Defining Functional Genic Regions in the Human Genome
through Integration of Biochemical, Evolutionary, and Genetic
Evidence

Zing Tsung-Yeh Tsai,”"* John P. Lloyd," and Shin-Han Shiu*"

'Department of Plant Biology, Michigan State University, East Lansing, MI

%Institute of Information Science, Academia Sinica, Taipei, Taiwan

*Present address: Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Ml
*Corresponding author: E-mail: shius@msu.edu.

Associate editor: Naruya Saitou

Abstract

The human genome is dominated by large tracts of DNA with extensive biochemical activity but no known function. In
particular, it is well established that transcriptional activities are not restricted to known genes. However, whether this
intergenic transcription represents activity with functional significance or noise is under debate, highlighting the need for
an effective method of defining functional genomic regions. Moreover, these discoveries raise the question whether
genomic regions can be defined as functional based solely on the presence of biochemical activities, without considering
evolutionary (conservation) and genetic (effects of mutations) evidence. Here, computational models integrating genetic,
evolutionary, and biochemical evidence are established that provide reliable predictions of human protein-coding and
RNA genes. Importantly, in addition to sequence conservation, biochemical features allow accurate predictions of genic
sequences with phenotypic evidence under strong purifying selection, suggesting that they can be used as an alternative
measure of selection. Moreover, 18.5% of annotated noncoding RNAs exhibit higher degrees of similarity to phenotype
genes and, thus, are likely functional. However, 64.5% of noncoding RNAs appear to belong to a sequence class of their
own, and the remaining 17% are more similar to pseudogenes and random intergenic sequences that may represent noisy
transcription.
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does not necessarily mean such activity is under selection
(Eddy 2012; Doolittle 2013; Graur et al. 2013; Niu and Jiang
2013). It has also been suggested that evolutionary, biochem-
ical, and genetic evidence provide complementary informa-
tion for the functionality of a sequence (Kellis et al. 2014).
However, this operational definition is criticized for not dis-
tinguishing between causal role functionality (what a compo-
nent does) and selected effect functionality (how and why a
component is subjected to natural selection) (Neander 1997;
Doolittle et al. 2014). And because biochemical activity meas-
ures the causal role of a genomic region, it remains an open
question as to what, if any, biochemical evidence is sufficient

Introduction

Recent studies have revealed widespread biochemical activ-
ities associated with the human genome (ENCODE Project
Consortium 2012; Hangauer et al. 2013). In particular, there is
pervasive transcription beyond known genic regions (Djebali
et al. 2012). This transcriptional activity may be indicative of
the presence of novel genic regions (Mercer et al. 2009).
However, some of this activity can also be transcriptional
noise (van Bakel et al. 2010). In addition, there are more
than 10,000 annotated noncoding RNA (ncRNA) regions
within the human genome, many of which have not been
experimentally characterized and have no known function.

Thus, the functional significance of transcripts originating
outside of annotated genes and of most annotated ncRNA
regions is unclear.

The foremost challenge in identifying functional genomic
regions is in defining what constitutes function, which has
been a topic of considerable discussion (Doolittle et al. 2014;
Kellis et al. 2014). In the ENCODE project, a genomic region is
defined as having a biochemical function if reproducible bio-
chemical activity, for example, transcriptional activity or par-
ticular chromatin states, can be detected (ENCODE Project
Consortium 2012). This biochemical function definition, how-
ever, has drawn critique because the existence of an activity

to identify functional genomic regions.

The feasibility of jointly considering biochemical activities
and evolutionary evidence for detecting selection is illustrated
by fitCons (fitness consequences of functional annotation)
that provides an estimate of fitness consequence for a point
mutation (Gulko et al. 2015). Nonetheless, it is unclear
whether and how biochemical, evolutionary, and genetic evi-
dence in combination may provide a more robust definition
of functional genic sequences. Here, we examined the relative
contributions of 21 conservation attributes, 14 sequence
characteristics, and 35 biochemical signals in distinguishing
between genetically defined functional regions (human

© The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

Al rights reserved. For permissions, please e-mail: journals.permissions@oup.com

Downloaded fr;n?&gtps ://academic.oup. com/ngaBﬁip(!'lgygséé(:z):;zﬁsl_ﬂ%Z?gl119@i:10'1093/m0|bev/m5X101 AdVance Access pUincation Apnl 6’ 2017

by Michigan State University-College of Law user
on 02 May 2018



Functional Genic Regions in the Human Genome - doi:10.1093/molbev/msx101

TSS
Intergenic \ Genic/pseudogenic

\

Intergenic

C Regions

. e e Features Il
Upstream Tail Downstream — —
All
B _
10 B Upstream auR1%C oV
[ Head -0:9
0.9 |M Tail '] os | RS 0.77 070 0.67 0.73
@ Downstream E 0.7
o 084 jos | DS . 0.91 0.91
g | o i g fosz foss o7 [564| [BEE
)
0.7 5
® o o o ~ : TX 0.84 0.85 . 0.89
= O = (]
0.6 i TF 0.90 091 0.65 0.66
05— ° l%i 06 CA .0.71 0.72
HM . 0.90 0.89
Cv RS DS NB TX TF CA HM DM
) DM fo.ssf0.74 081 ..
Feature categories i

Fic. 1. Performance of classifying phenotype genes and pseudogenes (PS) by conservation, sequence property, and biochemical characteristics. (A)
Schematic of the four 500-bp regions flanking the boundary of each entry in this study. (B) Boxplots of the auROC values for classifying phenotype
genes and PS using each of the 70 targeted features in upstream, head, tail, and downstream regions including: 21 conservation (CV), two repeat and
single nucleotide polymorphism (RS), five DNA structural property (DS), seven non-B DNA structure motif (NB), four transcription (TX), three
transcription factor binding (TF), two chromatin accessibility (CA), 24 histone modification (HM), and two DNA methylation (DM) features. (C) The
performance of random forest classification using combinations of features and regions. The first combination is using all features from all four regions
(full model, top left box of panel C). The second combination consists of models built with all features from four regions separately (purple box; top of
panel C). The third combination consists of models built with features from one category but with information from all four regions (green box; left of
panel C). Finally, the fourth combination consists of models built with all features from a category in one region (below purple box and right of green

box in panel C).

phenotype/disease genes) and likely nonfunctional sequences
(pseudogenes [PS] and random intergenic sequences) in the
human genome. In addition, machine learning models were
established to investigate whether current annotated ncRNAs
share evolutionary and biochemical features with functional
sequences and may be considered genic or with nonfunc-
tional sequences indicative of transcriptional noise.

Results and Discussion

No Single Feature Is Sufficient for Defining Functional
Genic Regions

To define human genomic regions that function as genes
(referred to as functional regions), we first assessed how
well conservation attributes, sequence characteristics, and
biochemical signatures (referred to as features, 70 total, see
Materials and Methods and supplementary table S2,
Supplementary Material online) could differentiate functional
and nonfunctional regions. For functional regions, we used
3,046 phenotype and disease protein-coding genes with gen-
etic evidence of functionality from the Human Phenotype
Ontology database (Kohler et al. 2014). These phenotype/
disease genes were referred to as HPO-p genes (supplemen-
tary table S1, Supplementary Material online). For nonfunc-
tional regions, 4,399 human PS (Yates et al. 2016) were used

(supplementary table S1, Supplementary Material online). We
focused on defining 1,000-bp regions flanking the starting
(upstream and head) and ending (tail and downstream)
points of genes (fig. 1A), because features have distinctive
patterns in the upstream and downstream regions (de Boer
et al. 2014).

To assess how informative each feature was for predicting
each of the four regions as HPO-p gene- or pseudogene-like,
the area under Receiver Operating Characteristic curve
(auROC) was used (fig. 1B). The auROC for a model that
can make predictions perfectly is 1. At the other extreme, a
model that does no better than random guesses has an auROC
of 0.5 (see Materials and Methods). For each feature/region
combination (e.g, nucleotide diversity calculated with se-
quences from the upstream region), an auROC value was
calculated. In fig. 1B, instead of showing individual auROC
values, we classified features into nine categories and showed
the distribution of auROC values of all features in a category
and from a particular region. Thus, looking across fig. 1B, we
showed how informative features in a feature category/region
combination were for distinguishing PS from genes.

In general, individual conservation-based features were
among the least informative (average auROC = 0.61, fig. 1B),
and the most informative feature was, the fitness Consequence
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score (fitCons,auROC = 0.75) (Gulko et al. 2015), still has a 28.1%
false positive rate (FPR, PS misclassified as genes) and 30% false
negative rate (FNR, genes misclassified as PS). Meanwhile,
transcription-related features were more informative than
conservation (average auROC = 0.73; fig. 1B). However, the
FPR and FNR of a model using the best performing feature (tran-
scriptional coverage in tail regions) remained high at 34.1% and
17.5%, respectively. Like transcription, features related to tran-
scription factor (TF) binding and chromatin accessibility are
among the best in distinguishing HPO-p genes and PS (fig. 1B)
but still have high FPR (>13.9%) and FNR (>12.1%). Taken to-
gether, no single feature was sufficient for defining functional
regions, and the utility of features depended on which of the
four regions (fig. 1A) was targeted.

Biochemical and Evolutionary Evidence Are
Complementary in Defining Functional Genic Regions
Based on the observation that HPO-p genes and PS were
clearly distinguishable in a principal component analysis using
all features (supplementary fig. S1, Supplementary Material
online), we next jointly considered all 70 features from all four
regions with machine learning methods (the full model; see
Materials and Methods). This is a binary classification model
as it differentiates between human genomic sequences that
are more similar to HPO-p genes (thus likely functional) or PS
(likely nonfunctional). This full model significantly outper-
formed any single feature (auROC=0.99, FPR=4.5%,
FNR = 8.4%, fig. 1C), distinguishing HPO-p genes and PS
with high accuracy. To assess the relative contributions of
different features and upstream, head, tail, and downstream
regions, we established four additional types of models
including: 1) Four region-specific models combining all
features (purple rectangle, fig. 1C), 2) nine feature category-
specific models combining all regions (green rectangle, fig. 1C)
revealing histone modification-related features as the most
informative category, 3) 36 feature category/region-specific
models (fig. 1C) with highly variable performance, and 4)
280 “leave-one-out” models where each feature/region
combination was removed to evaluate its importance
(supplementary fig. S2, Supplementary Material online).

Interestingly, models considering all features, regardless of
which regions we focused on, performed nearly as well as the
full model. This was also true for some feature categories
when all regions were considered. For example, consideration
of all conservation features resulted in a well-performing clas-
sifier (fig. 1C). Similarly, biochemical signature-related catego-
ries, particularly histone modifications (fig. 1C), perform
nearly as well as the full model. Although conservation or
biochemical features alone are useful, 58 HPO-p genes were
correctly predicted only by evolutionary conservation fea-
tures and 168 HPO-p genes only by biochemical features.
This finding echoes the suggestion that biochemical and evo-
lutionary evidence are complementary in defining functional
DNA sequences (Kellis et al. 2014).

Functional Likelihood (FL) Allows Prediction of
Phenotype/Disease Protein-Coding Genes and PS

In the interest of predicting functionality of any genomic
region aside from the HPO-p genes and PS, we devised an
FL measure for a genomic sequence represented by a value
between 0 (most likely nonfunctional) and 1 (most likely
functional) (see Materials and Methods). The median FLs of
HPO-p genes and PS were 097 (fig. 2A) and 0.01 (fig. 2B),
respectively. To assess the error rates of using FLs to call a
genomic region as functional or not, a threshold FL of 0.36
was determined as the FL value that leads to the maximal F-
measure of a model (supplementary fig. S3, Supplementary
Material online). F-measure is the harmonic mean of preci-
sion (proportion of sequences predicted as functional that are
truly functional) and recall (proportion of functional se-
quences predicted as functional) values. Thus, a threshold
FL based on maximum F-measure allows us to reduce both
false positive and false negative predictions for a given model.

With this threshold, 94.5% of HPO-p genes are considered
functional. For HPO-p genes classified as nonfunctional that
are clearly false negatives, we speculated that low FL scores
among these sequences might be a result of conditional or
tissue-specific expression because PS tend to have highly re-
stricted expression profiles. In this case, the specific conditions
or tissues in which these sequences are functional may not be
adequately captured by the data sets used when generating
features. To assess this possibility, we investigated expression
specificity, defined by how often a gene is expressed across
multiple cell lines, and found that low FL HPO-p genes tend
to be tissue-specific (one-sided Wilcoxon rank-sum test
P=24x10 ", supplementary fig. S4A, Supplementary
Material online). This may suggest that the model is biased
against narrowly expressed sequences. In addition, we also
found that low FL HPO-p genes tend to have higher propor-
tions of intron sequences in the gene body regions where
features were calculated (one-sided Wilcoxon rank-sum test
P=72x 10> supplementary fig. S4C, Supplementary
Material online), which may result in low FL scores and false
negative predictions.

The prediction model classified 93.5% of PS as nonfunc-
tional. Nonetheless, 6.5% PS with higher FL than the threshold
were classified as functional. For these high FL PS, we con-
sidered both false positives (truly nonfunctional) and misan-
notation (annotated PS that were in fact functional) as
explanations. Regarding false positives, these PS may be pre-
sent in a similar chromatin context as nearby or overlapping
genes and thus exhibit features similar to functional regions.
Consistent with this, high FL PS tend to overlap with anno-
tated genes twice as often compared to low FL PS (Fisher’s
Exact Test, P < 1.6 x 10~ *> fig. 3A). After eliminating PS over-
lapping with annotated genes, only 2.1% of PS were classified
as functional (fig. 3B). High FL PS also tend to be closer to
annotated genes than low FL ones (fig. 3C and D). We also
assessed the possibility that PS generated from more recent
duplication events may still possess features like functional
paralogs leading to high FLs. Contrary to this expectation, we
found that in fact high FL PS were generated from more
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Fic. 2. Binary classification of sequences as likely functional or not. (A—F) Distributions of functional likelihood determined by a random forest
model with all 70 features from all four regions and trained with HPO-p genes and PS: (A) HPO-p genes, (B) PS, (C) annotated protein-coding genes,
(D) HPO RNA genes, (E) IncRNAs, and (F) ncRNAs. (G) The FL distribution of ncRNAs with an updated full model trained by a combined positive
set (HPO-p, HPO RNA, and IncRNAs) and a combined negative set (PS and RIR). The vertical dashed lines indicate the FL threshold determined by
maximizing F-measure to classify a sequence as functional or nonfunctional.

ancient duplication events compared to low FL PS (fig.
3E). One interpretation is that, because genes that tend not
to have retained duplicates have higher essentiality (Lloyd
et al. 2015), they might resemble essential genes more than
an average gene in the genome and were misclassified.
Finally, we cannot rule out the possibility that a small sub-
set of predicted PS are misannotated and thus functional.
Nonetheless, considering that the proportion of high FL PS
decreases to 2.1% after controlling for overlap with anno-
tated genes, the low FPR indicates that our model is cap-
able of distinguishing functional and nonfunctional
sequences in a highly accurate manner.

FL Also Allows Prediction of Annotated Protein-
Coding and RNA Genes

After evaluating our model performance through cross-
validation of hold-out HPO-p genes and PS, we next assessed
the FLs of annotated protein-coding genes and RNA genes.
We found that annotated protein-coding genes, after exclud-
ing HPO-p entries, are generally predicted as functional (fig.
2C). However, 17% of annotated protein-coding genes have
lower FLs than the threshold and thus are predicted as
nonfunctional (supplementary table S1, Supplementary
Material online). Similar to results with low-scoring HPO-p
genes, we find that protein-coding genes that are predicted as
nonfunctional tend to be more tissue-specific in expression
(one-sided Wilcoxon rank-sum test P =82 x 10~ "/, supple-
mentary fig. S4B, Supplementary Material online) and have

higher intron proportions in the gene body regions used to
calculate features (one-sided Wilcoxon rank-sum test
P=54x10"% supplementary fig. S4D, Supplementary
Material online) compared to predicted-functional protein-
coding genes. Using a set of previously defined human retro-
genes (Kabza et al. 2014), we found that low-FL protein-coding
genes are enriched in retrogenes (Fisher's Exact Test,
P=9.3 x 10 “). Retrogene sequences are derived from re-
verse transcription and genomic reinsertion and, due to the
lack of proper regulation in the new genomic context, most
retrogenes are likely dead-on-arrival (Kaessmann etal.2009).
Furthermore, 557 of 2,784 low FL protein-coding genes are
not annotated with specific functions or assigned to any
known pathway. To further assess the functionality of these
low FL annotated genes, we compared the growth effects of
mutants in CRISPR global loss-of-function experiments
(Gilbert et al. 2014) and mouse phenotype data (White
et al. 2013). We found that annotated genes with low FLs
tend to have higher growth rates when mutated compared
to high FLgenes (r = —0.12,P < 2.2 x 10~ "%, supplementary
fig. S5, Supplementary Material online). Similarly, mouse
orthologs of low FL genes tend to be nonessential (Fisher’s
Exact Test, P=96x10°, supplementary fig. S6,
Supplementary Material online). Taken together, these
findings indicate that FL values are an accurate estimate
of the functional state for most annotated protein-coding
genes, and a subset of annotated protein-coding genes may
be false positive gene predictions.
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FiG. 3. Comparisons between high FL and low FL PS. (A) The propor-
tion of PS with low or high FLs overlapping with annotated genes. A
pseudogene was regarded as low FL if its FL value based on the full
model was lower than the threshold FL that maximized the F-meas-
ure. Otherwise, it was regarded as high FL. The P value of a proportion
test is shown. The horizontal dashed line and solid line indicate the
proportion of PS and other gene regions, respectively, which overlap
with annotated genes. (B) The FL distribution of PS that do not over-
lap with annotated genes. The distances between PS and their nearest
(C) upstream or (D) downstream neighboring gene are shown in
boxplots; P values are from one-sided Wilcoxon rank-sum tests. (E)
The Ks distributions of high FL (pink) and low FL (blue) PS.

We next asked whether the full machine learning model
can be applied to identify functional ncRNAs because of the
importance of RNA genes (Fatica and Bozzoni 2013), the
availability of >10,000 annotated human ncRNAs (Harrow
et al. 2012), and the current debate on the functionality of
pervasive transcription in the human genome (Graur et al.
2013; Niu and Jiang 2013; Doolittle et al. 2014). First, we
applied the model to ten HPO RNA genes not included in
the training data and nine, including XIST (Quinn and Chang
2015), were classified as functional (fig. 2D). To further verify
the utility of the model in classifying RNA genes with a larger
data set, we examined an additional 92 manually curated long
ncRNAs that were annotated as functional (IncRNAs; Quek
et al. 2015). We found that 80.5% of IncRNAs have FLs higher
than the threshold and were predicted as functional (fig. 2E).
These findings indicate that most known, functional RNA
entries can be classified correctly, demonstrating that this
integrated model can predict not only protein-coding but
also RNA genes.

Nearly Half of the ncRNAs Are Predicted as Likely
Functional Based on a Binary Classification Model
Given that the integrated model can distinguish HPO pro-
tein-coding and RNA genes and IncRNAs from PS, we next

asked what proportion of the 10,924 annotated ncRNA
entries were likely functional. Intriguingly, annotated
ncRNA entries displayed a bimodal FL distribution (fig. 2F)
where 46.4% were classified as HPO-p gene-like and are likely
functional. But the rest (53.6%) more closely resembled PS,
and thus were likely nonfunctional. To assess why the FL
distribution of ncRNA regions is not as clear-cut as the other
features, including HPO RNA and IncRNA genes, first we
asked whether this was because the boundaries of ncRNAs
were ill-defined and led to false predictions. If the boundaries
were ill-defined and impacted the model significantly, we
would expect that a model based on only the head/tail
regions (fig. 1A) would outperform the full model because
the head/tail model does not include up- and down-stream
regions, which may contain genic regions. We found that the
head/tail model led to results that were nearly identical to the
original, full model (supplementary fig. S7, Supplementary
Material online). Thus, the rather ambiguous FLs among
ncRNAs are not simply due to ill-defined boundaries.

Another explanation is that the machine learning model
based on protein-coding genes did not adequately capture
the properties of RNA genes. This is unlikely as most known
RNA genes were classified correctly (fig. 2D and E).
Nonetheless, we further assessed this possibility by developing
a new model trained with IncRNA genes as functional ex-
amples and PS as nonfunctional examples (supplementary fig,
S8, Supplementary Material online). Although this IncRNA-
based model led to higher error rates in predicting HPO-p
entries (FNR = 11.6%, supplementary fig. S8A, Supplementary
Material online), accuracy for IncRNA predictions was im-
proved by 5.5%, as expected (FNR = 14.1%, supplementary
fig. S8E, Supplementary Material online). Most importantly,
the IncRNA-based model led to a 5% increase in the number
of ncRNAs predicted as functional. However, the FL distribu-
tion for annotated ncRNAs remained bimodal and 48.6% of
ncRNAs were still classified as nonfunctional (supplementary
fig. S8F, Supplementary Material online). Taken together, up
to 50% of the annotated ncRNAs are likely functional.
Considering that the functionality of a great majority of these
high FL ncRNAs is unknown, our findings indicate their re-
semblance to known protein-coding and RNA genes and
provide additional evidence that they are likely bona fide
genes. Consistent with this notion, high FL ncRNAs are en-
riched in ultraconserved noncoding sequences (Dimitrieva
and Bucher 2013) compared to low FL ncRNAs (Fisher’s
Exact Test, P=3.9 x 10 *). Meanwhile, the other 50% of
the ncRNAs more closely resemble PS, raising the question
of their functional significance.

Most ncRNAs Are More Similar to PS and Random
Intergenic Sequences than They Are to Protein-Coding
and RNA Genes

In the binary classification scheme above, an ncRNA was
classified as either resembling the positive (HPO-p or
IncRNA) or the negative (pseudogene) examples. Although
the ncRNAs with low FLs were more similar to PS, it is also
possible that they more closely resemble other genomic
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Fic. 4. Three-class classification of sequences. (A) An example output of the ternary likelihood distributions. The likelihood values were
determined by a three-class random forest model trained with HPO-p genes, PS, and RIR. For each input sequence, the three-class model provided
three likelihood scores that represent how similar a sequence entry is to HPO-p genes, PS, and intergenic sequences, respectively. The axes
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annotated protein-coding genes, (E) HPO RNA genes, (F) IncRNAs, and (G) ncRNAs. The darker red indicates increasing number of entries. The

blue shade indicates the boundary of the distribution.

features, such as intergenic regions, or belong to a class of
their own. To assess these possibilities, we established a three-
class model trained by considering three different sequence
types: HPO-p genes (phenotype/disease genes), PS, and ran-
dom intergenic regions (RIR). For each input sequence to be
evaluated, the three-class model provided three likelihood
scores that represent how similar a sequence entry is to
HPO-p genes, PS, or random intergenic sequences. This
three-class model provided a comparison between two
nonfunctional sequence types—PS and RIR. Moreover, it
allowed us to assess whether functionally ambiguous gen-
omic sequences identified from the binary model, such as
some ncRNAs, more closely resemble RIR, PS, or HPO-p genes.
To visualize our findings, ternary plots were generated that
indicate the similarity of input sequences to these three se-
quence types (fig. 4). An input sequence would be closer to
the top, bottom-left, and bottom-right corners if it more
closely resembles RIR, PS, and HPO-p genes, respectively
(fig. 4A). Like the two-class model, we found that the three-
class model could accurately distinguish HPO-p genes (fig.
4B), PS (fig. 4C), and RIR (fig. 4D) because their likelihood
values were distributed more densely in their respective cor-
ners in the ternary plots. Importantly, the three-class model
provides additional resolution in resolving how these
sequences differ and the small but apparent overlaps in the
model space between HPO-p genes and PS.

Consistent with the binary classification results, most
annotated protein-coding genes (fig. 4E), HPO RNA genes
(fig. 4F), and IncRNA genes (fig. 4G) were more similar to
HPO-p genes. The HPO RNA genes fell into two distinct
clusters where sequences in one cluster were more similar

to HPO-p genes and those in the other cluster sat halfway
between HPO-p genes and PS (fig. 4F). In addition, some
IncRNAs were in the classification space that was ambiguous,
consistent with the fact that ~19.5% of IncRNAs were clas-
sified as nonfunctional in the binary model (fig. 2E). In con-
trast to HPO RNA and IncRNAs, most ncRNA entries were
concentrated in a space half-way between intergenic regions
and PS but far from the HPO-p corner (fig. 4H). To see if this
was because the three-class model where HPO-p genes were
used as part of the training data resulted in a biased model
against RNA genes, we established another three-class model
classifying IncRNA (instead of HPO-p genes), PS, and RIR.
The same pattern was recovered from this new three-class
model (supplementary fig. S9A-G, Supplementary Material
online), indicating the placement of ncRNAs in the classifica-
tion space did not simply result from undue influence of
HPO-p training data. With this information, we updated
our binary classification model to distinguish a combined
positive set (HPO-p, HPO RNA, and IncRNAs) from a com-
bined negative set (PS and RIR). In this new model (fig. 2G),
48.8% ncRNAs were considered functional, but 51.2% of them
were still classified as more similar to the mostly nonfunc-
tional PS and RIRs.

Four-Class Models Reveal That Some ncRNAs May
Belong to a New Class of Genomic Feature

Before claiming these ncRNAs as transcriptional noise, we
asked whether the low FL ncRNAs represent a new class of
sequences that do not resemble known protein-coding and
RNA genes. To assess this possibility, a four-class model was
established for classifying HPO-p, PS, RIR, and ncRNAs (see
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Materials and Methods). For each sequence, a likelihood value
for each class was determined and the sequence was classified
as the most likely class. Consistent with the binary (fig. 2) and
the three-class (fig. 4) models, most HPO-p genes (88.4%,
fig. 5A), PS (86.1%, fig. 5B), and RIR (98.7%, fig. 5C) were clas-
sified correctly. In the case of ncRNAs (fig. 5D), 18.5% were
more similar to HPO-p genes, suggesting that they are most
likely functional. This provides a conservative estimate for the
functionality of ncRNAs relative to the binary classification
scheme described above. In addition, 17% of ncRNAs more
closely resembled PS and/or RIR and may be noisy transcrip-
tion. The remaining ncRNAs (64.5%) could be separated from
the other three classes, supporting the notion that a subset of
ncRNAs have distinct characteristics and belong to a class of
their own.

However, compared to the other three classes (fig. 5A—C),
the ncRNAs in this “ncRNA class” (median ncRNA likeli-
hood = 048, fig. 5D) were classified with substantial ambigu-
ity because they mostly have high pseudogene likelihood
(median = 0.18), random intergenic region likelihood (me-
dian =0.15), and HPO-p gene likelihood (median =0.14).
This pattern may be because, despite the use of multiple
biochemical and conservation features, some crucial distin-
guishing characteristics remain to be discovered. This is con-
sistent with the observation that some HPO-p genes (fig. 5A)
and annotated protein-coding genes (fig. 5E) have minor (not
dominant) but appreciable ncRNA likelihood (yellow).
Interestingly, although most HPO RNA genes (80%, fig. 5F)
and IncRNAs (56.6%, fig. 5G) were classified as HPO-p like,
both sets of functional RNA genes have higher median
ncRNA likelihoods (0.23 and 0.27, respectively) compared
to HPO-p (0.11, fig. 5A), suggesting that there are some com-
mon properties between these RNA entries. This is corrobo-
rated by the pattern from the three-class model where a
portion of the IncRNA distribution in the classification space
(fig. 4G) overlaps with the peak region of ncRNAs (fig. 4H).
Thus, there is a clear continuum between some ncRNAs and
IncRNAs given the features we have examined, raising the
question whether some of these ncRNAs are precursors
from which novel genes may evolve.

Conclusion

In summary, computational models considering conserva-
tion, sequence-structural, and biochemical features allow
accurate predictions of known protein-coding and RNA
genes from nonfunctional sequences. Features relevant to
evolutionary conservation and those based on biochemical
activities can be used independently for building models with
comparable performance and are complementary. However,
this does not mean that the presence of a biochemical activity
suggests that a genomic region is under selection and thus
has functional significance. Rather, consideration of multiple
biochemical features in combination allows identification of
genic sequences likely under strong purifying selection and
may serve as an alternative measure of selection.

By applying these models, we answer the question of what
proportion of expressed genomic regions, particularly those
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annotated as ncRNAs, is likely functional. We find support for
the functionality of 18.5% annotated ncRNAs based on their
resemblance to known genes. Nonetheless, the functional
significance of the remaining ncRNAs remains unclear.
While most dissimilar from functional disease-gene regions,
these ncRNAs are apparently also distinct from PS and RIR
and could represent a novel class of sequences with unknown
functional significance. Regardless, as these sequences do not
have sufficient similarity to known functional sequences, our
null hypothesis is that they represent transcriptional noise,
which can be falsified once experimental evidence of their
functionality is established.

Materials and Methods

Sequence, Annotation, and Training Data
The human genomic sequence and annotation data used in
this study (GRCh37/hg19) were obtained from Ensembl
(Yates et al. 2016). Additional annotation data used included
the phenotype/disease gene annotations from the Human
Phenotype Ontology (HPO) database (Kohler et al. 2014) and
the functional RNA annotation from the IncRNAdb (Quek
et al. 2015). All annotated entries used in the study were >1
kilobase (kb). For machine learning, the positive, functional
examples include 3,046 HPO protein-coding genes (referred
to as HPO-p) and 92 annotated functional RNA genes from
the IncRNAdb (referred to as IncRNAs) (Quek et al. 2015).
These are genes with known disease or phenotypic conse-
quences when mutated. The negative, nonfunctional ex-
amples include 4,399 entries of the Ensembl pseudogene
biotype. In cases where PS were also annotated as functional
RNA in the IncRNAdb, they were treated as IncRNAs only.
We also used 2,500 intergenic regions randomly chosen
from human genomic regions that did not overlap with any
Ensembl, HPO, or IncRNAdb annotations as putative nega-
tives. In addition to the above sequences, for machine learn-
ing, 16,618 Ensembl genes in the protein-coding biotype
(annotated protein coding), 10,924 Ensembl entries in the
ncRNA biotype (annotated ncRNA), and 10 HPO RNA genes
were also examined. Any Ensembl-annotated protein-coding
gene that was also annotated in HPO was taken out of the
Ensembl category and treated as an HPO-p. Similarly, any
ncRNA annotated in the IncRNAdb was taken out of the
annotated ncRNA category and treated as an IncRNA.
Information on the identifiers, source databases, and loca-
tions of the sequences used are in supplementary table S1,
Supplementary Material online.

Conservation Features

There were three types of conservation features used. The first
type was the nucleotide sequence identity of each human
sequence compared with their putative orthologs in five pri-
mates (Pan troglodytes CHIMP2.1.4, Gorilla gorilla gorGor3.1,
Pongo abelii PPYG2, Macaca mulatta MMUL_1, Callithrix
jacchus C_jacchus3.2.1) and nine eutherians (Mus musculus
GRCm38, Rattus norvegicus Rnor_5.0, Oryctolagus cuniculus
OryCun2.0, Canis familiaris CanFam3.1, Felis catus
Felis_catus_6.2, Equus caballus EquCab2, Bos taurus

UMD?3.1, Ovis aries Oar_v3.1, Sus scrofa Sscrofa10.2). Thus,
for each sequence, 14 identity values were used as features.
The second type was phastCons scores of alignments be-
tween human and 99 other vertebrate genomes (the
phastCons100way data set; Siepel et al. 2005). For each se-
quence, phastCons scores were used to generate three feature
values. The first was the third quartile of phastCons scores
instead of the median to capture sequences with relatively
small parts that were under selection. The second was the
percentage of positions having a phastCons score >0.5. The
third was the percentage of positions having a phastCons
score >0.75.

A nucleotide position outside of a 100-way aligned region,
and therefore without phastCons data, was assigned a value
of zero to capture that lack of conservation evidence. The
third type of conservation features was fitness Consequence
(fitCons) score, a summary statistic used to represent the
effect of a mutation (Gulko et al. 2015). Although the
fitCons score is an ensemble measure based on multiple
features not directly related to conservation, it measures
the fitness consequence of mutations of a nucleotide
position and is thus considered in this category. For each
sequence, the average and maximum fitCons scores of all
nucleotide positions were calculated. Specifically, the i6
scores from fitCons were used that integrated across
HUVEC, H1-hESC, and GM 12878 cell types.

Sequence Property Features

There are four types of sequence property features. The first is
the coverage of simple sequence repeats including low-
complexity sequences and interspersed repeats identified by
RepeatMasker (Smit et al. 2013) version 4.0.3. The second
type is the single nucleotide polymorphism (SNP) density
(SNP number/kb) as annotated in the dbSNP database
(Sherry et al. 2001) build 146. The third and fourth types of
sequence property features are related to DNA structure. The
third type is the DNA dinucleotide structural information
consisting of 125 conformational and thermodynamic di-
nucleotide properties collected from the DiProDB database
(Friedel et al. 2009). The dimensionality of the DiProDB data
set was first reduced with principal component analysis. Over
the length of each sequence, the values of the top five prin-
cipal components (PCs) (explained 83.3% of variation) were
calculated every two nucleotides (window size of two) with a
step size of one base.

For each of the five PCs, the values over all windows for
each sequence were calculated. The five PCs mainly corres-
pond to DNA major groove geometry, free energy, twist and
roll, DNA minor groove geometry, and tilt and rise, respect-
ively (Tsai et al. 2015). The fourth type is non-B DNA second-
ary structure that may cause DNA rearrangements and
increased mutational rates (Zhao et al. 2010). For each se-
quence, the density of each of seven sequence motifs forming
non-B DNA secondary structures (number of motif occur-
rences/kb) was calculated using the precomputed data from
the non-B DB database (Cer et al. 2013). The seven non-B
secondary structure forming motifs included: A-phased, dir-
ect, G-quadruplex forming, inverted, mirror, short tandem,
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and Z-DNA motifs. A counted motif occurrence had >1 bp
overlap with the targeted sequences.

Transcription-Related Features

The ENCODE RNA-sequencing (RNA-seq) tracks (CSHL Long
RNA-seq) from 19 human cell lines (A549, AG04450, BJ, B cells
CD20+, GM12878, H1-hESC, Hela-S3, HepG2, HMEC,
HSMM, HUVEC, IMR90, K562, MCF-7, Monocytes CD14+,
NHEK, NHLF, SK-N-SH, and SK-N-SH RA) were obtained from
the UCSC genome browser (Speir et al. 2016). These reads
were paired-ends and have been mapped against the hg19
assembly (Parkhomchuk et al. 2009). As the RNA-seq data
report strand of origin for transcripts, sense and antisense
transcripts were analyzed separately. The features including
expression levels over 19 cell types, RNA-seq read coverage,
and read counts were calculated separately for sense and
antisense reads. Thus, there were four RNA-seq-based fea-
tures for each sequence. A genomic position without RNA-
seq reads mapped to it was assigned a value 0. For expression
level, the maximum sense or antisense read coverage over all
bases in a sequence was first determined. Maximum read
depth was then averaged over all cell lines to represent ex-
pression level.

For read coverage, we calculated the percentage of pos-
itions having sense or antisense read depth >0 in >1 cell line
for each sequence. In addition to RNA-seq, the chromatin-
immunoprecipitation sequencing (ChlIP-seq) data for 161 TFs
in 91 cell types were the ENCODE TxnFactor ChlIP Track from
the UCSC genome browser (Wang et al. 2012). For each ChIP-
seq peak, the expScore based on the input signal values was
used to represent binding intensity (01,000, provided in the
UCSC genome browser). For each sequence, three ChIP-seq-
based feature values were calculated. The first was the average
binding intensity defined as the average expScore of the sites
bound by each TF. The second is the average number of
binding sites per kilobase among all TFs in the targeted region.
The third is the number of TFs with expScore >0 in the tar-
geted region.

Chromatin Accessibility, Histone Modification, and
DNA Methylation

The ENCODE DNase | Hypersensitivity Clusters in 125 cell
types (v.3; Thurman et al. 2012) from the UCSC genome
browser were obtained to calculate two features for each
sequence. The first was the coverage of accessible region
defined as the proportion of base pairs with a
DNaseClusters track value >0. The second was the maximum
DNaseClusters track value over all positions of the sequences
in question. For histone modifications, the ChiIP-seq data
generated by ENCODE/Broad Institute (Ram et al. 2011)
were obtained from the UCSC genome browser that con-
tained 156 processed data sets for 12 marks (CTCF, H2A.Z,
H3k27ac, H3k27me3, H3k36me3, H3k4mel, H3k4me2,
H3k4me3, H3k79me2, H3k9ac, H3k9me3, and H4k20me1)
across 13 cell lines (GM12878, H1-hESC, Hela-S3, HepG2,
HMEC, HSMM, HUVEC, K562, Monocytes CD14+, NHA,
Nhdfad, NHE, and NHLF).

For each sequence, two features were calculated for each
histone mark. The first is an average score showing the inten-
sity of histone modification (ChIP-seq read coverage, normal-
ized between 0 and 1,000, position with missing values
excluded). The second is the proportion of positions having
an average histone modification intensity score >0. For DNA
methylation, the reduced representation bisulfite sequencing
data of 15 cell lines (AG04450, BJ, GM 12878, H1-hESC, Hela-
$3, Hepatocytes, HepG2, HMEC, HSMM, K562, IMR90, MCF-
7, Osteobl, SK-N-SH, and SK-N-SH RA) were obtained from
the UCSC genome browser as the ENCODE DNA methyla-
tion tracks (Meissner et al. 2008). For each sequence, density
of DNA methylation site (number of sites/kb) and the average
DNA methylation score (bisulfite sequencing read depth,
normalized between 0 and 1,000) across cell lines were
calculated.

Machine Learning Approach, Functional Likelihood,
and Model Performance Metrics

A machine learning framework based on random forest was
developed to predict whether a genomic region would be
functional or not. Random forest was chosen because of its
efficiency on large data sets, its ability to report the import-
ance of each feature, and accuracy in predictions (Breiman
2001). To avoid potential bias due to class imbalance, equal
numbers of positive and negative examples were used for
each training round. We utilized 10-fold cross-validation,
where functional prediction models were built using 90% of
positive and negative class sequences. To assess performance,
the model was then applied to the withheld 10% of se-
quences. The trained model was also applied to the rest of
the sequence entries not used for training or testing to pre-
dict whether they belonged to the positive or the negative
class. For each sequence entry not in the training set, the
proportion of positive decision tree predictions in the ran-
dom forest model was calculated. By repeating the procedure
1,000 times, we then calculated the average proportion and
defined it as FL. For multiclass models, the overall procedure
was the same except that multiple classes were defined. Two
three-class models were defined including one classifying
HPO-p genes, PS, and RIR and the other replacing HPO-p
genes with IncRNAs. In each run, the model would classify
a test case into one of the three classes. In the four-class
model, ncRNA was added as a new class. Following the
same procedure as the binary classification, a confidence
score for each of the classes for each sequence was deter-
mined. The confidence scores of classes (three and four for
the three- and four-class models, respectively) for each se-
quence would add up to one. The random forest analyses
were conducted in R using the “party” package (Strobl et al.
2009) and the “PRROC” package (Grau et al. 2015).

For evaluating the performance of features, multiple met-
rics were used including true positive rate (TPR), FNR, FPR,
auROC, and F-measure. To determine the auROC of a model
based on a particular feature, we first used multiple threshold
values of the feature in question to determine corresponding
TPRs and FPRs. A Receiver Operating Characteristic curve
(ROC) was then drawn by plotting the TPRs against their
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corresponding FPRs. The auROC was calculated based on the
ROC. In this framework, a feature that can perfectly distin-
guish genes from PS has auROC of 1. A completely unin-
formative feature will have an auROC of 0.5. F-measure is
the harmonic mean between the proportion of sequences
predicted as genes that are truly genes (precision) and the
proportion of true positive genes predicted as genes (recall).
For a random forest model, a threshold FL was determined
based the maximum F-measure of a model using multiple FL
values ranging from 0 to 1. This approach allowed us to
consider both false positive and false negative values at the
same time when determining a threshold FL to classify func-
tional sequences.

Evaluation of the Impact of Dependence between
Features in Machine Learning

As several features discussed in this study were not independ-
ent, we adopted conditional random forest model and con-
ditional permutation variable-importance measure in the
“party” R package which have been demonstrated to be par-
ticularly suitable for correlated predictor variables (Strobl
et al. 2009). To investigate the potential impact of feature
dependency to prediction performance, we also developed
prediction models with independent features using two
methods. In the first method, we applied PC analysis and
developed a PC model using all PCs, which are orthogonal
with each other and therefore independent. In the second
method, an independent component (IC) model was gener-
ated by utilizing 250 ICs that were calculated with the fastiICA
package in R. The auROC for the PC and IC models were 0.998
and 0.892, respectively, compared to 0.988 for the full model
using the original, dependent features. Thus, the ability to
distinguish between functional and nonfunctional sequences
was not negatively impacted by the use of dependent pre-
dictor variables. Given that the full model using original fea-
tures that were dependent could in some cases reveal the
relative contributions of evolutionary and biochemical fea-
tures in defining functional region, we utilized results from
the model built with the original, untransformed features in
all following analyses.

Supplementary Material

Supplementary data are available at Molecular Biology and
Evolution online.
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