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This paper proposes a novel framework to help biologists explore and analyze neurons based on retrieval
of data from neuron morphological databases. In recent years, the continuously expanding neuron data-
bases provide a rich source of information to associate neuronal morphologies with their functional prop-
erties. We design a coarse-to-fine framework for efficient and effective data retrieval from large-scale
neuron databases. In the coarse-level, for efficiency in large-scale, we employ a binary coding method
to compress morphological features into binary codes of tens of bits. Short binary codes allow for real-
time similarity searching in Hamming space. Because the neuron databases are continuously expanding,
it is inefficient to re-train the binary coding model from scratch when adding new neurons. To solve this
problem, we extend binary coding with online updating schemes, which only considers the newly added
neurons and update the model on-the-fly, without accessing the whole neuron databases. In the fine-
grained level, we introduce domain experts/users in the framework, which can give relevance feedback
for the binary coding based retrieval results. This interactive strategy can improve the retrieval perfor-
mance through re-ranking the above coarse results, where we design a new similarity measure and take
the feedback into account. Our framework is validated on more than 17,000 neuron cells, showing
promising retrieval accuracy and efficiency. Moreover, we demonstrate its use case in assisting biologists
to identify and explore unknown neurons.

� 2017 Elsevier Inc. All rights reserved.
1. Introduction

Analyzing single neuron properties, such as cell types, brain
regions, functions, and development stages, is usually a fundamen-
tal task for understanding the nervous system and brain working
mechanism. Given the huge numbers of neuron cells in the human
brain, it is infeasible to understand every neuron’s properties
through traditional biological experimentation and quantitative
computation. Generally, neuron morphology plays a major role in
determining neuron’s network connectivity, functional and physi-
ological properties. It is therefore reasonable and essential to
explore neuronal properties according to their morphologies.
Recent developments in the frontiers of neuroscience (e.g., BigNeu-
ron [1]) have greatly facilitated research in neuron morphology,
and an expanding number of neurons are being reconstructed
and added to the public repositories [3,2]. These fast-growing large
databases provide a new avenue to help biologists explore and
analyze neuronal properties [4,40,24]. Specifically, given an
unknown neuron, we can retrieve neurons with similar morpholo-
gies in the databases. These retrieved similar neurons can be used
to identify the unknown neuron and discover latent knowledge of
their morphologies and properties.

Recently, researchers have been actively investigating this neu-
ron morphological retrieval issue. For example, Costa et al. [9] first
presented NBLAST to measure pairwise neuronal similarity. NBLAST
considers both the position and local geometry, decomposing neu-
rons into short segments and score matched segments to decide
the similarity level among neurons. Subsequently, Wan et al. [49]
designed BlastNeuron for automated comparison, retrieval, and
clustering of 3D neuron morphologies. In the retrieval stage,
BlastNeuron searches similar neurons via the normalization of the
ranked scores in terms of the similarity of feature vectors. Despite
their high accuracy, these two methods could be inefficient when
handling large-scale neuron databases. Mesbah et al. [32] proposed
a data-driven hashing scheme, i.e., Hashing Forest, to search among
large neuron databases. By establishing multiple unsupervised ran-
dom forests, 128 or more binary bits are generated to represent
morphological features. The Hashing Forest has achieved efficient
and accurate results in neuron retrieval [7,6]. Nonetheless, it usu-
ally needs a large number of binary bits (e.g., larger than 128), and
its efficiency can be further improved with shorter codes.
Accordingly, how to search similar neurons in large-scale
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databases with high efficiency and accuracy is the main focus in
neuron retrieval.

As described in [32], binary coding and hashing have been
widely applied in content-based image retrieval (CBIR), which tar-
get efficient similarity search in large-scale databases
[50,56,55,58]. Binary coding/hashing methods usually train a cod-
ing function from the batched image databases, and then employ
the coding function to transform image features into short binary
codes. Many representative methods have been proposed in recent
years, including, but not limited to, Spectral Hashing (SH) [51],
Iterative Quantization (ITQ) [15], and Asymmetric Inner-product
Binary Coding (AIBC) [48]. Despite the good performance in CBIR
problem, they may not be directly applicable to the neuron retrie-
val problem, since the neuron databases are continuous expanding.
Due to the recently well-developed neuron tracing techniques, an
increasing number of neuron cells are reconstructed and added
to the databases in a streamed manner. For example, the
NeuroMorpho database [3] usually releases 1000–2000 recon-
structed neuron cells with each update. If we re-train the coding
function every time from scratch, using both the original and the
newly added neuron batch, it is very time-consuming and
adversely affects the efficiency of exploration.

Besides the problems of efficiency, there are two limitations
influencing the retrieval accuracy of the neuron data. First, the
neuron databases lack supervised information, i.e., no sufficient
annotations to label the class of every neuron [4,34]. Generally,
supervised retrieval is more accurate than unsupervised retrieval,
since it can bridge the gap between low-level image descriptors
and high-level semantic meaning. In the neuron retrieval problem,
if we only consider the low-level neuronal morphologies, the
retrieval results may not be consistent with their functions and
properties. Second, binary coding can only provide coarse retrieval
results for neuron morphological data [27,59,57]. As each neuron
cell has a tree-topological structure, the difference among neuron
morphologies can be subtle. Moreover, coding functions do not
have a one-to-one correspondence when mapping morphological
features into binary codes. This may present a difficult question,
in which some unrelated neurons are represented by the same bin-
ary codes. The above two problems should be addressed to achieve
good retrieval performance in the neuron morphological data.

To alleviate these problems, we designed a novel framework to
achieve accurate and efficient data retrieval from large-scale neu-
ron morphological databases. Specifically, we employ a matrix
sketching technique [25] for binary coding, which can learn coding
functions from the sketched neuron data, significantly reducing the
matrix size of neuron databases, and continues to give good
approximations with an orthogonal matrix. To tackle the continu-
ously expanding neuron databases, we extend the binary coding
with an online updating scheme, where the coding function can
be updated on-the-fly without accessing whole neuron databases.
Subsequently, based on the coarse retrieval results from binary
coding, we introduce domain experts/users in our framework,
which can give relevance feedback to improve the retrieval accu-
racy. In our feedback model, domain experts/users are only
required to label the relevant samples with respect to query neu-
rons from top-z results. Then, the similarity levels of the unlabeled
neurons are re-ranked accordingly through our newly designed
similarity measure. To the best of our knowledge, this is the first
work that focuses on the interactive exploration of the continu-
ously expanding neuron databases.

The remaining paper is organized as follows: Section 2 briefly
reviews work related to 3D neuron morphology and content-
based image retrieval. Section 3 provides the details of binary cod-
ing and interactive neuron retrieval. Followed by experimental
results and discussion of potential use cases in Section 4. Finally,
Section 5 concludes the paper and presents future work.
2. Preliminaries

This paper pursues neuron exploration via the retrieval of mor-
phological data, which has a strong multidisciplinary component
that involves a nexus of ideas from neuroscience, machine learning
and information retrieval. In this section, we provide an introduc-
tion to 3D neuron morphology and content-based image retrieval.

2.1. 3D neuron morphology

Benefiting from recent advances in microscopy imaging and
neuron reconstruction [42,61,38], researchers have gradually elu-
cidated the 3D neuron morphology. Currently, two kinds of micro-
scopy imaging techniques can be used to obtain neuron images,
i.e., light microscopy (LM) and electron microscopy (EM). LM
images have long been used as a fundamental tool for neuroscien-
tists. EM images can usually achieve higher resolution and magni-
fication compared with LM images, but also have a higher cost and
require harsher specimen processing. Researchers have developed
a variety of methods for the reconstruction of LM and EM images
[10,37,54]. Generally, from the original 2D microscopy images to
the 3D morphological data, a neuron tracing system consists of
several processing steps, including image preprocessing (e.g., noise
reduction, deconvolution, mosaicing), segmentation (e.g., soma,
dendritic trees, spines, axons segmentation), reconstruction and
connection ([5,31,52,16,62,11,18]). Fig. 1(a) illustrates a neuron
slice [33] which includes microscopy images acquired from multi-
ple view points, and Fig. 1(b) presents the corresponding 3D recon-
structed neuron morphological data through the neuron tracing
software Vaa3D [38]. Accordingly, 3D morphological data can pro-
vide precise descriptions of neuronal shape and structure.

Given the 3D neuron morphological data, one critical problem is
how to mathematically represent these neurons for the further
retrieval and analysis, i.e., extracting feature vectors for each neu-
ron. Unlike 2D biological images which can extract features with
many well-studied algorithms, extracting good features from 3D
neuron data is still a challenging problem. Costa et al. [8] first pro-
posed the concept of neuromorphological space, which introduced
many quantitative measurements (e.g., neuronal height, number of
branches) based on the neuron’s tree-topological structure. Subse-
quently, many researchers have employed these quantitative mea-
surements as morphological features to represent each neuron
[9,49,32]. For example, Wan et al. [49] employed several global
measurements to reveal the overall morphology of neurons.

In this paper, we also utilize these quantitative measurements
as neuron morphological features. Specifically, as illustrated in
Fig. 1(c), we compute three levels of measurements to reflect neu-
ron morphologies comprehensively, i.e., bifurcation, branch and
global [23]. For example, the features in branch level indicate the
measurements regarding neuron branches that are directly con-
nected to soma, such as the brach length, the Eculidean distance
from compartments to somas. The above three levels of measure-
ments are invariant to translation, rotation and the tracing resolu-
tion. In the following sections, we employ the assembled
measurements as feature vectors to represent each neuron cell
for retrieval and analysis.

2.2. Content-based image retrieval

Content-based image retrieval (CBIR) is a long-term research
topic which aims at searching similar images by their content. As
a comprehensive application in computer vision and machine
learning, CBIR has developed many branches for different concerns
and targets. In this subsection, we introduce its two branches, i.e.,
hashing and human interaction, which are the main focus in our
neuron retrieval framework.
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Fig. 1. From original microscopy slice to 3D neuron morphology: (a) original microscopy slice; (b) 3D reconstructed neuron morphology; (c) three levels of measurements for
feature extraction.
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Numerous methods of binary coding/hashing have been pro-
posed in recent years. In CBIR, by compressing long feature vectors
into short binary codes, similarity search will be much more effi-
cient in binary Hamming space compared to high dimensional fea-
ture space. The key challenge is how to obtain coding functions
which can not only transform feature vectors via binary codes,
but also keep similarity and diversity among the original data.
One major taxonomy of hashing methods is whether they need
specified training data to obtain the coding functions, i.e., data-
independent and data-dependent. Locality-Sensitive Hashing
(LSH) and its variants [14,20,41] are one of the most representative
data-independent methods. Despite the fact that these methods
can generalize coding functions to compact any given datasets,
they usually need long bits of code to ensure good performance.
For the data-dependent category, a large number of methods have
been proposed in recent years. While these methods can only learn
coding functions for given datasets, they are usually more accurate
and efficient. Representative methods include Iterative Quantiza-
tion (ITQ) [15], AGH [29], Isotropic Hashing (IsoHash) [19], Mini-
mal Loss Hashing (MLH) [35,36], FastHash [26], etc. Despite the
good performance that these methods have achieved, all of them
are batch based methods, which learn coding functions from one
batch of training data. For the continuously expanding neuron
databases, as neurons are released in streamed fashion, we cannot
directly adopt the above methods for the neuron retrieval problem.

In order to improve retrieval performance and reduce the seman-
tic gap, some CBIR systems introduce domain experts/users in the
loop,which can interactivelyprovide relevance feedback for thepre-
vious retrieval results. Generally, for an image query and its coarse
retrieval results, there are three kindsmodels to give relevance feed-
back: (1) positive feedback, where the users only need to select rel-
evant images; (2) positive–negative feedback, where the users need
to select both relevant and irrelevant images; (3) positive-neutral-
negative feedback, where the users need to specify the degree of rel-
evance for all the retrieved images. A comprehensive review of the
early work on relevance feedback for CBIR is presented in [60]. Most
of the early approaches use themarked images as individual queries
and combine the retrieval results to refine the similarity weights of
relevant images [45,44]. In recent years, many algorithms in the
machine learning field have been used for the interactive CBIR prob-
lem, e.g., random forests [39], graph-cut [46], random walk [21],
manifold learning [17]. All these methods can improve the retrieval
performance with several rounds of interactive feedback. However,
it is still a challenging issuewhen applying user interaction in large-
scale neuron databases.

3. Methodology

This section presents the methodological details of our neuron
retrieval framework, including binary coding with online updating
and interactive neuron retrieval.
3.1. Overview

Fig. 2 shows an overview of our neuron retrieval framework.
The first part is training binary coding model (i.e., coding func-
tions) for the neuron databases. We apply matrix sketching
method on the feature vectors which are extracted from the origi-
nal neuron databases, generating the initial values (including data
sketch and virtual sample) for subsequent online updating. When a
new neuron batch becomes available, we combine it with the
aforementioned virtual sample. This combination can overcome
the mean-varying problem in continuously expanding databases.
The sketching result can subsequently be used for binary coding,
updating the current coding function. The new data sketch and vir-
tual sample are also stored for the next update. In the interactive
neuron retrieval part, feature vectors of query neuron and all neu-
rons in current databases can be compressed into short binary
codes based on the updated coding functions. Then the similarity
search between query neuron and neurons in databases are trans-
formed into the Hamming distance ranking between their binary
codes. To further improve the retrieval performance, we present
top ranked neurons to users. Users will give relevance feedback
to clarify which is similar with the query neuron. Our framework
can process the above feedback and re-rank the retrieval results.
Finally, the refined retrieved neurons can be used to help biologists
to explore and analyze the query neuron.

3.2. Binary coding with online updating

Matrix Sketching based Binary Coding: The goal of binary coding
is to compress feature vectors into short binary codes, keeping
diversities and similarities among original data. Denote a training
neuron database X ¼ fx1; . . . ;xi; . . . ; xng � Rn�d, which includes n
neurons, and each neuron has d dimension of features. We aim
to learn a coding function W 2 Rd�r that every normalized neuron
feature in X can be transformed into r bits of binary codes, i.e.,
hðxiÞ ¼ sgnððxi � XÞWÞ, where X is the mean value of X. Note that
feature normalization with zero mean is a crucial step in binary
coding, especially for neuron data, because each dimension of fea-
tures has their physical meaning. To learn effective binary codes,
usually two requirements should be satisfied: (1) binary bits are
uncorrelated and their variances are maximal; (2) numbers of 0
and 1 are roughly equal in learned binary codes of X. Same as
[50], the requirements are satisfied by maximizing the following
objective function:

JðWÞ ¼ 1
n
traceðWTðX� XÞTðX� XÞWÞ; s:t: WTW ¼ Ir�r ð1Þ

Instead of directly optimizing the above objective function, we
apply the matrix sketching technique [25,12,22] on the training
database to learn coding function from data sketch. Sketching is



00101...010
01100...100
10110...110...

10010...010

Retrieved Neruons

...

Binary Codes

User Interaction

Neuron Database

Query Neuron

Feature 
Extraction 

Search

Interactive Neuron Retrieval

Coding Function

Initialize

Original Database

OptimizeAdd

-1

1

-1

1

-1

1

Coding Function
Online Model Training

DisplayRefine

1 2[ , ,..., ]nx x x

1[ ,... ]ly y

Matrix SketchingNew Neuron Batches

...

Feature Extraction

-1

1

-1

1

-1

1

Fig. 2. Overview of our proposed framework, including online model training and interactive neuron retrieval.
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a data compression technique which can significantly reduce the
data size, without losing much data properties. Specifically, for
the neuron database X, we denote its matrix sketch as Y 2 Rl�d,

which has the property YTY � ðX� XÞTðX� XÞ. We employ the
Frequent-directions (FD) algorithm [13] to compute Y, as this algo-
rithm can effectively keep the property of matrix sketch. More
importantly, FD is a streaming algorithm which can sequentially
process the training data. In other words, when a new data batch
comes, the FD algorithm will update the current sketch which only
consider the new data one by one, without accessing the previ-
ously processed data. We show the advantage of such a streaming
strategy for the online updated neuron data in the next subsection.

Given the data matrix X, the FD algorithm can obtain its sketch
Y with a much smaller data size (l � n). Then, the objective func-
tion of binary coding can be re-written as:

JðWÞ � 1
n
traceðWTYTYWÞ; s:t:WTW ¼ Ir�r ð2Þ

This objective function is exactly the same as that of Principle
Component Analysis (PCA). The optimal coding function W can
be obtained by taking the top r eigenvectors of the data covariance
matrix YTY [15]. In addition, to alleviate the unbalance of different
dimensions in neuron data, we adopt orthogonal rotation R for the
above coding function, where W ¼ WR. However, since the sketch
Y is much smaller than the whole training data X, we cannot learn
the optimized R as ITQ [15], which relies on all training data.
Instead, we generate a random orthogonal rotation matrix, which
achieves promising accuracy and efficiency in our experiments.

Online Coding Function Updating: When new neuron batches are
added to the database, we need to update the coding function
accordingly to maintain the retrieval performance. Re-training
the coding function from scratch is very time-consuming, and
sometimes infeasible when the existing neuron database is too
large to load into memory. Considering that the FD algorithm can
compute the data sketch in a streaming manner, an intuitive solu-
tion is to set the previous database sketch as the initial value, and
then employ the FD algorithm to compute the sketch for newly
added data. The coding function can be also updated with the
newly computed data sketch. Unfortunately, this approach is
impractical because of the aforementioned feature normalization
requirement in binary coding. As the neuron database is continu-
ously changing, the mean value for normalization is also changed.
How to overcome this mean-varying problem is a critical step to
online update the coding function.

Assume Bk is the newly added batch at round k which include
mk neurons, and the current database is denoted as
Xk ¼ fB0;B1; . . . ;Bkg, where B0 is the original neuron database.
Then, the mean value of Xk can be computed as:
Xk ¼ Xk�1 � nk�1 þ Bk �mk

nk
ð3Þ
where Bk is the mean value of Bk and nk ¼
Pk

i¼0mi. Obviously, the
mean value of the neuron database is changed in each update. To
solve this problem, we introduce a virtual sample Ik, which consid-
ers the difference of mean value between the previous database and
the current batch [43,22]:
Ik ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nk�1mk

nk

r
ðBk � Xk�1Þ ð4Þ

Combining this virtual sample with the currently added neuron

batch, we can obtain a data set bBk:
bBk ¼ ½Bk � Bk;Ik� ð5Þ

At round k, we have a new set of data bXk ¼ fB0 � B0; bB1; . . . ; bBkg.
According to [43,22], in each update, bXk takes the shift of mean
into account and corrects such a shift by the virtual sample inbBk. More importantly, combining with Eq. (3), we find thatbXT

k
bXk ¼ ðXk � XkÞTðXk � XkÞ. This property indicates that the data

sketch of bXk and Xk � Xk is the same. Since bXk has no mean-
varying problem, we can employ the aforementioned FD algorithm

to sketch the continuously updated neuron data, i.e., sketch bBk to
obtain Yk, initialized by the previous data sketch Yk�1. Then the
coding function can be also updated on-the-fly via the matrix
sketching based binary coding. In each update, without accessing
the entire neuron databases, we only need to keep the mean value
Xk (through Eq. 3), data size nk (through nk ¼ nk�1 þmk) and the
data sketch Yk. Therefore, this binary coding with online updating
scheme can efficiently tackle the continuously expanding neuron
databases for further retrieval and analysis.
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3.3. Interactive neuron retrieval

According to the above binary coding method, as illustrated in
Fig. 2, we can compress the query neuron and all neurons in the
current database into short binary codes, through the learnt coding
functions. Then the similar neurons can be retrieved based on their
Hamming distance ranking with the query neuron. As discussed in
Section 1, binary coding can only provide coarse retrieval results
for the neuron morphological data. Therefore, given the coarsely
retrieved neurons (e.g., neurons with top-Z minimum Hamming
distance), we propose to introduce domain experts/users in the
framework, which can interactively provide relevance feedback
to refine the retrieval results.

Fig. 3 presents an illustration of our user interaction interface.
For a query neuron, it first searches similar neurons based on the
aforementioned binary coding method. Then we display the top-z
(z = 16 in Fig. 3) retrieved neurons to users, and users will compare
and observe these neurons to decide whether they are relevant to
the query neuron. This feedback scheme is easily implemented
since it requires users to give only one-click inputs. Unlike many
interactive models which require users to specify the class of the
retrieval results [39,53,30], our strategy is particularly suitable
for neuron databases which have insufficient annotations to clas-
sify every neuron.

After receiving the interactive feedback from users, our frame-
work is able to process this feedback to improve the retrieval per-
formance. Benefiting from the binary coding step which can
efficiently provide the coarse retrieval results, we first define the
outer scope size Z, where most similar neurons are included in
the top-Z coarse results. Subsequently, we define the inner scope
size z, which represents the number of neurons that should be pre-
sented to the users at each feedback round. In practice, Z is larger
than z but much smaller than the size of the whole neuron data-
base. During the interactive neuron retrieval phase, we focus on
re-ranking these Z coarse neurons to obtain fine-grained results.

In the tth round of relevance feedback, VðtÞ is the set of labeled
similar samples from users which include mðtÞ neurons. As neurons
in VðtÞ are all similar with the query neuron, we can assemble them
together to interpret and re-rank the similarities for the rest of the
unlabeled neurons. Denoting Eðxi;xjÞ as the similarity measure
between two neurons xi and xj, for one unlabeled neuron in tth

round of relevance feedback xðtÞ
i , we re-define its similarity with

the query neuron as follows:

EðtÞ
i ¼ kEðxðtÞ

i ; xqÞ þ ð1� kÞ 1
mðtÞ

XmðtÞ

j¼1

EðxðtÞ
i ;xðtÞ

j Þ ð6Þ

where xq is the query neuron and xðtÞ
j is the neuron in VðtÞ. The above

objective function indicates that if an unlabeled neuron has similar-
ity with the query neuron, it should be similar with the labeled neu-
rons as well to some extent under the trade-off parameter k.

According to Eq. (6), how to compute the similarity measure is a
critical issue for re-ranking the unlabeled neurons. In most scenar-
ios of image retrieval, the similarity measure between two images
is defined as the Euclidean distance of their feature vectors. How-
ever, this similarity measure cannot be directly applied for the
neuron morphological data, since each dimension of neuron fea-
tures are distinct quantitative measurements which have different
levels of representation. As discussed in Section 2.1, we compute
three levels of measurements as features based on the neuron’s
tree-topological structure, i.e., global, branch and bifurcation.
Accordingly, we propose to group features into these three levels
and assign them with different representative weights (i.e.,
xgl;xbr ;xbi) to compute a more accurate similarity measure. For
the two neurons xi and xj, their new similarity measure can be for-
mulated as:

Eðxi; xjÞ ¼ xglDglðxi;xjÞ þxbrDbrðxi;xjÞ þxbiDbiðxi;xjÞ ð7Þ
where Dgl;Dbr ;Dbi denotes the normalized Euclidean distance of glo-
bal, branch and bifurcation features respectively. This similarity
measure is specifically designed for neuron morphological data. In
practice, the representative weights are determined by the neuronal
tree-topological structure, and we will discuss it in the experiment.

Finally, with the newly defined similarity measure, we re-rank
all the unlabeled neurons in ascending order based on their results
in Eq. (6), and present the updated top-z results to users. Users can
iteratively give relevance feedback for these z neurons until they
are satisfied with the retrieval results.

3.4. Implementation details

Given the query neuron xq, and the continuously expanding
neuron database fB0;B1; . . . ;Bkg, our neuron retrieval method can
efficiently obtain the similar neurons based on online binary
coding and interactive feedback. We outlined the framework in
Algorithm 1.

Algorithm 1. Neuron Retrieval based on Online Binary Coding
and Interactive Feedback.

Input: Continuously added neuron database fB0;B1; . . . ;Bkg;
Query neuron xq.

Output: top-S retrieved neurons.
1: Sketch B0 � B0 into Y0;
2: Initialize data size n0 ¼ m0, mean value X0 ¼ B0;
3: for i = 1 ! k do

4: Sketch bBi ¼ ½Bi � Bi;Ii� into Yi, initialize by Yi�1;
5: Update Wi through Eq. (2);
6: Update data size ni ¼ ni�1 þmi;
7: Update mean value through Eq. (3);
8: end for
9: if retrieve xq is required then
10: Binary encoding xq and fB0;Bi; . . . ;Big through Wi;
11: Rank the Hamming distance in ascending order;
12: t ¼ 0;
13: while users are not satisfied with the retrieval

results do
14: t ¼ t þ 1; (t-th round of user feedback)

15: Compute EðtÞ of unlabeled neuron through Eq. (6);

16: Re-rank the similarity based on EðtÞ;
17: end while
18: Present the top-S retrieved neurons.
19: end if
In the above neuron retrieval algorithm, we combine binary
coding and interactive retrieval to efficiently obtain the fine-
grained retrieval results. The binary coding part can efficiently
tackle the large-scale and continuously expanding neuron data-
bases, which update the coding function on-the-fly every time a
new neuron batch is added. For a query neuron, this part provides
the coarse retrieval results and significantly reduces the search
scope from tens of thousands to a few hundred (e.g., providing
neurons with top-Z minimum Hamming distance). In the interac-
tive retrieval part, users can give relevance feedback for the top-z
ranked neurons. Then the proposed algorithmwill re-rank the sim-
ilarity of unlabeled neurons based on the results of Eq. (6). Finally,
the Z coarse neurons will be re-ranked repeatedly until users are



Table 1
Training time comparison (in second).

Rounds 20 60 100

Batch-based 1.12 13.24 51.11
Ours 0.26 0.84 1.88

Fig. 3. An illustration of our user interaction interface, users will give feedback by
one-click inputs.
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satisfied with the retrieval performance, and we will provide the
top-S retrieved neurons to biologists to assist the exploration and
analysis of the query neuron.

4. Experiment

This section presents the evaluation of our framework for neu-
ron retrieval. We first validate the performance for both the binary
coding with online updating and interactive neuron retrieval. Then,
we demonstrate an example of its use in neuron exploration and
analysis.

4.1. Experimental setting

Our experiments are carried out on the NeuroMorpho [3],
which has the largest collection of publicly accessible 3D recon-
structed neuron data. Specifically, we use the entire 17,107 Droso-
phila Melanogaster neurons to evaluate the retrieval performance.
Following the convention, we employ L-measure toolbox to extract
38 quantitative measurements as morphological features for each
neuron [47], including 15 global, 10 branch and 13 bifurcation fea-
tures respectively. All the experiments are conducted on a 3.6 GHz
CPU with 4 cores and 32G RAM, in a MATLAB implementation.

To evaluate the retrieval performance, we select projection neu-
rons as queries for which the brain region is the olfactory antennal
lobe, and the cell classes are principal cell and uniglomerular pro-
jection (233 such projection neurons in total). We denote such pro-
jection neurons as uPNs. Despite that there are ten thousands of
neurons in NeuroMorpho database, most of them are not well clas-
sified due to the lack of sufficient annotations, i.e., they are not
identified in the finest level. We therefore select uPNs, since these
are one of the best identified classes in the drosophila brain. This
setting is also consistent with [9,49]. Then we evaluate the perfor-
mance by computing the retrieval precision, which is defined as:

Precision ¼ uPNsf g \ Retrieved Neuronsf gj j
Retrieved Neuronsf gj j ð8Þ

where �j j denote to count the number of samples inside. In the
experiments, we compute the average precisions obtained over all
queries.
In the binary coding with online updating, due to the require-
ment of the FD algorithm [13], the sketched data size l should be
no larger than the feature dimension d (d ¼ 38 as discussed above).
Since the feature dimension of neuron data is not high, we set
l ¼ 38 to preserve the information from the original database as
much as possible. In the interactive neuron retrieval, we adopt
an outer scope size of Z ¼ 300 and an inner scope size of z ¼ 30.
The trade-off parameter k is set as 0:3. For the defined similarity
measure in Eq. (7), we assign three levels of features with different
representation weights. Generally, global features can only repre-
sent neurons at a coarse level, and bifurcation features are so sub-
tle that even neurons in same class are different. In practice, we
empirically set global, branch and bifurcation features with the
weights ratio of 1:2:1, which reflect their respective representative
levels.
4.2. Evaluation of binary coding with online updating

In this experiment, we aim to demonstrate that the binary cod-
ing part can attain promising performance with the continuously
expanding neuron database. We randomly split the 17,107 Droso-
phila Melanogaster neurons into two parts. The first 1,107 neurons
are used as the original database, and the remaining 16;000 neu-
rons are equally divided into 100 batches (160 neurons in each),
which are sequentially added to simulate the expanding size of
the neuron database. Our online binary coding method is com-
pared with the batch-based method. The batch-based method cor-
responds to the first part in Section 3.2, i.e., matrix sketching based
binary coding. For each update, it needs to learn the coding func-
tion from scratch, using all neurons in the database. To overcome
randomness, we repeat the experiments a hundred times to report
the average.

Table 1 presents the accumulated training time of our method
and batch-based method at the 20th, 60th and 100th update
rounds respectively. Compared with the batch-based method, our
binary coding with online updating shows great superiority in
computational efficiency, and the superiority becomes more obvi-
ous with more rounds of updates, e.g., 51:11s versus 1:88s for one
hundred updates. When new neuron batches are added to the
database, our method only need to consider these newly added
neurons and update the coding function on-the-fly, while the
batch-based method needs to take all the neurons into account
to re-train the coding function. The merit of this online binary cod-
ing method is particularly beneficial in the future, since an increas-
ing number of neurons are reconstructed and added to the
databases through the recently well-developed neuron tracing
techniques.

Besides the superiority in computational efficiency, our binary
coding with online updating also demonstrates its comparable per-
formance in retrieval precision. Fig. 4(a) shows the average retrie-
val precision of two competitive methods, taking their top-10
retrieved neurons into accounts. The learned coding function com-
pact the feature vectors into 32 bits of binary codes in this exper-
iment. According to Fig. 4(a), our online method is able to achieve
similar retrieval precision as the batch-based method. Therefore,
the binary coding with online updating can significantly improve
the computational efficiency without sacrificing the retrieval preci-
sion. This is mostly improved by (1) the employed FD algorithm,



Fig. 4. Evaluation of the retrieval precision in 100 rounds of update: (a) Comparison of our method with the batch-based method; (b) Comparison of our method using
different bits of binary codes.

Table 2
Retrieval precision of four methods under different number of retrieved neurons.

top20 top30 top40 top50

ITQ [15] 0.7673 0.7249 0.6948 0.6614
AGH [29] 0.7589 0.7216 0.6951 0.6735
MIPS [24] 0.7923 0.7508 0.7088 0.6828
Ours 0.9015 0.8550 0.7888 0.7092
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which can compute the data sketch in a streaming manner; and (2)
the newly introduced batch of data with virtual samples, which
can overcome the mean-varying problem in a continuously
expanding neuron database. Regarding the parameter, Fig. 4(b)
shows the retrieval precision of our method when using 16, 24
and 32 bits of binary codes in each update. The online method
can always achieve good performance using different bits of binary
codes. These results verify that the online updated coding function
can generate effective and representative binary codes for neuron
morphological features.

4.3. Evaluation of interactive neuron retrieval

In this part, we aim to validate that the interactive strategy can
actually achieve good performance for the neuron retrieval prob-
lem. We will re-fine the coarse retrieved neurons from previous
binary coding results, where the neurons are retrieved from the
entire 17;107 Drosophila Melanogaster neuron database after
100 rounds of database updating. Particularly, we only consider
to refining neurons within top-Z minimum Hamming distance
(neurons in outer scope size). For the user interaction, users will
give feedback for the top-z unlabeled neurons (neurons in inner
scope size).

To evaluate the performance of interactive neuron retrieval, at
each feedback round, the top-z unlabeled neurons will be automat-
ically labeled using the ground truth in order to simulate the user’s
feedback. Since our interactive method only requires users to give
one-click inputs(relevant or non-relevant), the ground truth can be
easily achieved by checking whether the unlabeled neurons are
uPNs or not.

We compare our neuron retrieval method with three state-of-
the-art methods, i.e., ITQ [15], AGH [29] and MIPS [24], which were
all proposed to tackle the retrieval problem for large-scale data-
bases. ITQ [15] is a very effective binary coding method for most
natural image retrieval problems. AGH [29] has already achieved
excellent retrieval performance in mammogram data [28], and
MIPS is specially designed for the neuron morphological retrieval
problem. The above three methods are batch based method, which
can not process the continuously expanding neuron databases.
Thus, for fair comparison, the retrieval model of these methods
are trained through the currently entire 17;107 Drosophila Mela-
nogaster neuron database. As with the previous experiment set-
ting, we employ the 233 uPNs as queries to validate the retrieval
performance.

Table 2 reports the average retrieval precision of four competi-
tive methods under different number of retrieved neurons. For our
interactive method, the retrieval precision is recorded after 3
rounds of feedback. According to Table 2, our method can achieve
the highest precision under different number of retrieved neurons.
These results verify the proposed method is effective for the neu-
ron retrieval problem. It mostly benefits from the interactive strat-
egy which introduces users in the loop to give feedback for the
coarse retrieval results. Specifically, based on the user’s feedback,
our method can re-rank unlabeled neurons by the newly designed
similarity measure.

We randomly select a query neuron and present its top-20
retrieval results in Fig. 5 under different rounds of feedback. We
employ Vaa3D [38] software to display these neurons. The neurons
with green frames are relevant to the query, and neurons with red
frames are not relevant to the query. Generally, the retrieval per-
formance is improved greatly from coarse results to the results
after user feedback, which verifies the effectiveness of the pro-
posed interactive strategy. We also find that with the increased
numbers of feedback rounds, the retrieval performance improves
accordingly. This is because of the increasingly labeled neurons,
providing more information for re-ranking. In addition, according
to Fig. 5, many non-relevant neurons also present similar mor-
phologies with the query, which is usually hard to distinguish
through traditional retrieval methods. Thus, our interactive strat-
egy is a good choice for the fine-grained neuron retrieval problem.

In our interactive neuron retrieval, two parameters may influ-
ence the final performance, i.e., the outer scope size Z and the inner
scope size z. In the interactive part, we only consider the refine-
ment of top-Z ranked neurons from coarse retrieval results. Fig. 6
(a) shows the average retrieval precision with different outer scope
sizes after the 1st to 10th feedback rounds, taking top-30 retrieved
neurons into account. In Fig. 6(a), we find that with the outer scope
size ranging from 200 to 500, the retrieval precision has not change
too much. This is because the majority of relevant neurons
are already included in a small sized outer scope (e.g., Z ¼ 300).
A larger outer scope may include more relevant neurons, but
non-relevant and noisy neurons are also included which will



Query

Coarse Results

Results after 1 rounds of feedback

Results after 3 rounds of feedback

Antennal lobe
Uniglomerular projection

Fig. 5. Query example of the proposed method under different rounds of feedback: green framed neurons were relevant with the query, while red framed were non-relevant
neurons.

(a) (b)

Fig. 6. Retrieval performance with different parameter settings: (a) retrieval precision with different outer scope size after 1st to 10th feedback rounds; (b) retrieval precision
with different inner scope size after 1st to 10th feedback rounds.

Query

Peripheral nervous system
Multidendritic-dendritic arborization

Query

Antennal lobe
Uniglomerular projection

Top-5 similar neurons

Top-5 similar neurons

Fig. 7. Illustration of two unknown neurons and their top-5 retrieved neurons through the proposed method.
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influence the retrieval performance. Moreover, the inner scope size
z is the number of neurons we provide to users in each feedback
round, which can also influence the final performance. Fig. 6(b)
presents the retrieval precision with different inner scope sizes
after the 1st to 10th feedback rounds. According to Fig. 6(b), the
larger z can achieve better performance compared with smaller z
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values. This is easy to understand since a larger z will contain more
feedback information which can help us to re-rank the coarse
retrieved neurons.
4.4. Use cases and discussions

One important use case of our framework is the exploration and
analysis for unknown neurons. Currently, despite the fact that an
increasing number of neurons are reconstructed and added to
the public databases, most of them are not well identified and lack
basic annotations, such as cell classes and brain regions. Nanda
et al. [34] proposed to annotate brain regions and cell classes for
the NeuroMorpho [3] database. They employed the text-based
query tool to search neurons with given lengths (e.g., 10;20
microns) in each region to determine their brain regions, then they
identified cell classes based on the brain regions invaded by the
neurite terminals of every neuron. This method may inefficient
and unreliable, which the annotations are mainly obtained empir-
ically. Identity of unknown neurons is an urgent demand in current
neuron repositories.

Considering that neuron morphologies are associated with their
properties, and our neuron retrieval framework can search similar
neurons at a fine-grained level. It is reasonable to employ our
framework to conduct neuron exploration via examining retrieved
neurons, which have similar morphologies. To demonstrate this,
we randomly select two query neurons from NeuroMorpho [3],
whose neuron types are assumed to be unknown. After running
our neuron retrieval framework (retrieve the entire 17,107 Droso-
phila Melanogaster neurons, with 1 rounds of feedback), Fig. 7
illustrates their top-5 similar neurons respectively. For the two
query neurons, we find that their corresponding top-5 similar neu-
rons all have the same neuron types, i.e., in NeuroMorpho [3], the 5
neurons in first row are annotated as antennal lobe and
uniglomerular projection (uPNs), the 5 neurons in the second
row are annotated as peripheral nervous system and
multidendritic-dendritic arborization. Therefore, we can infer that
the two query neurons also have the same type with their top-5
retrieved neurons. The information provided in NeuroMorpho [3]
also verifies our inference about the two query neurons. In practi-
cal situations, we can employ more retrieved neurons (e.g., top-30
similar neurons) to statistically identify and analyze query
neurons.

The proposed method can efficiently achieve the above neuron
retrieval task, as it is designed for the exploration of large-scale
neuron databases. The method will be particularly suitable in the
future since big data is one major direction in neuroscience [1].
Besides the efficiency, for some specific neuron databases which
are not very large (e.g., considering neurons in some specific brain
regions with only hundreds of neurons), exhaustive search and
comparison can be applied to achieve more accurate results. In
addition, extracting more representative features for the 3D neuro-
morphological data will be also helpful to improve the neuron
retrieval performance.
5. Conclusions

In this paper, we present a novel framework for neuron explo-
ration and analysis, which interactively retrieves similar neurons
in the continuously expanding neuron databases. Specifically, our
framework achieves neuron morphological retrieval from coarse
to fine-grained levels. In the coarse level, we introduce binary cod-
ing with online updating to tackle the large-scale and continuously
expanding neuron databases. In each database update, coding
functions are learned on-the-fly by only considering the newly
added neuron data, and the coarse retrieval results are subse-
quently obtained in real-time. In the fine-grained level, we bring
users in the loop, which interactively gives relevance feedback
for the coarse results. By processing the feedback and re-ranking
the coarse neurons, our framework finally obtains a set of fine-
grained retrieval results. Experiments verify the efficacy of our
neuron retrieval framework and also illustrates its application in
neuron exploration. Based on the present work, we will develop
a comprehensive tool for efficient and accurate neuron retrieval,
which can help biologists to explore and analyze unknown
neurons.
Acknowledgement

We would like to acknowledge support for this project from the
National Science Foundation (NSF Grant #1629913.).
References

[1] A. Bigneuron project, http://www.alleninstitute.org/bigneuron/, (Accessed
June 28, 2016).

[2] B. Bigneuron released data, https://github.com/BigNeuron/Data/releases,
(Accessed June 28, 2016).

[3] Neuromorpho repository, http://neuromorpho.org/, (Accessed June 28, 2016).
[4] R. Armañanzas, G.A. Ascoli, Towards the automatic classification of neurons,

Trends Neurosci. 38 (2015) 307–318.
[5] H. Chen, H. Xiao, T. Liu, H. Peng, Smarttracing: self-learning-based neuron

reconstruction, Brain Inf. 2 (2015) 135–144.
[6] S. Conjeti, A. Katouzian, A. Kazi, S. Mesbah, D. Beymer, T.F. Syeda-Mahmood, N.

Navab, Metric hashing forests, Med. Image Anal. 34 (2016) 13–29.
[7] S. Conjeti, S. Mesbah, M. Negahdar, P.L. Rautenberg, S. Zhang, N. Navab, A.

Katouzian, Neuron-miner: an advanced tool for morphological search and
retrieval in neuroscientific image databases, Neuroinformatics 14 (2016) 369–
385.

[8] L.D.F. Costa, K. Zawadzki, M. Miazaki, M.P. Viana, S.N. Taraskin, Unveiling the
neuromorphological space, Front. Comput. Neurosci. 4 (2010) 150–163.

[9] M. Costa, A.D. Ostrovsky, J.D. Manton, S. Prohaska, G.S. Jefferis, Nblast: rapid,
sensitive comparison of neuronal structure and construction of neuron family
databases, Neuron 91 (2014) 293–311.

[10] A. Fakhry, H. Peng, S. Ji, Deep models for brain em image segmentation: novel
insights and improved performance, Bioinformatics 32 (2016) 2352–2358.

[11] D. Feng, C. Lau, L. Ng, Y. Li, L. Kuan, S.M. Sunkin, C. Dang, M. Hawrylycz,
Exploration and visualization of connectivity in the adult mouse brain,
Methods 73 (2015) 90–97.

[12] M. Ghashami, A. Desai, J.M. Phillips, Improved practical matrix sketching with
guarantees, Eur. Symp. Algorithms (2014) 467–479.

[13] M. Ghashami, E. Liberty, J.M. Phillips, D.P. Woodruff. Frequent directions:
Simple and deterministic matrix sketching. ArXiv Preprint:1501.01711, 1–28,
2015.

[14] A. Gionis, P. Indyk, R. Motwani, Similarity search in high dimensions via
hashing, VLDB (1999) 518–529.

[15] Y. Gong, S. Lazebnik, A. Gordo, F. Perronnin, Iterative quantization: a
procrustean approach to learning binary codes for large-scale image
retrieval, IEEE Trans. Pattern Anal. Mach. Intell. 35 (2013) 2916–2929.

[16] S. Gulyanon, N. Sharifai, S. Bleykhman, E. Kelly, M. Kim, A. Chiba, G.
Tsechpenakis, Three-dimensional neurite tracing under globally varying
contrast, ISBI (2015) 875–879.

[17] J. He, M. Li, H.J. Zhang, H. Tong, C. Zhang, Manifold-ranking based image
retrieval, ACM MM (2004) 9–16.

[18] S. Ji, Computational genetic neuroanatomy of the developing mouse brain:
dimensionality reduction, visualization, and clustering, Bioinformatics 14
(2013) 222–236.

[19] W. Kong, W.J. Li, Isotropic hashing, NIPS (2012) 1646–1654.
[20] B. Kulis, P. Jain, K. Grauman, Fast similarity search for learned metrics, IEEE

Trans. Pattern Anal. Mach. Intell. 31 (2009) 2143–2157.
[21] B. Kulis, P. Jain, K. Grauman, Content-based image retrieval with relevance

feedback using random walks, Pattern Recogn. 44 (2011) 2109–2122.
[22] C. Leng, J. Wu, J. Cheng, X. Bai, H. Lu, Online sketching hashing, CVPR (2015)

2503–2511.
[23] Z. Li, R. Fang, F. Shen, A. Katouzian, S. Zhang, Indexing and mining large-scale

neuron databases using maximum inner product search, Pattern Recogn. 63
(2017) 680–688.

[24] Z. Li, F. Shen, R. Fang, S. Conjeti, A. Katouzian, S. Zhang, Maximum inner
product search for morphological retrieval of large-scale neuron data, ISBI
(2016) 602–606.

[25] E. Liberty, Simple and deterministic matrix sketching, SIGKDD (2013) 581–
588.

[26] G. Lin, C. Shen, Q. Shi, A. Hengel, D. Suter, Fast supervised hashing with
decision trees for high-dimensional data, CVPR (2013) 1971–1978.

[27] K. Lin, H.F. Yang, J.H. Hsiao, C.S. Chen, Deep learning of binary hash codes for
fast image retrieval, CVPR (2015) 27–35.

http://www.alleninstitute.org/bigneuron/
https://github.com/BigNeuron/Data/releases
http://neuromorpho.org/
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0020
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0020
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0025
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0025
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0030
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0030
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0035
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0035
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0035
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0035
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0040
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0040
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0045
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0045
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0045
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0050
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0050
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0055
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0055
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0055
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0060
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0060
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0070
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0070
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0075
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0075
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0075
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0080
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0080
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0080
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0085
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0085
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0090
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0090
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0090
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0095
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0100
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0100
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0105
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0105
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0110
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0110
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0115
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0115
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0115
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0120
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0120
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0120
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0125
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0125
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0130
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0130
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0135
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0135


Z. Li et al. /Methods 115 (2017) 100–109 109
[28] J. Liu, S. Zhang, W. Liu, X. Zhang, D.N. Metaxas, Scalable mammogram retrieval
using anchor graph hashing, ISBI (2014) 898–901.

[29] W. Liu, J. Wang, S. Kumar, S.F. Chang, Hashing with graphs, ICML (2011) 1–8.
[30] D. Markonis, R. Schaer, H. Müller, Evaluating multimodal relevance feedback

techniques for medical image retrieval, Inf. Retrieval J. 19 (2016) 100–112.
[31] E. Meijering, Neuron tracing in perspective, Cytometry Part A 77 (2010) 693–

704.
[32] S. Mesbah, S. Conjeti, A. Kumaraswamy, P. Rautenberg, N. Navab, A. Katouzian,

Hashing forests for morphological search and retrieval in neuroscientific
image databases, MICCAI (2015) 135–143.

[33] S. Mukherjee, B. Condron, S.T. Acton, Tubularity flow fielda technique for
automatic neuron segmentation, IEEE Trans. Image Process. 24 (2015) 374–
389.

[34] S. Nanda, M. Allaham, M. Bergamino, S. Polavaram, R. Armañanzas, G. Ascoli, R.
Parekh, Doubling up on the fly: neuromorpho. org meets big data,
Neuroinformatics 1 (2015) 127–129.

[35] M. Norouzi, D.M. Blei, Minimal loss hashing for compact binary codes, ICML
(2011) 353–360.

[36] M. Norouzi, D.M. Blei, R. Salakhutdinov, Hamming distance metric learning,
NIPS (2012) 1061–1069.

[37] H. Peng, M. Hawrylycz, J. Roskams, S. Hill, N. Spruston, E. Meijering, G.A. Ascoli,
Bigneuron: large-scale 3d neuron reconstruction from optical microscopy
images, Neuron 87 (2015) 252–256.

[38] H. Peng, Z. Ruan, F. Long, J.H. Simpson, E.W. Myers, V3d enables real-time 3d
visualization and quantitative analysis of large-scale biological image data
sets, Nat. Biotechnol. 28 (2010) 348–353.

[39] L. Peter, D. Mateus, P. Chatelain, N. Schworm, S. Stangl, G. Multhoff, N. Navab,
Leveraging random forests for interactive exploration of large histological
images, MICCAI (2014) 1–8.

[40] S. Polavaram, T.A. Gillette, R. Parekh, G.A. Ascoli, Statistical analysis and data
mining of digital reconstructions of dendritic morphologies, Front. Neuroanat.
8 (2014) 1–16.

[41] M. Raginsky, S. Lazebnik, Locality-sensitive binary codes from shift-invariant
kernels, NIPS (2009) 1509–1517.

[42] E. Rebollo, K. Karkali, F. Mangione, E. Martín-Blanco, Live imaging in
drosophila: the optical and genetic toolkits, Methods 68 (2014) 48–59.

[43] D.A. Ross, J. Lim, R.S. Lin, M.H. Yang, Incremental learning for robust visual
tracking, Int. J. Comput. Vision 77 (2008) 125–141.

[44] Y. Rui, T.S. Huang, S.F. Chang, Image retrieval: current techniques, promising
directions, and open issues, J. Vis. Commun. Image Represent. 10 (1999) 39–
62.

[45] Y. Rui, T.S. Huang, M. Ortega, S. Mehrotra, Relevance feedback: a power tool for
interactive content-based image retrieval, IEEE Trans. Circuits Syst. Video
Technol. 8 (1998) 644–655.
[46] H. Sahbi, J.Y. Audibert, R. Keriven, Graph-cut transducers for relevance
feedback in content based image retrieval, ICCV (2007) 1–8.

[47] R. Scorcioni, S. Polavaram, G.A. Ascoli, L-measure: a web-accessible tool for the
analysis, comparison and search of digital reconstructions of neuronal
morphologies, Nat. Protoc. 3 (2008) 866–876.

[48] F. Shen, W. Liu, S. Zhang, Y. Yang, H. Tao Shen, Learning binary codes for
maximum inner product search, ICCV (2015) 4148–4156.

[49] Y. Wan, F. Long, L. Qu, H. Xiao, M. Hawrylycz, E.W. Myers, H. Peng, Blastneuron
for automated comparison, retrieval and clustering of 3d neuron
morphologies, Neuroinformatics (2015) 1–13.

[50] J. Wang, S. Kumar, S.F. Chang, Semi-supervised hashing for large-scale search,
IEEE Trans. Pattern Anal. Mach. Intell. 34 (2012) 2393–2406.

[51] Y. Weiss, A. Torralba, R. Fergus, Spectral hashing, NIPS (2009) 1753–1760.
[52] G. Wu, H. Jia, Q. Wang, D. Shen, Sharpmean: groupwise registration guided by

sharp mean image and tree-based registration, NeuroImage 56 (2011) 1968–
1981.

[53] L. Zhang, L. Wang, W. Lin, Semisupervised biased maximum margin analysis
for interactive image retrieval, IEEE Trans. Image Process. 21 (2012) 2294–
2308.

[54] W. Zhang, R. Li, H. Deng, L. Wang, W. Lin, S. Ji, D. Shen, Deep convolutional
neural networks for multi-modality isointense infant brain image
segmentation, NeuroImage 108 (2015) 214–224.

[55] X. Zhang, H. Dou, T. Ju, J. Xu, S. Zhang, Fusing heterogeneous features from
stacked sparse autoencoder for histopathological image analysis, IEEE J.
Biomed. Health Inf. 20 (2016) 1377–1383.

[56] X. Zhang, W. Liu, M. Dundar, S. Badve, S. Zhang, Towards large-scale
histopathological image analysis: hashing-based image retrieval, IEEE Trans.
Med. Imaging 34 (2015) 496–506.

[57] X. Zhang, H. Su, L. Yang, S. Zhang, Fine-grained histopathological image
analysis via robust segmentation and large-scale retrieval, CVPR (2015) 5361–
5368.

[58] X. Zhang, F. Xing, H. Su, L. Yang, S. Zhang, High-throughput histopathological
image analysis via robust cell segmentation and hashing, Med. Image Anal. 26
(2015) 306–315.

[59] X. Zhang, L. Yang, W. Liu, H. Su, S. Zhang, Mining histopathological images via
composite hashing and online learning, MICCAI (2014) 479–486.

[60] X.S. Zhou, T.S. Huang, Relevance feedback in image retrieval: a comprehensive
review, Multimedia Syst. 8 (2003) 536–544.

[61] Z. Zhou, X. Liu, B. Long, H. Peng, Tremap: automatic 3d neuron reconstruction
based on tracing, reverse mapping and assembling of 2d projections,
Neuroinformatics (2015) 1–10.

[62] Z. Zhou, S. Sorensen, H. Zeng, M. Hawrylycz, H. Peng, Adaptive image
enhancement for tracing 3d morphologies of neurons and brain
vasculatures, Neuroinformatics (2014) 1–14.

http://refhub.elsevier.com/S1046-2023(17)30080-4/h0140
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0140
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0145
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0150
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0150
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0155
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0155
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0160
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0160
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0160
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0165
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0165
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0165
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0170
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0170
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0170
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0175
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0175
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0180
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0180
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0185
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0185
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0185
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0190
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0190
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0190
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0195
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0195
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0195
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0200
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0200
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0200
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0205
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0205
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0210
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0210
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0215
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0215
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0220
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0220
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0220
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0225
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0225
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0225
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0230
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0230
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0235
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0235
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0235
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0240
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0240
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0245
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0245
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0245
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0250
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0250
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0255
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0260
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0260
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0260
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0265
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0265
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0265
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0270
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0270
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0270
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0275
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0275
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0275
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0280
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0280
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0280
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0285
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0285
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0285
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0290
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0290
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0290
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0295
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0295
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0300
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0300
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0305
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0305
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0305
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0310
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0310
http://refhub.elsevier.com/S1046-2023(17)30080-4/h0310

	Interactive Exploration for Continuously Expanding Neuron Databases
	1 Introduction
	2 Preliminaries
	2.1 3D neuron morphology
	2.2 Content-based image retrieval

	3 Methodology
	3.1 Overview
	3.2 Binary coding with online updating
	3.3 Interactive neuron retrieval
	3.4 Implementation details

	4 Experiment
	4.1 Experimental setting
	4.2 Evaluation of binary coding with online updating
	4.3 Evaluation of interactive neuron retrieval
	4.4 Use cases and discussions

	5 Conclusions
	Acknowledgement
	References


