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Abstract

With advances in transcript profiling, the presence of transcriptional activities in intergenic regions has been well
established. However, whether intergenic expression reflects transcriptional noise or activity of novel genes remains
unclear. We identified intergenic transcribed regions (ITRs) in 15 diverse flowering plant species and found that the
amount of intergenic expression correlates with genome size, a pattern that could be expected if intergenic expression is
largely nonfunctional. To further assess the functionality of ITRs, we first built machine learning models using Arabidopsis
thaliana as a model that accurately distinguish functional sequences (benchmark protein-coding and RNA genes) and
likely nonfunctional ones (pseudogenes and unexpressed intergenic regions) by integrating 93 biochemical, evolutionary,
and sequence-structure features. Next, by applying the models genome-wide, we found that 4,427 ITRs (38%) and 796
annotated ncRNAs (44%) had features significantly similar to benchmark protein-coding or RNA genes and thus were
likely parts of functional genes. Approximately 60% of ITRs and ncRNAs were more similar to nonfunctional sequences
and were likely transcriptional noise. The predictive framework established here provides not only a comprehensive look
at how functional, genic sequences are distinct from likely nonfunctional ones, but also a new way to differentiate novel
genes from genomic regions with noisy transcriptional activities.

Key words: intergenic transcription, ncRNAs, definition of function, molecular evolution, machine learning, data
integration.

functional significance of most intergenic transcripts remains
unclear, the identification of functional intergenic transcribed
regions (ITRs) represents a fundamental task that is critical to
our understanding of genome evolution.

Loss-of-function study represents the gold standard by
which the functional significance of genomic regions, includ-
ing ITRs, can be confirmed (Ponting and Belgard 2010; Niu

Introduction

Advances in sequencing technology have helped to identify
pervasive transcription in intergenic regions with no anno-
tated genes. These intergenic transcripts have been found in
metazoa and fungi, including human (ENCODE Project
Consortium 2012), Drosophila melanogaster (Brown et al.

2014), Caenorhabditis elegans (Boeck et al. 2016), and
Saccharomyces cerevisiae (Nagalakshmi et al. 2008). In plants,
7,000-15,000 intergenic transcripts have also been reported
in Arabidopsis thaliana (Yamada et al. 2003; Stolc et al. 2005;
Moghe et al. 2013; Krishnakumar et al. 2015) and Oryza sativa
(Nobuta et al. 2007). The presence of intergenic transcripts
indicates that there may be additional genes (genomic
regions generating functional RNA and/or protein products)
that have escaped gene finding efforts thus far, including
those that function as RNA genes (Simon and Meyers 2011;
Guil and Esteller 2012; Fei et al. 2013; Palazzo and Lee 2015;
Tan et al. 2015). Meanwhile, it is also possible that some of
these intergenic transcripts are products of un-regulated
noise (Struhl 2007; Palazzo and Gregory 2014). Given the

and Jiang 2013). In Mus musculus (mouse), at least 25 ITRs
with loss-of-function mutant phenotypes have been identi-
fied (Sauvageau et al. 2013; Lai et al. 2015). In human, 162 long
intergenic noncoding RNAs harbor phenotype-associated
SNPs (Ning et al. 2013). In addition to intergenic expression,
most model organisms feature an abundance of annotated
noncoding RNA (ncRNA) sequences (Zhao et al. 2016), which
are mostly identified through the presence of transcriptional
evidence occurring outside of annotated protein-coding
genes. Thus, the only difference between ITRs and most
ncRNA sequences is whether or not they have been anno-
tated. Similar to the ITR examples above, a small number of
ncRNAs have been confirmed as functional through loss-of-
function experiments including Xist in mouse (Penny et al.
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1996; Marahrens et al. 1997), Malat1 in human (Bernard et al.
2010), bereft in D. melanogaster (Hardiman et al. 2002), and
At4 in A. thaliana (Shin et al. 2006).

However, the number of ITRs and ncRNAs with well-
established functions is dwarfed by those without functional
evidence. Whereas some ITRs and ncRNAs can be novel
genes, intergenic transcription may also be the byproduct
of noisy transcription that can occur due to nonspecific land-
ing of RNA Polymerase Il (RNA Pol II) or spurious regulatory
signals that drive expression in random genomic regions
(Struhl 2007). In the ENCODE project (ENCODE Project
Consortium 2012), ~80% of the human genome was defined
as biochemically functional as reproducible biochemical ac-
tivities, for example, transcription, could be detected. This has
drawn considerable critique because the existence of a bio-
chemical activity is not an indication of selection (Eddy 2013;
Graur et al. 2013; Niu and Jiang 2013). Similarly, arguments
based on genetic load indicate that no more than 25% of the
human genome may be functional and experiencing se-
quence constraint (Comings 1972; Graur 2017). Instead, it is
advocated that a genomic region with discernible activity is
only functional if it is under selection (Amundson and Lauder
1994; Graur et al. 2013; Doolittle et al. 2014). Under this
“selected effect” functionality definition, ITRs and most an-
notated ncRNA genes remain functionally ambiguous.

Because of the debate on the definitions of function
postENCODE, Kellis et al. (2014) suggested that evolutionary,
biochemical, and genetic evidences provide complementary
information to define functional genomic regions. Consistent
with this, integration of biochemical and conservation evi-
dence was successful in identifying regions in the human ge-
nome that are under selection (Gulko et al. 2014) and
classification of human disease genes and pseudogenes
(Tsai et al. 2017). In this study, we adopt a similar framework
to investigate if intergenic transcription reflects the activity of
genes, including RNA genes (e.g, microRNAs), in plants. We
first identified ITRs in 15 flowering plant species with 17-fold
genome size differences and evaluated the relationship be-
tween the prevalence of intergenic expression and genome
size. Next, we established machine learning models using A.
thaliana data to predict likely functional ITRs and ncRNAs
based on 93 evolutionary, biochemical, and sequence-
structure features. Finally, we applied the models to ITRs
and annotated ncRNAs to determine whether these func-
tionally ambiguous sequences are more similar to benchmark
functional or likely nonfunctional sequences.

Results and Discussion

Genome Size versus Prevalence of Intergenic
Transcripts Indicates ITRs May Generally Be
Nonfunctional

Transcription of an unannotated, intergenic region could be
due to nonfunctional transcriptional noise or the activity of a
novel gene. If noisy transcription occurs due to random land-
ing of RNA Pol Il or spurious regulatory signals, a naive
expectation is that, as genome size increases, the total nucleo-
tides covered by ITRs would increase accordingly. This is
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Fic. 1. Relationship between genome size and number of nucleotides
covered by RNA-seq reads (expression) in 15 flowering plant species.
(A) Annotated genic regions. (B) Intergenic regions. Transcribed
regions were considered as intergenic if they did not overlap with
any gene annotation and had no significant translated sequence sim-
ilarity to plant protein sequences. Identical numbers of RNA-se-
quencing reads (30 million) and the same mapping procedures
were used in all species. Mb: megabase. Gb: gigabase. Dotted lines:
Linear model fits. r’: Square of Pearson’s correlation coefficient.

because the additional genomic regions may provide addi-
tional space for nonspecific landing of RNA polymerase |l
and/or for spurious regulatory signals. By contrast, we find
that there is no significant correlation between genome size
and the number of annotated genes among 50 plant species
(¥ = 0.01; P = 0.56; Michael and Jackson 2013). Thus, we ex-
pect that the extent of expression for genic sequences will not
be significantly correlated with genome size.

To gauge if ITRs generally behave more like what we expect
of noisy or genic transcription, we first identified genic and
intergenic transcribed regions using leaf transcriptome data
from 15 flowering plants with 17-fold differences in genome
size (supplementary table 1, Supplementary Material online).
As expected, the coverage of expression originating from an-
notated genic regions had no significant correlation with ge-
nome size (r* = 0.03; P = 0.53; fig. 1A). In contrast, the length
of genomic sequences covered by intergenic expression and
genome sizes were significantly and positively correlated
(¥ = 0.30; P = 0.04; fig. 1B), consistent with the interpretation
that a significant proportion of intergenic expression repre-
sents transcriptional noise. This relationship is maintained
when three species (Glycine max, Zea mays, and Panicum
virgatum) that experienced whole genome duplication events
<15 million years ago (Ma) are removed (r* = 0.28, P = 0.08)
or confounding effects of phylogenetic nonindependence on
the relationships between genome size and expression cov-
erage are taken into consideration (r* = 0.46, P < 0.008; see
Materials and Methods). However, the correlation between
genome size and intergenic expression explained ~30% of the
variation (fig. 1B), suggesting that other factors also affect
ITR content, including the possibility that some ITRs are
truly functional, novel genes. To further evaluate the
functionality of intergenic transcripts, we next identified
the biochemical and evolutionary features of functional
genic regions and tested whether intergenic transcripts in
A. thaliana were more similar to functional or nonfunc-
tional sequences.
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Benchmark Functional Protein-Coding and
Nonfunctional Genomic Sequences Are Significantly
Distinct in Multiple Features

To determine whether intergenic transcripts resemble func-
tional sequences, we first asked what features allow bench-
mark functional protein-coding and nonfunctional genomic
regions to be distinguished in the model plant A. thaliana. For
benchmark functional sequences, we used protein-coding
genes with visible loss-of-function phenotypes when mutated
(referred to as phenotype genes, n = 1,876; see Materials and
Methods). Because their mutations have significant growth
and/or developmental impact and likely contribute to re-
duced fitness, these phenotype genes can be considered func-
tional under the selected effect definition (Neander 1991). For
benchmark nonfunctional genomic regions, we utilized pseu-
dogene sequences (n=761; see Materials and Methods).
Considering that only 2% of pseudogenes are maintained
over 90 million years (My) of divergence between human
and mouse (Svensson et al. 2006), it is expected that the
majority of pseudogenes is no longer under selection (Li
et al. 1981).

We evaluated 93 gene or gene product features for their
ability to distinguish between phenotype genes and pseudo-
genes. These features were grouped into seven categories,
including chromatin accessibility, DNA methylation, histone
3 (H3) marks, sequence conservation, sequence-structure,
transcription factor (TF) binding, and transcription activity
(supplementary table 2, Supplementary Material online). We
emphasize that no features were exclusive to protein-coding
sequences. We used Area Under the Curve-Receiver
Operating Characteristic (AUC-ROC) as a metric to measure
how well a feature distinguished between phenotype genes
and pseudogenes, which ranges between 0.5 (random guess-
ing) and 1 (perfect separation of functional and nonfunc-
tional sequences). Among the seven feature categories,
transcription activity features were highly informative (me-
dian AUC-ROC =0.88; fig. 2A). Despite the strong perfor-
mance of transcription activity-related features, the
presence of expression (i.e, transcript evidence) was a poor
predictor of functionality (AUC-ROC = 0.58; fig. 2A). This is
because 80% of pseudogenes were considered expressed
in >1 of 51 RNA-seq data sets, demonstrating that presence
of transcripts should not be used by itself as evidence of
functionality. Sequence conservation, DNA methylation, TF
binding, and H3 mark features were also fairly distinct be-
tween phenotype genes and pseudogenes (median AUC-
ROC ~0.7 for each category; fig. 2B—E). In contrast, chromatin
accessibility and sequence-structure features were largely
uninformative (median AUC-ROC=0.51 and 0.55, respec-
tively; fig. 2F, G). We also observed high performance variabil-
ity within feature categories (see Supplementary material,
Supplementary Material online). Whereas many features are
distinct between phenotype genes and pseudogenes, func-
tional predictions based on single features yield high error
rates (supplementary table 3; Supplementary material,
Supplementary Material online), indicating a need to jointly

consider multiple features for distinguishing phenotype genes
and pseudogenes.

Consideration of Multiple Features Produces Accurate
Predictions of Functional Genomic Regions

To consider multiple features in combination, we first con-
ducted principle component (PC) analysis and found that
phenotype genes (supplementary fig. 1A, Supplementary
Material online) and pseudogenes (supplementary fig. 1B,
Supplementary Material online) were distributed in largely
distinct space but with substantial overlap, indicating that
standard parametric approaches are not well suited to dis-
tinguishing between benchmark functional and nonfunc-
tional sequences. We next integrated all 93 features to
establish a machine learning model distinguishing phenotype
gene and pseudogenes (referred to as the full model; see
Materials and Methods). The full model provided more ac-
curate predictions (AUC-ROC = 0.98; False Negative Rate
[FNR] = 4%; False Positive Rate [FPR] = 10%; fig. 3A) than
any individual feature (fig. 2; supplementary table 3,
Supplementary Material online). An alternative measure of
performance based on the precision (proportion of predicted
functional sequences that are truly functional) and recall
(proportion of truly functional sequences predicted correctly)
values also indicated that the model was performing well
(fig. 3B). When compared with the best-performing single
feature (expression breadth), the full model had a similar
FNR but half the FPR (10% compared with 21%). Thus, the
full model is highly capable of distinguishing between pheno-
type genes and pseudogenes.

We next determined the relative contributions of different
feature categories in predicting phenotype genes and pseu-
dogenes and established seven prediction models each using
only the subset of features from a single category (fig. 2).
Although none of these category-specific models had perfor-
mance as high as the full model (fig. 3A), the transcription
activity feature category model performed almost as well as
the full model (AUC-ROC =10.97, FNR = 6%, FPR=12%).
Instead of the presence of expression evidence, the breadth
and level of transcription are the causes of the strong perfor-
mance of the transcription activity-only model. We also
found that a model excluding transcription activity features
(full [-TX], fig. 3A and B) performed almost as well as the full
model and similarly to the transcription activity-feature-only
model, but with an increased FPR (AUC-ROC = 0.96;
FNR = 3%; FPR = 20%). These findings indicate that a diverse
array of features can be considered jointly to make highly
accurate predictions of the functionality of a genomic se-
quence. Meanwhile, our finding of the high performance of
the transcription activity-only model highlights the possibility
of establishing an accurate model for functional prediction in
species with only a modest amount of transcriptome data.

The Functional Likelihood (FL) Measure Can Be Used
to Classify Functional and Nonfunctional Sequences

To provide a measure of the potential functionality of any
sequence in the A. thaliana genome, including ITRs and
ncRNAs, we utilized the confidence score from the full model
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Fic. 2. Predictions of functional (phenotype gene) and nonfunctional
(pseudogene) sequences based on each individual feature. Prediction
performance is measured using Area Under the Curve-Receiver
Operating Characteristic (AUC-ROC). AUC-ROC values range be-
tween 0.5 (random) and 1 (perfect separation), with AUC-ROC values
of 0.7, 0.8, and 0.9 considered fair, good, and excellent performance,
respectively. Features include those in the categories of (A) transcrip-
tion activity, (B) sequence conservation, (C) DNA methylation, (D)
transcription factor (TF) binding, (E) histone 3 (H3) marks, (F) se-
quence structure, and (G) chromatin accessibility. Dotted lines:
Median AUC-ROC of features in a category.

asa “FL” value (Tsai et al. 2017). The FL score ranges between 0
and 1, with high values indicating that a sequence is more
similar to phenotype genes (functional) and low values indi-
cating a sequence more closely resembles pseudogenes (non-
functional). FL values for all genomic regions examined in this
study are available in supplementary table 4, Supplementary
Material online. As expected, phenotype genes had high FL
values (median = 0.97; fig. 4A) and pseudogenes had low
values (median = 0.071; fig. 4B). To call sequences as func-
tional or not, we defined a threshold FL value (0.35) by
maximizing the F-measure (see Materials and Methods).
Using this threshold, 96% of phenotype genes (fig. 4A)
and 90% of pseudogenes (fig. 4B) are correctly classified
as functional and nonfunctional, respectively, demonstrat-
ing that the full model is highly capable of distinguishing
functional and nonfunctional sequences.

We next applied our model to predict the functionality of
annotated protein-coding genes, transposable elements
(TEs), and unexpressed intergenic regions. Most annotated
protein-coding genes not included in the phenotype gene
data set had high FL scores (median = 0.86; fig. 4C) and
80% were predicted as functional. The features exhibited
by low-scoring protein-coding genes and high-scoring
pseudogenes are discussed in Supplementary material,
Supplementary Material online. Among putatively nonfunc-
tional sequences, the FLs were low for both TEs
(median = 0.03, fig. 4D) and unexpressed intergenic regions
(median = 0.07; fig. 4E), and 99% of TEs and all unexpressed
intergenic sequences were predicted as nonfunctional. We
should emphasize that, using the criteria set out by the
ENCODE Project Consortium (2012), 92% of pseudogenes,
85% of TEs, and 97% of randomly sampled, unexpressed inter-
genic sequences would be considered biochemically func-
tional (>2 signatures derived from transcription activity, H3
marks, TF binding, or DNase | hypersensitivity). We find that
the FL measure provides a useful metric to distinguish be-
tween phenotype genes and pseudogenes. In addition, the FLs
of annotated protein-coding genes, TEs, and unexpressed
intergenic sequences agree with a priori expectations regard-
ing the functionality of these sequences.

Most ITRs and Annotated ncRNAs Do Not Resemble
Benchmark Phenotype Genes

We next applied the full model to 895 unannotated ITRs, 136
ncRNAs annotated by The Arabidopsis Information Resource
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(TAIR), and 252 long ncRNAs annotated by the Araport data-
base that do not overlap with any other annotated genome
features. Note that the primary difference between ITRs and
ncRNAs is whether they have been identified by annotation
projects. Consistent with previous studies (Moghe et al. 2013),
ITRs and ncRNAs in our data set were more narrowly and
weakly expressed and less conserved compared with pheno-
type genes (supplementary fig. 2A and B, Supplementary
Material online). In particular, ITRs had H3 mark and DNA
methylation patterns that were generally more similar to
pseudogenes (supplementary fig. 2C-F, Supplementary
Material online) compared with phenotype genes. When
the full prediction model was applied to these sequences,
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Fic. 3. Predictions of functional and nonfunctional sequences based
on multiple features. (A) AUC-ROC values of function prediction
models built when considering all features (Full), all except transcrip-
tion activity (TX)-related features (Full [-TX]), and all features from
each category. The category abbreviations follow those in figure 2. (B)
Precision-recall curves of the models with matching colors from (A).
The models were built using feature values calculated from 500 bp
sequence windows.

the median FLs were low (0.09) for both ITRs (fig. 4F) and
Araport ncRNAs (fig. 4G), and only 15% and 9% of these
sequences were predicted as functional, respectively. By con-
trast, TAIR ncRNAs had a significantly higher median FL value
(0.53; U tests, both P < 5e-31; fig. 4H) and 68% were predicted
as functional, which is best explained by differences in features
from the transcription activity category (fig. 5). We also note
that ITRs and annotated ncRNAs that were close to genes
were more frequently predicted as functional (supplementary
fig. 3, Supplementary Material online), suggesting a subset
may represent unannotated exons of known genes or that
the regions proximal to genes are disproportionately covered
by independent functional sequences. Alternatively, the ac-
cessible and active chromatin states of nearby genes may
represent a confounding factor for prediction models.
Given the challenge in ascertaining the origin and likely func-
tionality of ITRs/ncRNAs proximal to genes, we instead con-
servatively estimate that 50 ITRs (9%) and 60 annotated
ncRNAs (23%) that are >456bp from nearby genes (95th
percentile of annotated intron lengths) and predicted as func-
tional may represent parts of novel genes.

Given the association between transcription activity fea-
tures and functional predictions (figs. 2A and 3A), we consid-
ered that the low proportion of ITRs and annotated ncRNAs
predicted as functional may be due to the full model being
biased against conditionally functional or narrowly expressed
sequences. We defined conditionally functional genes as
those that exhibited a mutant phenotype under nonstandard
(i.e, stress) conditions, but exhibited no phenotype under
standard growth conditions. Genes with conditional pheno-
types had no significant differences in FLs (median = 0.96) as
those with phenotypes under standard growth conditions
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Fic. 4. Functional likelihood distributions of various sequence classes based on the full model. (A) Phenotype genes. (B) Pseudogenes. (C)
Annotated protein-coding genes. (D) Transposable elements. (E) Random unexpressed intergenic sequences. (F) Intergenic transcribed regions
(ITR). (G) Araport11 ncRNAs. (H) TAIR10 ncRNAs. The full model was established using 500 bp sequence windows. Higher and lower functional
likelihood values indicate greater similarity to phenotype genes and pseudogenes, respectively. Vertical dashed lines indicate the threshold for
calling a sequence as functional or nonfunctional. The percentages to the left and right of the dashed line indicate the percent of sequences
predicted as functional or nonfunctional, respectively.
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Fic. 5. Proportion of phenotype genes, pseudogenes, ITRs, and
ncRNAs predicted as functional in the full and single-category mod-
els. Percentages of sequence classes that are predicted as functional in
models based on all features and the single category models, each
using all features from a category (abbreviated according to fig. 2).
The models are sorted from left to right based on performance (AUC-
ROC). The colors of and numbers within the blocks indicate the
proportion sequences predicted as functional by a given model.
Phenotype gene and pseudogene sequences are shown in three sub-
groups: All sequences (All), and those predicted as functional (high
functional likelihood [FL]) and nonfunctional (low FL) in the full
model. ITR: intergenic transcribed regions. A greater proportion of
ITRs and Araport ncRNAs are predicted as functional when consid-
ering only DNA methylation or H3 mark features compared with the
full (fig. 3) or tissue-agnostic (supplementary fig. 5, Supplementary
Material online) models. However, these two category-specific mod-
els also had higher false positive rates (unexpressed intergenic
sequences and pseudogenes). Thus, these single feature-category
models do not provide additional support for the functionality of
most Araport ncRNAs and ITRs.

Sequence class

(median=097; U test, P=0.38, supplementary fig. 4A,
Supplementary Material online), indicating the full model
can capture conditionally functional sequences. However,
the full model is biased against narrowly expressed (<3 tis-
sues) phenotype genes as 65% of them were predicted as
nonfunctional (supplementary fig. 4B, Supplementary
Material online). Further, pseudogenes that were more highly
and broadly expressed were disproportionately predicted as
functional (fig. 5 supplementary fig. 4B, Supplementary
Material online). To tailor functional predictions to narrowly
expressed sequences, particularly ITRs and ncRNAs, we gen-
erated a “tissue-agnostic” model by excluding expression
breadth and features available across multiple tissues (see
Materials and Methods). In addition, in the tissue-agnostic
model tissue-specific features were replaced with summary
features (e.g, maximum expression level across 51 RNA-seq

data sets). This tissue-agnostic model performed similarly to
the full model (AUC-ROC = 0.97; FNR = 4%; FPR = 15%; sup-
plementary fig. 5, supplementary table 4, Supplementary
Material online), although there was a 5% increase in FPR
(from 10% to 15%). Importantly, the proportion of phenotype
genes expressed in <3 tissues predicted as functional in-
creased by 23% (35% in the full model to 58% in the tissue-
agnostic model; supplementary fig. 4C, Supplementary
Material online), indicating that the tissue-agnostic model is
more suitable for predicting the functionality of narrowly
expressed sequences than the full model.

Next, we applied the tissue-agnostic model to ITRs and
TAIR/Araport ncRNAs. Compared with the full model,
around twice as many ITRs (30%) and Araport ncRNAs
(19%) but a similar number of TAIR ncRNA (67%) were
predicted as functional. Considering the union of the full
and tissue-agnostic model predictions, 268 ITRs (32%), 57
Araport ncRNAs (23%), and 105 TAIR ncRNAs (77%) were
likely functional. Thus, the majority of ITRs and Araport
ncRNAs is more similar to pseudogenes than to phenotype
genes that are predominantly protein coding.

Benchmark Protein-Coding and RNA Genes Exhibit
Distinct Characteristics

We demonstrated that the majority of ITR and annotated
ncRNA sequences does not exhibit characteristics of bench-
mark phenotype genes. Note that the phenotype genes are
predominantly protein coding. Although the features utilized
to generate functional predictions were not exclusive to
protein-coding sequences, RNA genes may exhibit a distinct
feature profile from protein-coding genes. The full and tissue
agnostic models described above were established with
500 bp windows and most known RNA genes are too short
to be considered by these models. Thus, to evaluate func-
tional predictions among annotated RNA genes, we gener-
ated a new tissue-agnostic model using 100 bp sequences (for
features, see supplementary table 5, Supplementary Material
online) that performed similarly to the full 500 bp model,
except with 9% higher FNR (AUC-ROC = 0.97; FNR = 13%;
FPR = 5%; supplementary fig. 6, Supplementary Material on-
line). With this new tissue agnostic model, 50% (three out of
six) of RNA genes with documented mutant phenotypes
(phenotype RNA genes) were predicted as functional (sup-
plementary fig. 6l, Supplementary Material online). We also
applied this model to other RNA Pol lI-transcribed RNA genes
(without documented phenotypes) and found that 15% of
microRNA (miRNA) primary transcripts (supplementary fig.
6J, Supplementary Material online), 73% of small nucleolar
RNAs (snoRNAs; supplementary fig. 6K, Supplementary
Material online), and 50% of small nuclear RNAs (snRNAs;
supplementary fig. 6L, Supplementary Material online) were
predicted as functional. Although the proportion of pheno-
type RNA genes predicted as functional (50%) is significantly
higher than the proportion of pseudogenes predicted as func-
tional (5%, FET, P < 0.004), this finding suggests that a model
trained using protein-coding genes has a substantial FNR for
detecting RNA genes. In contrast, functional human ncRNAs
could be accurately predicted by a model generated with
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protein-coding sequences (Tsai et al. 2017). Thus, in plants,
the idiosyncrasies of RNA genes cannot be adequately cap-
tured by evaluating protein-coding sequences.

To determine whether the suboptimal predictions by the
phenotype protein-coding gene-based models are because
RNA genes belong to a class of their own, we next built a
multi-class function prediction model (as opposed to the
binary, two-class models described above) aimed at distin-
guishing four classes of sequences: Benchmark RNA genes
(n =46, supplementary table 5, Supplementary Material on-
line), phenotype protein-coding genes (1,882), pseudogenes
(3916), and randomly selected, unexpressed intergenic
regions (4,000). In the four-class model, 87% of benchmark
RNA genes, including all six phenotype RNA genes, were
predicted as functional sequences (65% RNA gene-like and
22% phenotype protein-coding gene-like; fig. 6A). In addition,
95% of phenotype protein-coding genes were predicted as
functional (fig. 6B), including 80% of narrowly expressed
genes, an increase of 22% over the 500 bp tissue-agnostic
model (supplementary fig. 4C, Supplementary Material on-
line). For benchmark nonfunctional sequences, 70% of pseu-
dogenes (fig. 6C) and 100% of unexpressed intergenic regions
(fig. 6D) were predicted as nonfunctional (either as pseudo-
genes or unexpressed intergenic sequences). Overall, the four-
class model improves prediction accuracy of RNA genes and
narrowly expressed genes. In addition, given the 30% FPR
among pseudogenes, the four-class model provides a liberal
estimate of sequence functionality and high confidence esti-
mate of nonfunctionality.

Most ITRs and Annotated ncRNAs Do Not Resemble
Benchmark RNA Genes
By applying the four-class model on ITRs and annotated
ncRNAs, we found that 34% of ITRs, 38% of Araport
ncRNAs, and of 65% TAIR ncRNAs were predicted as func-
tional sequences (fig. 6E-G). Specifically, <20% of ITR and
annotated ncRNA sequences were classified as RNA genes
(fig. 6E-G). Although miRNAs dominate the benchmark
RNA sequences, we should emphasize that the four-class pre-
diction model also increased the proportion of snoRNAs and
snRNAs that were predicted as functional (91%) compared
with the 100 bp tissue agnostic model (67%). Thus a lack of
similarity to benchmark miRNAs provides evidence that most
ITRs and Araport ncRNAs are not functioning as RNA genes.
To provide an overall estimate of the proportion of likely
functional and nonfunctional ITRs and annotated ncRNAs,
we considered the predictions from the four-class model
(fig. 6), the full model (figs. 3 and 4), and the tissue-agnostic
models (supplementary figs. 5 and 6, Supplementary Material
online), which cover both protein-coding and RNA gene
functions. On the basis of support from >1 of the four mod-
els, we classified 4,437 ITRs (38%) and 796 annotated ncRNAs
(44%) as likely functional, as they resembled either phenotype
protein-coding or RNA genes. ITR and ncRNA sequences
predicted as functional were most consistently associated
with high expression breadth across data sets, low levels of
nucleotide diversity (i.e, within-species conservation) and low
levels of DNA methylation, particularly in CG contexts (fig. 7).

The lower nucleotide diversity among predicted-functional
ITRs and ncRNAs indicates that the prediction models are
identifying sequences that may be under selection and are
therefore likely to be functional.

Among benchmark sequence classes, 99% of phenotype
protein-coding genes, 89% of benchmark RNA genes, and
31% of pseudogenes were predicted as functional based on
support from >1 of the four models. Given the relatively high
FPR among pseudogenes (31%), we should stress that the
estimate of functional ITRs/ncRNAs is a liberal one. As a re-
sult, the set of ITRs and ncRNAs predicted as functional
should be interpreted with caution, as they may contain a
substantial proportion of false positive predictions. Assuming
that pseudogenes are nonfunctional, we generated a conser-
vative estimate of functional ITRs and ncRNAs by subtracting
the pseudogene FPR from the proportion of predicted-
functional sequences. Under this framework, we estimate
that 7% of ITRs and 13% of annotated ncRNAs are likely
functional. Most importantly, we find that the majority of
ITRs (62%) and annotated ncRNAs (56%) is predicted as non-
functional. Moreover, at least a third of ITRs (fig. 6E) and
Araport ncRNAs (fig. 6F) most closely resemble unexpressed
intergenic regions. On the basis of these findings, we conclude
that the majority of ITRs and annotated ncRNA regions
resembles nonfunctional genomic regions, and therefore are
derived from noisy transcription.

Conclusion

Discerning the location of functional regions within a genome
represents a key goal in genomic biology and is fundamental
to molecular evolutionary studies. Despite advances in com-
putational gene finding, it remains challenging to determine
whether ITRs represent functional or noisy biochemical ac-
tivity. We established robust function prediction models
based on the evolutionary, biochemical, and structural char-
acteristics of phenotype genes and pseudogenes in A. thali-
ana. The prediction models accurately define functional and
nonfunctional regions and are applicable genome-wide and
echo recent findings using human data to evaluate RNA gene
functionality (Tsai et al. 2017). We utilized prediction models
to assess the functionality of both protein-coding and anno-
tated RNA genes. As benchmark examples of more recently
identified RNA gene classes become available in A. thaliana,
such as cis-acting regulatory (Guil and Esteller 2012) or com-
petitive endogenous (Tan et al. 2015) RNAs, it will be inter-
esting to see if sequences that encode RNA products with
these roles can be predicted as functional based on a similar
predictive framework. Given that function predictions were
successful in both plants and metazoans, integrating the evo-
lutionary and biochemical features of known genes for func-
tional genomic region prediction will likely be applicable to
any species. The next step will be to test whether function
prediction models can be applied across species, which could
ultimately allow the phenotype data and omics resources
available in model systems to effectively guide the identifica-
tion of functional regions in nonmodels.
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Fic. 6. Function predictions based on a four-class prediction model.
(A) Stacked bar plots indicate the prediction scores of benchmark
RNA genes for each of the four classes: Dark blue—phenotype pro-
tein-coding gene (Ph), cyan—RNA gene (RNA), red—pseudogene
(Ps), yellow—random intergenic sequence (Ig). Ig were included to
provide another set of likely nonfunctional sequences distinct from
pseudogenes. Expression breadth and tissue-specific features were

Expression data were highly informative to functional pre-
dictions. We found that the prediction model based on only
24 transcription activity-related features performs nearly as
well as the full model that integrates additional information
including conservation, H3 mark, methylation, and TF bind-
ing data. In human, use of transcription data from cell lines
also produced highly accurate predictions of functional geno-
mic regions (Tsai et al. 2017). Importantly, our findings sug-
gest that function prediction models can be established in
any species, model or not, with a modest number of tran-
scriptome data sets (e.g, 51 in this study and 19 in human).
We emphasize that it is the breadth and level of expression
that is informative for predictions, and that the presence of
expression evidence by itself is an extremely poor predictor of
functionality. With the effectiveness of our model noted, one
major caveat of our models is that narrowly expressed phe-
notype genes are frequently predicted as pseudogene and
broadly expressed pseudogenes tend to be called functional.
To improve the function prediction model, it will be impor-
tant to explore additional features unrelated to transcription,
particularly those relevant to broadly expressed pseudogenes
that are most likely recently pseudogenized. In addition, be-
cause few phenotype genes are narrowly expressed (5%) in
the A. thaliana training data, more phenotyping data for
narrowly expressed genes will be crucial as well.

Upon application of the function prediction models
genome-wide, 4,427 ITRs and 796 annotated ncRNAs in A.
thaliana are predicted as functional sequences. However, con-
sidering the high FPRs (e.g, 10% for the full and 31% for the
four-class model), this is most likely an overestimate of the
functional sequences contributed by ITRs and annotated
ncRNAs. While we err on the side of calling nonfunctional
sequences as functional, we reduce the error rate for calling a
functional sequence as nonfunctional. Despite this conserva-
tive approach to classifying sequences as nonfunctional, the
majority of ITRs and ncRNAs resembles pseudogenes and
random unexpressed intergenic regions. Additionally, A. thali-
ana has a small genome and it is possible that species with
larger genomes may exhibit a greater proportion of likely
nonfunctional intergenic expression. Similar results were
seen in human, where most ncRNAs are more similar to

Fic. 6. Continued

excluded and 100 bp sequences were used. A benchmark RNA gene is
classified as one of the four classes according to the highest prediction
score. The color bars below the chart indicate the predicted class, with
the same color scheme as the prediction score. Sequences classified as
Ph or RNA were considered functional, whereas those classified as Ps
or Ig were considered nonfunctional. Percentages below a classifica-
tion region indicate the proportion of sequences classified as that
class. (B) Phenotype protein-coding gene prediction scores. (C)
Pseudogene prediction scores. (D) Random unexpressed intergenic
region prediction scores. Note that no sequence was predicted as
functional. (E) Intergenic transcribed region (ITR), (F) Araport11
ncRNA regions. (G) TAIR10 ncRNA regions. Note that the 100 bp
model used here allowed us to evaluate an additional 10,938 ITRs
and 1,406 annotated ncRNAs compared with the 500 bp full and
tissue-agnostic models.
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Fic. 7. Average percentile of example features among predicted func-
tional/nonfunctional sequences relative to all sequences in our anal-
ysis. Example feature categories: Transcriptional activity (TX),
sequence conservation (CV), DNA methylation (ME), and H3 marks
(HM). Functional (F) and nonfunctional (NF) designations were
based on support from >1 prediction model (full, 500 bp or 100 bp
tissue-agnostic, and/or four-class model). Color indicates the average
percentile of sequences for a given sequence class (phenotype gene,
pseudogene, ITR, or annotated ncRNA) and prediction status (N or
NF). Percentiles for each sequence were calculated with feature values
sorted descending or ascending based on feature relationship with
phenotype genes relative to pseudogenes. Descending: TX: breadth
and level, CV: phastCons score, HM: activation-associated. Ascending:
CV: nucleotide diversity, ME: CG, CHG, and CHH, HM: repression-
associated.

nonfunctional sequences than they are to protein-coding and
RNA genes (Tsai et al. 2017). Together with our finding of a
significant relationship between the amount of intergenic
expression and genome size, we conclude that a significant
proportion of intergenic transcripts are nonfunctional noise.
It is also important to note that there are a variety of reasons
to not assume that most of a genome is functional, including
ITRs (Palazzo and Gregory 2014). Thus, instead of assuming
any expressed sequence must be functionally significant, we
advocate that the null hypothesis should be that it is not,
particularly considering that most ITRs and annotated
ncRNAs have not been experimentally characterized.

Materials and Methods

Identification of Transcribed Regions in Leaf Tissue of
15 Flowering Plants

RNA-sequencing (RNA-seq) data sets were retrieved from the
Sequence Read Archive (SRA) at the National Center for
Biotechnology Information (NCBI; www.ncbinlm.nih.gov/
sra/; last accessed March 30, 2018) for 15 flowering plant
species (supplementary table 1, Supplementary Material on-
line). All data sets were generated from leaf tissue and se-
quenced on lllumina HiSeq 2000 or 2500 platforms. Genome
sequences and gene annotation files were downloaded from
Phytozome v.11 (www.phytozome.net; last accessed March
30, 2018; Goodstein et al. 2012) or Oropetium Base v.01
(www.sviridis.org; last accessed March 30, 2018; VanBuren
et al. 2015). Genome sequences were repeat masked using
RepeatMasker v4.0.5 (www.repeatmasker.org last accessed
March 30, 2018) if a repeat-masked version was not available.

Only one end from paired-end read data sets were utilized
in downstream processing. Reads were trimmed to be rid of
low scoring ends and residual adaptor sequences using
Trimmomatic  v0.33 (LEADING: 3  TRAILING: 3
SLIDINGWINDOW: 4: 20 MINLEN: 20; Bolger et al. 2014)
and mapped to genome sequences using TopHat v2.0.13 (de-
fault parameters except as noted below; Kim et al. 2013).
Reads >20 nucleotides in length that mapped uniquely
within a genome were used in further analysis.

For each species, thirty million mapped reads were ran-
domly selected from among all data sets and assembled into
transcript fragments using Cufflinks v2.2.1 (default parame-
ters except as noted below; Trapnell et al. 2010), while cor-
recting for sequence-specific biases during the sequencing
process by providing an associated genome sequence with
the -b flag. The expected mean fragment length for assembled
transcript fragments in Cufflinks was set to 150 from the
default of 200 so that expression levels in short fragments
would not be overestimated. The 1st and 99th percentile of
intron lengths for each species were used as the minimum
and maximum intron lengths, respectively, for both the
TopHat2 and Cufflinks steps. ITRs were defined by transcript
fragments that did not overlap with gene annotation and did
not have significant six-frame translated similarity to plant
protein sequences in Phytozome v.10 (BLASTX E-value < 1E-
05; Altschul et al. 1990).

Generation of Species Tree and Phylogenetically
Independent Analysis

To assess potential confounding effects of phylogenetic non-
independence on the relationships between genome size and
expression coverage, we performed a phylogenetically inde-
pendent contrasts (PIC) analysis. This analysis required the
generation of a species phylogenetic tree of all 15 species
(supplementary table 1, Supplementary Material online).
Significant, nonself pairwise matches (maximum Expect (E)-
value: 1 x 107'% >75% identity across >75% of the length of
both proteins) were identified from an all-against-all BLASTP
search using the annotated protein sequences from
Phytozome v.12.1.5 for all 15 species. Significant matches
were clustered with Markov Clustering (van Dongen 2000)
using -log;o(E) value as the distance measure and an inflation
parameter of 1.4. E-values equal to 0 were set to 180. We
identified five clusters that contained a single sequence from
each of the 15 species. For sequences of proteins in each of
the five clusters, we performed multiple sequence alignments
using MUSCLE (Edgar 2004). Alignments were concatenated
and positions with gaps in 8 of the 15 species (>50%) were
removed. RAXML (Stamatakis 2014) was used to generate
10,000 maximum likelihood trees and the final species tree
was generated by midpoint rooting the highest likelihood tree
using the phytools package in R (Revell 2012; supplementary
fig. 7A, Supplementary Material online).

The phytools package was utilized to calculate phyloge-
netic contrasts of genome size, coverage of genic expression,
and coverage of intergenic expression based on the final spe-
cies tree. Phylogenetic contrasts for coverage of genic and
intergenic expression were then individually regressed against
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the phylogenetic contrasts for genome sizes. The final species
tree used for PIC contained eudicotyledonous (dicot) rela-
tionships incongruent with established phylogeny (APG IV
2016; supplementary fig. 7A, Supplementary Material online).
Two strategies were utilized to determine whether these
errors had significant effects on PIC results by: 1) manually
adjusting the tree topology to be congruent with the estab-
lished phylogeny and randomly altering the length of
branches leading to misclassified dicot species (supplemen-
tary fig. 7B, Supplementary Material online) and 2) randomly
shuffling the species labels for the misclassified dicot species
(supplementary fig. 7C, Supplementary Material online).

Phenotype Data Sources

Mutant phenotype data for A. thaliana protein-coding genes
were collected from a published data set (Lloyd and Meinke
2012), the Chloroplast 2010 database (Ajjawi et al. 2010;
Savage et al. 2013), and the RIKEN phenome database
(Kuromori et al. 2006) as described by Lloyd et al. (2015).
Phenotype genes used in our analyses were those whose dis-
ruption resulted in lethal or visible defects under standard
laboratory growth conditions. Genes with documented mu-
tant phenotypes under standard conditions were considered
as a distinct and nonoverlapping category from other anno-
tated protein-coding genes. We identified six RNA genes with
documented loss-of-function phenotypes through literature
searches (supplementary table 6, Supplementary Material on-
line): At4 (AT5G03545; Shin et al. 2006), MIR164A and
MIR164D (AT2G47585 and AT5G01747, respectively; Guo
et al. 2005), MIR168A (AT4G19395; Li, Cui, et al. 2012), and
MIR828A and TAS4 (AT4G27765 and AT3G25795, respec-
tively; Hsieh et al. 2009). Conditional phenotype genes were
those belonging to the Conditional phenotype group as de-
scribed by Lloyd and Meinke (2012). Loss-of-function
mutants of these genes exhibited phenotype only under
stress conditions.

Arabidopsis thaliana Genome Annotation

Arabidopsis thaliana protein-coding gene, miRNA gene,
snoRNA gene, snRNA gene, ncRNA region, pseudogene,
and TE annotations were retrieved from The Arabidopsis
Information Resource v.10 (TAIR10; www.arabidopsis.org
last accessed March 30, 2018; Berardini et al. 2015).
Additional miRNA gene and IncRNA region annotations
were retrieved from Araport v.11 (www.araportorg last
accessed March 30, 2018). A primary difference between
the TAIR ncRNAs and Araport IncRNAs (referred to as
Araport ncRNAs in the Results and Discussion section) is
the date in which they were annotated. For example, 221
ncRNAs were present in the v.7 release of TAIR, which dates
back to 2007 (TAIR10 contains 394 ncRNA annotations;
Swarbreck et al. 2007; Lamesch et al. 2012; Berardini et al.
2015). However, Araport IncRNAs were annotated in the
past five years (Krishnakumar et al. 2015). Thus, that TAIR
ncRNAs are generally more highly and broadly expressed is
likely a result of the less sensitive transcript identification
methods available for early TAIR releases. A pseudogene-
finding pipeline (Zou et al. 2009) was used to identify

additional pseudogene fragments and count the number of
disabling mutations (premature stop or frameshift muta-
tions). Genes, pseudogenes, and transposons with overlap-
ping annotation were excluded from further analysis.
Overlapping IncRNA annotations were merged for further
analysis. When pseudogenes from TAIR10 and the
pseudogene-finding pipeline overlapped, the longer pseudo-
gene annotation was used.

Arabidopsis thaliana 1TRs analyzed include: 1) the Set 2
ITRs in Moghe et al. (2013), 2) the novel transcribed regions
from Araport v.11, and 3) additional ITRs from 206 RNA-seq
data sets (supplementary table 7, Supplementary Material
online). Reads were trimmed, mapped, and assembled into
transcript fragments as described above, except that overlap-
ping transcript fragments from across data sets were merged.
ITRs analyzed did not overlap with any TAIR10, Araport11, or
pseudogene annotation. Overlapping ITRs from different an-
notated subsets were kept based on a priority system:
Araport11 > Set 2 ITRs from Moghe et al. (2013) > ITRs iden-
tified in this study. For each sequence entry (gene, ncRNA,
pseudogene, TE, or ITR), a 100 and 500 base pair (bp) window
was randomly chosen for calculating feature values and sub-
sequent model building steps. Feature descriptions are pro-
vided in the following sections. The feature values for
randomly selected 500 and 100 bp windows are provided in
supplementary tables 2 and 5, Supplementary Material on-
line, respectively. Additionally, nonexpressed intergenic
sequences were randomly sampled from genome regions
that did not overlap with annotated genes, pseudogenes,
TEs, or regions with genic or intergenic transcript fragments
(100 bp, n = 4,000; 500 bp, n=3,716). All 100 and 500 bp
windows described above are referred to as sequence win-
dows throughout the Materials and Methods section.

Sequence Conservation and Structure Features

There were 10 sequence conservation features examined. The
first two were derived from comparisons between A. thaliana
accessions including nucleotide diversity and Tajima’s D
among 81 accessions (Cao et al. 2011) using a genome matrix
file from the 1,001 genomes database (www.1001genomes.
org last accessed March 30, 2018). The python scripts are
available through GitHub (https://github.com/ShiuLab/
GenomeMatrixProcessing; last accessed March 30, 2018).
The remaining eight features were derived from cross-
species comparisons, three based on multiple sequence and
five based on pairwise alignments. Three multiple sequence
alignment-based features were established using aligned ge-
nomic regions between A. thaliana and six other plant species
(G. max, Medicago truncatula, Populus trichocarpa, Vitis vinif-
era, Sorghum bicolor, and O. sativa; Li, Zheng, et al. 2012),
which are referred to as conserved blocks. For each conserved
block, the first feature was the proportion of a sequence
window that overlapped a conserved block (referred to as
coverage), and the two other features were the maximum
and average phastCons scores within each sequence window.
The phastCons score was determined for each nucleotide
within conserved blocks (Li, Zheng, et al. 2012). Nucleotides
in a sequence window that did not overlap with a conserved
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block were assigned a phastCons score of 0. For each se-
quence window, five pairwise alignment-based cross-species
conservation features were the percent identities to the most
significant BLASTN match (if E-value < 1E-05) in each of five
taxonomic groups. The five taxonomic groups included the
Brassicaceae family (Npecies = 7), other dicotyledonous plants
(22), monocotyledonous plants (7), other embryophytes (3),
and green algae (5). If no sequence with significant similarity
was present, percent identity was scored as zero.

For sequence-structure features, we used 125 conforma-
tional and thermodynamic dinucleotide properties collected
from DiProDB database (Friedel et al. 2009). Because the
number of dinucleotide properties was high and dependent,
we reduced the dimensionality by utilizing principal compo-
nent (PC) analysis as described previously (Tsai et al. 2015).
Sequence-structure values corresponding to the first five PCs
were calculated for all dinucleotides in and averaged across
the length of a sequence window and used as features when
building function prediction models.

Transcription Activity Features

We generated four multi-data set and 20 individual data set
transcription activity features. To identify a set of RNA-seq
data sets to calculate multi-data set features, we focused on
the 72 of 206 RNA-seq data sets each with >20 million reads
(see above; supplementary table 7, Supplementary Material
online). Transcribed regions were identified with TopHat2
and Cufflinks as described in the RNA-seq analysis section
except that the 72 A. thaliana RNA-seq data sets were used.
Following transcript assembly, we excluded 21 RNA-seq data
sets because they had unusually high RPKM (Reads Per
Kilobase of transcript per Million mapped reads) values (me-
dian RPKM value range = 272-2,504,294) compared with the
rest (2—252). The remaining 51 RNA-seq data sets were used
to generate four multi-data set transcription activity features
including: Expression breadth, 95th percentile expression
level, maximum transcript coverage, and presence of expres-
sion evidence (for values see supplementary tables 2 and 5,
Supplementary Material online). Expression breadth was the
number of RNA-seq data sets that have >1 transcribed re-
gion that overlapped with a sequence window. The 95th
percentile expression level was the 95th percentile of RPKM
values across 51 RNA-seq data sets where RPKM values were
set to 0 if there was no transcribed region for a sequence
window. Maximum transcript coverage was the maximum
proportion of a sequence window that overlapped with a
transcribed region across 51 RNA-seq data sets. Presence of
expression evidence was determined by overlap between a
sequence window and any transcribed region in the 51 RNA-
seq data sets.

In addition to features based on multiple data sets, 20
individual data set features were derived from 10 data sets:
Seven tissue/organ-specific RNA-seq data sets including pol-
len (SRR847501), seedling (SRR1020621), leaf (SRR953400),
root (SRR578947), inflorescence (SRR953399), flower,
(SRR505745), and silique (SRR953401), and three data sets
from nonstandard growth conditions, including dark-grown
seedlings (SRR974751) and leaf tissue under drought

(SRR921316) and fungal infection (SRR391052). For each of
these 10 RNA-seq data sets, we defined two features for each
sequence window: The maximum transcript coverage (as de-
scribed above) and the maximum RPKM value of overlapping
transcribed regions (referred to as Level in fig. 2). If no tran-
scribed regions overlapped a sequence window, the maxi-
mum RPKM value was set as 0. For the analysis of narrowly
and broadly expressed phenotype genes and pseudogenes
(supplementary fig. 4B and C, Supplementary Material on-
line), we used 28 out of 51 RNA-seq data sets generated
from a single tissue and in standard growth conditions to
calculate the number of tissues with evidence of expression
(tissue expression breadth). In total, seven tissues were rep-
resented among the 28 selected RNA-seq data sets (see
above; supplementary table 7, Supplementary Material on-
line), and thus tissue expression breadth ranges from 0 to 7
(note that only 1-7 are shown in supplementary fig. 4B and C,
Supplementary Material online due to low sample size of
phenotype genes in the 0 bin). The tissue breadth value is
distinct from the expression breadth feature used in model
building that was generated using all 51 data sets and con-
sidered multiple RNA-seq data sets from the same tissue
separately (range: 0-51).

H3 Mark Features

Twenty H3 mark features were calculated based on eight H3
chromatin immunoprecipitation sequencing (ChlP-seq) data
sets from SRA. The H3 marks examined include four associ-
ated with activation (H3K4me1l: SRR2001269, H3K4me3:
SRR1964977, H3K9ac:  SRR1964985, and H3K23ac
SRR1005405) and four associated with repression
(H3K9me1: SRR1005422, H3K9me2: SRR493052, H3K27me3:
SRR3087685, and H3T3ph: SRR2001289). Reads were
trimmed as described in the RNA-seq section and mapped
to the TAIR10 genome with Bowtie v2.2.5 (default parame-
ters; Langmead et al. 2009). Spatial Clustering for
Identification of ChIP-Enriched Regions v.1.1 (Xu et al. 2014)
was used to identify ChIP-seq peaks with a false discover
rate < 0.05 with a nonoverlapping window size of 200, a
gap parameter of 600, and an effective genome size of 0.92
(Koehler et al. 2011). For each H3 mark, two features were
calculated for each sequence window: The maximum inten-
sity among overlapping peaks and peak coverage (proportion
of overlap with the peak that overlaps maximally with the
sequence window). In addition, four multi-mark features
were generated. Two of the multi-mark features were the
number of activating marks (0-4) overlapping a sequence
window and the proportion of a sequence window overlap-
ping any peak from any of the four activating marks (activat-
ing mark peak coverage). The remaining two multi-mark
features were the same as the two activating multi-mark
features except focused on the four repressive marks.

DNA Methylation Features

Twenty-one DNA methylation features were calculated from
bisulfite-sequencing (BS-seq) data sets from seven tissues
(pollen: SRR516176, embryo: SRR1039895, endosperm:
SRR1039896, seedling: SRR520367, leaf. SRR1264996, root:
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SRR1188584, and inflorescence: SRR2155684). BS-seq reads
were trimmed as described above and processed with
Bismark v.3 (default parameters; Krueger and Andrews
2011) to identify methylated and unmethylated cytosines in
CG, CHH, and CHG (H=A, C or T) contexts. Methylated
cytosines were defined as those with >5 mapped reads and
with >50% of mapped reads indicating that the position was
methylated. For each BS-seq data set, the percentage of meth-
ylated cytosines in each sequence window for CG, CHG, and
CHH contexts were calculated if the sequence window
had >5 cytosines with >5 reads mapping to the position.
To determine whether the above parameters where reason-
able, we assessed the FPR of DNA methylation calls by eval-
uating the proportion of cytosines in the chloroplast genome
that are called as methylated, as the chloroplast genome has
few DNA methylation events (Ngernprasirtsiri et al. 1988;
Zhang et al. 2006). On the basis of the above parameters,
0-1.5% of cytosines in CG, CHG, or CHH contexts in the
chloroplast genome were considered methylated in any of
the seven BS-seq data sets. This indicated that the FPRs for
DNA methylation calls were low and the parameters were
reasonable.

Chromatin Accessibility and TF Binding Features
Chromatin accessibility features consisted of ten DHS-related
features and one micrococcal nuclease sequencing (MNase-
seq)-derived feature. DHS peaks from five tissues (seed coat,
seedling, root, unopened flowers, and opened flowers) were
retrieved from the Gene Expression Omnibus (GSE53322 and
GSE53324; Sullivan et al. 2014). For each of the five tissues, the
maximum DHS peak intensity and DHS peak coverage were
calculated for each sequence window. Normalized nucleo-
some occupancy per bp based on MNase-seq was obtained
from Liu et al. (2015). The average nucleosome occupancy
value was calculated across each sequence window. TF bind-
ing site features were based on in vitro DNA affinity purifica-
tion sequencing data of 529 TFs (O’Malley et al. 2016). Two
features were generated for each sequence window: The total
number of TF binding sites and the number of distinct TFs
bound.

Single-Feature Prediction Performance

The ability for each single feature to distinguish between
functional and nonfunctional regions was evaluated by cal-
culating AUC-ROC value with the Python scikit-learn package
(Pedregosa et al. 2011). Thresholds to predict sequences as
functional or nonfunctional using a single feature were de-
fined by the feature value that produced the highest F-meas-
ure, the harmonic mean of precision (proportion of
sequences predicted as functional that are truly functional)
and recall (proportion of truly functional sequences predicted
as functional). The F-measure allows consideration of both
false positives and false negatives at a given threshold. FPR
were calculated as the percentage of negative (nonfunctional)
cases with values above or equal to the threshold and thus
falsely predicted as functional. FNR were calculated as the
percentage of positive (functional) cases with values below
the threshold and thus falsely predicted as nonfunctional.

Binary Classification with Machine Learning

For binary classification (two-class) models that contrasted
phenotype genes and pseudogenes, the random forest (RF)
implementation in the Waikato Environment for Knowledge
Analysis software (WEKA; Hall et al. 2009) was utilized. Three
types of two-class models were established, including the full
model (500 bp sequence window, figs. 3A, B and 4), tissue-
agnostic  models  (500bp, supplementary fig. 5,
Supplementary Material online; 100 bp, supplementary fig.
6, Supplementary Material online), and single feature category
models (fig. 3A and B). For each model type, we first gener-
ated 100 balanced data sets by randomly selecting equal
numbers of phenotype genes (positive examples) and pseu-
dogenes (negative examples). For each of these 100 data sets,
10-fold stratified cross-validation was utilized, where the
model was trained using 90% of sequences and tested on
the remaining 10%. Thus, for each model type, a sequence
window had 100 prediction scores, where each score was the
proportion of 500 RF trees that predicted a sequence as a
phenotype gene in a balanced data set. The median of 100
prediction scores was used as the FL value (supplementary
table 4, Supplementary Material online). The FL threshold to
predict a sequence as functional or nonfunctional was de-
fined based on maximum F-measure as described in the pre-
vious section.

We tested multiple -K parameters (2-25) in the WEKA-RF
implementation, which alters the number of randomly se-
lected features included in each RF tree (supplementary table
8, Supplementary Material online), and found that 15 ran-
domly selected features provided the highest performance
based on AUC-ROC (calculated and visualized using the
ROCR package; Sing et al. 2005). Feature importance was
assessed by excluding one feature at a time to determine
the associated reduction in prediction performance (supple-
mentary table 9, Supplementary Material online). All leave-
one-out models performed well (AUC-ROC > 0.97), indicat-
ing that no single feature was dominating the function pre-
dictions and/or many features are correlated (supplementary
fig. 8, Supplementary Material online). To demonstrate that
functional predictions were not overfitted, we generated a
prediction model while holding out a randomly sampled set
of phenotype protein-coding genes and pseudogenes
(n =100 for each class) from model training and parameter
optimization steps. The held-out instances were well-
predicted, with a high AUC-ROC performance (0.97) and
low false positive and FNRs (12% and 7%, respectively).
Binary classification models were also built using all features
from 500 bp sequences (equivalent to the full model) with
the Sequential Minimal Optimization-Support Vector
Machine (SMO-SVM) implementation in WEKA (Hall et al.
2009). The results of SMO-SVM models were highly similar to
the full RF results: PCC between the FL values generated by RF
and SMO-SVM =097, AUC-ROC of SMO-SVM =097,
FPR=12%; FNR=3%. By comparison, the full RF model
had AUC-ROC = 0.98, FPR = 10%, FNR = 4%.

Tissue-agnostic models were generated by excluding the
expression breadth feature and 95th percentile expression
level and replacing all features from RNA-seq, BS-seq, and
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DHS data sets that were available in multiple tissues. For
multiple-tissue RNA-seq data, the maximum expression level
across 51 RNA-seq data sets (in RPKM) and maximum cov-
erage (as described in the transcription activity section) of a
sequence window in any of 51 RNA-seq data sets were used.
For multi-tissue DNA methylation features, minimum pro-
portions of methylated cytosines in any tissue in CG, CHG,
and CHH contexts were used. For DHS data, the maximum
peak intensity and peak coverage was used instead. In single
feature category predictions, fewer total features were used
and therefore lower —K values (i.e, the number of random
features selected when building RFs) were considered in pa-
rameter searches (supplementary table 8, Supplementary
Material online).

Multi-Class Machine Learning Model

For the four-class model, benchmark RNA gene, phenotype
protein-coding gene, pseudogene, and random unexpressed
intergenic sequences were used as the four training classes.
Benchmark RNA genes consisted of six RNA genes with docu-
mented loss-of-function phenotypes and 40 high-confidence
miRNA genes from miRBase (www.mirbase.org; last accessed
March 30, 2018; Kozomara and Giriffiths-Jones 2014). We con-
sidered that the decreased numbers of benchmark RNA
genes would not allow us to effectively distinguish between
sequence classes. However, binary predictions generated us-
ing 35 phenotype gene and pseudogene instances and the
100 bp tissue-agnostic feature set resulted in an AUC-ROC
performance of 0.96. We generated 250 data sets with equal
proportions (larger classes randomly sampled) of training
sequences. Two-fold stratified cross-validation was utilized
due to the low number of benchmark RNA genes. The fea-
tures included those described for the tissue-agnostic model
and focused on 100 bp sequence windows. The RF implemen-
tation, cforest, in the party package of R (Strobl et al. 2008)
was used to build the classifiers. The four-class predictions
provide prediction scores for each sequence type: An RNA
gene, phenotype protein-coding gene, pseudogene, and unex-
pressed intergenic score (supplementary table 4,
Supplementary Material online). The prediction scores indi-
cate the proportion of RF trees that classify a sequence as a
particular class. Median prediction scores from across 100
balanced runs were used as final prediction scores. Scores
from a single balanced data set models sum to 1, but not
the median from 100 balanced runs. Thus, the median scores
were scaled to sum to 1. For each sequence window, the
maximum prediction score among the four classes was
used to classify a sequence as phenotype gene, pseudogene,
unexpressed intergenic region, or RNA gene.

Availability

All relevant data are within the article and supplementary
material files, Supplementary Material online.
Supplementary Material

Supplementary data are available at Molecular Biology and
Evolution online.
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