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Unitaries permuting two orthogonal projections
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Let P and Q be two orthogonal projections on a separable 
Hilbert space, H. Wang, Du and Dou proved that there exists 
a unitary, U , with UP U−1 = Q, UQU−1 = P if and only if 
dim(ker P ∩ ker(1 − Q)) = dim(ker Q ∩ ker(1 − P )) (both may 
be infinite). We provide a new proof using the supersymmetric 
machinery of Avron, Seiler and Simon.

© 2017 Published by Elsevier Inc.

I am delighted at this opportunity to present a birthday bouquet to Rajendra Bhatia 
whom I have long admired. He once told me that he had learned functional analysis from 
Reed–Simon. He more than returned the favor since I’ve learned so much from his books 
especially that much of matrix theory is actually analysis. In particular, my interest in 
Loewner’s theorem on monotone matrix functions was stirred by his clear presentation 
of the Krein–Millman proof of that result. As I’ve been writing my own monograph on 
Loewner’s Theorem, I discovered several time areas of application and extension of that 
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result where Bhatia was a key figure and where invariably his lucid prose helped me in 
absorbing the developments.

Let P and Q be two orthogonal projections on a separable Hilbert space, H. It is a 
basic result in eigenvalue perturbations theory that when

‖P − Q‖ < 1 (1)

there exists a unitary U so that

UP = QU (2)

It is even known that there exist unitaries, U , so that

UPU−1 = Q, UQU−1 = P (3)

The simpler question involving (2) goes back to Sz.-Nagy [14] and was further studied 
by Kato [10] who found a cleaner formula for U than Sz.-Nagy, namely Kato used

U = [QP + (1 − Q)(1 − P )]
[
1 − (P − Q)2]−1/2 (4)

Using Nagy’s formula, Wolf [16] had extended this to arbitrary pairs of projections on a 
Banach space (requiring only that U is invertible rather than unitary) so long as

‖P − Q‖‖P‖2 < 1 ‖P − Q‖‖Q‖2 < 1 (5)

For non-orthogonal projections and projections on a Banach space, in general, ‖P‖ ≥ 1
with equality in the Hilbert space case only if P is orthogonal so (5) is strictly stronger 
than (1). One advantage of Kato’s form (4), is that in the Banach space case where the 
square root can be defined by a power series, it only requires (1).

For the applications they had in mind, it is critical not only that U exists but that on 
the set of pairs that (1) holds, U is analytic in P and Q. For they considered an analytic 
family, A(z), and λ0 an isolated eigenvalue of A(0) of finite algebraic multiplicity. Then 
one can define

P (z) = 1
2πi

∮
|λ−λ0|=r

(λ − A(z))−1dλ

for fixed small r and |z| small. For |z| very small, ‖P (z) − P (0)‖ < 1. If U(z) is 
given by (4) with Q = P (z), then U(z)A(z)U(z)−1 leaves ranP (0) invariant and the 
study of eigenvalues of A(z) near λ0 is reduced to the finite dimensional problem 
U(z)A(z)U(z)−1 � ranP (0). See the books of Kato [11], Baumgärtel [3] or Simon [13] for 
this subject.
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There is a rich structure of pairs of orthogonal projections when (1) might fail using 
two approaches. One goes back to Krein et al. [12], Diximier [6], Davis [5] and Halmos 
[7]. Let

KP,Q = ranP ∩ ker Q (6)

The four mutually orthogonal spaces KP,Q, KP,1−Q, K1−P,Q, K1−P,1−Q are invariant for 
P and Q and their mutual orthogonal complement has a kind of 2 × 2 matrix structure. 
Böttcher–Spitkovsky [4] have a comprehensive review of this approach. Following them, 
we’ll call this the Halmos approach since his paper had the clearest version of it.

A second approach, introduced by Avron–Seiler–Simon [2], uses the operators

A = P − Q, B = 1 − P − Q (7)

which, by simple calculations, obey

A2 + B2 = 1, AB + BA = 0 (8)

[P, A2] = [Q, A2] = [P, B2] = [Q, B2] = 0

The last equations (at least for A) go back to the 1940’s and were realized by Dixmier, 
Kadison and Mackey. The definition of B and first equation in (8) were noted by Kato 
[10] who found the second equation in 1971 but never published it. Because (8) involves 
a vanishing anticommutator, we call the use of the operators in (7) the supersymmetric 
approach. One consequence of (8) is that it implies that if P − Q is trace class, then its 
trace is an integer—indeed, as we’ll discuss below, it is the index of a certain Fredholm 
operator.

The two approaches are related as shown by Amerein–Sinha [1] (see also Takesaki [15, 
pp. 306–308] and Halpern [9]). In [17], Wang, Du and Dou proved the following lovely 
theorem

Theorem 1. Let P and Q be two orthogonal projections on a separable Hilbert space, H. 
Then there exists a unitary obeying (3) if and only if

dim(KP,Q) = dim(K1−P,1−Q) (9)

The literature on pairs of projections is so large that it is possible this was also 
proven elsewhere. Their proof uses the Halmos representation. Our goal here is to provide 
a supersymmetric proof which seems to us simpler and more algebraic (although we 
understand that simplicity is in the eye of the beholder). Our proof will also have a 
simple explicit form for U . Before turning to the proof, we want to note two corollaries 
of Theorem 1.

One notes first that since ranR = ker(1 − R) for any projection R and P, Q ≥ 0, we 
have that
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KP,Q = {ϕ | Aϕ = ϕ}, K1−P,1−Q = {ϕ | Aϕ = −ϕ}

Thus (1) ⇒ dim KP,Q = K1−P,1−Q = 0, so Theorem 1 implies

Corollary 2. (1) ⇒ the existence of U obeying (3).

The second corollary concerns the case where P − Q is compact. In that case K =
QP � ran P as a map of ran P to ran Q is Fredholm and KP,Q = ker K while K1−P,1−Q =
ran K⊥ so (9) is equivalent to saying that the index of K is 0 so we get

Corollary 3. If P − Q is compact, then there exists a U obeying (3) if and only if 
Index = 0.

Avron et al. [2] essentially had these two corollaries many years before [17] and this 
note points out that while [2] didn’t consider the general case of Theorem 1, there is a 
small addition to their argument that proves the general result.

Lemma 4. To prove Theorem 1, it suffices to prove it in the case where KP,Q =
K1−P,1−Q = {0}.

Proof. Let H1 = KP,Q ⊕ K1−P,1−Q and H2 = H⊥
1 . Note that KP,Q is orthogonal to 

K1−P,1−Q since ran P is orthogonal to ker P . P and Q leave H1 invariant and so H2.
If there is U obeying (3), then U is a unitary map of KP,Q to K1−P,1−Q so their 

dimensions are equal and (9) holds. On the other hand, if (9) holds, there is a unitary map 
V on H1 that maps KP,Q to K1−P,1−Q and vice versa. Clearly V P � H1V −1 = Q � H1
and V Q � H1V −1 = P � H1 since P � KP,Q = 1, P � K1−P,1−Q = 0, Q � KP,Q = 0, Q �
K1−P,1−Q = 1.

P2 = P � H2, Q2 = Q � H2 obey KP2,Q2 = K1−P2,1−Q2 = {0}. Thus the special case of 
the theorem implies there is a unitary W : H2 → H2 with WP2W −1 = Q2, WQ2W −1 =
P2. U = V ⊕ W solves (3) �
Proof of Theorem 1. By the lemma we can suppose that A doesn’t have eigenvalues ±1, 
so B2 = 1 − A2 has ker B2 = 0. Thus ker B = 0. It follows that

s − lim
ε↓0

B(|B| + ε)−1 = sgn(B) ≡ U (10)

where

sgn(x) =

⎧⎪⎨
⎪⎩

1, if x > 0
0, if x = 0
−1, if x < 0

(11)

so that sgn(B) is unitary since ker B = 0.
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Since

BA = −AB (12)

we see that

B2A = AB2 (13)

so by properties of the square root ([13, Thm. 2.4.4])

(|B| + ε)A = A(|B| + ε) (14)

Thus (12) implies that

(|B| + ε)−1BA = −AB(|B| + ε)−1 (15)

By (10), we see that

UAU−1 = −A (16)

Since U is a function of B

UB = BU ⇒ UBU−1 = B (17)

We have that

P = 1
2 (A − B + 1), Q = 1

2 (−A − B + 1) (18)

so, by (16) and (17), we have (3). �
Remark. I owe to the referee the interesting remark that in case (9) holds, the U obeying 
(3) can be picked to also obey U2 = 1 (equivalently U = U∗) so that U is a symmetry 
in the sense of Halmos–Kakutani [8]. The operator U = sgn(B) we construct when A
doesn’t have eigenvalue ±1 clearly obeys U2 = 1 so it suffices to construct such a U in 
the case where H = KP,Q ⊕ K1−P,1−Q and (9) holds. To do that, pick a unitary T from 
KP,Q onto K1−P,1−Q and choose

U =
(

0 T

T ∗ 0

)

To understand the difference between (4) and (5), we note that in case H = C
2 and 

P, Q are two one-dimensional projections with Tr(PQ) = cos2 θ (so θ is the angle between 
ran P and ran Q), the U of (5) is rotation by angle θ while the U of (4) is reflection in 
the perpendicular bisector.
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One interesting open question is whether there are extension of Theorem 1 (with U
unitary replaced by U invertible) to non-self-adjoint Hilbert space projections and to 
general pairs of projections on a Banach space.
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