
This journal is©The Royal Society of Chemistry 2017 Integr. Biol.

Cite this:DOI: 10.1039/c7ib00011a

Integrative meta-modeling identifies endocytic
vesicles, late endosome and the nucleus as the
cellular compartments primarily directing RTK
signaling†

Jared C. Weddell and Princess I. Imoukhuede*

Recently, intracellular receptor signaling has been identified as a key component mediating cell responses

for various receptor tyrosine kinases (RTKs). However, the extent each endocytic compartment (endocytic

vesicle, early endosome, recycling endosome, late endosome, lysosome and nucleus) contributes to

receptor signaling has not been quantified. Furthermore, our understanding of endocytosis and receptor

signaling is complicated by cell- or receptor-specific endocytosis mechanisms. Therefore, towards

understanding the differential endocytic compartment signaling roles, and identifying how to achieve

signal transduction control for RTKs, we delineate how endocytosis regulates RTK signaling. We achieve

this via a meta-analysis across eight RTKs, integrating computational modeling with experimentally derived

cell (compartment volume, trafficking kinetics and pH) and ligand–receptor (ligand/receptor concentration

and interaction kinetics) physiology. Our simulations predict the abundance of signaling from eight RTKs,

identifying the following hierarchy in RTK signaling: PDGFRb 4 IGFR1 4 EGFR 4 PDGFRa 4 VEGFR1 4

VEGFR2 4 Tie2 4 FGFR1. We find that endocytic vesicles are the primary cell signaling compartment;

over 43% of total receptor signaling occurs within the endocytic vesicle compartment for these eight

RTKs. Mechanistically, we found that high RTK signaling within endocytic vesicles may be attributed to

their low volume (5.3 � 10�19 L) which facilitates an enriched ligand concentration (3.2 mM per ligand

molecule within the endocytic vesicle). Under the analyzed physiological conditions, we identified extra-

cellular ligand concentration as the most sensitive parameter to change; hence the most significant one to

modify when regulating absolute compartment signaling. We also found that the late endosome and

nucleus compartments are important contributors to receptor signaling, where 26% and 18%, respectively,

of average receptor signaling occurs across the eight RTKs. Conversely, we found very low membrane-

based receptor signaling, exhibiting o1% of the total receptor signaling for these eight RTKs. Moreover,

we found that nuclear translocation, mechanistically, requires late endosomal transport; when we blocked

receptor trafficking from late endosomes to the nucleus we found a 57% reduction in nuclear

translocation. In summary, our research has elucidated the significance of endocytic vesicles, late

endosomes and the nucleus in RTK signal propagation.

Insight, innovation, integration
We find that receptor signaling primarily stems from endocytic vesicles, late endosomes and the nucleus, whereas membrane signaling is relatively low for
every RTK tested. We determine a physiological ranking of RTK signaling: PDGFRb has the highest and FGFR1 has the lowest absolute membrane signaling
among the RTKs analyzed. We identify that high receptor activation within endocytic vesicles is due to their low volume, facilitating ligand enrichment and
leading to sustained receptor phosphorylation. We observe significant nuclear signaling for all RTKs, which requires a late endosome pathway. We find that
extracellular ligand concentrations regulate absolute compartment signaling; increasing the extracellular ligand concentration increases nuclear signaling.

Introduction

Understanding and controlling signal transduction could lead
to new therapeutic approaches for many pathologies, including
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cancers1,2 and vascular diseases.3,4 Typically, membrane receptors
are the prime targets for controlling signal transduction, as they
are the initial elicitors of cell responses from extracellular
signal transduction (e.g., ligands).5,6 Accordingly, signal trans-
duction pathways have been established for many membrane
receptors.7–10 However, signal transduction involves the
integration of extracellular cues with intracellular processes,
such as receptor endocytosis, phosphorylation events, and
second messengers.11,12 As such, membrane-bound receptors
alone do not define this integrative signaling occurring within a
cell. Our understanding of these intracellular signaling events
is complicated, as endocytosis is affected by cell and receptor
type.13,14 Therefore, to achieve signal transduction control for
any receptor, a delineation between the physical principles and
cell- or receptor-specific physiology mediating endocytosis is
needed. Such an analysis would serve as a ‘‘signaling tem-
plate,’’ providing signaling fundamentals that could be applied
to examine cell- or receptor-specific signaling dynamics14,15

and directing experimental research to treat pathological con-
ditions. Computational systems biology, the integration of
mathematical modeling and experimental biological data,16 is
well poised to provide this analysis.

Previous computational systems biology studies have
identified that significant receptor signaling occurs intra-
cellularly (e.g., via internalized receptors).17,18 This is an important
advancement from the early view that endocytosis only functioned
to terminate membrane receptor signaling,17 a view derived from
key findings that while both ligand-bound and unbound receptors
are trafficked to lysosomes, ligand-bound receptors internalize
B10-fold faster.19–21 However, computational models uncovered
a different story: cells exhibiting prolonged receptor signaling and
enhanced cell responses exhibit less receptor recycling, leading to
intracellular ligand–receptor accumulation.22,23 Later experimental
studies validated these computational predictions; Di Guglielmo
et al. identified active endosomal epidermal growth factor receptor
(EGFR), along with phosphorylated endosomal-Shc, Grb2 and
mSOS signaling molecules.24 Thus, computational models have
helped to offer new interpretations into receptor signaling. As
such, a computationally-based signaling template that examines
intracellular-based signaling across several RTKs could further
enhance knowledge of intracellular signaling mechanisms.

Knowledge of intracellular receptor signaling is primarily
based upon studies of EGFR, which is often researched due to
its important role in pathologies, including cancers.8,25,26

Intracellular signaling analyses should be extended to other
receptors; particularly those with high intracellular localiza-
tion, such as vascular endothelial growth factor receptor-1
(VEGFR1), whereB80% is localized intracellularly.27–29 Indeed,
intracellular VEGFR1 has been empirically identified as critical
to the VEGFR1 signaling axis; an intracellular VEGFR1 isoform,
expressing the phosphotransferase domain and the carboxy
terminal tail, activates the Src kinase, increasing breast cancer
cell invasiveness.30 Likewise, studies of intracellular fibroblast
growth factor receptor-1 (FGFR1) show that it increases
KRTAP5-6 gene expression, a known migration promoter,
and decreases GRINA gene expression, a known migration

inhibitor.31 Therefore, extending intracellular-based signaling
analyses to receptors outside the EGFR family is a necessary
step toward building a signaling template.

Here, we engineered such a signaling template, by integrat-
ing computational modeling with experimental receptor data,
and meta-analyzing signaling through eight tyrosine kinases
receptors (RTKs): EGFR, FGFR1, Insulin-like growth factor
1 receptor (IGFR1), platelet-derived growth factor receptors alpha
(PDGFRa) and beta (PDGFRb), VEGFR1, VEGFR2, and Tie2. We
quantified receptor phosphorylation, a post-translational mod-
ification, associated with each endocytic compartment, to weigh
the signaling contribution from each intracellular compartment.
The eight RTKs we examine all exhibit the same key signaling
mechanisms post ligand stimulation: (1) carboxy-terminal phos-
phorylation, (2) adapter protein binding to these phosphorylated
carboxy-terminal sites, and subsequent (3) adapter protein phos-
phorylation and recruitment and activation of secondmessenger
proteins to propagate intracellular signaling. We model RTK
phosphorylation, since it is the key signaling mechanism facil-
itating the second messenger signaling that ultimately directs
cell responses such as survival, proliferation, and migration.32–34

For example, cell proliferation results from phosphorylation of
the VEGFR2 Tyr1175 site, whereas phosphorylation at the VEGFR2
Tyr1214 site is linked to cell migration.32 Furthermore, the
concentration of receptor phosphorylation has been shown to
quantitatively correlate with cell response;35,36 EGFR phosphor-
ylation levels are proportional to amount of cell migration.36

Overall, this study predicts the importance of endocytic
vesicles, late endosomes and the nucleus in RTK signaling
and offers new mechanistic insights into RTK nuclear trans-
location. This study also provides a physiologically relevant
signaling template, which can be applied to direct experiments
to measure or control cell and/or receptor-specific signaling.

Results

The computational signaling template or ‘‘meta-model’’ for RTK
signaling (Fig. 1) includes compartment volumes (Table 1), pH
(Table 1), and trafficking kinetics (Table 2), which are held the
same for these eight RTKs, but ligand–receptor concentrations and
interaction kinetics are RTK specific (Table 3).37–45 We identify
trafficking kinetics by fitting to experimental endocytosis data
(Fig. S1, ESI†) that quantified receptor localization on the plasma
membrane (Fig. S1A, ESI†), through the nucleus (Fig. S1B, ESI†),
including the intermediate endosome (Fig. S1C and D, ESI†), and
lysosome (Fig. S1E and F, ESI†). With this data, we simulate RTK
signaling as the integrated receptor phosphorylation over time,46,47

described as the ‘‘integrated signaling’’. NOTE: the term integrated
signaling and other such terms are defined in Table 4. The
integrated signaling of an RTK is analyzed in each compartment
and normalized to the membrane integrated signaling in Table 3.

The extent of membrane signaling is dependent on the RTK

We find that after four hours, the total phosphorylated
receptor is highly variable across the eight RTKs with
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PDGFRb having the highest integrated signaling on the
membrane. Indeed, the plasma membrane PDGFRb signaling
is 3.1 � 103-fold greater than FGFR1, which has the lowest
absolute membrane signaling (Table 3). By analyzing the
three RTK-specific parameters – receptor concentration [R],
ligand concentration [L] and ligand–receptor dissociation

constant Kd – one observes that differential RTK signaling is
determined by the complex concentration, which is defined as
½R�½L�
Kd

. Indeed, FGFR1 has the lowest complex concentration

among the eight RTKs probed, attributed primarily to its low
serum concentration of ligand. Conversely, PDGFRb has the

Fig. 1 RTK endocytosis signaling template. Ligand–receptor interactions and trafficking occur across seven compartments (C1–C8), defined by their
volume, pH, and ligand–receptor kinetics (Table 1). In each compartment, a free receptor can bind a free ligand to form a ligand–receptor complex, as
shown. Rate parameters describing the transitions between intracellular compartments are also given. Abbreviations and descriptions of trafficking are as
follows: on = ligand binding, off = ligand unbinding, int = receptor internalization, VC = vesicle, EE = early endosome, recEE = recycling early endosome,
recRE = recycling endosome, LE = late endosome, N = nucleus, LS = lysosome, and deg = degradation.

Table 1 Model compartment parameters. Compartments are defined by their spherical diameter, volume, pH, and ligand–receptor kinetics as shown.
All compartments are assumed spherical except for the extracellular space. Note that koff rates of the ligands dissociation from receptors are regulated by
pH, as described by eqn (4) (Materials and methods)

Compartment Spherical diameter Volume (cm3) pH kon (molecules�1 s�1) koff (s�1)

Extracellular space — 2.5 � 10�6 7.4 6.6 � 10�9 1.0 � 10�3

Cytoplasm 18 mm212 1.6 � 10�9 7.4 — —
Endocytic vesicle 100 nm154,155 5.2 � 10�16 7.0 3.2 � 101 1.5 � 10�3

Early endosome 1 mm157 5.2 � 10�13 6.0 3.2 � 10�2 3.8 � 10�3

Recycling endosome 100 nm154,155 5.2 � 10�16 6.4 3.2 � 10�2 2.6 � 10�3

Late endosome 2 mm157 4.2 � 10�12 5.0 4.0 � 10�3 1.0 � 10�2

Lysosome 2 mm157 4.2 � 10�12 4.5 0 1.0 � 102

Nucleus 14 mm213 1.4 � 10�9 7.4 1.2 � 10�5 1.0 � 10�3
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greatest complex concentration; hence the greatest integrated
signaling, which is attributed to both the high serum concen-
tration of its ligand and high receptor concentration (Table 3).

Given these physiological conditions modeled, we predict a hier-
archy in membrane signaling, as follows: PDGFRb 4 IGFR1 4
EGFR 4 PDGFRa 4 VEGFR1 4 VEGFR2 4 Tie2 4 FGFR1.

Table 2 Model implemented trafficking kinetics compared to previous endocytosis models. Trafficking parameters for movement between each
endocytic compartment. Different rates were fit for phosphorylated (pR) and unphosphorylated (R) receptors. Rates are represented as mean � standard
deviation, as determined by parameter fitting. Kinetic parameters used in several previous endocytosis models are given as a comparison. Dashes indicate
rates that were not used in previous models. All rates are given in units of s�1. Abbreviations are defined in the footnotes

Parameter Implemented rate VEGFR2160 EGFR37 EGFR210 HER2211

kint (R) 1.5 � 10�3 � 1.6 � 10�4 1.6 � 10�3 5.0 � 10�5 0 1.7 � 10�4

kint (pR) 1.0 � 10�2 � 2.3 � 10�3 1.7 � 10�2 5.0 � 10�5 3.5 � 10�3 7.2 � 10�4

kdeg (R) 1.0 � 10�4 � 1.0 � 10�5 3.8 � 10�4 6.7 � 10�4 1.3 � 10�4 7.0 � 10�5

kdeg (pR) 1.0 � 10�4 � 1.0 � 10�5 9.6 � 10�2 6.7 � 10�4 3.3 � 10�4 7.0 � 10�5

krecEE (R) 3.2 � 10�4 � 1.6 � 10�4 7.8 � 10�2 5.0 � 10�3 5.3 � 10�4 1.1 � 10�3

krecEE (pR) 3.2 � 10�4 � 1.6 � 10�4 9.4 � 10�2 0 3.3 � 10�4 1.1 � 10�3

krecRE (R) 8.6 � 10�3 � 1.8 � 10�3 — — — ——
krecRE (pR) 8.6 � 10�3 � 1.8 � 10�3 — — — —
kVCtoEE (R) 7.7 � 10�6 � 4.3 � 10�6 — — — —
kVCtoEE (pR) 3.7 � 10�4 � 4.2 � 10�5 — — — —
kEEtoRE (R) 8.1 � 10�5 � 1.5 � 10�5 — — — —
kEEtoRE (pR) 8.1 � 10�5 � 1.5 � 10�5 — — — —
kEEtoLE (R) 1.8 � 10�3 � 3.0 � 10�4 — — — —
kEEtoLE (pR) 4.5 � 10�3 � 9.0 � 10�4 — — — —
kEEtoN (R) 5.0 � 10�4 � 8.3 � 10�5 — — — —
kEEtoN (pR) 5.0 � 10�4 � 8.3 � 10�5 — — — —
kLEtoLS (R) 7.5 � 10�5 � 9.1 � 10�6 — — — —
kLEtoLS (pR) 6.7 � 10�4 � 5.9 � 10�5 — — — —
kLEtoN (R) 3.3 � 10�4 � 1.3 � 10�5 — — — —
kLEtoN (pR) 3.3 � 10�4 � 8.3 � 10�5 — — — —

Int: internalization. Deg: degradation. recX: recycling of receptors from compartment X to the cell membrane. X to Y: RTK trafficking from
compartment X to compartment Y. EE: early endosome. RE: recycling endosome. VC: endocytic vesicle. LE: late endosome. N: nucleus. LS:
lysosome.

Table 3 Integrated signaling within each endocytic compartment for various RTKs. Mean integrated signaling in each compartment, relative to the
membrane, in addition to interaction kinetics and receptor concentrations on the given cell type, for the eight studied RTKs. Receptor concentrations are
all taken from human cells in healthy pathology. A brief description of each cell type is given in the footnotes. Interaction kinetics are given for pH = 7.4.
Ligand concentrations are taken from serum concentrations. The total membrane integrated signaling over 4 hours after ligand stimulation is given for
each RTK. Table is ranked and shaded by total membrane signaling: lighter red indicates lower absolute receptor signaling, darker red indicates higher
absolute receptor signaling

a Human umbilical vein endothelial cells. b Human dermal fibroblast.
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RTK signaling primarily occurs intracellularly

While the hierarchy in RTK signaling (phosphorylated receptor)
on the plasma membrane offers insight into receptor sensitivity,
our model reveals a hierarchy in compartment signaling. We
observe that following four hour stimulation, signaling occurs
primarily on endocytic vesicles 4 late endosome 4 nucleus B
early endosome 4 membrane4 recycling endosome 4 lyso-
some. Indeed, 43% of total phosphorylated receptor resides on
endocytic vesicles versus o1% of total receptor signaling occur-
ring on plasma membrane (Table 3). The significance of the
nucleus in signaling is also important to note, where it is
predicted to comprise anywhere between 3.3% of total phosphory-
lated FGFR to 27% of total phosphorylated EGFR within a cell
(Table 3). Altogether, these simulations show that receptor signal-
ing primarily occurs in intracellular compartments.

Compartmentalization leads to two primary receptor signaling
trends

The hierarchy in RTKs and in compartments that we observe is
based on integration over four hours; however signaling is
dynamic so examining the full signaling time-course, early and
late, offers greatest insight on how signaling changes. To visual-
ize RTK signaling dynamics, we chose one ligand–receptor pair
of focus: Ang2–Tie2. The Ang2–Tie2 system offers new insight
into signaling, as it has not been previously modeled. Moreover,
an examination of Table 3 shows that each of the RTKs preserve
the compartmental hierarchy, so examining one ligand–RTK
system offers insights into the trends of the other RTKs. Com-
partmentalized signaling for the seven other RTKs is also given
in the ESI† (Fig. S2–S8). Towards the goal of visualizing RTK
signaling dynamics we specifically examine the duration of

receptor signaling, a parameter that directs differential cell
responses48 in each compartment. We find that receptors asso-
ciated with the membrane (Fig. 2A), endocytic vesicle (Fig. 2B),
early endosome (Fig. 2C), and recycling endosome (Fig. 2D) have
similar signaling with activation and decay constants of B68
minutes. Another set of compartments with similar signaling
profiles are the late endosome (Fig. 2E) and lysosome (Fig. 2F);
here we observed that receptors have a 49 minute activation
constant and 144 minute decay constant. The nuclear compart-
ment does not follow either receptor signaling trend (Fig. 2G),
instead exhibiting the slowest receptor signaling, containing
B3% of the total phosphorylated Tie2 at four hours after ligand
stimulation. Overall, the signaling profile of the Ang2–Tie2
system allows us to rank the compartmental signaling trends
as rapid (membrane, endocytic vesicle, early endosome and
recycling endosome), slow (late endosome and lysosome), and
identifying the slowest compartment as the nucleus.

Phosphorylated receptors primarily associate with endocytic
vesicles and late endosomes

Since compartmentalization affects the time-constants for
receptor signaling, we should expect the distribution of receptor
signaling to change at early and late time-points. To identify
which compartments dominate signaling over time, we continue
our representative receptor, Tie2, examining its compartmenta-
lized signaling (Fig. 2H). As receptor trafficking conventions
would dictate, we observe that endocytic vesicles serve as an
early locale of receptors and late endosomes serve as a latter
receptor compartment. More specifically, five minutes after
ligand stimulus, B22% of the total phosphorylated receptors
reside within endocytic vesicles, whereas o1% are associated
with all other compartments (Fig. 2H). Conversely, three hours

Table 4 Terminology list. List of terms used within the manuscript, their definition, and how they are computed if they are a mathematical term. Note
that the definitions given are provided in the context of this manuscript, i.e. how each term is defined within this manuscript

Term Definition Computation

Response The physiological process of receptors producing a global cell
response through phosphorylation, and subsequent second messenger activation

—

Receptor signaling
OR
signaling

The dynamic activation of a receptor following ligand stimulation pR

Integrated signaling The total receptor phosphorylation over time
Ð t
0pRCndt

From time t = 0 to t = t
For compartment n (Fig. 1)

Compartmentalized
signaling

The receptor signaling stemming from a single endocytic compartment pRCn
For compartment n (Fig. 1)

Membrane-based receptor
signaling
OR
Membrane signaling

The receptor signaling stemming from the cell membrane specifically
(compartment 1, Fig. 1)

pRC1

Intracellular-based receptor
signaling

Receptor signaling stemming from all intracellular compartments
(compartments 2–7, Fig. 1)

P7
n¼2

pRCn

Nuclear signaling Receptor signaling stemming from the nucleus
(compartment 7, Fig. 1)

pRC7

Nuclear translocation Receptor trafficking from the cell membrane to the nucleus —
Complex concentration The amount of bound ligand and receptors ½R�½L�

Kd

where Kd is the ligand–receptor
dissociation constant
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after ligand stimulus, B11% of the total phosphorylated recep-
tors are within late endosomes, whereas o5% are associated
with all other compartments (Fig. 2H). It is important to note the
staggered importance of the early endosome and nuclear com-
partments in signaling.

Small size and sustained signaling facilitates high endocytic
vesicle signaling

Since endocytic vesicles both offer the highest integrated
signaling (Table 3) and comprise a bulk of phosphorylated
receptor at early times (Fig. 2), we explain why the endocytic
vesicle emerges as a significant compartment to signaling.

We hypothesize that the small endocytic vesicle volume
(Table 1) offers an enriched ligand environment that favors
receptor ligation. To test this hypothesis, we compare receptor
signaling within a single endocytic vesicle to receptor signaling
at the membrane, where ligands are not highly concentrated
(Fig. 3A). We block receptor trafficking to and from the single
endocytic vesicle and membrane to ensure receptor signaling
only depends on the individual compartment. Furthermore,
we assume one ligand for one receptor; for Tie2, which has
1800 membrane receptors (Table 3),38 this equates to 1800
(84 pg mL�1 or 1.2 pM) Ang2 molecules, which is within the range
of previously measured serum ligand concentrations (Table 3).

Fig. 2 RTK signaling compartmentalization, represented by Tie2 signaling, primarily occurs within endocytic vesicles early, and late endosomes late,
after ligand stimulus. The percent of phosphorylated Tie2 relative to total cell receptors are given on (A) the cell membrane, (B) endocytic vesicles, (C)
early endosomes, (D) recycling endosomes, (E) late endosomes, (F) lysosomes, and (G) in the nucleus. Tie2 signaling is used as a representative for all
eight RTKs; signaling compartmentalization for the other seven RTKs is provided in the ESI† (Fig. S2–S8). The activation time constant (ta, time from ligand
stimulus to 63.2% max signaling) and decay time constant (td, time from max signaling to 36.8% max signaling) in minutes are also given for each
compartment. Data is represented as mean � standard deviation from 10000 Monte Carlo simulations, randomly seeded across the possible trafficking
kinetics (Table 2). (H) Mean phosphorylated receptor localization relative to total cell receptors at 5, 60, 120, 180 and 240 minutes after ligand stimulus.
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We assume 5 receptors associate with a single endocytic vesicle,
an assumption based on previous experimental observations of
receptor concentrations of vesicles.49–51 Together, this would
give 5 ligand molecules (1.1 mg mL�1 or 16 mM) in a single
endocytic vesicle. With these concentrations, we find that o1%
of the membrane receptors are phosphorylated at 60 minutes
after ligand stimulation (Fig. 3B). Conversely, we find thatB80%
of the endocytic vesicle receptors are phosphorylated at equili-
brium, which is reached within 5 minutes after ligand stimula-
tion (Fig. 3C). We also examine the case where all 1800 receptors
are associated with endocytic vesicles, yielding 5 receptors per
endocytic vesicle for 360 endocytic vesicles total. We find that
B1500 receptors are phosphorylated across the 360 endocytic
vesicles at equilibrium (Fig. 3C). Thus, we show that the low
compartment volume of the endocytic vesicle can sustain and
amplify receptor signaling.

Endocytic compartment signaling can be tuned by the
extracellular ligand concentration

Having established that the endocytic vesicle relevance is
related to its small volume, we examine whether simulation
parameters can be tuned to increase or decrease endocytic
vesicle signaling. Continuing with the Ang2–Tie2 as a repre-
sentative axis, we alter ligand and receptor concentrations and

ligand–receptor binding kinetics and observe where compart-
mentalized signaling occurs (Fig. 4). NOTE: compartmentalized
signaling for the other seven RTKs is given in the ESI† (Fig. S9–S15).
We notice that koff and kon have inverse effects on receptor
signaling: increasing ligand–receptor dissociation (koff) decreases
RTK signaling in all compartments with the exception of the
endocytic vesicles (Fig. 4A). Whereas, increasing ligand–receptor
association (kon) appears to facilitate receptor trafficking by
increasing signaling to both the late endosome and nucleus,
while decreasing signaling in the endocytic vesicles (Fig. 4B).

Since ligand–receptor interactions kinetics cannot be easily
altered therapeutically, we also compare the ability for ligand
versus receptor concentration to regulate RTK signaling.
Increasing either ligand (Fig. 4C) or receptor concentrations
(Fig. 4D) leads to a similar effect as increasing ligation kinetics:
increased trafficking away from endocytic vesicles to the other
compartments: some increased endosomal localization and
significant increases in nuclear translocation. Moreover,
changes in ligand concentration direct receptor signaling to a
greater extent than changes in receptor concentration: increas-
ing ligand decreases endocytic vesicle signaling up to 47%,
relative to normal Ang2 levels (Table 3 and Fig. 4C). However,
we only observe a 23% decrease in Tie2 signaling when receptor
concentrations vary over the same range, or 6 orders of

Fig. 3 Receptor clustering within endocytic vesicles facilitates high, sustained receptor signaling. (A) Schematic showing the three simulations cases. (B)
Receptor signaling versus time was simulated on the cell membrane, on a single endocytic vesicle, or when all receptors were contained on endocytic
vesicles. (C) The integrated signaling at 5 minutes, 1 hour and 2 hours are given for each case.
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magnitude (Fig. 4D). These results show that under physio-
logical ranges of ligand and receptor concentrations, endocytic
vesicle signaling can be best regulated by changing extra-
cellular ligand concentration. Additionally, the primary com-
partments affected by changes in ligand, receptor, or affinity
are the endocytic vesicles and the nucleus.

Membrane receptor translocation to the nucleus primarily
occurs through a late endosome pathway

In addition to endocytic vesicles, our compartment hierarchy
(Table 3) and signaling dynamics simulation (Fig. 2H) show
that late endosomes and nucleus are important compartments
for signaling. To better understand how trafficking affects
signaling, we simulate test cases where individual endocytic
pathways are blocked and observe how nuclear signaling is

affected for our representative RTK: Tie2 (Fig. 5). We predict
that minimal nuclear translocation occurs when late endosomal-
to-nuclear trafficking is blocked; under that condition, we
observe a 57% reduction in nuclear translocation (Fig. 5).
Whereas, maximal nuclear translocation occurs when early
endosomal-to-late endosomal trafficking is blocked; here we
observed a 270% increase in nuclear accumulation of the
representative receptor, phosphorylated Tie2. Late endosomal-
to-lysosomal trafficking inhibition also results in a significant
increase in nuclear translocation of phosphorylated Tie2 (140%
increase). Conversely, blocking the other pathways (receptor
recycling, early endosomal-to-nucleus and early endosomal-to-
late endosomal) is not as effective in shifting the distribution
phosphorylated receptor in nucleus. Therefore, while nuclear
translocation requires transport through early endosomes, we

Fig. 4 Tie2 signaling compartmentalization, as a representative for all RTKs, can best be regulated by extracellular ligand concentration. The percent of
total receptor signaling associated with each compartment were quantified with altered Ang2–Tie2 parameters, provided as representative for all RTKs. The
compartmentalized signaling for the other seven RTKs studied here can be found in the ESI† (Fig. S9–S15). Recycling endosome- and lysosome-based
receptor signaling are not included as they account for o0.01% total receptor signaling. The four parameters changed are (A) ligand–receptor off-rate,
(B) ligand–receptor on-rate, (C) ligand concentration, and (D) receptor concentration. Data is represented asmean� standard deviation from 10000Monte
Carlo simulations, randomly seeded across the possible trafficking kinetics (Table 2).
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predict that inhibiting late endosomal-to-nuclear trafficking
would be most efficient at preventing RTK nuclear translocation.

Nuclear-based signaling for any RTK is determined by the
extracellular ligand concentration

Since our sensitivity analysis reveals that the intracellular
signaling of Tie2 can be tuned by the extracellular Ang2
concentration (Fig. 4), we return to our meta-model to examine
whether extracellular ligand concentration, affinity, or the
complex concentration can predict compartmentalized recep-
tor signaling for any of the eight RTKs. To this end, we perform
a correlation analysis, assuming a lognormal fit, between mean
nuclear signaling and the RTK parameters for these eight RTKs
(Fig. 6). We continue our focus on the nuclear compartment,
given our predictions on its importance to signaling. Signaling
for the other compartments is included in the ESI† (Fig. S16–S19)
with the exception of the recycling endosomes and lysosomes.
They are excluded, because they account for o0.01% total
receptor signaling across all eight RTKs. We find that nuclear
signaling has a low correlation with the receptor concentration
(Fig. 6A, R2 = 0.08) and the ligand–receptor dissociation constant,
or affinity (Fig. 6B, R2 = 0.17), implying that these parameters
have low weight in determining the hierarchy in RTK nuclear
signaling. We observe that extracellular ligand concentration
does a better job of characterizing nuclear signaling (Fig. 6C,
R2 = 0.47), indicating that it carries the highest weight among the
three parameters (receptor concentration, affinity, and ligand
concentration); indeed, this correlation analysis predicts that
increasing the extracellular ligand concentration one order of
magnitude will increase nuclear signaling 3.2-fold. Furthermore,
the complex concentration, which is comprised of the three
parameters, provides the best overall predictor of RTK nuclear
signaling (Fig. 6D, R2 = 0.75), confirming that nuclear signaling
is mediated by these three RTK parameters. The low weight of

both receptor concentration and ligand–receptor dissociation and
high weight of extracellular ligand concentration to RTK nuclear
also holds for the other endocytic compartments (Fig. S16–S19,
ESI†). Overall, this meta-analysis between RTK parameters and
receptor signaling indicates that the extracellular ligand concen-
tration is the RTK parameter that best regulates receptor signaling.

Discussion

Our integrative RTK meta-modeling approach is the first time
that these eight RTKs, all of which are critical to disease (e.g.,
cancer,1,2,52,53 cardiovascular disease,3,4 stroke54,55) have been
comparatively modeled. This meta-modeling led us to four impor-
tant findings. First, receptor signaling primarily stems from endo-
cytic vesicles, late endosomes and the nucleus (3–27%), whereas
membrane signaling is relatively low for every RTK tested. Second,
we determine a physiological ranking of RTK signaling: PDGFRb
has the highest and FGFR1 has the lowest absolute membrane
signaling. Third, high receptor activation within endocytic vesicles
is due to their low volume, facilitating ligand enrichment and
leading to sustained receptor signaling. Finally, we find that the
extracellular ligand concentration regulates absolute compartment
signaling; increasing the extracellular ligand concentration one
order of magnitude increases nuclear signaling 3.2-fold. Together
these results have implications for accurately quantifying receptor
signaling, optimizing therapeutics targeting RTK pathways, under-
standing drug resistance to such therapeutics, and genetic regula-
tion mediated by RTK signaling, which we describe below.

Integrative computational modeling and biological data allows
novel insights into RTK signaling

The four important findings presented in this study are derived
from our meta-modeling approach that integrates computational

Fig. 5 Tie2 nuclear translocation, as representative for all RTKs, is effectively inhibited by blocking late endosome trafficking. Percent total Tie2
translocated to the nucleus, as representative for all RTKs, when endocytic pathways are blocked, and cells are ligand stimulated for 4 hours. Inhibited
pathways involve receptor movement from the early endosomes and late endosomes (Fig. 1). These pathways are the recycling pathways (blue),
trafficking from early endosomes to the nucleus (green), trafficking from early endosomes to late endosomes (purple), trafficking from late endosomes to
lysosomes (orange), and trafficking from late endosomes to the nucleus (red). Data is represented as mean� standard deviation from 10000Monte Carlo
simulations, randomly seeded across the possible trafficking kinetics (Table 2).
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modeling with physiological data. It is important to note that
while these conclusions are predicted and not experimentally
derived, they could only be found through computational inves-
tigation. Indeed, experimentally defining receptor signaling across
each endocytic compartment requires capturing receptor coloca-
lization with a biomarker specific to an endocytic compartment,
such as EEA1 for early endosomes.56,57 However, these experi-
mental techniques are limited: they generally provide qualitative
data, making accurate quantitation of receptor localization
difficult.58–62 Furthermore, due to the dynamic nature of endo-
cytic compartment transitions, which involves fusion of endocytic
vesicles to create early endosomes, these biomarkers can have
cross reactivity with multiple endocytic compartments.60,61,63

Likewise, biomarker expression within a single endocytic com-
partment varies dynamically, further complicating quantitative
colocalization measurements.64 Therefore, accurately quantifying
receptor signaling within specific endocytic compartments is a
difficult feat to accomplish experimentally. Furthermore, experi-
mental measurements are specific to the cell and receptor type

examined by nature, and results obtained for a single receptor
may not be applicable to all RTKs. This highlights one of
the primary advantages of our computational meta-modeling
approach: the ability to delineate the complex mechanisms
specific to cell or receptor types and generalize how endocytosis
directs RTK signaling. Furthermore, our integrative modeling
technique can be applied to direct experimental research examining
cell- or receptor-specific signaling, optimizing experiments and
reducing investigation time and costs.

Experimental support for compartment dynamics: implications
for drug delivery

Our analysis of signal duration show two primary signaling
compartmentalization patterns: (1) rapid receptor signaling,
which we observe in the membrane, endocytic vesicles, early
endosomes and recycling endosomes and (2) slow receptor
signaling, which we observed in late endosomes and lysosomes.
Prior experimental studies offer support to our predicted signal-
ing dynamics.17,65–67 For example following ligand stimulation,

Fig. 6 Nuclear signaling is determined by extracellular ligand concentration. Nuclear signaling among the eight RTKs was fit to the following RTK
parameters: (A) receptor concentration, (B) extracellular ligand concentration, (C) ligand–receptor dissociation constant, and (D) complex concentration,
defined as the product of extracellular ligand concentration andmembrane receptor concentration divided by the ligand–receptor dissociation constant.
The R2 goodness of fit, using a lognormal fit assumption, is given for each RTK parameter. Correlation analyses between RTK parameter and RTK signaling
are also given for the membrane (Fig. S16, ESI†), endocytic vesicle (Fig. S17, ESI†), early endosome (Fig. S18, ESI†), and late endosome (Fig. S19, ESI†)
compartments; recycling endosome and lysosome signaling are not included as they account for o0.01% total receptor signaling.
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PDGFRs67 and VEGFR268 are primarily phosphorylated within
endosomal compartments early (30 minutes), then shift to
downstream endocytic compartments late (2 hours). However,
these experimental studies do not differentiate receptor signal-
ing at different endocytic compartments, which is the funda-
mental advancement of our model. This temporal receptor
signaling pattern highlighted by our model is particularly useful
for optimizing time-dependent drug delivery.69–71 Specifically,
our simulations suggest that drug regimens targeting endocytic
vesicle signaling would need to be initiated within 60 minutes
following ligand stimulus to be effective. After this time, receptors
will predominantly reside in late endosomes, which would render
endocytic drugs ineffective. Thus, our results that receptor signaling
occurs in distinct early and late trends agree with experimentally
observed receptor signaling trends, and provides a tool for optimiz-
ing dynamic drug delivery.

Importance of targeting RTKs, intracellularly: VEGFRs and
tumor angiogenesis

Our result that RTK signaling primarily occurs intracellularly
both provides insight into optimizing drug treatments and can
be applied to targeting those RTKs that are primarily localized
intracellularly. For example, VEGFR2 is often targeted to inhibit
tumor angiogenesis,72,73 and B50% of total VEGFR2 is localized
within endosomes.74,75 Our result that VEGFR2 is highly phos-
phorylated within endosomes relative to the cell membrane
implies that inhibiting membrane VEGFR2 may not effectively
prevent VEGFR2 signaling; instead, intracellular VEGFR2 needs
to be targeted. Indeed, experimental studies have shown that
RTK inhibitors that penetrate the plasma membrane are more
effective at reducing receptor signaling.76,77 Additionally, Wicki
et. al. show that loading a VEGFR2-targeting antibody into
liposomes facilitating cell uptake of the antibody and results
in a 77% greater decrease in tumor volume over exposing to
VEGFR2 antibody alone in a HT-29 colon cancer mouse model.78

Thus, inhibiting membrane RTKs alone may not be sufficient to
prevent signaling, and our model further underlies the impor-
tance of intracellular-based RTK targeting.

Experimental support for endocytic vesicle importance

Our finding of the signaling concentration occurring in the low
volume endocytic vesicle can also serve as a model for the
receptor clustering occurring within membrane lipid rafts.79,80

Indeed, receptor clustering has been optogenetically manipu-
lated to induce signaling through PDGFRs and other receptors.81

Moreover, our finding that signaling primarily occurs within
endocytic vesicles suggests that endocytic vesicles should be the
primary target to modulate RTK signaling. Experimental obser-
vations appear to validate these findings for all eight RTKs tested
wherein ERK phosphorylation is decreased by inhibiting the
endocytosis of EGFR,82 FGFR1,83 IGFR1,84 PDGFRb85 and
VEGFR2.86 Similarly, inhibiting recycling, which would facilitate
PDGFRa accumulation in endocytic vesicles, is found to increase
ERK phosphorylation.87 Therefore, our results and piro experi-
mental data indicate that targeting the residence of RTKs in

endocytic vesicle receptors or receptor clusters is an ideal
approach to tune receptor signaling.

Importance of targeting RTKs, intracellularly: EGFRs and
cancer cell drug resistance

Our result that RTK signaling primarily occurs within endocytic
vesicles can shed additional light on cancer drug resistance.
Drugs that only target membrane receptors and do not affect
endocytic vesicle receptors would be sub-optimal given our
finding that membrane signaling accounts for merely 1% of
the total cell signaling. Indeed, the literature offers an example
of such failed-targeting in gefitinib, a small molecule inhibitor
that blocks the EGFR ATP binding site. It is used to treat non-
small cell lung cancer (NSCLC). Gefitinib is effective only in cell
types where it inhibits intracellular-based EGFR signaling, such
as in NSCLC PC9 cells; gefitinib inhibits EGFR endocytosis, but
not EGFR signaling at the cell membrane.88,89 Conversely,
QG56 cells have aberrant endocytosis, natively, so this cell type
has been found to be gefitinib-resistant.88 Thus, our simula-
tions offer guidance in RTK inhibition, suggesting improved
efficacy when inhibiting intracellular receptor signaling, while
offering insights into the mechanisms leading to reduced drug
efficacy.

Experimental support for nuclear translocation

We predicted that all membrane RTKs undergo significant
nuclear translocation, representing between 3.3% and 27%
total receptor signaling, following ligand stimulation. Furthermore,
we find that nuclear translocation can be tuned by extracellular
ligand concentration or late endosomal targeting. Nuclear trans-
location is a process that occurs formany RTKs.90–92 Indeed, all eight
RTKs examined in this study have been qualitatively observed
within the nucleus, except PDGFRb, which lacks experimental
investigation (reviewed in;93 specifically – Tie2;94,95 EGFR;96–98

FGFR1;99–101 IGFR1;102–105 PDGFRa;106,107 VEGFR1;108,109

VEGFR2110–114). It is important to note that nuclear translocation
can involve retrograde transport of receptor fragments from
endosome to endoplasmic reticulum and Golgi apparatus to
nucleus.115–117 However, our model does not focus on fragments.

Importance of targeting nuclear translocation: implications for
gene expression

While the full implications of nuclear translocation have not
been fully delineated, it is known that nuclear translocated
RTKs can directly interact with proteins to regulate gene
expression and elicit global cell responses.92,93,118,119 In one
study, Wang et al. shows that membrane ERBB2 undergoes
nuclear translocation to directly bind the COX-2 promoter and
stimulate its transcription in cancer cells, thus increasing the
anti-apoptotic, proangiogenic and metastatic potential of can-
cer cells.120 Receptors undergoing nuclear translocation can
also indirectly regulate gene expression by shuttling adapter
proteins to the nucleus; ERBB4 binds and transports the
adapter STAT5 to the nucleus, initiating gene expression.121

Therefore, our model findings on the importance of ligand and
endosomal trafficking in nuclear translocation suggests that
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one can increase gene expression by either increasing the
extracellular ligand concentration or blocking early endosomal
to late endosomal trafficking. Conversely, gene expression may
be decreased by preventing endocytosis to late endosomes (e.g.,
Rab 7 inhibition).

Computational recommendation: cell-receptor-specific
trafficking rates

This computational model is designed as a signaling template:
a generalized model that can be extended to account for
specific cell or RTK machinery. As such, these quantitative
results are dependent on our assumption that all RTKs, and
all cell types, have the same trafficking kinetics. However,
different cell types, such as cancerous cells compared to healthy
cells, may have different trafficking rates, which would alter the
model predictions. In this case, the distribution of receptors in
compartments would shift. Therefore, extending our model to
specific RTKs and cell lines, and updating the model with cell/
receptor-specific trafficking data would offer the greatest accu-
racy to the specific system.

Computational recommendation: late endosomal modeling

An additional model extension would be further examining the
importance of the late endosome, since we find that a signifi-
cant portion of RTK signaling stems from this compartment.
An, important, sub-compartment, specific to late endosomes
are the intraluminal vesicles, called multivariate bodies (MVB).
RTK signaling does occur in MVBs,27 but the proteins involved
in MVB trafficking vary depending on the RTK or cell type.
For instance, RTK association with Cbl is considered manda-
tory for intraluminal vesicle formation;14,122 however, various
non-small cell lung cancer cells (NSCLC) express EGFR mutants
that do not associate with Cbl.123 This indicates that these
NSCLCs either do not form intraluminal vesicles, or they use
different cellular machinery, natively.123 While our model does
not account for MVBs, further modeling could include this
complexity, particularly towards identifying late-endosomal
specific approaches for targeting RTK signaling.

Deriving new experimental insight from models

Our model exemplifies the power of computation to predict
system behavior based on the properties of the system.124

Computational models can also help identify critical para-
meters of the system: parameters that when changed can have
greater effect on system behavior, an well-established area of
computational research.125 A recent example of gleaning
important system properties comes from a pharmacokinetic
model of an anti-angiogenic drug in tumor. Here, sensitivity
analysis of the key receptors mediating vascularization: VEGFRs
and neuropilin, revealed that a range of 2000–6000 VEGFRs and
B80 000 neuropilins on tumor cells could change VEGF con-
centrations in tumor by over 3-fold.42 Most anti-angiogenic
agents aim to decrease vascularization by either inhibiting
VEGF or its receptors, so the fact that VEGFRs can so signifi-
cantly affect VEGF concentrations suggests that models should
have accurate concentrations of these receptors. Indeed, such

model analysis has opened the door to receptor quantification
as a critical step in computational model development.126–131

New experimental studies quantifying VEGFR, PDGFR, and
Tie2 receptors75,132–134 have led to new insight into challenges
in treating ischemic disease,132 characterization of tumor
heterogeneity,126,134 and suggest the possibility of ligand
signaling across-families.38 These studies on receptor quantifi-
cation demonstrate that models, including the one presented
here, can guide optimal experimental design.

Experimental recommendation: manipulating compartmental
hierarchy

Our model reveals that RTK signaling compartmentalization is
hierarchical, as follows: endocytic vesicles 4 late endosome 4
nucleus B early endosome 4 membrane 4 recycling endo-
some 4 lysosome, with similar hierarchy in the sensitivity of
these compartments to change (Fig. 2). These findings are
based on the general assumption that trafficking rates vary
between 1–2 orders of magnitude from known trafficking rates.
Therefore, experimental studies having the greatest potential to
advance our understanding of endocytosis signaling would
manipulate trafficking rates, particularly those of the endocytic
vesicles to significantly increase or decrease RTK signaling.
This can be done by targeting membrane-to-vesicle plasma-
membrane trafficking machinery e.g., SNARE proteins, lipid
rafts, caveolin, etc.; many of which have been delineated and
manipulated.135,136 Inhibiting or blocking membrane-to-vesicle
trafficking proteins would increase membrane residence –
(e.g., dynasore inhibition of dynamin);137 thereby decreasing the
endocytic signaling contribution and likely decreasing overall RTK
signaling since the signal amplification of the small-volume
vesicle would be lost. Whereas, overexpressing these membrane-
to vesicle trafficking proteins or treating with drugs that promote
endocytosis should lead to significant increases in RTK signaling.
For example, phorbol esters promote endocytosis,138,139 and the
BHK-21 cell stimulation with phorbol esters increases the number
of endocytic vesicles up to 2-fold, and even normalizes endocytosis
in cells with Rab mutations.140 Another option to increase RTK
signaling would be to treat cells with neomycin to prevent
endocytic vesicle fusion into early endosomes, thereby retaining
receptors within endocytic vesicles.141,142 Alternatively, our results
show that late endosomes are required for nuclear translocation;
to this end, the Rab GTPases are an ideal protein target.143–146 For
example, Rab7 regulates early to late endosome trafficking;
mutating Rab7 prevents VEGFR2 endocytosis to late endo-
somes, causing VEGFR2 accumulation in early endosomes.143

Thus, our results indicate that treating cells with dynasore to
prevent endocytosis, with phorbol esters or neomycin to
increase endocytic vesicle signaling, or targeting Rab proteins
to decrease nuclear translocation, are high-potential experi-
mental targets to tune RTK signaling.

Experimental recommendation: manipulating RTK signaling
hierarchy

Our meta-modeling finding that extracellular ligand concen-
tration significantly regulates RTK signaling offers computational
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support to the common biology practice of ligand treatment.
Indeed, ligand-treatment enables studies of cell behavior and
even activation of cell differentiation.147–149 Building upon the
importance of ligand is the importance of the complex, where we
find the following hierarchy in signaling abundance on the
membrane: PDGFRb 4 IGFR 4 EGFR 4 PDGFRa 4 VEGFR1 4
VEGFR2 4 Tie2 4 FGFR1 (Fig. 6D). Since many of these receptors
activate similar second messengers, including MAPK, Akt, and
others,150–153 our computational template offers opportunities
to manipulate intracellular signaling on cells carrying different
combinations of these receptors. For example if a researcher
aims to increase migratory behavior in a cell carrying IGFR1
and FGFR1, our model suggests that manipulating IGFR1
would provide greater effect, provided the cell has similar
properties as those modeled. To make a cell-specific determi-
nation of which receptor to target, an experimentalist would

simply examine the complex formation
½R�½L�
Kd

� �
.

Conclusion

Our comparative examination of eight commonly studied RTKs
offers insight into their compartmentalized signaling. Overall,
this study predicts that receptor signaling can best be controlled by
targeting intracellular-based receptors, particularly endocytic vesicles,
to regulate receptor signaling or late endosomes to regulate nuclear
translocation. Future studies can adapt the signaling template
presented here to direct the regulation of specific receptor signaling
in pathological cases.

Materials and methods
Model assumptions

The following are the primary model assumptions, with brief
justification. Additional discussion and justification for each
assumption are additionally provided in the following Materials
and methods sections.

First, we make the following assumptions regarding
compartment geometry: (1) we assume all compartments,
except for the extracellular space, are spherical, and are
not RTK specific. We list the spherical diameters in Table 1.
This assumption is based on studies showing average
compartment sizes that do not vary by more than 60% for
cells expressing our RTKs.154,155 (2) We assume that recycling
endosomes are the same size as endocytic vesicles. This
assumption is based on data showing that recycling endo-
somes and endocytic vesicles have similar sizes.154,156 (3) We
assume that lysosomes are the same size as late endosomes.
This is justified as late endosome and lysosome markers
both appear on similar sized compartments.157 Finally, with
regards to our compartment size assumptions, we show that
increasing or decreasing compartment size by 10-fold causes a
negligible (o1% for non-nuclear compartments) change in
RTK signaling, via sensitivity analysis (Fig. 7).

Second, we make the following assumptions regarding
kinetics: (1) we assume that all RTKs have trafficking kinetics

that are within the ranges of known RTK dynamics. We list the
known and unknown trafficking rates in Table 2. (2) We obtain
trafficking kinetics by fitting to experimental data, as
described in the Materials and methods (Fig. S1, ESI†). (3)
We assume that the receptor phosphorylation and dephos-
phorylation rates are the same for all eight RTKs and remain
the same across all model compartments. This is a typical
model assumption shown to retain model physiological
accuracy.37,158–162 (4) While dimerization is an important
process that is known to contribute to RTK signaling,163–166

we do not model this as a separate step, instead, we assume
all receptors are present in a pre-dimerized, inactive state,
activated by ligand binding. This model assumption of
pre-dimerized receptors is an established model assumption
that allows accurate receptor signaling quantifications,42,126

and is based on evidence that VEGFR2 pre-dimerization may
stabilize a ligand-dimeric complex.166,167 (5) We assume that
the ligand–receptor dissociation constant changes with com-
partment pH (Table 1), based on empirical measurements
directly measuring ligand–receptor dissociation constant
versus pH.37,168 Furthermore, we determine that increasing
or decreasing the pH within any compartment by 0.5 exerts a
negligible effect on RTK signaling (o2% for non-nuclear
compartments), via sensitivity analysis (Fig. 8). (6) We assume
all cell receptors are initially localized to the cell membrane
and all ligands are initially localized extracellularly (Table 3).
This is a typical model initialization scheme.19,169,170 It physio-
logically correlates with experiments where membrane recep-
tors are labeled with a biomarker that is tracked, following
ligand stimulation.171,172 (7) We do not assume that RTK
concentrations are the same across the cells, so we literature
mine these data from quantitative studies across multiple cell
lines (Table 3). This assumption is based on known variations
in RTK concentrations on the plasma membrane.38,128 This is
also based on prior computational model sensitivity analyses
showing that receptor densities can significantly affect model
predictions.42

Computational modeling to predict RTK signaling within
endocytosis in a generalized manner

The purpose of this study is to understand how cell physiology
(volume, pH, trafficking) directs compartmentalized receptor
signaling fundamentally. As such, incorporating receptor-
specific trafficking or post-endocytic fates is outside the scope
of our study; thus, we use the same cell physiology for each
RTK, and examine RTK parameters independent of cell
physiology. To delineate the physical principles governing
endocytosis from cell- and receptor-specific physiology, we
create a computational model that generalizes endocytosis
across multiple cell-types and RTKs. Specifically, trafficking
kinetics are generalized by incorporating biological data
obtained from multiple cell lines, while receptor concentra-
tions are cell-specific. However, it is important that the para-
meters implemented are consistent within a single RTK. For
example, the IGFR1 ligand–receptor interaction kinetics hold
for all cell lines.40 This methodology to aggregate, or assume,
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biological data from multiple sources retains the ability for
computational models to provide new insight into a biological
system, albeit at a generalized manner.173 As our goal is to
understand RTK signaling within endocytosis generally, we
implement this methodology to integrate data across multiple
biological sources. Likewise, to allow for generalized investiga-
tion into endocytosis, we do not account for endocytosis
mechanisms and machinery that differs by cell-type, such as
membrane curvature,174 fluidity,175 or internalization mecha-
nism (i.e. clathrin- or caveolin-mediated endocytosis).176

Furthermore, we do not account for how cell machinery differs
within an individual cell, such as how membrane composition
differs at the plasma membrane compared to early
endosomes,177 which may facilitate receptor dephosphoryla-
tion and transient signaling.178 Additionally, we use receptor
phosphorylation as our terminal model output, as signaling
molecule activation has localization constraints outside the
scope of this study; for example, activation of the signaling
molecules PI3K179,180 is constrained to the membrane.

Model compartmentalization

The model contains eight compartments representing standard
receptor endocytosis (Fig. 1) as follows:11,181–183 (i) ligand–
receptor binding on the plasma membrane; (ii) receptor inter-
nalization, including ligands and other receptor- and
membrane-bound proteins via endocytic vesicles; (iii) endocytic
vesicle fusion into early endosomes; (iv) recycling from early
endosomes back to the cell membrane; (v) endosomal matura-
tion into late endosomes; (vi) late endosomal protein traffick-
ing to lysosomes for degradation; (vii) early endosomes and
lysosomes trafficking receptors to the nucleus. We assume all
compartments, except for the extracellular space, are spherical
(Table 1). We assume that recycling endosomes are the same
size as endocytic vesicles, as they bud off the early endosomes.
Furthermore, we assume that lysosomes are the same size as
late endosomes. The extracellular space volume is 0.5 cm3,
shared equally between 2 � 105 cells, based on typical condi-
tions used in 24-well plates.184 To control for compartments

Fig. 7 Compartment volume only affects nuclear signaling. RTK signaling within each compartment is quantified while altering compartment volume
0.1- to 10-fold the physiological value (Table 1). Data is represented as mean � standard deviation from 10000 Monte Carlo simulations, randomly
seeded across the possible trafficking kinetics (Table 2).
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being contained within the cytoplasm volume, we assume the
available cytoplasmic volume for protein interactions is one
tenth the total volume (Table 1). To ensure our volume assump-
tions do not alter RTK signaling, we conduct sensitivity
analyses altering each compartment volume, individually,
across a physiological range and quantify RTK signaling within
that compartment (Fig. 7). We find that, other than the nucleus,
volume of each compartment does not significantly alter RTK
signaling within that compartment (Fig. 7). Thus, our volume
assumptions do not significantly alter compartmentalized RTK
signaling.

Ligand–receptor interactions

In all model compartments (Fig. 1), we employ a generalized
ligand–receptor interaction model using the following chemical
reactions:

LþR�! �
konL�R

koffL�R

L:R (1)

where L is the ligand, R is the unphosphorylated receptor, pR is
the phosphorylated receptor, colons indicate bound proteins,
konL–R

is the ligand–receptor on-rate, koffL–R is the ligand–
receptor off-rate, kp is the receptor phosphorylation rate
(1 � 10�2 s�1 160), and kdp is the receptor dephosphorylation
rate (1 � 10�3 s�1 160). We also provide a complete list of model
reactions in the Supplementary materials and methods (ESI†).
Note that the receptor phosphorylation and dephosphorylation
rates are the same for all eight RTKs and remain the same across
all model compartments. Using generalized phosphorylation and
dephosphorylation rates is a typical model assumption,37,158–162

while retaining model physiological accuracy. For example, our
implemented phosphorylation and dephosphorylation rates were

Fig. 8 Compartment pH only affects nuclear signaling. RTK signaling within each compartment is quantified while altering compartment pH 0.5 less and
0.5 more the physiological value (Table 1). Data is represented as mean � standard deviation from 10000 Monte Carlo simulations, randomly seeded
across the possible trafficking kinetics (Table 2).

L:R �! �
kp

kdp

L:pR (2)

L:pR ���!koffL�R
LþR (3)
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taken from a study by Tan et al., which accurately predicted
VEGFR2 and ERK phosphorylation dynamics.160 These rates also
agree well with phosphorylation rates measured for multiple
proteins and phosphorylation sites.185,186 Furthermore, each com-
partment has additional trafficking or degradation reactions
(Table 2). Our model assumes all receptors are present in a
pre-dimerized, inactive state. We assume that ligand binding
activates the pre-dimerized receptors and results in receptor
phosphorylation and signaling, a process shown to occur physio-
logically across multiple RTKs.163–166 Furthermore, dimerization
mechanisms are RTK dependent; thus, we do not incorporate
dimerization in our meta-model to ensure that receptor phos-
phorylation is dependent only on cell physiology and localization.

Ligand–receptor kinetics

As ligands and receptors are trafficked throughout the cell the
dissociation constant between them changes based on the pH
of the compartment in which they reside (Table 1). Similar
pH-mediated ligand–receptor kinetics have been constructed
for EGF-EGFR interactions in early endosomes.37,168 Our
pH-based kinetic alteration is derived from these studies, but
expands upon them to account for more endocytic compart-
ments. First, we determined typical pH for each compartment
based on experimental measurements.11,187,188 Next, we identi-
fied how pH mediates ligand–receptor interactions.168,189–194

For example, the Lauffenburger lab showed that the ligand–
receptor dissociation constant increases with decreasing pH for
all growth factors they examined.191 Also, this phenomena that
protein binding weakens at lower pH occurs for many protein
types, and is not specific to ligand–receptor interactions.195,196

Previous research has found that ligand–receptor interactions
are strongest at pH 7.4, the typical pH of the extracellular space,
cytoplasm and nucleus,197 but weaken as the pH is decreased.189

For instance, ligand–receptor dissociation constants increase
2- to 3-fold as pH decreases from 7.4 to 6.0189,190 which corre-
sponds with the typical pH of early endosomes.11 At pH 5.0 in
late endosomes,11 dissociation constants increase B10-fold.190

Ligand–receptor interactions no longer occur below pH 5.0, such
as in lysosomes.11 We fit the ligand–receptor off-rate as an
exponential function to these average pH values by

koff = 1.21�e�0.96pH (4)

where pH o 5.0 has an infinite off-rate allowing no ligand–
receptor interactions (Table 1). It should be noted that different
ligand–receptor off-rates are affected by pH changes to different
extents;191,193 the Lauffenburger lab found that the dissociation
rate for TGF-alpha increases B60-fold at pH 6.0 relative to
pH 7.4, whereas the EGF dissociation rate increasesB30-fold.191

However, as all growth factors were observed to undergo
increased ligand–receptor dissociation constants with decreased
pH,191 we use this exponential relationship for all eight RTKs,
to again remove receptor-specific considerations and provide
generalized results. To ensure our pH assumption does not alter
RTK signaling, we conduct sensitivity analyses altering each
compartment pH, individually, across a physiological range
and quantify RTK signaling within that compartment (Fig. 8).

We find that, other than the nucleus, compartment pH does not
significantly alter RTK signaling within that compartment
(Fig. 8). Thus, our pH assumption does not significantly alter
compartmentalized RTK signaling.

Defining ligand and receptor concentrations

We initialized the model such that all cell receptors were
initially localized to the cell membrane and all ligands were
localized extracellularly (Table 3), a typical model initialization
scheme.19,169,170 Physiologically, this would be a case where
membrane receptors are labeled with a biomarker before
growth factor simulation occurs.171,172 Thus, receptors that
are synthesized and inserted into the membrane would not
be quantified, as no biomarker is available to label them.
Similarly, receptors that are contained intracellularly initially
and are recycled to the membrane would also not be labeled;
therefore, we do not account for any receptors initially contained
intracellularly. Our model therefore tracks and quantifies only
receptors that are localized to the plasma membrane prior to
ligand stimulation. All receptor and ligand concentrations are
implemented as molecules/cell, where concentration conversions
frommass/volume to moles/volume were done as necessary using
the following ligand molecular weights – Ang2: 70 kDa,198 EGF:
74 kDa,199 FGF-2: 18 kDa,200 IGF-1: 7.6 kDa,201 PDGF-AA: 30 kDa,202

PDGF-BB: 24 kDa,202 VEGF-A: 45 kDa.203

Trafficking kinetics

Trafficking parameters were determined by fitting to experimental
data (ESI,† Fig. S1 and Table 2)171,172,204–207 encompassing multi-
ple receptor and cell types to decouple cell- or receptor-specific
trafficking mechanisms, and define generalized trafficking
kinetics. Note that the receptor types used in this fitting were
limited by availability of experimental data; as such, some of the
experimental receptor types differ from the eight RTKs we study
here (receptor types used for fitting are ICAM-1,172,204 VEGFR2,205

EGFR206 and heparin sulfate and integrins171). We assume this
discrepancy is negligible, as we use this fitting approach to
decouple receptor-specific trafficking mechanisms and define
generalized trafficking parameters, as stated. Such an approach
using generalized trafficking parameters is a typical computa-
tional modeling assumption32,37,160,173,208,209 that retains
physiological relevancy. For example, Tan et al. modeled VEGFR2
internalization with generalized trafficking kinetics, while still accu-
rately predicting VEGFR2 and ERK phosphorylation dynamics.159

Trafficking kinetics were defined by minimizing the global
Chi-square between experimental data and simulation:

min
Xn
i¼1

ð�yi � ŷiÞ2
�yi

" #
(5)

where %yi is the mean value of experimental data point i, ŷi is the
simulated value and n is the total number of experimental data
points. Best fit trafficking parameters were determined using
10 000 Monte Carlo simulations for each of the eight RTKs
(i.e. RTK specific receptor/ligand concentrations and inter-
action kinetics); the best fit parameters were then represented
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as the mean � standard deviation across these eight RTKs
(Table 2). Each Monte Carlo simulation seeded the trafficking
parameters between 1 � 10�7 and 1 � 10�1 and calculated the
Chi-square between simulation and experiment (eqn (5)); this
parameter range represents one order of magnitude lower and
higher than trafficking kinetic rates used in other physiological
models.37,160,210,211 Experimental data are provided throughout
the entire trafficking process, including membrane internaliza-
tion (Fig. S1A, ESI†), nuclear translocated receptors (Fig. S1B,
ESI†), endosome receptors (Fig. S1C and D, ESI†) and lysosome
receptors (Fig. S1E and F, ESI†). While experimental data for
compartments other than membrane, early endosome, lyso-
some, and nucleus were not available, we assume that by
accurately fitting receptor localization to these compartments,
receptor localization in the other compartments will also
be accurate. Indeed, the compartments without experimental
definition: endocytic vesicles, recycling endosomes, and late
endosomes, are all compartments intermediary to compart-
ments with experimental data. Thus, we assume that accurately
fitting membrane and early endosome localization will impli-
citly fit endocytic vesicle localization, which occurs in between
these two compartments, accurately.

Simulating RTK signaling with Monte Carlo

For all simulations examining RTK trafficking and compart-
mentalized RTK signaling (Fig. 2, 4 and 5), the range of possible
RTK signaling was determined through Monte Carlo simula-
tions. For each Monte Carlo simulation, the 20 trafficking
parameters were randomly seeded from the range provided by
their mean � standard deviation (Table 2). Using those 20
random trafficking parameters, the compartmentalized RTK
signaling was simulated; this random seeding and simulation
was performed 10000 times. The results from the 10000 simula-
tions were then aggregated as mean � standard deviation to
create the range of compartmentalized RTK signaling as given
(Fig. 2, 4 and 5).
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