, etc. In recent years, the well-developed

Fig. 1 Overview of our proposed framework, including four steps, i.e., neuronal projection, SCAEs based deep feature learning, feature fusion,
and binary coding
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microscopy and tracing techniques have greatly improved
the study of neuron morphology (Zhou et al. 2015, 2016;
Mukherjee et al. 2013; Ji 2013; Wu et al. 2011; Li et al.
2017a), where 3D neurons are reconstructed with high pre-
cision. For the 3D neuron data, the tree-like structure makes
them possible to be described by some pre-defined quan-
titative measurements. For example, Costa et al. (2010)
proposed the concept of neuromorphological space, where a
set of measurements were designed to represent the neuron
morphology. Scorcioni et al. (2008) developed L-Measure
tool for the quantitative characterization of neuroanatomical
parameters.

The above measurements have been adopted as morpho-
logical features and achieved good performance in many
neuron analytical tasks (Wan et al. 2015; Conjeti et al.
2016b; Le et al. 2016, 2017b, c; Costa et al. 2016). How-
ever, these hand-crafted features cannot fully represent the
morphology of neurons, particularly when tackling large-
scale databases, as there may be outliers and cases not
covered by standardized rules. Moreover, the complicated
neuronal structure makes hand-crafted features even harder
to differentiate and identify the difference among neurons.
Accordingly, more effective feature representation meth-
ods are required for the large-scale neuron morphological
retrieval.

Large-scale Image Retrieval

In recent years, image and video analytics in large-scale
have become a hot topic in the field of computer vision,
machine learning and high-performance computing. Bunch
algorithms and techniques have been developed to improve
the performance of large-scale analytics (Yan et al. 2014a,
b, c; Li et al. 2018).

Generally, image retrieval can be divided into two
stages, i.e., feature representation and feature indexing.
In the feature representation part, deep neural networks
are the most popular methods that particularly suitable
for the large-scale data sets (LeCun et al. 2015), since
massive data can boost the retrieval performance by
training deep and complex neural networks. Convolutional
neural network (CNN) (LeCun et al. 1998) is a type of
network that has been widely employed for large-scale
retrieval in recent years. Representative methods include
AlexNet (Krizhevsky et al. 2012), GoogLeNet (Szegedy
et al. 2015), VGGNet (Simonyan and Zisserman 2014) and
ResNets (He et al. 2016). The above deep neural networks
require supervised information during training. When the
image labels are unavailable, unsupervised neural networks
can be employed for feature representation, e.g., Stacked
Autoencoder (SAE) (Bengio et al. 2007), Deep Belief
Network (DBN) (Hinton and Salakhutdinov 2006) and Deep
Boltzmann Machine (DBM) (Salakhutdinov 2015). Despite

deep neural networks becoming the benchmark in many
large-scale image analytical tasks (e.g., natural images),
there are still no relevant works that focused on the deep
feature representation of neuron morphological data.

For the feature indexing in large-scale, the key problem
is computational complexity, i.e., similarity searching in
ten thousands of images with thousands dimensional of
features. In recent years, binary coding/hashing has become
a kind of most popular methods for indexing similar
samples in massive data sets (Wang et al. 2016). By
compressing long image features into short binary codes
and keeping their original similarities, the computational
complexity will be significantly reduced. In the field of
biomedical informatics, multiple binary coding methods
have been applied for large-scale retrieval, including
Iterative Quantization (ITQ) (Gong et al. 2013; Liu et al.
2017), Kernel-Based Supervised Hashing (KSH) (Liu et al.
2012; Zhang et al. 2015b, c), Hashing Forest (Yu and Yuan
2014; Conjeti et al. 2016a), MIPS (Shen et al. 2015; Li
et al. 2017b), etc. In this work, we need to explore suitable
binary coding method that can tackle the label unavailable
and linearly inseparable neuron data.

Methodology

In this section, we present the theoretical and technical
details of our neuron analytical framework, including
neuronal projection, deep feature representation, feature
fusion, and binary coding.

Feature Representation for NeuronMorphology

Transforming 3D Neuron into Images As the traditional
hand-crafted features are insufficient to represent each
neuron in large-scale databases, we seek for a new avenue
for the neuron feature representation, based on recent
advances in deep learning. Considering the original neuron
morphological datasets (i.e., the SWC format files Cannon
et al. 1998) provide the spatial coordinate for each point,
an intuitive solution is to employ 3D deep neural networks
that can directly learn deep features from 3D point sets.
Unfortunately, this approach is hard to implement due
to three reasons: (1) training 3D neural networks are
usually very time-consuming, particularly when tackling
large neuron databases; (2) the 3D point sets in each neuron
are composed based on the tree-topological structure, which
are extremely sparse in 3D space; (3) Neurons have
dramatically different scales and different numbers of point
sets (from hundreds to tens of thousands) that cannot be
processed in a generalized framework. How to adapt the 3D
neuron data with a suitable modality for deep learning is a
critical step in feature representation.
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Taking the above problems into account, we first propose
a method to transform 3D neurons into 2D binary images
and also preserve their primary morphologies. Currently, 3D
neuromorphological data are stored in the SWC format file
with hundreds to tens of thousands of points (Cannon et al.
1998). For each point, its spatial information is determined
by the location (i.e., x, y, z coordinates) and connection
(i.e., the indexing of its parent point). Here, we denote the
3D neuronal data as xi ∈ R

ni×4, which include ni points.
Each point includes the above spatial information with 4
dimensions. As shown in Fig. 2, given a neuron data xi ,
we first plot the location of its 3D points. Considering the
initial neurons may not oriented properly, we employ the
principal component analysis (PCA) algorithm to shift and
rotate neurons to a normalized axis. For the point set of
each neuron (i.e., a ni × 3 matrix), the PCA algorithm first
compute their three-dimensional mean value (i.e., a 1 × 3
vector) and coefficients (i.e., a 3 × 3 matrix). Then each
point can be shifted and rotated by the mean value and
coefficients respectively. This transformation can make sure
that similar 3D neurons can be transformed into similar 2D
images after the following neuronal projection, regardless
of their initial orientation.

Subsequently, all 3D points are orthogonally projected
into three angles of view, i.e., the x-y, x-z, and y-z plane,
respectively. These projected 2D point sets haven’t reflected
the connection of branches and bifurcations in neuron
morphology. Thus, we link each point with their parent
point and then map these points and lines into binary
images. The generated binary images can replace the 3D
neuron data for deep feature representation. In general,
transforming 3D point sets into binary images can signif-
icantly improve the computational efficiency when train-
ing deep neural networks. More importantly, our method
can preserve the structure of neuron morphologies by the
three angles’ orthogonal projection and child-parent points
linking.

Feature Learning using SCAEs After receiving binary
images from the original 3D neuron data, we set them as
input for the deep feature representation. In current neu-
ron morphological databases, due to the fact that there are
no sufficient annotations to identify and classify each neu-
ron, only unsupervised deep neural networks can be utilized
for feature learning. In addition, not only the image pix-
els, the structure of neurons also need to be considered
in the network. Here, we employ the stacked convolu-
tional autoencoders (SCAEs) (Masci et al. 2011), which can
explore the intrinsic structure of neurons in an unsupervised
manner.

Figure 3 present the architecture of our SCAEs, including
convolutional encoder and decoder two parts. In the encoder
part, the input neuron images are sequentially processed
through convolution (in blue color) and max-pooling (in red
color). The size of input images were 128 × 128, with the
filter size of 3 × 3 and the max-pooling size of 2 × 2. In
the decoder part, the learned features are also sequentially
processed with two operations, i.e., upsampling (in green
color) and convolution, using the same size of filter and
pooling with the encoder part. Specifically, in our SCAEs,
we employ activation and batch normalization (Ioffe and
Szegedy 2015) right after convolution. The activation
function is ReLU (Nair and Hinton 2010) except the last
decoder layer, where we utilize the sigmoid function to
reconstruct binary images. The number of feature maps is
ranging from 4 to 64 in the encoder part, and then ranging
from 64 to 1 in the decoder part. The upsampling operation
follows the method used in Zeiler et al. (2011), i.e., restoring
the location of the previously stored maximum value, and
assigning the other locations as zero. In the training stage,
the SCAEs’ output images try to reconstruct the original
input images using the loss function of binary cross-entropy.

After training the SCAEs, we can remove the decoder
part. Given a neuron data, its three binary images are
sequentially set as the input in the trained SCAEs. Then

Fig. 2 The pipeline of transforming 3D neurons into images: a the
original neuron data visualized by Vaa3D (Peng et al. 2010); b the 3D
points of neuron data in initial orientation; c the 3D points after principal

component analysis (PCA); d the projection of each point in three
angles of view; e the generated binary images by linking each point
with their parent points
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Fig. 3 The architecture of our stacked convolutional auto-encoders, including convolutional encoder and decoder two parts

their last encoder layer’s output can be combined together
as the deep feature of that input neuron.

Feature Fusion Considering the information loss from 3D
neuron data to binary images, the deep features also cannot
fully represent the original neuron morphology. Therefore,
we propose to fuse the deep features with the hand-crafted
features to pursue more accurate retrieval results. For the
deep features, as they are usually noisy and redundant
with thousands of dimensions, we first employ the PCA
algorithm to reduce the dimension and preserve the main
components in deep features. For the hand-crafted features,
we compute the quantitative measurements in each 3D
neuron based on the L-Measure toolbox (Scorcioni et al.
2008), including global, branch, and bifurcation three levels
of measurements (Li et al. 2017b).

With regards to fusing two features, there are mainly two
levels of fusion in the field of image retrieval, i.e., feature-
level and decision-level. For the feature-level fusion, the
goal is to combine two or more feature vectors into a single
one with more discriminative power than any of the input
feature vectors. This fusion can be implemented before
similarity searching. For the decision-level fusion, the goal
is to weight the retrieval results from different features
and fuse these results via techniques such as majority
voting (Jain et al. 2005). Despite the fact that the decision-
level fusion has demonstrated excellent performance in
many image retrieval tasks (Zhang et al. 2015a, 2016), it
may not be suitable in our case that the method is developed
towards large neuron databases. Particularly, the decision-
level fusion in our case needs to learn binary coding
functions and search the whole database with different
kind of features respectively, which are inefficient for
large-scale retrieval. Therefore, we directly combine the
deep features with the hand-crafted features together before
binary coding. In practice, we find that such feature-level
fusion can achieve excellent performance in large-scale
neuron retrieval.

Binary Coding Based Large-scale Retrieval

The above feature learning and fusion stages can help
to improve the accuracy of neuron retrieval. To further

improve the retrieval efficiency of large-scale datasets, we
employ binary coding methods which can learn coding
functions to compress the fused features into short binary
codes and also preserve similarities among original features.
However, two problems need to be considered when
applying binary coding in large-scale neuron data: 1) current
neuron databases haven’t provide sufficient annotations
for each neuron that can support the supervised training
of coding functions; 2) some neuron morphologies (also
their features) are hard to differentiate under extremely
subtle and linearly inseparable differences. Here, we adopt
a recently proposed method, i.e., the MIPS based binary
coding (Shen et al. 2015, 2017), which can iteratively
learn two asymmetric and non-linear coding functions from
training samples without any supervised information.

Given two training sets which are randomly selected
from the neuron database, the fused features of these two
sets can be denoted as A ∈ R

n×d and X ∈ R
m×d , including

n and m neurons with d dimensional features respectively.
Assuming h(·) and z(·) are the coding functions for A and
X, the MIPS based binary coding aims to optimize the above
objective function:

min
h,z

∥
∥
∥h(A)z(X)T − Ŝ

∥
∥
∥

2
(1)

where Ŝ is the binarization of similarity matrix between
A and X, i.e., Ŝ = sgn(AXT). In Shen et al. (2015),
the authors first transform the above objective as a
maximum inner product search (MIPS) problem. Then
they provide an asymmetric optimization algorithm to
alternately learn two coding functions in several iterations.
The asymmetric and inner product strategies can map
coding functions into high dimensional and non-linear
space in an unsupervised manner, which are particularly
suitable for neuron morphological retrieval. Subsequently,
the learned two coding functions h(·) and z(·) can be applied
to the fused features of the database neurons and the query
neuron in respective. Storing their binary codes is generally
more space-saving than that of long feature vectors. More
importantly, we will demonstrate in the experiment that the
binary codes are capable of real-time similarity searching in
large-scale databases without losing too much accuracy.
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Experiment

In this section, we first evaluate the effectiveness of our
proposed neuron retrieval framework. Then we discuss its
advantages and limitations.

Evaluation of Neuron Retrieval

Experimental Setting During the experiment, we carry out the
evaluation on theNeuroMorpho database (http://neuromorpho.
org), including 40 species and in total 62,304 reconstructed
neurons from 278 labs. For the hand-crafted features, we
employ the L-measure toolbox (Scorcioni et al. 2008) to
extract 38 quantitative measurements, following the setting
with previous articles (Conjeti et al. 2016a, b; Mesbah et al.
2015; Li et al. 2016, 2017b, c). In the process of transform-
ing 3D neuron into 2D images, we project each neuron into
three images with the size of 128 × 128. For our SCAEs,
we set a weight decay of 10−4 and momentum of 0.9. The
whole neural networks are trained end-to-end with 100
epochs and an initial learning rate of 0.01. We finally learn
3072 dimensional deep features for each neuron data, with
1024 dimensions in each projected image. In the MIPS
based binary coding, according to Shen et al. (2015, 2017),
we set the parameter λ to 100 and the maximum iteration
number t = 5. In the model training phase (i.e., SCAEs
training and binary coding training), we randomly select
30,000 neurons as training data, excluding the test neurons
we later used. All experiments are conducted on a desktop
with a 1.6GHz processor of twelve cores and 128G RAM.

Validation of Feature Representation We first evaluate the
retrieval precision of our proposed method in the whole
NeuroMorpho database (http://neuromorpho.org), which
include 58,414 valid neurons (we exclude neurons that
cannot be read and measured by L-measure toolbox (Scor-
cioni et al. 2008)). As the current database hasn’t provide
definite classes of each neuron, we evaluate the retrieval
precision based on their properties, e.g., brain regions, cell
types, development stages, etc, which have strong relevance
with neuron morphologies. Particularly, we first select the
Drosophila’s projection neurons as queries. The character-
istics of these neurons are summarized in Table 1, which
can be easily located and identified in the NeuroMor-
pho database (http://neuromorpho.org) (233 such projection
neurons in total). We denote these query neuron as uPNs.
This selection of query neurons also consistent with the

Table 1 Summarizing the characteristics of our query neurons

Brain Regions Olfactory antennal lobe; Glomerulus

Cell Classes Principal cell; Uniglomerular projection

Development Adult

previous articles (Wan et al. 2015; Costa et al. 2016; Li
et al. 2017b, c), since uPNs are the one kind of most
well-classified neurons in the database. We provide the
comparison of the retrieval precision with three feature rep-
resentation methods, i.e., our deep feature representation,
the hand-crafted feature measurements used in previous arti-
cles (Conjeti et al. 2016a, b; Mesbah et al. 2015; Li et al.
2016, 2017b, c), and our feature fusion, which are abbrevi-
ated as Deep-fea, Hand-fea, and Fused-fea respectively.

Table 2 records the average retrieval precision of the
three methods under different numbers of retrieved neu-
rons. For each uPNs, it matches similar neurons with the
entire dataset (58,414 neurons in total), i.e., computing the
Euclidean distance one by one through feature vectors and
ranking them in ascending order. Then its retrieval preci-
sion is computed by the percentage of uPNs (except itself)
appeared in all top similar neurons, e.g., top-10 retrieved
neurons. In Table 2, the average precision is recorded by
evaluating all 233 uPNs. For the Fused-fea, we first employ
PCA to compress the deep features into 40 dimensions, then
fusing them with the hand-crafted features. In Table 2, the
Fused-fea method can achieve the highest retrieval preci-
sion compared with other two methods. The Deep-fea and
Hand-fea methods also achieve reasonable retrieval preci-
sion. According to these results, we validate that both our
SCAEs based deep features and the traditional hand-crafted
features have the ability to represent 3D neuron morpholo-
gies. More importantly, these two kinds of features are
complementary with each other, since their fusion results
have a significant improvement in precision. Based on the
reconstructed images from SCAEs, we find that our learned
deep features are likely to explore and represent holistic
structures in neuron morphologies. As a contrast, the hand-
crafted method is not good at exploring neuron’s holistic
structure, where it can only compute some global measure-
ments (e.g., neuron’s total height, length, etc) as features
that are indiscriminative for large-scale neuron databases.

In addition to the above quantitative evaluation, we
random select four query neurons and present their top-5
retrieved similar neurons using the Vaa3D software (Peng
et al. 2010). As shown in Fig. 4, the morphologies of
most retrieved neurons are quite similar to their query
neurons, which validate that our proposed method can

Table 2 Comparing the average retrieval precision of three methods
under different numbers of retrieved neurons

top10 top20 top30 top50

Deep-fea 0.7113 0.6127 0.5538 0.4654

Hand-fea 0.8586 0.7776 0.7239 0.6407

Fused-fea 0.9083 0.8353 0.7948 0.7354

http://neuromorpho.org
http://neuromorpho.org
http://neuromorpho.org
http://neuromorpho.org
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Fig. 4 Four randomly selected query neurons (in red) and their top-5 retrieved similar neurons (in blue) through our proposed method

effectively retrieve similar neurons in large-scale databases.
Moreover, we find that the retrieved neurons also share
common properties with the query neuron. For example,
the second query neuron is selected from a rat’s brain,
where the neuron is located in the brain regions of the
hippocampus, dentate gyrus, and granule layer with the cell
classes of principal cell and granule. By checking properties
in the NeuroMorpgo database (http://neuromorpho.org), the
retrieved top-5 similar neurons also reflect same species,
brain regions and cell classes with the query neuron.

Validation of Binary Coding In this part, we first validate
the effectiveness of binary coding, which can dramatically
improve the retrieval efficiency without losing too much
precision. Table 3 compares the retrieval precision and
efficiency before and after the MIPS based binary coding,
using the feature fusion results. For the 78 dimensional
fused features, the learned coding functions compress them
into 32 bits of binary codes. In this experiment, we also
employ the 233 uPNs as queries and record their top-
10 average precision. According to Table 3, the retrieval
precision after binary coding hasn’t lose too much (i.e.,
only 2% lower compared with the feature fusion results).
However, after compressing the fused features into binary

Table 3 Comparison of neuron retrieval precision and efficiency (in
second) before and after MIPS based binary coding, using the feature
fusion results

Precision Time(s)

Fused-fea 0.9083 73.76

MIPS 0.8876 0.15

codes, the 233 uPNs can achieve real-time retrieval in the
whole NeuroMorpho database, i.e., sequentially indexing
58414 neurons with only 0.15 seconds in total. Compared
with the exhaustive searching using the fused features, the
efficiency of neuron retrieval has a significant improvement
through binary coding (i.e., around 500 times faster). This
superiority will be especially benefited in the future neuron
retrieval tasks since an increasing number of neurons are
reconstructed and added to large-scale databases (https://
github.com/BigNeuron).

In addition, we evaluate that the MIPS based binary
coding is suitable for the retrieval of neuron morphologies.
We compare it with three popular binary coding/hashing
methods that have been widely used in recent years, i.e.,
ITQ (Gong et al. 2013), AGH (Liu et al. 2011), and
SH (Weiss et al. 2009). Figure 5a presents the average
retrieval precision from top-1 to top-100 samples of uPNs,
using the above four binary coding methods. All methods
compress the fused features into 32 bits of binary codes.
According to Fig. 5a, the MIPS based binary coding
achieves the best performance among the four methods.
This is mainly because of its learned non-linear coding
functions that can effectively discriminate the linearly
inseparable neuron data.

Discussions

Parameter Settings In our framework, the SCAEs model
is trained based on the projected 2D images with the
size of 128 × 128. This setting is a trade-off between
retrieval precision and computational efficiency. Figure 5b
records the average retrieval precision from top-1 to

http://neuromorpho.org
https://github.com/BigNeuron
https://github.com/BigNeuron
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Fig. 5 Average retrieval
precision from top-1 to top-100
samples of uPNs: a comparison
of four binary coding methods;
b comparison of three sized
images for SCAEs model
training

top-100 samples of uPNs, with the projected image size of
128 × 128, 256 × 256, 512 × 512 respectively. All three
sized images are transformed into 1024 dimensional feature
vectors in SCAEsmodels. According to Fig. 5b, the retrieval
performance haven’t changed too much, i.e., no more than
2% difference. This is mainly because of the properties of
the SCAEs, which can only explore and represent holistic
structures in neuron morphologies (discussed in “Evaluation
of Neuron Retrieval”). While the holistic structures in
neurons do not have remarkably difference under different
image resolutions, e.g., from 128×128 to 512×512. On the
other side, their computational efficiency has a tremendous
difference. For example, in our experiment, it only costs 3
hours to train the SCAEs model using 90,000 images with
the size of 128 × 128. While the training time is 2 days
using the 512 × 512 sized images. Therefore, we project
2D images with the size of 128 × 128 which can achieve
state-of-the-art precision under sustainable time complexity.

Advantages The proposed framework achieves large-scale
neuron morphological retrieval with superior accuracy and
efficiency, demonstrating excellent performance in assisting
neuron exploration and analysis. These results mainly
benefited from our proposed neuron feature representation
and the employed MIPS based binary coding. When neuron
databases are large, the traditional hand-crafted features
cannot fully represent and differentiate each neuron. Thus
we designed a novel feature representation method using
deep neural networks, which can transform 3D neuron
data into 2D images and automatically learn features end-
to-end. Our learned deep features have different aspects
of representation compared with the hand-crafted features
(e.g., holistic structures compared with branch/bifurcation
topologies). Therefore, their combination will accordingly
more representative for the neuron morphology. For the
binary coding part, we directly adopt the MIPS method
which has been used for the large-scale neuron retrieval (Li
et al. 2017b).

Limitations There are also some limitations in our neuron
retrieval framework. The first limitation is the information
loss when transforming 3D neuron data into 2D images.

This limitation mainly reflects in two situations: 1) the 2D
images cannot preserve the fine-grained spatial structures
in neurons, especially for the neuron with complicated
morphologies, e.g., the right dendrites in Fig. 6a; 2) some
neurons provided by the NeuroMorpho database (http://
neuromorpho.org) are only two dimensions, i.e., the third
dimension is a fixed constant. As shown in Fig. 6b, in
such case, our method can only get straight lines in the
second and third projected image. These two situations may
influence the retrieval results for some specific neurons. The
second limitation is the separation of feature representation
and binary coding. In our framework, we process these
two stages in sequence, which indicates two times of
information loss, i.e., from 3D neuron data to features to
binary codes. This may influence the retrieval precision of
the whole framework.

Augmented Reality for Neuron Visualization

The above experiments validate that our framework can
effectively retrieve similar neurons in large-scale databases.
Based on the retrieval results, we develop a novel neuron
visualization program in assisting neuron exploration
through the Microsoft HoloLens augmented reality (AR)
headset. Here, we introduce the implementation details and
discuss its applications in neuron exploration and analysis.

Implementation Our visualization program is developed
using the Vuforia AR platform (https://www.vuforia.com/)
and the Unity game engine, which can create a powerful tool
for the application development on Microsoft’s Windows
Holographic Platform. Particularly, when visualizing the
neurons, we start by mapping the data points for each
neuron to the real world. Based on the spatial anchors
(i.e., data structures containing a world coordinate and
information about the surrounding environment), anchor
points are first created in the virtual environment that the
HoloLens has generated in the correspondence with the real
world. Each anchor point has their own coordinate systems
in which the data points are rendered. To compete for the

http://neuromorpho.org
http://neuromorpho.org
https://www.vuforia.com/
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Fig. 6 Limitations in our neuron
projection strategy, a the 2D
image cannot preserve the
fine-grained spatial structures in
neurons; b some neurons in the
NeuroMorpho (http://
neuromorpho.org) are only two
dimensions

visualization, the Unity’s built-in line renderer is employed
to create lines connecting each data point to their parent
data point, according to the SWC data format provided in
neuron databases. The package uses the Bézier curve in
connecting these lines, which is a type of parametric curve
that can be scaled indefinitely. Once the neurons are mapped
in the virtual environment, the Hololens uses stereo images
to visualize the neurons on the transparent screens of the
headset, so that they appear as if they existed in the real
world in front of the user. As the anchor points correspond
to the real world, the visualizations will appear to be fixed to a
given location before the user unless moved. In addition, the
neuron visualizations are rendered with depth-based coloring,
which adjusts based on the user’s proximity to the neuron.

We also made the visualized neurons interactable. We
place a transparent transform at the center of each neuron,
which also acts as the parent for all the data points of an
individual neuron. Upon placing the visually directed cursor
of the HoloLens on the center of the neuron, the cursor gives

a visual cue, which indicates that an object is interactable.
As the transform is transparent, this gives the impression
that the neuron itself is the object you are interacting with.

Application Fig. 7 presents some screen shots of our
visualization results. The developed AR program can
interactively and immersively visualize neurons in different
scales and different view angles. As shown in Fig. 7,
the program can first present some retrieved neurons to
users using our neuron retrieval method. Then users can
utilize the HoloLens built-in “finger tap” gesture to select
an interested neuron for further analysis. Once selected,
various voice commands, created by us but powered by
Microsoft “Cortona” voice assistant technology, can be
used to identify the type of interaction to be performed on
neurons. We include functionality allowing users to move,
scale, and rotate the selected neurons. Users can also use
the built-in “pinch” gesture along with hand motions to
manipulate neurons. This provides a simple and intuitive

Fig. 7 The screen shots of neuron visualization and analysis using the Microsoft HoloLens AR headset: a visualize some of the retrieved neurons;
b manipulate and enlarge interested neurons ; c continue to enlarge neurons, interactively analyze their fine-grained details

http://neuromorpho.org
http://neuromorpho.org
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way for users to interact with the visualizations, and to do
so from any position in the environment. The screen shots
in Fig. 7 can only provide a glimpse of how our program
works, where it lost the biggest benefits that are gained
freeing users from a screen. Compared with other neuron
visualization techniques (e.g., Vaa3D software Peng et al.
2010), the main advantage of our AR based program is that
it can visualize neurons in an interactive and immersive
way, and thus help users taking a deep and comprehensive
analysis of neurons.

Conclusions

In this paper, we present an accurate and efficient neuron
retrieval framework, which can help users exploring large-scale
neuron morphological databases. Particularly, we propose
a novel feature representation method for the 3D neuron
data, which are the first time that introduces deep learning
techniques in the 3D neuromorphological analysis. Then
we employ binary codingmethod to compress neuron features
into short binary codes, which are especially suitable for
the retrieval in large-scale neuron databases. Experimental
results validate the efficacy of our proposed framework.
Additionally, we develop a new neuron visualization
program based on the AR techniques, where neurons can be
explored and analyzed in an interactive and immersive way.
Our future work will focus on the performance improvement
of deep feature representation and visualization for neuron
morphologies, and then develop a more comprehensive tool
for neuron exploration and analysis.
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