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Abstract 

The contribution of local volumetric change due to the diffusion/migration of solute atoms to 

viscoelastic deformation is incorporated in the theory of linear viscoelasticity, following the elastic 

theory of diffusion-induced stress. Three-dimensional constitutive relationship in differential form 

for diffusion-induced stress in linear viscoelastic materials is proposed. Using the correspondence 

principle between linear viscoelasticity and linear elasticity and the results from the diffusion-

induced bending of elastic beams, the radii of curvature of the centroidal plane of viscoelastic 

beams of single layer and bilayer with top layer being viscoelastic in the transform domain are 

obtained. For viscoelastic beams of single layer, closed-form solution of the radius of curvature of 

the centroidal plane is derived, and the radius of curvature is inversely proportional to the diffusion 

moment created by non-uniform distribution of solute atoms. For the condition of constant 

concentration on free surface, there is overshoot behavior; for the condition of constant flux on 

free surface, there is no overshoot behavior. For viscoelastic beams of bilayer with top layer being 

the Maxwell-type standard material, the numerical results show the presence of the overshoot 

behavior for very compliant elastic layer under the condition of constant concentration on free 

surface, and there is no overshoot behavior under the condition of constant flux on free surface.   
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1. Introduction 

 The progress in the micro- and nanomanufacturing technologies has made it possible to 

manufacture cantilever-based structures for sensing techniques [1-5]. Similar structures, beam-

based structures, have also been used to analyze the change of surface stress due to electrochemical 

charging-discharging [6-10] and the stresses induced by mass transport [7, 11-15]. In the heart of 

the cantilever-based sensing techniques is the change of surface stress associated with adsorption 

of molecules on “active” surface/coating and/or the volumetric strain associated with phase change 

and/or mass transport, which can cause the deflection of the cantilever-based structures.   

 Currently, the deflection analysis of cantilever-based structures and beam-based structures has 

mainly based on the theory of elastic beams with the incorporation of surface stress and the strain 

due to swelling/shrinking of coated materials. It is known that polymer coatings have been used in 

cantilever-based chemical sensors [9, 12, 15]. The theory of elastic beams likely cannot reveal the 

temporal evolution of the beam deflection with a coating of polymer. For example, Pei and Inganäs 

[13] used the theory of linear elasticity to model the deflection of a bipolymer strip induced by 

cation insertion and salt draining, and stated that their numerical results may not compare with the 

experimental results of the increasing part of the bipolymer strip deflection. They suggested that 

this is likely due to the salt draining occurring immediately after the reduction. Observing an 

overshoot that slowly decreases to the steady-state value for the absorption of a chemical analyte 

into a polymer coating, Wenzel et al. [16] developed a model of absorption-induced static bending 

of a microcantilever coated with a viscoelastic material, and were able to demonstrate the 

overshoot behavior from their model. It is worth mentioning that Yang and Li [17] used the elastic 

theory of diffusion-induced stress to analyze the cantilever-based hydrogen sensor, and their 

results showed the overshoot behavior. Yang [18] used the theory of surface rheology to analyze 

the effect of a surface viscous film on the vibration of an elastic microcantilever. Approximating 

uniform temperature in a bilayer system, Hsueh et al. [19] used the correspondence principle to 

analyze the stress evolution in the bilayer consisting of Maxwell materials due to thermal and/or 

lattice mismatch. They did not analyze the temporal evolution of the radius of curvature of the 

viscoelastic bilayer system. There are little studies focusing on the diffusion-induced bending of 

cantilever-based structures consisting of viscoelastic materials. 

 It is known that  polymer coatings have been widely used in cantilever-based sensing structures 

and conducting polymer as well as porous materials has bee used in energy storage such as 



supercapacitors [20-24]. There exists local volumetric change associated with mass transport and 

phase transform in polymer and porous materials, and it needs to carefully study the effect of the 

volumetric strain on the structural sensetivity for the applications in sensing technology and energy 

storage. Considering the viscoelastic characteristcs of polymer and porou materials associated with 

fluid-structure interaction, the effect of the volumetric strain due to mass transport on the bending 

of viscoelastic beams is analyzed. The focuse is on the temporal evolution of the beam deflection. 

The theory of diffusion-induced stress in linear elasticity is extended to linear viscoelasticity.  

2. Analyses of diffusion-induced bending of elastic beams 

 In the framework of linear elasticity, the constitutive relationship describing the diffusion-

induced deformation of elastic materials is [25] 

  
1

[(1 ) tr( ) ]
3

c

E


   I I    (1) 

where ε is strain tensor, σ is stress tensor, I is unit tensor, Ω is the molar volume of solute atoms 

(m3/mol), c is the concentration (mol/m3) of diffusing component (solute atoms), and E  and   

are Young’s modulus and Poisson’s ratio of the material, respectively. The molar volume of Ω is 

assumed constant, independent of c. The relationship between the strain tensor and the 

displacement vector (u) is 
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Figure 1. Schematic diagram of the diffusion/migration of atoms/molecules into an elastic beam 

of single layer 

 Figure 1 shows an elastic beam with the dimensions in the y- and z-directions much smaller 

than that in the x-direction. Equation (1) reduces to 
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for the diffusion-induced bending of the elastic beam. 

Elastic beam of single layer 
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 For completeness, the diffusion-induced bending of an elastic beam of Young’s modulus of E1 

with the dimensions in the y- and z-directions much smaller than that in the x-direction is first 

briefly analyzed. For detailed derivation, see the work by Yang and Li [17]. According to the 

Bernoulli–Euler assumption that planar sections perpendicular to the axis remain planar after 

bending, one can express axial displacement (x-direction), u(x, z), as 

  0 1( , ) ( ) ( )u x z f x zf x    (4) 

From Eq. (4), the axial normal strain, εxx,  and stress, σxx, can calculated as 

  ' '
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Here, f0(x) and f1(x) are to be determined from the equilibrium equations, and the primes denote 

differentiation with respect to x.  

 Assuming that the characteristic time for diffusion/migration of solute atoms into the elastic 

beam is much larger than the characteristic time for the propagation of elastic wave, one can 

approximate the deflection of the elastic beam as quasi-static. Under the condition of quasi-static 

state, the equilibrium equations are 
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where the integrations must cover the entire cross-sectional area of A1. 

 Substituting Eq. (6) into Eq. (7) and using the condition of 
1

0
A
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plane is the middle plane of the elastic beam) yield 

  '

0

1
( )

3
f x c     and '

1

1

1
( )

3
cf x M

I
   (8) 

with  
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Here, Mc is defined as diffusion moment. Substituting Eq. (8) into Eqs. (5) and (6), one obtains 

the strain and stress in the elastic beam as 
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which gives the radius of curvature, ρ, of the centroidal plane as 

  
1

1 ( , ) 1

3

xx
c

x z
M

z I


    

 
 (12) 

 

Figure 2. Schematic diagram of the diffusion/migration of atoms/molecules into an elastic beam 

of bilayer 

Elastic beam of bilayer 

 Consider an elastic beam consisting of two elastic layers with solute atoms only being able to 

migrate/diffuse into top layer, as shown in Fig. 2. There is perfect bonding between top layer and 

bottom layer, and there is no slip between these two layers. The elastic moduli are E1 and E2 for 

the top layer and the bottom layer, respectively.  

 Similar to the analysis of the bending of the elastic beam of single layer, the axial displacement 

(x-direction), u(x, z), can be expressed as 

  0 1( , ) ( ) ( )u x z f x zf x    (13) 

in which the x-axis (z=0) is located in the interface between the top layer and the bottom layer. 

The axial strains of each layer can then be calculated as 
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Without the action of external loading, the equilibrium equations give 
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Here, A1 and A2 are the cross-sectional areas of the top layer and the bottom layer, respectively. 

Substituting Eqs. (14) and (15) into Eqs. (16) and (17) yields 
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with 
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 Using Eqs. (14), (15), (18) and (19), one obtains the stresses in the bilayer structure as 
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and the radius of curvature of the centroidal plane as 
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It is evident that Eqs. (21) and (23) reduce to Eqs. (11) and (12) for A2=0 and J1=0 (i.e. 
1

0
A

zdA   

with the centroidal plane being the middle plane of the elastic layer), respectively. 

 Two limiting cases are discussed below. 

Case I: E1A1<< E2A2 

 Under the condition of E1A1<< E2A2, the stresses in the bilayer structure and the radius of 

curvature of the centroidal plane to the zeroth-order approximation are 
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for the top layer, 
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for the bottom layer, and 
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The radius of curvature is proportional to the ratio of the modulus of the bottom layer to that of 

the top layer. 

 The stresses in the bilayer structure and the radius of curvature of the centroidal plane to the 

first-order approximation are 
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Case II: E2A2<<E1A1  

 Under the condition of E2A2<<E1A1, the stresses in the bilayer structure and the radius of 

curvature of the centroidal plane to the zeroth-order approximation are 
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for the top layer, 
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for the bottom layer, and 
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The radius of curvature is independent of the mechanical properties of each individual layer. 

 The stresses in the bilayer structure and the radius of curvature of the centroidal plane to the 

first-order approximation are 
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3. Analyses of diffusion-induced bending of viscoelastic beams 

 Consider the diffusion-induced deformation in the framework of linear viscoelasticity. The 

relationship between the resultant strain tensor, εT, and the diffusion-induced strain is 
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According to the theory of linear viscoelasticity [26], the differential form of three-dimensional 

constitutive relationship for viscoelastic materials is expressed as 
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where   P and Q are the following differential operators: 
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with ak and bk being material constants. 

 Substituting Eq. (37) into Eq. (38), one obtains three-dimensional constitutive relationship for 

diffusion-induced stress in linear viscoelastic materials as 
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which together with equilibrium equations and boundary conditions can analyze the deformation 

behavior of linear viscoelastic materials due to diffusion/migration of solute atoms. 

 

Figure 3. Schematic diagram of the Maxwell-type standard model 

 To understand the effect of viscoelastic behavior on the quasi-static bending of cantilever-

based structures under the action of diffusion/migration of solute atoms, we focus on viscoelastic 

materials of the Maxwell-type standard model. The rheological behavior of the Maxwell-type 

standard model is described by two elastic elements with elastic moduli of Y1 and Y2, respectively, 

and a Newtonian element with viscosity of, as shown in Fig. 3. Here the elastic element with 

the modulus of Y2 is in series connection with the Newtonian element. From Fig. 3, the stress-

strain relationship can be expressed as 
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where σ is the total stress, ε is the total strain, σ1 and σ2 are the stresses applied to the elastic 

elements of Y1 and Y2, respectively. Define the Laplace transform of the stress, strain and 

concentration as 
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in which the s is a transform variable, and the wave-bar quantities indicate the Laplace transform. 

For the Maxwell-type standard model shown in Fig. 3, the stress-strain relationship in the 

Y
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transform domain with the stress and strain being zero, respectively, at the instant of 0- can be 

obtained as 
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Equation (45) is similar to the relationship used by Yang and Li [17] in the analysis of diffusion-

induced beam bending in hydrogen sensors in the frame work of linear elasticity.  

 Using the correspondence principle, one can use the solution of an elastic problem to represent 

the solution of the corresponding viscoelastic problem in the transform domain by replacing the 

appropriate variables by their Laplace transform.  

Viscoelastic beam of single layer 

 From Eqs. (11) and (12), the stress in the viscoelastic beam and the radius of curvature of the 

centroidal plane in the transform domain can be expressed as 
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where L(·) is the Laplace transform. The inverse Laplace transform of Eq. (46) gives the stress in 

the viscoelastic beam as 
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For viscoelastic materials of the Maxwell-type standard model, replacing the ( )E s  with the result 

in Eq. (45) and taking the inverse Laplace transform yield the stress in the viscoelastic beam as 
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The inverse Laplace transform of Eq. (47) gives the radius of curvature of the centroidal plane as 
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Note that the results of (49) and (50) were obtained under the condition of 0
A

zdA   (i.e. the 

centroidal plane is the middle plane of the viscoelastic layer). It is evident that the radius of 

curvature of the centroidal plane is independent of the material properties of the viscoelastic beam 

of single layer. Equation (50) provides a simple approach to measure the coefficient of the volume 

expansion per mole of solute atoms from the bending of a viscoelastic beam under the condition 

that the mechanical properties of the viscoelastic beam is independent of the concentration of 

solute atoms. 

Viscoelastic beam of bilayer with top layer being viscoelastic 

 Consider a bilayer structure with the top layer being viscoelastic and the bottom layer being 

elastic. There are no slip and separation between these two layers. Using the correspondence 

principle and Eq. (23), one obtains the radius of curvature of the centroidal plane of the viscoelastic 

beam of bilayer in the transform domain as 
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Generally, one can use the inverse Laplace transform to obtain the solutions in the time domian 

from Eq. (51). However, the inverse Laplace transform of (51) is very complex, and one may not 

be able to obtain simple, closed-form solutions. The following only gives closed-form solutions 

with the zeroth-order approximation for two limiting cases.  

Case I: Max(Y1, Y2)A1<<E2A2 corresponding to the elastic bending of E1A1<<E2A2 

 For the problem corresponding to the elastic bending with E1A1<<E2A2, one can use the 

correspondence principle and Eq. (26) to obtain the radius of curvature of the centroidal plane in 

the transform domain to the zeroth-order approximation as 
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The inverse Laplace transform of Eq. (52) gives the temporal evolution of the radius of curvature 

of the centroidal plane of the viscoelastic beam of bilayer as 
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For viscoelastic materials of the Maxwell-type standard model, replacing 1( )E s  in (52) with the 

result in Eq. (45) and taking the inverse Laplace transform yield the radius of curvature of the 

centroidal plane of the viscoelastic beam of bilayer as 
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Case II: E2A2<<Max(Y1, Y2)A1 corresponding to the elastic bending of E2A2<<E1A1  

 For the problem corresponding to the elastic bending with E2A2<<E1A1, the radius of curvature 

of the centroidal plane in the transform domain to the zeroth-order approximation can be derived 

from Eq. (32) as 
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The inverse Laplace transform of Eq. (55) gives 
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which is independent of the materials properties of the viscoelastic beam. 

4. Mass transport in a viscoelastic layer 

 Consider a viscoelastic layer with a rectangular cross-section. The dimensions of the 

viscoelastic layer in the y- and z-directions are much smaller than that in the x-direction, and the 

dimension in the y-direction is much smaller than that in z-direction. The diffusion equation (Fick’s 

second law) for the diffusion/migration of solute atoms in the viscoelastic layer can be written as 
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c c
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t z
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  (57) 

with D being the diffusion coefficient of solute atoms in the viscoelastic layer. Under the condition 

that there is no solute atoms in the viscoelastic layer at time zero, the initial condition is 

  ( ,0) 0c z    (58) 

There are two limiting types of boundary conditions; one is constant concentration on free surface, 

and the other is constant flux on free surface, which correspond to the potentiostatic and 

galvanostatic charging used in electrochemical measurement/cycling, respectively. 



Case I: constant concentration on free surface 

 The free surface of the viscoelastic layer is exposed to a diffusing component which maintains 

a concentration of c0 on that surface. The other surface is impermeable. The boundary conditions 

are  

  0z h
c c


  and 
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0
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
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  for t>0 (59) 

The concentration distribution at any time t is 
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with the condition of 0
A

zdA   (i.e. the centroidal plane is the middle plane of the viscoelastic 

layer), and 
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without the condition of 0
A

zdA  . Here, b is the dimension in the y-direction, and h is the layer 

thickness.  

 The average concentration in the viscoelastic layer is calculated from Eq. (60) as 
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Case II: constant flux on free surface 

 The free surface of the viscoelastic layer is exposed to a diffusing component which maintains 

a constant flux of j0 on that surface. The other surface is impermeable. The boundary conditions 

are 
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The concentration distribution at any time t is 



  
2 2 2 2

2 2 2 2 2
10

3 2 ( 1)
cos exp

6

n

n

c h Dt z h n z n Dt

j D h h n h h





     
     

   
   (65) 

which gives 
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with the condition of 0
A

zdA   (i.e. the centroidal plane is the middle plane of the viscoelastic 

layer), and 
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without the condition of 0
A

zdA  .  

 The average concentration in the viscoelastic layer is calculated from Eq. (65) as 

  
0

c t

j h

 
    (68) 

which is proportional the diffusion time. 

5. Numerical calculation and discussion 

 Numerical results for the deflection of viscoelastic beams of retangular cross-sections are 

presented here. Considering that Au is chemically inert, we use Au film as the elastic layer in 

viscoelastic bilayer-structures, in which the widths of the Au layer and viscoelastic layer are same.  

The material for the viscoelastic layer is vinyl ester (VE) resins, since VE resins has potential 

applications in the construction of composite bipolar plate for electrochemical cells [27]. The 

solute atoms are water, and the molar volume of water is 18.03 mL/mol. The diffusion coefficient 

of water in VW resin is 7.04×10-8 cm2/s [28]. Table 1 lists the materials properties used in the 

numerical calculations. 

Table I: Materials properties ued in the numerical calculations 

Material E (GPa) Y1 (GPa) Y2 (GPa) η (GPa·s) 

Au 79    

VE resin [29]  2 0.8 150 

 

Viscoelastic beam of single layer 



 For the viscoelastic layer of rectangular cross-section with the centroidal plane being the 

middle plane of the viscoelastic layer, there is 
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Substituting Eqs. (61) and (66) in (50), respectively, and using Eq. (69), one obtains the radius of 

curvature as 
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for the condition of constant concentration on free surface, and  
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for the condition of constant flux on free surface.  

 For  t∞, Eq. (71) reduces to 
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The radius of curvature for  t∞,  is inversely proportional to the flux into the free surface.  
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Figure 4. Temporal evolution of the radius of curvature of the viscoelastic beam of single layer 

induced by the diffusion/migration of solute atoms 

 Figure 4 shows the temporal variation of the radius of curvature induced by the 

diffusion/migration of solute atoms. For the condition of constant concentration on free surface, 



the radius of curvature starts at infinity, decreases quickly to a minimum, and then increases 

gradually to infinity again when the solute atoms distribute uniformly in the viscoelastic beam. 

There is overshoot behavior in accord with that observed by Pei and Inganäs [13]. For the condition 

of constant flux on free surface, the radius of curvature starts at infinity and quickly decreases to 

constant (minimum) with the increase of the diffusion/migration time. There is a finite deflection 

as t∞ in accord with the result given in Eq. (72). There is no overshoot behavior in contrast to 

the case with the condition of constant concentration on free surface. Such behavior reveals the 

effect of constant flux on the deflection of viscoelastic beams of single layer. The deflection of a 

viscoelastic beam of single layer is dependent on the boundary conditions. 

Viscoelastic beam of bilayer with top layer being viscoelastic 

 Using the materials properties listed in Table I, one can calculate the temporal evolution of a 

viscoelastic beam of bilayer when subjected to different boundary conditions on free surface. For 

the viscoelastic layer of thickness h1 and width b, the parameters of A1, I1 and J1 are calculated as 

  A1=bh1, 
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and for the elastic layer of thickness h2 and width b, the parameters of A2, I2 and J2 are found as 

  A2=bh2, 
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Substituting Eqs. (73) and (74) in Eq. (51) yields 

 

1
2 2

1 1 2 2
1 1 2 2 1 1 1 2 2

1 1 2 2
2 2 3 31 1 2 2

1 1 2 2 1 1 2 2

( )
( ) ( )

( ) 2 2
( ) ( )

3 ( ) ( )
2 2

2 2 3 3

c

E s h E h
E s h E h h c E s h E h

E s
L E s h E h M

E s h E h E s h E h
b





    


  


 

 (75) 

with   
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for the Maxwell-type standard model. 

Case I: Max(Y1, Y2)A1<<E2A2 corresponding to the elastic bending of E1A1<<E2A2 

 From Eq. (54), the radius of curvature of the centroidal plane of the viscoelastic beam of bilayer 

to the zeroth-order approximation is 
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Figure 5. Temporal evolution of the radius of curvature of the viscoelastic beam of bilayer induced 

by the diffusion/migration of solute atoms with Y1A1< E2A2 and h1:h2=50 nm: 50 nm; (a) constant 

concentration on free surface, and (b) constant flux on free surface 
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Using the materials properties given in Table I, the radii of curvature of the centroidal plane of the 

viscoelastic beam of bilayer for different ratios of E2:Y1 with h1:h2=50 nm: 50 nm and the condition 

of Y1A1<E2A2 (Y2<Y1) as a function of time are calculated by taking the inverse Laplace transform 

of Eq. (75). Figure 5 shows the calculation results. For comparison, the results calculated from Eq. 

(77) of the zeroth-order approximation are also included in Fig. 5. It is evident that the results 

calculated from Eq. (77) are in good accord with the results calculated from the inverse Laplace 

transform of Eq. (75) for large ratios of E2A2:Y1A1 for both two types of boundary conditions, i.e. 

constant concentration on free surface and constant flux on free surface. One can use Eq. (77) to 

calculate the radius of curvature of the centroidal plane of a viscoelastic beam of bilayer if the 

condition of Y1A1<<E2A2 is satisfied. 

 From Fig. 5a, one can note that the radius of curvature of the centroidal plane of the viscoelastic 

beam of bilayer with Y1A1<E2A2 starts at infinity and decreases to constant (minimum) in contrast 

to the case of the viscoelastic beam of single layer. There are no presences of overshoot and the 

relaxation to infinity of the radius of curvature of the centroidal plane for t∞. Such behavior is 

likely due to the impermeability of the elastic layer to solute atoms, which allows the accumulation 

of solute atoms in the viscoelastic layer to cause the bending of the viscoelastic beam of bilayer. 

For t∞, solute atoms are uniformly distributed in the viscoelastic layer, no further bending can 

occur. 

 It is interesting to note from Fig. 5b that the inverse of the radius of curvature of the centroidal 

plane of the viscoelastic beam of bilayer with Y1A1<E2A2 increases linearly with the 

diffusion/migration time in contrast to the result shown in Fig. 4 for the diffusion-induced bending 

of a viscoelastic beam of single layer. Such a difference can be attributed to the condition of 

0
A

zdA   for the viscoelastic beam of single layer (i.e. the centroidal plane is the middle plane of 

the viscoelastic layer). For viscoelastic beams of bilayer, 
1 2

0
A A

zdA zdA    since there is no 

local strain directly introduced by solute atoms in elastic layer, as used in the analysis. 

Case II: E2A2<<Max(Y1, Y2)A1 corresponding to the elastic bending of E2A2<<E1A1  

 From Eq. (56), the radius of curvature of the centroidal plane of the viscoelastic beam of bilayer 

to the zeroth-order approximation is 
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Figure 6. Temporal evolution of the radius of curvature of the viscoelastic beam of bilayer induced 

by the diffusion/migration of solute atoms with E2A2<Y1A1 (h1:h2=500 nm: 5 nm): (a) constant 

concentration on free surface, and (b) constant flux on free surface 

 



 The radii of curvature of the centroidal plane of the viscoelastic beam of bilayer for different 

ratios of E2:Y1 with h1:h2=500 nm: 5 nm and the condition of E2A2<Y1A1 (Y2<Y1) as a function of 

time are calculated by taking the inverse Laplace transform of Eq. (75), using the materials 

properties given in Table I. The calculation results are shown in Fig. 6, which also includes the 

results calculated from Eq. (78) of the zeroth-order approximation. The results calculated from Eq. 

(78) are in good accord with the results calculated from the inverse Laplace transform of Eq. (75) 

for large ratios of Y1A1:E2A2 for both two types of boundary conditions. Equation (77) can be used 

to analyze the deflection of viscoelastic beams of bilayer with one being elastic and the other being 

viscoelastic if the condition of Y1A1<<E2A2 is satisfied. 

 From Fig. 6a, one can note that, for relatively small ratio of Y1A1:E2A2 (>1), the radius of 

curvature of the centroidal plane of the viscoelastic beam of bilayer starts at infinity and decreases 

to constant (minimum) similar to the results shown in Fig. 5a with Y1A1:E2A2 (<1). There are no 

presences of overshoot and the relaxation to infinity of the radius of curvature of the centroidal 

plane for t∞. This trend reveals the resistance of elastic layer to the bending of the viscoelastic 

beam of bilayer due to the impermeability of the elastic layer to solute atoms. The stiffer the elastic 

layer, the smaller is the deflection of the viscoelastic beam of bilayer. For relatively large ratio of 

Y1A1:E2A2 (>1), the radius of curvature of the centroidal plane of the viscoelastic beam of bilayer 

starts at infinity, decreases to constant (minimum), and then increases for the condition of constant 

concentration on free surface, which is similar to the case of the viscoelastic beam of single layer. 

There is overshoot of the radius of curvature of the centroidal plane. This result suggests that 

diffusion-induced overshoot of viscoelastic beams of bilayer with compliant elastic layer can occur 

due to less resistance to the beam bending.  

 According to Fig. 6b, the inverse of the radius of curvature of the centroidal plane of the 

viscoelastic beam of bilayer with E2A2<Y1A1 first increases nonlinearly with the increase of the 

diffusion/migration time of solute atoms and then becomes a linearly increasing function of the 

diffusion/migration time of solute atoms. The continuous diffusion/migration of solute atoms into 

the viscoelastic layer causes the decrease of the radius of curvature of the centroidal plane of the 

viscoelastic beam of bilayer. 

6. Summary 

 The performance and sensitivity of cantilever-based sensors are dependent on the 

deflection/bending of the cantilever-based structures induced by the change of surface 



stress/energy due to surface adsorption and/or by the diffusion/migration of solute atoms into the 

active layer. The work presented here has attempted to bring out the importance of the elastic layer 

and the boundary conditions for the diffusion/migration of solute atoms in understanding the 

deflection/bending of the cantilever-based structures consisting of a viscoelastic layer.  

 Using the Bernoulli–Euler assumption that planar sections perpendicular to the axis remain 

planar after bending, the exact solutions of the stress and the radius of curvature of the centroidal 

plane of an electric beam of bilayer have been derived from the elastic theory of diffusion-induced 

stress, in which solute atoms can only diffuse/migrate into the top layer. Both the stress and the 

radius of curvature are dependent on the average concentration of solute atoms and the diffusion 

moment.  

 The elastic theory of diffusion-induced stress is extended to the linear viscoelastic theory by 

considering the contribution of the diffusion-induced strain to the total strain. Three-dimensional 

constitutive relationship for diffusion-induced stress in linear viscoelastic materials is proposed. 

Using the correspondence principle between linear viscoelasticity and linear elasticity and the 

results from the diffusion-induced bending of elastic beams, the radii of curvature of the centroidal 

plane of the viscoelastic beams of single layer and bilayer with the top layer being viscoelastic in 

the transform domain are obtained.  

 For a viscoelastic beam of single layer, closed-form solution of the radius of curvature of the 

centroidal plane is derived. The radius of curvature of the centroidal plane is independent of the 

material properties of the viscoelastic beam. For the condition of constant concentration on free 

surface, there is overshoot behavior, and the radius of curvature starts at infinity, decreases quickly 

to a minimum, and then increases gradually to infinity again when the solute atoms distribute 

uniformly in the viscoelastic beam. For the condition of constant flux on free surface, there is no 

overshoot behavior, and the radius of curvature starts at infinity and quickly decreases to constant 

with the increase of the diffusion/migration time.  

 For a viscoelastic beam of bilayer with top layer being the Maxwell-type standard model, 

closed-form solutions of the radius of curvature of the centroidal plane to the zeroth-order 

approximation are derived. The numerical results show the presence of the overshoot behavior for 

very compliant elastic layer (E2A2<<Max(Y1, Y2)A1) under the condition of constant concentration 

on free surface. For relatively stiff elastic layer, there is no overshoot behavior under the condition 

of constant concentration on free surface. The radius of the centroidal plane reaches constant 



(minimum), corresponding to uniform distribution of solute atoms in the viscoelastic layer. Under 

the condition of constant flux on free surface, the radius of curvature of the centroidal plane 

generally decreases continuously with the increase of the diffusion/migration time.   
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