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ARTICLE INFO ABSTRACT

Morphological retrieval is an effective approach to explore large-scale neuronal databases, as the morphology is
correlated with neuronal types, regions, functions, etc. In this paper, we focus on the neuron identification and
analysis via morphological retrieval. In our proposed framework, multiple features are extracted to represent 3D
neuron data. Because each feature reflects different levels of similarity between neurons, we group features into
different hierarchies to compute the similarity matrix. Then, compact binary codes are generated from
hierarchical features for efficient similarity search. Since neuronal cells usually have tree-topology structure, it is
hard to distinguish different types of neurons simply via traditional binary coding or hashing methods based on
Euclidean distance metric and/or linear hyperplanes. Therefore, we employ an asymmetric binary coding
strategy based on the maximum inner product search (MIPS), which not only makes it easier to learn the binary
coding functions, but also preserves the non-linear characteristics of the neuron morphological data. We
evaluate the proposed method on more than 17,000 neurons, by validating the retrieved neurons with
associated cell types and brain regions. Experimental results show the superiority of our approach in neuron
morphological retrieval compared with other state-of-the-art methods. Moreover, we demonstrate its potential
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use cases in the identification and analysis of neuron characteristics from large neuron databases.

1. Introduction

How the brain works is one of the most challenging issues in
neuroscience. As neurons are the basic elements of the brain, under-
standing their properties and network connectivity is a key step to
tackle this challenging problem. There are approximately 86 billion
neurons in the human brain and no two neurons are exactly the same.
Figuring out each neuron's properties is difficult. Generally, neurons
tend to express distinct morphologies based on their cell types, brain
regions and functions. Therefore, it is reasonable to explore the
neuronal properties through their morphologies. Recent development
in visualization and image processing techniques [12,22,26,31,32]
enabled accurate segmentation, tracing and reconstruction of 3D
neuronal models from microscopic images. Meanwhile, the fast grow-
ing 3D neuron image databases such as NeuroMorpho [1,28] provide a
public platform to associate neuronal properties with morphologies.
Therefore, morphology-based neuron retrieval becomes an effective
way to assist neuroscientists to identify unknown neurons and discover
the relationship between the neuronal morphology and the property.

Morphology-based neuron retrieval is made possible because of the
recent rapid advancements in neuron tracing techniques [4,10,25,45].
Costa et al. [5] proposed the concept of neuromorphological space,
which analyzed the tree-like shape and designed quantified measure-
ments of neuron cell. Wan et al. [40] designed BlastNeuron for
automated comparison, retrieval and clustering of 3D neuron morphol-
ogies. In the retrieval stage, BlastNeuron searches for similar neurons
via the normalization of rank scores in terms of the similarity of feature
vectors. Despite its high accuracy, this method could be inefficient
when handling a large-scale neuron database. Therefore, Mesbah et al.
[24] proposed a data-driven hashing scheme, i.e., hashing forest, to
search among large neuron databases. By establishing multiple un-
supervised random forests, 128 or more binary bits are generated to
represent morphological features. Hashing forest algorithm has
achieved efficient and accurate results in neuron retrieval.
Nonetheless, it usually needs a large number of bits (e.g., larger than
128), so its efficiency can be further improved with shorter binary
codes. More importantly, the encoding process relies on the embedding
of the Euclidean distance, which may not be a suitable similarity
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measure for neuron retrieval issue, as features of neuron data usually
lay in complex feature spaces that may not be linearly separable.
Therefore, advanced hashing algorithms are important to solve these
challenges for efficient and precise retrieval.

As described in Ref. [24], binary coding and hashing techniques
have achieved great success in efficient retrieval among large-scale
databases, with many methods proposed in recent years, including, but
not limited to, Spectral Hashing (SH) [42], Anchor Graph Hashing
(AGH) [20], Iterative Quantization (ITQ) [9], and others [11,36,37,50].
However, they may not be directly applicable to the neuron retrieval
problem, as the features of 3D neuron morphological data are
dramatically different from 2D natural images, and different features
usually reflect different level of neuron similarity. For example, the
tree-like structure imposes a challenge to differentiate neuron types,
since treating all features with equal importance may lead to inaccurate
search results. In addition, although supervised binary coding and
hashing methods have already been investigated in medical image
analysis [19,48,49], it is preferred to employ unsupervised methods for
neuron retrieval, since the annotations for neurons may be incomplete.

Although neuromorphology and binary coding are both well-
studied in recent years, how to combine them for neuron retrieval
remains a challenging problem. Specifically, there are three challenges
in binary coding based neuron morphological retrieval:

1. The feature vectors of each neuron are much shorter 30-50
dimensions) compared with traditional 2D images' feature vectors
100-10000 dimensions). Therefore, only much shorter bits of binary
codes can guarantee the retrieval efficiency. Employing much shorter
binary codes to represent large-scale neuron data is a great
challenge;

2. Despite the limited length of neuron feature vectors, each type of
feature has their specific meaning, e.g., branch number reflects the
connection of neuron cell. Bipolar neurons have two branches, while
multipolar neurons have three or more branches connected with
other neurons. Currently, most image retrieval methods are either
addressing the single feature's binary coding or fusing multiple
features in different retrieval stage [3,21,44,46,47]. However, in
neuron retrieval problem, each single feature is too short to obtain
reliable retrieval results, and fusing multiple features is usually time-
consuming. Thus, the specific biological indication and the compu-
tational complexity in neuronal feature representation need to be
considered.

. As each neuromorphological feature is extracted based on the tree-
like structure, this limitation of feature extraction may cause a tough
question, in which the tree-like structure will lead to similar features
extracted from different types of neurons, e.g., some unrelated
neurons express similar feature vectors. How to differentiate them
in non-linear space is a hard problem.

In this paper, we design a binary coding framework to effectively
and efficiently analyze large neuron databases. This framework is based
on the recent progress of the maximum inner product search, which
was proposed for image retrieval [35]. Specifically, we employ the
method in Ref. [35] as the baseline, and then adapt it to handle
multiple features or feature hierarchies, which is necessary to achieve
high precision in this neuron retrieval. We validate the efficacy of the
proposed method in the neuron retrieval problem with a large-scale
database, and it outperforms several other binary coding or hashing
methods. In addition, according to the neuron information provided by
NeuroMorpho [28], our proposed method can retrieve similar neurons
in terms of the morphology, cell types and brain regions.

The remaining paper is organized as follows: Section 2 briefly
reviews the work related to 3D neuron morphology and binary coding
methods. Section 3 provides the details of the proposed MIPS based
binary coding with feature hierarchy for neuron retrieval system,
followed by experiment results and discuss its potential use case in
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Section 4. Finally, Section 5 concludes the paper and presents future
work.

2. Related work
2.1. Neuron tracing for 3d neuron morphology

Neuron tracing aims to manually or automatically reconstruct 3D
neuron morphology from fluorescence or electron microscopy images.
Compared with 2D neuron image, 3D morphological data reflect spatial
structure of the 3D neuron cell with more comprehensive information
[51]. From the original microscopy images to the 3D neuron morpho-
logical data, neuron tracing consists a number of processing step,
including image preprocessing (e.g., noise reduction, deconvolution,
mosaicking), segmentation (e.g., soma, dendritic trees, spines, axons
segmentation), reconstruction and connection [6,7,23,39,52]. In recent
years, there are many tracing and reconstruction software released
which make the 3D neuron morphological data easier to acquire.
Fig. 1 illustrates a microscopy image from neuron slices [26] and its
corresponding 3D morphological data through Vaa3D [32]. As shown
in Fig. 1(b), morphological data provides more precise and quantitative
measurements for neuron cells which facilitate features extraction for
further retrieval and analysis..

Benefited from algorithms and software for neuron tracing, more
and more 3D morphological databases are released in recent years.
Unlike 2D medical images which can extract features with many well-
studied algorithms, how to extract features from 3D neuron data is still
an unsolved problem. For neuron cells, from axon to soma and then to
dendrite, they usually express a tree-like structure. In Refs. [5,43], the
authors introduced many quantitative measurements to analysis the
tree-like structure of neuron cells.

Therefore, we can utilize these quantitative measurements as
neuron morphological features. Specifically, we calculate three levels
of measurements in order to reflect neuron morphology more com-
prehensive:

1. Global measurements, such as neuron's total height, depth, volume,
etc. This level of features can express the holistic information of
neuron cells;

. Branch measurements, such as the Euclidean distance from com-
partments to somas, branch length, etc. This level of features
denotes the information of neuron branches that are directly
connected to the soma;

. Bifurcation measurements, such as the angle between two terminal
branches, etc. This level of features reflects the bifurcation's
information of branches not directly connected to the soma.

In this paper, we calculate in total 38 measurements at the above
three levels. Then we assemble them as morphological features to
represent each neuron cell for further retrieval and analysis.

(2)

Fig. 1. From original microscopy neuron image to 3D morphological data: (a) original
microscopy slices; (b) 3D neuron morphology with quantitative measures.

(®)
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2.2. Image retrieval via binary coding

In recent years, binary coding and hashing have been widely used in
machine learning, computer vision and related areas. By compressing
long feature vectors into short binary codes, similarity search will be
much more efficient in binary Hamming space compared with high
dimensional feature space. The key question is how to obtain binary
coding or hashing functions which can not only split feature vectors via
binary codes but also keep similarities among original data. Recently,
Wang etc. [41] presents a comprehensive survey with various types of
hashing methods, including data-independent and data-dependent,
supervised and unsupervised, linear and nonlinear, etc.

Data-independent methods usually design generalized binary cod-
ing or hashing functions to compact any given datasets. Locality-
Sensitive Hashing (LSH) and its variants [8,15,33] are one of the most
representative data-independent methods. This type of methods en-
sures the data similarity with long binary hash bits and multiple hash
tables. However, these methods may not suit neuron retrieval problem
because of the tree-like structure of neurons and their non-separability
in Euclidean space. Another category is the data-dependent methods,
whose their binary coding functions are obtained through learning
from the given datasets. A large number of learning-based methods are
proposed in recent years, including Iterative Quantization (ITQ) [9],
Isotropic Hashing (IsoHash) [14], Minimal Loss Hashing (MLH)
[29,30], FastHash [17], etc. Some of them are supervised methods
which have already achieved high performance in large-scale retrieval.
But current neuron database such as NeuroMorpho [28] lack enough
normative annotations for every neuron. Therefore, unsupervised
binary coding is a better choice for neuron retrieval. In addition, as
mentioned before, the difference of some unrelated neurons can be
subtle, which is hard to distinguish in linear space. Compared with
linear binary coding/hashing algorithms, nonlinear algorithms usually
generate more sensitive binary codes to divide data in nonlinear space.
Representative methods such as Kernel-Based Supervised Hashing
(KSH) [19], Spectral Hashing [42], Anchor Graph Hashing (AGH) [20],
Inductive Manifold Hashing (IMH) [20], etc., they construct coding
functions based on nonlinear kernel matrix or manifold structure.
However, one disadvantage of the above mentioned nonlinear methods
is that they fail to consider the diversity among different features when
learning binary codes.

Different from the previous hashing methods, we will first fuse
features into similarity matrix at different hierarchies. Then we will
learn two asymmetric binary coding functions based on the maximum
inner product search (MIPS) for query neuron and neuron database
respectively. This unsupervised strategy considers the feature diversity
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and also split data into highly nonlinear space, which shows superior
performance for neuron morphological retrieval task.

3. Methodology

In this section, we present the theoretical and technical details of
our large-scale neuron morphological retrieval system, including the
MIPS notation, feature hierarchy and asymmetric optimization.

3.1. Overview

In our framework, we compute morphological measurements
(described in Section 2.1) as features to represent each neuron data.
Although directly measuring the similarity between feature vectors
offers an accurate solution, the computational efficiency is an issue,
especially when searching in a large-scale database with tens of
thousands of neurons. Therefore, we focus on learning coding functions
to transform morphological features into binary codes. Fig. 2 shows the
overview of our proposed framework. In the training phrase, after
feature extraction, we group different features into several hierarchies
to compute the similarity matrix. Then, we learn binary coding
functions which can maximize inner product between two training
data sets. Particularly, for optimization convenience, we jointly max-
imize two asymmetric coding functions 4(-) and z(-) for the neuron
database and the query neuron respectively. With these coding func-
tions, in the query phase, the features of query neuron and all neurons
in the database are compressed into short binary codes. Then, their
inner product can be calculated and ranked in descending order. By
selecting neurons in the database with top-K largest inner product, the
characteristics of query neuron can be identified based on the retrieved
neurons..

3.2. MIPS based binary coding with feature hierarchy

Background of MIPS: Let's denote the training neuron data set
as A = {a,...,a,...,a,} C R"*¢ which include n neurons, and each
neuron has d dimension of features. From each neuron M types of
morphological features are extracted, denoted as
a;, = [a,..,aY, aM] e R™* whered = Z;il d;. Assuming the query
neuron is q € R'¢, the MIPS problem can be defined as:

— T
p = arg gleai(aiq (1)
which finds the largest inner product between q and each element in A.
As demonstrated in Ref. [19], the Hamming distance and the code
inner product have a one-to-one correspondence. To accelerate com-
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Fig. 2. Overview of the proposed neuron morphological retrieval framework.
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putation and save storage, it is practical to employ binary coding
method to tackle MIPS problem. A coding function h is learned to map
the original feature vectors to bits of binary codes. Thus, problem (1) is
reformulated as:

— \T
p = arg gleaz h(aph(q) @)
Compared with common binary coding methods based on Hamming
distance minimization, h is likely to be a non-linear function through
MIPS, which is more suitable for the neuron retrieval database that is
linearly inseparable.

In Ref. [38], Shrivastava and Li proposed the Asymmetric Locality
Sensitive Hashing (ALSH) method, proving that it is impossible to
inherit the high collision probability guarantee of MIPS problem under
current LSH framework. In fact, by adopting two different binary
coding functions 4(-) and z(-) to compute the inner product of the
database and query, the MIPS can be converted as the standard L,
nearest neighbor search problem [35,38]. Accordingly, to generate
more effective binary codes, we also adopt two coding functions for the
MIPS problem:

— \T'
p = arg max h(a)z(q) 3)
The remaining issue is how to learn two coding functions 4 (-) and z(-),
which can generate effective binary codes to make the query neuron
finding the corresponding similar neurons in database.

Binary Coding for Neuron Retrieval: For the training neuron
data set A, we assemble another neuron set X c R”*¢ which is
randomly sampled from the training set. We denote matrix S € R™"
which reflect the similarity of each neuron between A and X. The idea
of MIPS based binary coding is to learn coding functions which can
make the inner product of A and X to approximate with S in the form
of binary codes:

. T @R
I}qllﬂ 1 (A)z(X)" — S| )
where § is the binarization form of S by its mean value. Instead of
directly solving this challenging problem, we discard its quadratic part
after expansion and only focus on the correlation between similarity
matrix S and 7 (A)z(X)T. Since the discarded quadratic part is the
regularization term, which does not include any ground truth informa-
tion. Thereby, Eq. (4) can be re-defined as:

ra

rleix trace(h(A)'Sz(X)) )
In practice, we find that omitting the quadratic part does not affect the
binary coding performance. It also makes the problem easier to
optimize, because the similarity term is more efficient to solve for the
non-linear differentiation of neuron morphologies. Subsequently, we
define two binary coding matrices W, R € R%*" to substitute the coding
functions, where 4 (A) = sgn(AW), z(X) = sgn(XR), and r is the bits of
binary codes for each neuron. Generally, W and R are initialized by
Principal Component Analysis (PCA) projections or random genera-
tion. Then, we obtain Eq. (5) in a new form:
max trace (sgn (AW)TS sgn(XR))

W.R ©)
In this objective function, we need to optimize W and R from the
training neurons A, X and their similarity matrix S. Generally, S is
computed by inner product, S = AXT. However, in this work, the
extracted morphological features usually express different representa-
tive of similarity for neuron cells. Simply aligning these features
together to compute similarity matrix may generate ineffective binary
codes. Therefore, we first consider feature diversity to compute a more
suitable similarity matrix, then optimize W and R for the Eq. (6).

Feature Hierarchy: For the single type of neuron feature, e.g., j*"*
feature, its similarity matrix can be obtained by the corresponding
inner product of AY and X:

683
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S = AN (XU 7)

Many articles [13,21] treat the above SU) as feature kernels and fuse
multiple kernels together with different weights to compute the
similarity matrix:

M
S = 2 M,»S‘”
pa ®)

where y; is the similarity weight of j™ feature. In most case, there are
either few types of features or few numbers of training data, so the
computational complexity of S is acceptable. However, in large-scale
neuron retrieval, many features' similarity matrices need to be calcu-
lated (38 features in this paper), and usually thousands of neurons in
database should be set as the training data to ensure the retrieval
precision. The computational complexity of the similarity matrix is an
issue in the neuron retrieval task.

Since neuronal features are extracted from the tree-like structure,
neuron retrieval can also benefit from being treated as the similarity
search of the tree-like structures. Despite the fact that each type of
feature has its specific meaning, they can be grouped into hierarchies
according to their different levels of representation. The similarity
levels can also be computed hierarchically, e.g., the measures of soma
(tree's root) and branches (tree's vertices and edges) at the global level
(i.e., height, width of the whole neuron cell), features measured in the
branches directly connect with soma at first level branches, etc.
Assuming there are L hierarchies for all types of features; the similarity
matrix can be re-calculated as:

L
S= Y w[AN(ZO)

I=1

)

where A® = [AUD, .. AW] means that features j,...,j are grouped
together and they all belong to the I hierarchy. Consequently, the
computation efficiency will have great improvement via the feature
hierarchy process (L<M). More importantly, each hierarchical weight
@, is much easier to acquire compared with each feature's weight ;. In
practice, hierarchical weights are determined by the neuronal tree-like
structure, and we will discuss it the experiment.

Asymmetric Optimization: After computing the similarity ma-
trix via feature hierarchy, we adopt an asymmetric strategy to solve the
optimization problem of Eq. (6).

As both W and R are constrained by the sign function, it is hard to
simultaneous optimize them together. Instead, we first assume that the
right part of Eq. (6) is fixed as a constant matrix Z = sgn(XR), and then
we consider the following sub-problem with variable W:

s
m“a}x trace (sgn(AW)'SZ) (10)
In the same way, fix the left part H = sgn(AW), we can obtain the sub-
problem with variable R:
ra

rxglx trace(H'S sgn(XR)) (11)
Compared with Eq. (6), only one sign function and coding matrix are
included in each sub-problem. Based on this asymmetric design, if we
can solve the two sub-problems, then optimal W and R for the whole
problem can also be obtained by several alternative iterations between
(10) and (11).

For the sub-problem (10), despite that only one sign function
remains, it is still a discrete optimization issue. To solve this, we
introduce an auxiliary variable B € {—1, 1} as the binary codes of A
to replace the discrete part sgn(AW), and the sub-problem (10) can be
separated into two terms:

TQ 2
E&\yxtrace[(B SZ) — 1 ||B — AW||7] 12)
The first term maximizes inner product via the learned binary codes,
and the second term ensures that AW can approximate with the target
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binary codes B. A is denoted as a trade-off parameter between these two
terms. Subsequently, W can be optimized by several alternative
iterations with B:

{B = sgn(SZ + 21AW)

W = AB (13)

where Al is the pseudo-inverse of A. Optimal W of this sub-problem
will be acquired until coverage or reach maximum t iterations.

After solving (10), we denote D € {—1, 1} as the auxiliary
variable for sgn(XR), then the optimal R for sub-problem (11) can
also be acquired in the same way:

{D = sen(8"H + 24XR)

R = XD 14)

As these W and R are the local optimal results of two sub-problems,
we denote such alternative iterations between coding matrices and
auxiliary variables as the inner loop. To obtain the optimal coding
matrices for the objective function (6), several outer alterative itera-
tions between (10) and (11) are still needed until coverage or reach
maximum iterations.

3.3. Implementation Details

Given the training neurons A and X, our framework learns effective
coding functions for neuron morphological retrieval using feature
hierarchical binary coding with MIPS, as outlined in Algorithm 1.

Algorithm 1. Feature hierarchical binary coding with MIPS.

Input: training data A and X.

Output: binary coding matrices W and R.

1: Extract M types of morphological features for each neuron in the
training data;

2: Group features into L hierarchies;

3: Compute the similarity matrix through Eq. (9);

4: Initialize binary coding matrix W and R by PCA projections;

5: repeat

6:  Solving sub-problem (10): compute W by the inner loop of
(13), where Z = sgn(XR);

7. Solving sub-problem (11): compute R by the inner loop of (14),
where H = sgn(AW);

8: until converge or reach maximum 7 iterations

With the learned coding matrix W, the morphological features of
every neuron in the database a; € R'¢ can be mapped to binary codes
via the coding function /4 (a;) = sgn(a;W). Similarly, with coding matrix
R, the binary code of query neuron is calculated by z(q) = sgn(qR).
Then, the similarity search problem between query neuron and the
neuron database is transformed as the inner product ranking of their
binary codes. For the query neuron, the similar neurons are defined as
the neurons with top-K largest inner product, and these similar
neurons can further be used to interpret biomedical meanings of the
query neuron.

4. Experiment

In this section, we first introduce the experimental setting and
present the evaluation metrics of our system for neuron morphological
retrieval. Then, we demonstrate its use case in neuron identification
and analysis. We also provide in-depth discussions of the proposed
neuron retrieval system.

4.1. Experimental setting

Our experiments were carried out on the NeuroMorpho.org data-
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base [28], which has the largest collection of publicly accessible 3D
reconstructed neuron data. Specifically, we consider the entire 17,107
Drosophia Melanogaster neurons to evaluate the retrieval performance.
Each neuron's morphological information was recorded in a SWC
format file including point coordinate value, soma's position, etc [2].
We employ L-measure toolbox [34] to extract 38 quantitative measure-
ments as morphological features for each neuron. Then, each morpho-
logical feature is normalized with their mean value and standard
deviation.

As mentioned in Section 2.1, we calculate the measurements in
three levels, i.e., global, branch and bifurcation. In practice, for
computational convenience, we also group features in such three
hierarchies. The similarity weights of each hierarchy are empirically
obtained by the tree-like structures and neuronal properties. Due to
the linear inseparability of neuronal structure, unrelated neurons
are likely to express similarities in the global viewpoint. On the
other hand, neurons with some common properties (e.g., cell types,
brain regions) tend to express similarities in branch structure but
different in bifurcation if they are not exactly the same. Therefore,
we set global hierarchy with low weight to reduce the influence of
non-linear structure. Then, we assign highest weight for branch
hierarchy and next-highest weight for bifurcation hierarchy to
make sure that we can retrieve neurons with common properties
and also differentiate them in subtle level. In the experiment, we set
global, branch and bifurcation hierarchies with the weights ratio of
1:14:5, which can achieve promising performance for neuron
retrieval.

In our system, training data sets A and X are random sampled,
covering 80% of the whole Drosophia Melanogaster neurons database.
For the MIPS based binary coding, maximum iterations of the inner
loop and outer loop are 100 and 10 respectively. The trade-off
parameter A is set as 34. The length of binary codes for each neuron
is scalable in our method, which is determined by the size of coding
matrices W and R. Generally, W and R are initialized by PCA
projections. They can also be initialized by random generation if we
want to obtain binary codes which are longer than the feature vectors.
All experiments were conducted on a desktop with a 3.6 GHz processor
of eight cores and 32 G RAM.

4.2. Evaluation of the Neuron Retrieval

To evaluate the efficacy of our method for neuron morphological
retrieval problem, we compare the retrieval performance in multiple
views with three state-of-the-art unsupervised binary coding and
hashing methods:

1. SH [42]: Spectral hashing is a well-known algorithm which harness
nonlinear manifold structure to produce neighborhood-preserving
compact binary codes;

.ITQ [9]: TIterative quantization is based on PCA projection for
dimensionality reduction and minimizes quantization error via
orthogonal transformation. It is a very effective binary coding
method for most natural image retrieval problem;

.AGH [20]: Anchor graph hashing discovers the neighborhood
structure inherent in the data to learn appropriate compact codes,
which has already shown its excellent performance in mammogram
retrieval [18].

As neuron morphology is correlated with their cell types and brain
regions, for the Drosophia Melanogaster neuron database which has
various cell types (around 100) and brain regions (around 50), we
select 233 projection neurons (PN) in olfactory bulb and 19 lateral horn
neurons (LH) in protocerebrum as queries, which is consist with
[16,40]. In the testing phrase, the correctly retrieved neurons are
defined as if they have the same cell types and brain regions with the
query neuron.
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Fig. 3. Retrieval performance of four compared methods, 32 bits of binary codes are used: (a) precision curve; (b) precision-recall curve.

For all the PN and LH queries (252 in total), Fig. 3(a) shows their
average retrieval precision of four competitive methods under different
number of retrieved neurons. Here we denote retrieval precision as the
percentage of correct neurons in all the retrieved neurons. Every
method generates 32 bits of binary codes to represent each neuron.
According to Fig. 3(a) we can see that our method significantly
outperforms all other advanced binary coding methods in terms of
retrieval precision. It mostly benefits from the feature hierarchy
processing and MIPS based binary coding. As we group features into
different hierarchies, in which each hierarchy reflect their correspond-
ing levels of neuron representative, more suitable similarity matrices
are obtained for the continued binary coding. Additionally, the
employed MIPS baseline is more likely to generate effective binary
codes for the linearly inseparable neuron data, since the inner product
embedded objective function are more likely to map coding matrices
into non-linear space, and the asymmetric optimization strategy
provides a convergent solution. Fig. 3(b) provides the precision-recall
curves for the above four methods. We can easily observe that the
performance of the compared methods is consistent with the above
analysis. Our method still performs the best among the compared
methods..

We also report the retrieval precision of the compared methods
using 16, 24 and 32 bits of binary codes respectively. As SH [42] and
ITQ [9] can only generate binary codes shorter than feature vectors (38
dimensions in this paper), we only compare the precision of the four
methods with bits which are less than 38. From Table. Table. 1, we find
that our method can always achieve the highest precision under
different bits of binary codes. These results verify the proposed method
can generate more effective and representative binary codes for data
residing embedded in the non-linear structure. In addition, from 16
bits to 32 bits, the retrieval precisions of our method are approximately
equivalent, which demonstrate that asymmetric design for MIPS based
binary coding can help us obtain convergent results in several alter-
native iterations.

Table 1

Beside the retrieval precision, the proposed method also demon-
strates the computational efficiency in the testing phrase. Compared
with traditional similarity search methods such as k-Nearest
Neighbors, our binary coding method is 30 times faster (252 queries'
retrieval in 0.17 s). This merit will be particularly beneficial in the
future when more dimensional features are extracted and larger scale
databases are used.

Fig. 4 present four random selected query neurons and their
corresponding top-5 retrieved neurons through our method. We
employ Vaa3D [32] to display these neurons. Generally, the retrieved
neurons present similar morphologies with their query neurons, which
verify the effectiveness of feature extraction procedure and the
proposed binary coding method..

4.3. Neuron identification and analysis

With the development of neuron tracing, an increasing number of
newly reconstructed neurons are released in recent years. However, most
of them lack basic annotations such as cell types, brain regions, transmit-
ters, which block neuroscientists to study their morphologies and struc-
tures with associated functions. Therefore, identifying basic characteristic
for unknown neurons is an urgent demand for further exploration.

Based on the fine-grained retrieval results, it is reasonable to apply
our method for neuron identification. We select a query neuron and
assume that its characteristics are unknown. After running the
morphological retrieval procedure by our method, Fig. 5 shows the
distribution with respect to top-20 retrieved neurons' cell types and
brain regions. According to the statistical information presented in
Fig. 5, the query neuron most likely locates in olfactory bulb, and it
belongs to the class of projection neuron. From these characteristics,
we can reasonably infer that the query neuron is relevant to drosophi-
la's olfactory system, and it projects information to other areas.
Meanwhile, the information provided in NeuroMorpho.org [28] also
verifies our inference about the query neuron..

Comparison of retrieval precision with 16, 24, 32 bits of binary codes under different number of retrieved neurons.

Method top10 top20 top50

16-bit 24-bit 32-bit 16-bit 24-bit 32-bit 16-bit 24-bit 32-bit
SH [42] 0.8046 0.8116 0.8115 0.7211 0.7221 0.7264 0.5043 0.5102 0.5192
ITQ [9] 0.8278 0.8298 0.8381 0.7595 0.7599 0.7615 0.6338 0.6394 0.6483
AGH [20] 0.8254 0.8329 0.8353 0.7603 0.7861 0.7980 0.6325 0.6423 0.6874
Ours 0.8889 0.8810 0.8909 0.8428 0.8378 0.8438 0.7436 0.7440 0.7451
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Fig. 4. For each neuron on the left (red), top-5 retrieved neurons on the right (blue) through our method, which illustrate the morphological similarity between query neurons and

retrieved neurons.
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Fig. 5. The distribution of cell types and brain regions for top-20 retrieved neurons.

In addition, we find that Nanda et al. [27] also tried to add
annotations of brain regions and cell types for the NeuroMorpho.org
[28] database. However, they obtained brain region information from
online record and brain image stacks. Then, they used the text-based
query tool to search neurons with given distance (10, 20 um) in each
region to determine whether the neuron is mapped to a single region or
more than one region. In addition, the authors identify cell types based
on the brain regions invaded by the neurite terminals of every neuron.
Obviously, compared with this method, our neuron morphological
retrieval system is more suitable for the annotation of neuron database.
Since the fine retrieval results provide useful reference from other
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similar neurons, and statistical analysis can be subsequently used to
determine the most reliable annotations.

4.4. Discussions

We discuss the benefits and limitations of the proposed neuron
morphological retrieval system here.

In the training phase, to obtain effective coding matrices W and R,
we employed alternative iteration strategy in both inner and outer loop.
Although such strategy cannot guarantee to achieve the globally
optimal solution for the discrete optimization problem, at each step,
the local optimum W and R is obtained with several iterations.
Fig. 6(a) illustrates the accumulative value of W and R at each iteration
of the outer loop. We also show the objective values of Eq. (6) with
increasing number of iterations in Fig. 6(b). As we can see, W, R and
the objective value can be fast converged within 10 iterations.

Another significant benefit of our proposed retrieval system is the
introduction of feature hierarchy. On the one side, the extracted
features have different levels of representation for the neuron mor-
phology, considering their diversity is essential; on the other side,
calculate each feature's weight is very time-consuming, and it's usually
hard to acquire. Therefore, we group features into different hierarchies
based on their location in the tree-like structure, then assigning each
hierarchical weight empirically. This process not only considers each
feature's diversity, but also reduces the computational complexity.
Besides, benefited from the MIPS based binary coding design, we can
assemble such hierarchical information in the similarity matrix, which

9
2910 . . ; . .

Objective Value

2 L . . . L
0 5 10 15 20 25 30

Iterations

(®)

Fig. 6. Convergence properties of our method: (a) accumulative value of W and R with iterations; (b) objective value with iterations.
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Fig. 7. Retrieval precision before and after feature hierarchy.

result in significantly improvement of the binary coding performance.
Fig. 7 presents the retrieval precision curve before and after feature
hierarchy, which validates the introduction of feature hierarchy can
surely improve the retrieval performance..

There are also some limitations in our neuron morphological
retrieval system. The first limitation is the feature extraction method.
Restricted by the current morphological analysis techniques, the
features are only extracted according to the tree-like structure. In
order to meet the feature hierarchy strategy, we only extract 38
dimensional features from global, branch and bifurcation level respec-
tively. Indeed, more kinds of features can be used to represent neurons,
which facilitate the learning of more effective binary codes. The second
limitation is the weights setting during feature hierarchy. In this paper,
the weights are determined empirically, which may not be optimal for
the neuron retrieval problem. A better solution is to compute weights
through learning and optimization method based on label information.
In addition, the trade-off parameter A is also set empirically. In the
experiment, we varied A from 1 to 1000 and find that A = 34 can
achieve the best retrieval performance.

5. Conclusions

In this paper, we presented a large-scale morphological retrieval
framework for neuron identifcation and analysis. Specifically, we first
introduced the feature hierarchy strategy to consider feature diversity
with low computational complexity, and then employed a novel binary
coding method based on MIPS, which not only achieved fast neuron
retrieval, but also diferentiated the linearly inseparable morphological
space with high precision. Experimental results ver-ified the efficacy of
our neuron morphological retrieval method and also illus-trated its
application in neuron identifcation. Based on the present work, we will
study how to extract more representative features from 3D neuron
morphological data. Furthermore, we will incorporate with few experts'
information to automatic learning hierarchy weights, and also design a
semi-supervised binary coding method to boost the retrieval precision.
We will also apply our framework to explore the relationship between
neuron structure and function.
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