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Plants are exposed to a variety of environmental conditions, and their ability to respond to environmental variation depends on
the proper regulation of gene expression in an organ-, tissue-, and cell type-specific manner. Although our knowledge of how
stress responses are regulated is accumulating, a genome-wide model of how plant transcription factors (TFs) and cis-regulatory
elements control spatially specific stress response has yet to emerge. Using Arabidopsis (Arabidopsis thaliana) as a model, we
identified a set of 1,894 putative cis-regulatory elements (pCREs) that are associated with high-salinity (salt) up-regulated genes
in the root or the shoot. We used these pCREs to develop computational models that can better predict salt up-regulated genes in
the root and shoot compared with models based on known TF binding motifs. In addition, we incorporated TF binding sites
identified via large-scale in vitro assays, chromatin accessibility, evolutionary conservation, and pCRE combinatorial relationships
in machine learning models and found that only consideration of pCRE combinations led to better performance in salt up-regulation
prediction in the root and shoot. Our results suggest that the plant organ transcriptional response to high salinity is regulated
by a core set of pCREs and provide a genome-wide view of the cis-regulatory code of plant spatial transcriptional responses to
environmental stress.

Plants are equipped with a wide range of mecha-
nisms to respond to environmental stresses such as
excess heat, salinity, drought, and pathogen attack
(Bostock et al., 2014; Rasheed et al., 2016). These stress
response mechanisms are indispensable for plant sur-
vival and have a significant spatial componentwhereby
organs and tissues respond differently to environmen-
tal changes (Cramer et al., 2011; Gargallo-Garriga et al.,
2014; Pierik and Testerink, 2014). In the case of high-
salinity stress (referred to as salt stress), after perceiving
an increase in soil salt concentration, the primary
physiological response of the root is to exclude sodium
from the xylem and to send hormonal signals of stress
to the shoot, while the shoot must respond to the effects
of ion toxicity and water limitation (Munns, 2002;
Munns and Tester, 2008). In addition to physiological
changes that are spatially specific, it is well documented

that differential gene expression under stress conditions
can be regulated in a highly organ- and tissue-specific
manner (Kreps et al., 2002; Kilian et al., 2007; Dinneny
et al., 2008; Geng et al., 2013), which ultimately impacts
plant development and physiology.

Spatially and conditionally specific gene expression
is expected to be subject to the control of transcriptional
regulatory machineries, including transcription factors
(TFs) and their associated cis-regulatory elements
(CREs). Currently, TFs and their corresponding CREs
regulating the stress response have received consider-
able attention (Seki et al., 2002; Haberer et al., 2011; Qin
et al., 2011), but our knowledge of the spatial regulation
of the stress response is limited. CREs can be identified
based on coexpression (Beer and Tavazoie, 2004; Priest
et al., 2009; Wang et al., 2009; Zou et al., 2011; Austin
et al., 2016) and/or through in vitro and in vivo TF
binding experiments (Harbison et al., 2004; Franco-
Zorrilla et al., 2014; Weirauch et al., 2014; O’Malley
et al., 2016). The coexpression approach has been used
successfully to identify putative cis-regulatory elements
(pCREs) regulating stress-responsive gene expression
in yeast (Saccharomyces cerevisiae; Beer and Tavazoie,
2004) and in Arabidopsis (Arabidopsis thaliana; Zou
et al., 2011). In addition, pCREs are overrepresented in
the 1-kb regions upstream of tissue- and cell type-
specifically expressed genes (Jiao et al., 2009). Al-
though some of these pCREs are similar to the binding
sequences of TFs known to regulate stress-responsive
genes (Jiao et al., 2009), it remains unclear how they
may be relevant to spatial stress response regulation.
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One computational approach for assessing the rele-
vance of pCREs is to ask how well they can be used
to establish a computational model predictive of the
transcriptional response to stress (Zou et al., 2011;
Yáñez-Cuna et al., 2013). Such a model is referred to as
the cis-regulatory code (CRC), which is defined as the
sets of CREs involved in gene regulation in a particular
environment, location, or time (Zou et al., 2011; Yáñez-
Cuna et al., 2013). One major conclusion from CRC
studies is that TFs frequently regulate gene expression
patterns in combination. For example, in yeast, the
identification of CREs through TF binding data un-
covered a complex regulatory code involving combi-
nations of multiple CREs (Harbison et al., 2004). In
humans, genes expressed in specific tissues are regu-
lated by particular combinations of TFs and CREs (Hu
and Gallo, 2010). In Arabidopsis, CRCs based on pCRE
combinations resulted in more precise predictions of
salt stress up-regulated genes (Zou et al., 2011) than
using individual CREs. CRCs can potentially be further
improved by knowledge of TF binding. For example,
computational models considering in vitro TF binding
site information, sequence conservation, DNA struc-
ture, and/or chromatin accessibility were shown to be
predictive of in vivo TF binding in mouse (Zhong et al.,
2013) and in yeast (Tsai et al., 2015). Tissue-specific TF
binding also was predicted using information about
binding motifs and histonemodifications (McLeay et al.,
2011). These examples highlight the relevance and util-
ity of CRCs and the integration of multiple relevant
data sets for understanding the mechanisms underly-
ing the genome-wide spatial transcriptional response
to stress. However, such a spatial response CRC is not
available.
The goal in this study was to uncover the CRCs un-

derlying the spatially specific transcriptional response
to stress using plants as a model. Specifically, we fo-
cused on the CREs relevant to salt stress response in the
aboveground (shoot) and the belowground (root) parts
of Arabidopsis. Salt stress was chosen because it is well
studied both physiologically (Munns, 2002; Munns and
Tester, 2008) and molecularly (Zhu, 2002; Golldack
et al., 2011) and because there are documented differ-
ences in the transcriptional response to salt in the root
and shoot (Kreps et al., 2002; Kilian et al., 2007). Ad-
ditionally, there are known TFs and CREs for salt stress
(Golldack et al., 2011; Matiolli et al., 2011; Mizoi et al.,
2012; Nakashima et al., 2012) that could be used to
verify our results. To assess the transcriptional changes
in response to salt stress across different organs in
Arabidopsis, we first asked how the functional anno-
tations of salt up-regulated genes in roots and shoots
differed. Next, to determine how well current knowl-
edge of TF binding sites in Arabidopsis can explain
spatial salt up-regulation, we used motifs and binding
sites identified through two large-scale in vitro studies
(Weirauch et al., 2014; O’Malley et al., 2016) to generate
models of root and shoot salt up-regulation. We then
identified additional pCREs using a coexpression
approach to assess if these newly identified pCREs

allowed better predictions of the spatial response to
salt stress. We tested pCREs to see if they could be
used individually to establish a cis-regulatory model
explaining spatial patterns of up-regulation during salt
stress. To evaluate whether we could further improve
spatial salt stress response prediction, we filtered pCRE
sites according to information about in vitro TF binding
(Weirauch et al., 2014; O’Malley et al., 2016), chromatin
accessibility, and conserved noncoding regions (Haudry
et al., 2013). Lastly, we built prediction models using
combinations of pCREs.

RESULTS AND DISCUSSION

Transcriptional Responses to Stress Have a Strong
Spatial Component

Earlier global gene expression studies have demon-
strated that different plant organs have distinct tran-
scriptional responses to stress (Kreps et al., 2002; Kilian
et al., 2007; Dinneny et al., 2008; Geng et al., 2013). To
assess the extent to which organs have unique expres-
sion patterns under different stress conditions and to
determine the similarities between organ (root versus
shoot) stress responses, we determined the correlations
between the levels of differential expression across
multiple conditions and time points using two types of
existing data sets: (1) root and shoot samples under
abiotic stress (Kilian et al., 2007) and (2) shoot samples
under biotic stress (see “Materials and Methods”).
There were several patterns worth noting. First, sam-
ples for related stress conditions tended to cluster to-
gether, and these stress condition clusters tended to
have root and shoot subclusters (Fig. 1A). For example,
osmotic and salt stress samples formed a cluster with
subclusters composed of shoot and root samples (dotted
rectangles I and II, respectively, in Fig. 1A).

The median PCC for the log2 fold-change values be-
tween samples from the same organ but different stress
conditions (median PCC = 0.17) was significantly lower
than between samples from the same stress condi-
tion but different organs (median PCC = 0.31; Mann-
Whitney, P , 2.2e-16). Thus, the stress condition has
much more of an impact on overall expression pattern
than organ identity. Nonetheless, under some stress
conditions, there were stronger organ-specific effects.
For example, the salt stress response correlations be-
tween organs (median PCC = 0.24) were significantly
lower those between samples from the same organ
(median PCC = 0.69; Mann-Whitney, P , 2.2e-16).
Taken together, our findings are consistent with earlier
studies (Kreps et al., 2002; Dinneny et al., 2008; Geng et al.,
2013) that found that, while there is a specific transcrip-
tional response to each stress, this response is further
influenced by the organ where genes are expressed. In
the following sections, we focus on the spatial response
to high-salinity (salt) stress.

Given that the stress response is influenced by
spatial considerations, we next assessed what types
of genes based on GO terms tend to be differentially
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up-regulated in the root and shoot during salt stress using
enrichment analysis (see “Materials andMethods”). Three
sets of significantly salt up-regulated genes were defined:
(1) global, 246 genes up-regulated in both the root and the
shoot; (2) root specific, 1,854 genes up-regulated only in
the root; and (3) shoot specific, 276 genes up-regulated
only in the shoot. There were 48 GO terms significantly
overrepresented/underrepresented in one or more of the
gene sets defined above (Fig. 1B). For example, thylakoid
and plastid terms were overrepresented among shoot-
specifically up-regulated genes, consistent with an ear-
lier finding that photosynthesis is significantly impacted
by salt stress (Chaves et al., 2009). Among the GO terms,
signal transduction and response to stress were overrep-
resented in all three gene sets (Fig. 1B). Since these three
gene sets are mutually exclusive, this result suggests that,
in the root and the shoot, unique signaling pathway genes
are up-regulated, as are pathways that are globally nec-
essary for the stress response. This result is supported by
work on the SOS pathway, which involves components
that are common to both organs as well as those specific
to the root and shoot (Zhu, 2002; Ji et al., 2013). Interest-
ingly, DNA binding TF activity and DNA binding were
enriched only among the root-specifically and globally

up-regulated genes. This suggests that there is a set of
global TFs and another set specific to the root. In addition,
genes up-regulated in the root may be regulated by both
a global and a root-specific set of TFs, whereas genes
up-regulated in the shootmay be regulated primarily by a
global TF set. This possibility is explored further below.

To summarize, a variety of functional categories were
found to be enriched in genes up-regulated by salt stress.
In some instances, root-specifically, shoot-specifically,
and globally up-regulated genes had the same enriched
functional categories. These common enriched terms
suggest that roots and shoots up-regulate similar types
of genes. However, there are also genes up-regulated in
an organ-specific manner that may be regulated by
distinct sets of up-regulated TFs. The TFs that are
specifically up-regulated in roots may help to explain
the differences in expression pattern that we observe
between the roots and shoots under salt stress. For
example, the root-specifically up-regulated genes
may be controlled by the root-specific TFs. Because
TFs may differ in the CREs they bind, and because
there are substantial amounts of in vitro TF-DNA
interaction data in Arabidopsis (Weirauch et al., 2014;
O’Malley et al., 2016), we next examined whether

Figure 1. Arabidopsis gene expression correlation across stress data sets and Gene Ontology (GO) terms enriched in salt-
responsive genes. A, Between-sample Pearson’s correlation coefficient (PCC) calculated based on log2 fold change (log2[stress
treatment/control]) of genes in shoot and root samples under each stress condition/treatment duration combination. The orders
of rows and columns are the same, and they are sorted based on hierarchical clustering of the pairwise PCC values. Dotted
rectangles I and II highlight osmotic and salt stress clusters, respectively. B, Heat map indicating GO slim terms significantly
overrepresented (blue) or underrepresented (red) in genes that are differentially up-regulated during salt stress after 3 h in root
only (R), shoot only (S), or globally in both organs (G; log2 fold change. 1, P# 0.05). The heat map at right summarizes the log2
odds ratio (LOR) from the enrichment test (gray, LOR cannot be calculated).
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known TF binding data are associated with organ-
specific, salt-induced gene expression.

A Model Incorporating Known TF Binding Motifs
Performs Better Than a Random Model in Predicting
Salt Up-Regulation

Because TFs exert their regulatory roles by binding to
CREs, we expected that the global and organ-specific
activities of TFs would be reflected in the types of CREs
that are found in the regulatory regions of global, root-
specific, and shoot-specific salt up-regulated genes. We
hypothesized that each organ had a different set of
CREs regulating salt stress up-regulated genes and that
these CREs could be used to construct CRCs that are
models for predicting stress-responsive gene expres-
sion (Zou et al., 2011). To test these hypotheses, we
collected Arabidopsis TF binding data from two large-
scale in vitro studies, Catalog of Inferred Sequence
Binding Preferences (CIS-BP; Weirauch et al., 2014)
and DNA Affinity Purification Sequencing (DAP-seq;
O’Malley et al., 2016), that evaluated the binding sites of
758 TFs (Supplemental Table S1). Given the extensive
coverage of TFs, we expected that these data sets would
cover a significant number of cis-regulatory sequences
relevant for controlling root and/or shoot up-regulated
genes. Here, the root up-regulated genes were defined
as the union of the root-specifically and globally (in
both root and shoot) up-regulated genes under high-
salinity treatment. Similarly, the shoot up-regulated
genes were the union of the shoot-specifically and
globally up-regulated genes.
We first asked if the TF binding sites predicted based

on the CIS-BP data and the binding sites inferred from
DAP-seq peaks were significantly overrepresented in
the putative promoter regions, within 1 kb upstream
of transcriptional start sites (TSS), of root and shoot
up-regulated genes. Among binding site information
for 758 TFs, we found that the binding sites of 262 and
397 TFs were significantly overrepresented in the pu-
tative promoters of root and shoot up-regulated genes,
respectively, compared with nonresponsive genes.
Overall, we found that if the CIS-BP TF binding sites were
enriched in the promoter regions of root up-regulated
genes, the same sites also tended to be enriched among
shoot up-regulated genes (enrichment score PCC = 0.88,
P = 9.20e-42; Fig. 2A). This also was the case when DAP-
seq data were used, but to a much lesser degree (PCC =
0.25,P= 2.27e-04; Fig. 2B). Thisfinding suggests that some
cis-regulatory sites are common between root and shoot
up-regulated genes. Nonetheless, the correlations were
not perfect, suggesting that some CIS-BP TF and DAP-
seq binding sites are differentially enriched between
up-regulated genes in root and shoot. Consistent with
this notion, the binding sites of some TF families were
enriched in an organ-specific manner. For example,
WRKY binding sites were overrepresented only in root
up-regulated genes, and AP2 sites were overrepre-
sented mostly in shoot up-regulated genes (Fig. 2, A

and B). Next, to assess the extent to which known TF
binding data explain the organ-specific response, we
established CRCs with machine learning methods
to predict whether a gene is up-regulated or nonre-
sponsive to salt stress in the root or shoot based on the
presence and absence of CIS-BP transcription factor
binding motifs (TFBMs) or DAP-seq sites in the puta-
tive promoter regions (see “Materials and Methods”).

We used two approaches to evaluate CRC model
performance. The first is area under curve-receiver
operating characteristic (AUC-ROC), where a perfect
model would have AUC-ROC = 1 and random pre-
dictions would lead to AUC-ROC = 0.5. The second
approach is the precision-recall curve, where precision
is the proportion of correctly predicted genes that are
up-regulated in an organ and recall is the proportion of
truly up-regulated genes in an organ that are correctly
predicted. Better models would have precision-recall
curves tending more toward the top right corner of
the graph, and random predictions would be no better
than the background (dotted lines in Fig. 2, C and D).
Themodel built with all CIS-BP orDAP-seq binding site

Figure 2. Overrepresentation of known TF binding sites in organ salt
up-regulated genes and performance of in vitro TF binding data in
predicting salt up-regulation. A, Scatterplot of the enrichment score
[–log(q)] of CIS-BP TFBM sites in the promoters of root (y axis) and shoot
(x axis) up-regulated genes compared with nonresponsive genes. Each
point is for one TFBM. Blue, WRKY family TFs; red, AP2 family TFs.
Dotted lines indicate the q value threshold at 0.05. B, As in A but using
DAP-seq data. Each point is for one TF. C, Precision-recall curves and
AUC-ROCs (inset) of CRCs predicting root up-regulated genes using
CIS-BP TFs (orange) or DAP-seq TFs (blue). O, CIS-BPand DAP-seq sites
overrepresented among root up-regulated genes indicated in red and
black, respectively. The colors of the precision-recall curves correspond
to the colors for binding data subsets in the AUC-ROC bar chart. Error
bars correspond to the SE from 10-fold cross-validation for each model.
D, As in C but for shoot up-regulated genes.
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data made better predictions than randomly expected
in the root and in shoot (Fig. 2, C and D), indicating
that, as expected, these TF binding data contain rele-
vant regulatory information for root and shoot salt
up-regulation. Consistent with the expectation that
only a subset of TFs would be involved in the organ-
specific up-regulation, models using binding data of
TFs with overrepresented numbers of binding sites in
salt up-regulated genes resulted in similar perfor-
mance to models using data for all TFs with binding
sites overrepresented in either the root or shoot (Fig. 2,
C and D). In addition, models based on binding sites of
TFs that were not overrepresented performed poorly
(AUC-ROC = 0.54–0.56).

Although the in vitro TF binding data sets are ex-
tensive, binding information is available only for;38%
of the known Arabidopsis TFs (Weirauch et al., 2014;
Barah et al., 2016; O’Malley et al., 2016); thus, some
relevant CREs might not be included in the models. In
addition, it is worth noting that the performance of
models for root salt up-regulated genes is not as good as
that of models for shoot salt up-regulated genes (Fig. 2,
C and D). Thus, to improve our understanding of what
CREs are associated with salt up-regulation and how
these CREs may influence salt up-regulation in the root
and shoot, we next identified putative CREs based on
coexpression and assessed how the regulatory logic
differs between the root and shoot salt up-regulation.

pCREs Derived from Coexpression Clusters Are Similar,
But Not Identical, to Known TFBMs

We hypothesized that motifs identified through
coexpression clustering would provide additional spa-
tial response regulatory information compared to the
large-scale TF in vitro binding data (Weirauch et al.,
2014; O’Malley et al., 2016). To test this, we identified
1,894 pCREs overrepresented in the putative pro-
moters of root and/or shoot salt up-regulated genes
found in coexpression clusters defined based on the
stress fold-change data (see “Materials and Methods”;
Supplemental Table S2). Next, we asked if the pCREs
identified based on coexpression were similar to CIS-BP
and DAP-seq TFBMs (Weirauch et al., 2014; O’Malley
et al., 2016). We calculated the PCC values of the position
weight matrices (PWMs) of all pCRE and TFBM motif
pairs to find the best matching pCRE-TFBM pairs, where
lower PCC values indicate diminishing similarity (Fig.
3A). Three criteria were used to determine whether a
pCRE-TFBM pair had significant similarity. First, we
identified pCREs that are identical to TFBMs. Only
two pCREs were identical (PCC = 1) to experimentally
determined binding motifs: ATBZIP63, which is in-
volved in abscisic acid (ABA) biosynthesis (Matiolli
et al., 2011), and ABF3, which is involved in ABA
signaling (Kang et al., 2002), consistent with their roles
in the salt stress response. Second, given that PCC = 1 is
highly stringent, we designated a pCRE-TFBM pair as
having significant similarity if its PCC is significantly

higher (at the 5% level) than PCCs of TF pairs from the
same family (red circles in Fig. 3A). Based on this second
criterion, 4% of the pCREs were significantly similar to
TFBMs. Third, we designated a pCRE-TFBM pair as
having significant similarity if its PCC is significantly
higher (at the 5% level) than PCCs of TF pairs from dif-
ferent families (blue circles in Fig. 3A). This is reasonable
because the TFBM PCC values tend to be higher within
families than between families (Supplemental Fig. S1).
In addition, the third criterion allowed us to identify
the families of TFs that may bind the pCREs. Based on
the third criterion, 25% and 33% of the pCREs can be
assigned to TF families in CIS-BP and DAP-seq, respec-
tively (Supplemental Table S2). Considering both large-
scale in vitro TF binding studies, 38% of pCREs have a
significant TFBMmatch. Example TFBMs and their best-
matching pCREs are shown in Figure 3B.

Although 38% of the organ pCREs enriched among
salt up-regulated genes are significantly similar to one
or more TFBMs, what should be made of the remaining
62% of pCREs? One possibility is that these pCREs are
bound by TFs in families with representative TFs in
in vitro binding studies, such that the binding prefer-
ence of the representatives is too divergent from the TFs
recognizing the pCREs. To test this, we asked if the
pCREs are more similar to a known TFBM than to se-
quences drawn randomly from the genome (black cir-
cles in Fig. 3A) and found that PCC values between
pCREs and their best matching TFBMs are all higher
than the 95th percentile value in the pCRE random se-
quence PCC distribution (Fig. 3A). Thus, all pCREs are
more significantly similar to known TFBMs than ran-
dom sequences. These findings suggest that the pCREs
are not simply random, meaningless sequences pulled
from the genome. In addition, the coexpression-based
analysis contributed to an expanded set of CREs that
are relevant for organ salt up-regulation, considering
that the majority of pCREs do not resemble known
TFBMs.

The pCRE Set Further Improves the Prediction of Salt
Up-Regulation in a Spatially Specific Manner

Todetermine if the pCRE set predicts salt up-regulation
better than known in vitro TF binding sites (Weirauch
et al., 2014; O’Malley et al., 2016), we used the pCRE set to
model salt up-regulated expression (see “Materials and
Methods”; Fig. 4). Salt up-regulation prediction models
based on pCREs had better prediction performance for
both root up-regulated genes (AUC-ROC = 0.71; red in
Fig. 4A) and shoot up-regulated genes (AUC-ROC = 0.79;
red in Fig. 4B) thanmodels based onCIS-BP andDAP-seq
data (root AUC-ROC = 0.64 and shoot AUC-ROC = 0.74;
Fig. 2, C and D). This improvement indicates that using
motifs discovered from coexpression clusters containing
root and/or shoot up-regulated genes led to better pre-
diction models of organ salt up-regulation. We should
emphasize that the pCREs uncovered from coexpression
clusters and the CIS-BP and DAP-seq TFBMs used to
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build these models were enriched in salt up-regulated
genes and were mappedwith the same threshold P value
(see “Materials and Methods”). Thus, our finding indi-
cates that motif finding based on coexpression can be
highly complementary to large-scale in vitro binding
studies in improving our knowledge of cis-regulation.
Next, we classified 1,894 organ pCREs into three

subsets that were overrepresented in the promoters of
genes up-regulated by salt in the root (759 root pCREs),
in the shoot (237 shoot pCREs), and in both the root and
shoot (898 general pCREs). The rationale for defining
these pCRE subsets was that the root and shoot subsets
might be more critical to controlling expression for the
root-specifically and shoot-specifically up-regulated
genes, respectively, while the general pCREs might be
critical for globally up-regulated genes. To test this
hypothesis, salt up-regulation prediction models were
established using root, shoot, and general pCREswhere
each pCRE was treated as an independent predictor.
To predict root up-regulated genes (including genes
up-regulated globally and in the root specifically), we
found that a model based on root pCREs (AUC-ROC =
0.7) was much better than a model based on shoot
pCREs (AUC-ROC = 0.61; Fig. 4A). Similarly, a model
based on shoot pCREs better predicted shoot salt
up-regulated genes (AUC-ROC = 0.73) than a model
based on root pCREs (AUC-ROC = 0.66; Fig. 4B).
Thus, the root and shoot pCRE sets are better at pre-

dicting up-regulated genes in the organs with which
they are associated, demonstrating that they are relevant
to spatially specific up-regulated genes. In addition, root
pCREs alone or the combination of the general and the

root pCRE sets resulted inmodels that performed aswell
as the model using the all-pCRE set (AUC-ROC = 0.71;
Fig. 4A). This suggests that, surprisingly, shoot pCREs
provide no additional information for predicting root
up-regulated genes. In contrast, although the model
based only on shoot pCREs performed reasonably well
in predicting shoot up-regulated genes (AUC-ROC =
0.73), it did not perform as well as the model based only
on the general pCREs (AUC-ROC = 0.80; Fig. 4B). This
further supports the notion that shoot up-regulated
genes may be regulated by a global set of TFs (Fig. 1B)
that bind to the set of general pCREs. Another surprise
was that, for root up-regulated gene prediction, the
models based on the root pCREs, the general pCREs,
and the union of the general and the root pCREs per-
formed similarly (Fig. 4A). One potential explanation
is that each model captured a distinct subset of the
organ up-regulated genes. To assess the extent to which
the models predicted similar sets of genes, we examined
how genes were classified when different pCRE sub-
sets were used (see “Materials and Methods”). We
found that more root-specifically up-regulated genes
were predicted with the root pCRE-based models
(24%) compared with models using general pCREs
(9%; Supplemental Fig. S2).

Taken together, these results demonstrate that the
identification of pCREs using stress expression data can
lead to improvements in modeling gene expression
over known in vitro TF binding sites. This supports our
hypothesis that coexpression-based approaches would
improve CRE discovery. We also found that salt stress
up-regulated genes in the root and the shoot may be
regulated by different subsets of motifs in the pCRE
set. Genes up-regulated by salt stress in the root can be
best predicted with a model considering both the root
and the general pCRE sets without considering shoot
pCREs. However, the shoot up-regulated genes likely
are regulated primarily by general pCREs, as seen
in the equivalent performance of the general pCRE
model and the full pCRE model in predicting shoot
up-regulated genes.

Filtering pCREs Based on TF Binding, DNase I
Hypersensitivity, and Conservation

Wehave demonstrated that the pCREs identified in this
study can predict organ salt up-regulation. However, the
large number of pCREs identified (1,894) raises the ques-
tion of whether some motifs are redundant or not partic-
ularly informative and could be filtered out. To reduce
redundancy, we first removed highly similar pCRE pairs
(see “Materials and Methods”). Next, we used feature
selection algorithms to identify the pCREs that perform
best in predicting root up-regulated genes (Fig. 4A) and
shoot up-regulated genes (Fig. 4B). Among the feature
selection algorithms used, the x2 statistic-based ap-
proach performed best (see “Materials and Methods”;
Supplemental Fig. S3).With a threshold x2$ 10, 678 (41%)
and 397 (35%) pCREs (referred to as chi10-selected

Figure 3. Similarity of the pCREs to CIS-BP TFBMs. A, The 95th per-
centile PCC values between TFBMs, pCREs, and/or random motifs. The
y axis shows TF families, and the x axis shows PCC values. Orange,
PCCs between TFBMs from a family and pCREs with their best matches
in the same family (TFBM vs. pCRE); red, PCCs between TFBMs from a
TF family (TFBMwithin); blue, PCCs between TFBMs in one family and
their best matching TFBMs in other families (TFBM between); black,
PCCs between TFBM from a family and random motifs (TFBM vs. ran-
dom). B, Sequence logos of and PCCs between the example pCREs (left)
and their best matching TFBMs (right) in the bZIP, AP2, NAC-NAM, and
TCP TF families.
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pCREs) were regarded as informative and could better
predict root (AUC-ROC = 0.73; Fig. 5A) and shoot
(AUC-ROC = 0.81; Fig. 5B) salt up-regulation, respec-
tively, compared with the full set of pCREs (Fig. 4).

To further improve predictions of organ salt gene
up-regulation, we took advantage of additional regu-
latory information, including the in vitro TF binding
data (CIS-BP and DAP-seq), chromatin accessibility mea-
sured according to DNase I hypersensitivity (DHS)
experiments (Sullivan et al., 2014), as well as conserved
noncoding sequences (CNS) among Brassicaceae spe-
cies (Haudry et al., 2013). Although root and shoot
up-regulated gene promoters were overrepresented
with DHS regions (Fisher’s exact test [FET], all P, 5e-
13) and with CNS (FET, all P, 1e-12), compared with
nonresponsive genes, the performance of models based
on only DHS or CNS was the same as random guesses
(AUC-ROC; 0.5), suggesting that additional regulatory
sequence information is needed. Thus, we hypothesized
that a pCRE site would be more informative in predict-
ing gene expression if it overlapped with a potential TF
binding site, a chromatin-accessible region, and/or CNS.

Models based on DAP-seq-filtered pCREs had sim-
ilar performance to models using the original unfil-
tered pCREs in predicting organ salt up-regulation
(AUC-ROC = 0.73–0.74 and 0.80–0.81; Fig. 5, A and B).
Because the model performance remained the same,
and 9% to 14% of the pCRE sites were removed, it is
likely that filtering based on DAP-seq data eliminated
some false-positive pCRE sites but also true-positive
sites. This is also true for pCRE sites filtered based on
CIS-BP data (Fig. 5A). On the other hand, filtering
pCRE sites based on DHS information further de-
creased the performance for shoot up-regulation pre-
diction but did not impact prediction in the root (Fig.
5B). Thus, pCRE sites informative for predicting shoot

salt up-regulation were likely removed, potentially
because chromatin accessibility can only partially
predict gene expression (Liu et al., 2015) and/or be-
cause the DHS data used are for conditions other than
high-salinity stress (Sullivan et al., 2014). One sur-
prising finding was that models based on pCRE sites
overlapping with CNS had the worst performance in
predicting both root and shoot up-regulated genes.
This is likely because the CNS were identified with
stringent criteria and filtering eliminated a substantial
number of true cis-regulatory sites. In addition, this
finding suggests that there are cis-regulatory sites that
are important in organ salt up-regulation but that are
not highly conserved.

Taken together, using pCRE information alone yields
models with the best performance in predicting organ
salt up-regulation. Additional TF binding information,
DHS, and CNS either did not improve or worsened the

Figure 4. Performance of salt up-regulation prediction models using
pCREs identified from coexpression clusters. A, Precision-recall curves
for models predicting root salt up-regulated genes using all pCREs
(black), root pCREs (blue), shoot pCREs (red), general pCREs (orange),
and root + general pCREs (purple). The bar plot in the inset indicates the
corresponding AUC-ROC values of the models. Error bars represent the
SE of precision values or AUC-ROCs from 10-fold cross-validation. B,
Precision-recall curves and AUC-ROC values for models predicting
shoot up-regulated genes using all pCREs (black), root pCREs (blue),
shoot pCREs (red), general pCREs (orange), and shoot + general pCREs
(purple).

Figure 5. Performance of salt up-regulation prediction models using
filtered pCRE sets. A, Precision-recall curves for models predicting root
salt up-regulated genes using six sets of pCRE sites. Red, All sites of
pCREs selected with the x2 test feature selection method with a
threshold x2 statistic$ 10 (chi10; Supplemental Fig. S3, E and F); blue,
chi10-selected pCRE sites overlapping with DAP-seq peaks; orange,
chi10 pCRE sites overlapping with CIS-BP TFBM sites; green, chi10
pCRE sites overlapping with DHS peaks; purple, chi10 pCRE sites
overlapping with CNS; black, all the above information combined. The
bar plot in the inset indicates the corresponding AUC-ROC values of the
models. B, Precision-recall curves and AUC-ROCs for models predict-
ing shoot salt up-regulated genes using the six sets of pCRE sites as in A.
C, Distribution of importance ranks of all chi10-selected pCREs (chi10)
and chi10 pCREs filtered based on DAP-seq, CIS-BP, DHS, or CNS data.
The ranks were obtained from the model built with the combined data
set in A for root. D, As in C but based on the model built with the
combined data set in B for shoot.
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model performance. We should emphasize that this
result is not simply a ranking of how useful a given
type of data are for predicting salt-responsive ex-
pression but provides an assessment of how they can
be useful for improving the model. In future modeling
studies, it will be important to assess how additional
regulatory information should be represented to op-
timize prediction, to generate and utilize condition-
specific data sets, and to reduce the stringency for
calling conserved sequences.

The Most Informative pCREs and Their Properties

To identify the minimal set of pCREs needed for salt
up-regulation predictions, we ranked all chi10-selected
pCREs as well as those with DAP, CIS-BP, DHS, and/or
CNS evidence according to importance scores generated
during machine learning runs (see “Materials and
Methods”). Each chi10-selected pCRE was examined
five times by either applying no filter to the sites the
pCRE mapped to or by filtering based on four types of
evidence (DAP, CIS-BP, DHS, or CNS; Fig. 5). Thus, for
each chi10-selected pCRE, five possible pCRE-evidence
pairs (with no, DAP, CIS-BP, DHS, or CNS filter) were
evaluated for how informative they were in predicting
organ salt up-regulation. Consistent with the finding that
models with CNS filtering have the lowest performance in
predicting organ salt up-regulation, we found that CNS
features were the least important in predictions (Fig. 5, C
andD).With themachine learning results,wenext ranked
root and shoot pCRE-evidence pairs and identified the
top 100 and 10 pCREs for root or shoot up-regulation.
The models based on the top 100 pCRE-evidence

pairs yielded AUC-ROC values of 0.72 and 0.8 for
predicting root and shoot up-regulation, respectively,
and these models are comparable to the models based
on all chi10-selected pCREs (red in Fig. 5, A and B).
However, using only the top 10 pCRE-evidence pairs,
the prediction performance was significantly worse
(AUC-ROC = 0.66 and 0.72 for root and shoot predic-
tions, respectively). This result suggests that the most
important 100 pCRE-evidence pairs, including 39 and
40 pCREs for root and shoot, respectively, are as informa-
tive for predicting organ salt up-regulated genes as the
entire pCRE set. Among the pCREs in this minimal set,
10 are common between the root and shoot subsets. This
minimal set includes three ABRE and ABRE-core-like
pCREs (Supplemental Table S3), consistent with the roles
of this element in abiotic stress-responsive gene expression
(Narusaka et al., 2003). Another known salt-responsive el-
ement is theDRE (Narusaka et al., 2003).Although theDRE
is not included in thisminimal set, it is among the full set of
pCREs identified (kkrCCGACrNgmNw; Supplemental
Table S2). We should note that the rest do not resemble
known salt-responsive cis-elements.
In addition to similarities to known TFBMs, we ex-

plored the observed frequencies of pCRE sites in 100-bp
bins of regions flanking the TSS and compared them
with the numbers of sites in random sequences. We
found that, in general, the most informative pCRE sites

are in proximal promoter regions upstream of the
TSS (Supplemental Fig. S4), consistent with other
studies (Zou et al., 2011; Yu et al., 2016). Nonetheless,
depending on the individual pCRE, the distribution
pattern varies (example pCREs in Fig. 6). For example,
the sACACGTGG pCRE, which is important for both
root and shoot salt up-regulation, is enriched over the
entire length of the putative promoter, particularly in
regions immediately upstream of the TSS, and is likely
bound by bHLH TFs (the first motif in Fig. 6). In con-
trast, the ATTAwTwwT pCRE was not enriched in the
promoter region but contributes significantly to salt
up-regulation prediction (the second pCRE in Fig. 6).
This motif is not the TATA box, which is highly
enriched in the first 50 bp upstream of TSS (Bernard
et al., 2010). Its importance in salt up-regulation and the
lack of enrichment may suggest that ATTAwTwwT
binding is controlled mostly through chromatin acces-
sibility, a hypothesis that needs to be further tested. We
also found that, among the most informative pCREs,
31% (12) of root and 40% (16) of shoot CREs have a
significant TFBM match (Supplemental Table S3). For
the most informative pCREs with no clear resemblance
to known TFBMs, it remains to be determined if they
tend to be pCREs that require cooperative binding; this
cannot be assessed with existing in vitro binding data.

In addition to the locations of pCREs and the TFs that
likely bind to these pCREs, we asked what types of
genes (based onGO Biological Process annotation) tend
to be associated with (i.e. have sites of) the most im-
portant pCREs (Supplemental Table S4). We found that
the most important pCRE sites tend to be in the pro-
moters of genes that, as expected, have roles in the
regulation of transcription as well as responses to water
deprivation, cold, wounding, ABA, jasmonic acid, and
ethylene (Fig. 6; Supplemental Table S4). Interestingly,
five pCREs tend to be found in genes involved in cir-
cadian regulation (Supplemental Table S4), including
GGCGCGTGG and aGATATTTk (Fig. 6). Given that it
is well known that the stress response is frequently
gated by the circadian clock (Greenham and McClung,
2015), our findings further suggest that such gated re-
sponses may have a strong spatial component regu-
lated by the pCREs we have identified. Taken together,
the fact that only 39 root and 40 shoot pCREs are nec-
essary to predict organ salt up-regulation implies that
the remaining 1,854 pCREs we have identified are not
as important. Alternatively, it is possible that the im-
portance of some of these seemingly uninformative
pCREs may be revealed only in combination, as dem-
onstrated in previous studies of the regulation of gene
expression under stress conditions (Harbison et al.,
2004; Zou et al., 2011) and tissue-specific expression (Yu
et al., 2006; Hu and Gallo, 2010).

pCREs Work Best in Combination

So far, the salt up-regulation prediction models that
we have described consideredmany pCREs collectively
but treated each individual pCRE as an independent
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predictor. Therefore, we asked: (1) whether pCRE com-
binations are important for predicting salt up-regulated
genes in the root and/or the shoot, (2) what these im-
portant pCRE combinations are, (3)what types of pCREs
work in combination, and (4) if combinatorial rules im-
portant in predicting root expression also are important
for shoot expression, or vice versa. To identify pCRE
combinations relevant to the up-regulation of genes
under salt stress, we used the classification by associa-
tion (CBA) method (see “Materials and Methods”). Due
to computational complexity, we restricted our analysis
to binary combinatorial rules where the presence of two
pCREs predicts up-regulation (pCRE A + pCRE B →
up-regulation in the organ of interest). Rule sets were
generated for both the root and the shoot salt
up-regulated genes. As some pCREs may only be
informative in combination, we included all 1,894
pCREs without any filtering to identify combinatorial
rules. This also enabled us to compare the pCREs in-
volved in rules with the individual pCREs found to be
most informative. We identified 2,826 and 351 combi-
natorial rules for root and shoot up-regulation, re-
spectively (Supplemental Table S5). A total of 1,086

pCREs were present in combinatorial rules that were
predictive of root up-regulation (root rules), but only
389 were also chi10-selected pCREs that were infor-
mative for predicting up-regulation when considered
individually. Similarly, only 136 out of 427 pCREs in
the shoot rules were chi10 selected. Thus, a substantial
number of pCREs are informative for predicting root
and shoot salt up-regulation only when considered in
combination.

We also found that only 12 root rules (among 2,826)
had the same pCRE combinations as the shoot rules,
suggesting that the great majority of the rules for one
organ were specific to that organ. Most importantly,
models based on only the combinatorial rule sets im-
proved predictions for both root (AUC-ROC = 0.81; Fig.
7A) and shoot (AUC-ROC = 0.87; Fig. 7B) up-regulated
genes comparedwith themodels based on the presence/
absence of single pCREs (AUC-ROC = 0.71 and 0.79 for
root and shoot, respectively; Fig. 4). These results in-
dicate the involvement of pCRE combinations in salt
up-regulation. In addition, they demonstrate that the
rules capture the physical interaction between two
presumed TFs binding to a pair of pCREs. Nonetheless,

Figure 6. Characteristics of pCREs
important in predicting organ salt
up-regulation. Example pCREs from
the most important 39 root and
40 shoot pCREs are shown. The top,
middle, and bottom rows contain
three common, three root-specific,
and three shoot-specific pCREs, re-
spectively. The first and second
columns show sequence logo rep-
resentations of the pCREs and their
corresponding reverse complement
(Rev. Comp.) motifs, respectively.
The PCC value between a pCRE and
its best matching TFBM is shown
above the sequence logo. The third
column contains sequence logos
and the TF family of the best
matching TFBMs for the pCREs
listed. The fourth column shows
the degrees of pCRE site enrich-
ment (log2[observed number of pCRE
sites/randomly expected number])
from 1 kb upstream of the TSS
(dotted red line) to 500 bp down-
stream. The fifth column shows the
top three enriched GO Biological
Process categories containing genes
with sites of the pCRE in question.
For the color bar at top [-log(q-value)],
the q value is derived from the
P value of FETafter multiple testing
correction; white indicates values
below the 5% significance level.
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we found that the sites of a pair of pCREs in a rule are not
significantly closer together in salt up-regulated genes
comparedwith nonresponsive genes (Supplemental Fig.
S5, A and B). This is consistent with the finding that the
distance distribution of the binding sites of interacting
human TFs was not significantly different from the
random expectation (Yu et al., 2006). Thus, pCRE sites
important for combinatorial regulation may not be
constrained by distance.
We next examined if the combinatorial rules tend to

be composed of a general pCRE and an organ (root or
shoot) pCRE, two general pCREs, or two organ pCREs
(Fig. 7C). We found that there was a significant differ-
ence in the distribution of these three categories of
combinatorial rules for the shoot rules (x2 test, P =
6e-06). In particular, there were more general-general
pCRE combinations than expected (odds ratio = 1.5)
and fewer organ-organ pCRE rules than expected (odds
ratio = 0.52). This aligns with the notion that the general
pCREs are more important for the regulation of shoot
up-regulated genes. The root rules also had a signifi-
cantly different distribution of rule types (x2 test, P =
0.01), but the effect sizes were generally low (odds ratio
range = 0.89–1.1). Thus, it does not appear that rules for
root up-regulated genes are composed of both a general
pCRE and a pCRE from one of the organ sets. Example
combinatorial rules are shown in Figure 7D. To further
assess the biological significance of the combinatorial
rules, we first determined how frequently each combi-
natorial rule mapped to the putative promoters of salt
up-regulated genes. We found that even the most
abundant rules were present in only 2% to 3% of the salt
up-regulated genes (median = 1.3% and 0.7% for root
and shoot, respectively). Although these rules are very
specific, collectively, they lead to models that can better
predict salt up-regulated genes than models based on
the presence/absence of individual pCREs. This find-
ing highlights the complexity of the regulatory logic: a
large number of regulatory sequences and combinato-
rial rules where each explains the expression pattern of
only a small number of genes.
Next, we examined the relationships between the TFs

that likely bind to the pCREs in the combinatorial rules
(Fig. 7, E and F). We found that, in root rules, within-
family pairs including WRKY-WRKY and bHLH-
bHLH were most common, found in five and four of
the 35 rules that have TFBM annotations, respectively.
In addition,WRKYwas themost abundant TF family in
root rules (19%; Fig. 7E), consistent with the finding that
WRKY TF binding sites fromCIS-BP andDAP-seqwere
overrepresented in root up-regulated gene promoters
(Fig. 2A). This finding also suggests the involvement
of WRKY homodimers or heterodimers in root salt
up-regulation. In shoot rules, the bHLH-bZIP combina-
tion was most abundant, and 27% of the pCREs in the
shoot ruleswere similar to bZIP TFBMs (Fig. 7F). Finally,
we assessed the functions of genes containing both
pCRE sites in a combinatorial rule and found that these
genes are involved predominantly in the responses to
ABA and water deprivation (Supplemental Table S6).

These categories are common for genes that have root
and shoot rules and suggest that the combinatorial
rules we have identified are likely important in the

Figure 7. Summary of root and shoot combinatorial pCRE rules andmodel
performance. A, Precision-recall curves and AUC-ROCs of root salt
up-regulation models based on combinatorial rules (green) and the full
pCRE set (black). B, Precision-recall curves and AUC-ROCs of shoot salt
up-regulation models based on combinatorial rules (green) and the full
pCRE (black). C, Heat maps summarizing the types of pCREs (blue, root
specific; red, shoot specific; and orange, general) involved in root or shoot
salt up-regulation rules.D, Sequence logos of pCRE involved in top root and
shoot rules. E, Inference of TF interactions based on root combinatorial
rules.Node, ATF familywith one ormore TFswith significant similarity to a
pCRE involved in root rules; edge, inferred based on pCRE combinations
with thickness/color indicating the number of times that a pair of TFs from
various families interact based on the pCRE combinatorial rules. F, Same as
in E but for shoot pCRE combinatorial rules.
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ABA-dependent signaling component of the abiotic
stress response (Yoshida et al., 2014). It is interesting
that translational elongation also was enriched, indi-
cating a potential link between stress transcriptional
and translational control.

Taken together, our findings suggest that the organ
pCREs work best in combination. The greater impor-
tance of combinatorial rules aligns well with what is
already known in mammals, where individual CREs
are important for expression in multiple tissues but
CRE combinations are more relevant in controlling
tissue-specific expression (Priest et al., 2009; Austin
et al., 2016). Both root rules and shoot rules incorporate
pCREs from the full set of organ pCREs, but there is
little overlap (0.4%–3%) in the two sets of rules. This
suggests that pCREs need to be considered in combi-
nation to better predict salt up-regulation. While some
of the rules have motif pairs that are closer together
than we would expect by chance, most of the rules do
not have a significantly shorter distance between mo-
tifs. This may indicate that rules without a strong con-
straint on the distance between pCREs may still be
important for spatial salt stress up-regulation.

CONCLUSION

In this study, we identified a set of 1,894 pCREs
from coexpression clusters that were relevant to the
up-regulation of transcript abundance under salt stress
in the root and shoot of Arabidopsis. Among these
pCREs, 38% are similar to the known binding motifs of
TFs from multiple families. Machine learning models
for predicting salt up-regulation based on the pCRE set
had significantly better performance than those based
on in vitro binding data from two large-scale studies
(Weirauch et al., 2014; O’Malley et al., 2016). Thus, the
pCREs identified likely contain cis-regulatory infor-
mation for the spatial response to salt. We also found
that salt up-regulation in the root requires both a gen-
eral pCRE set that is relevant to up-regulation in both
the root and shoot as well as a root pCRE set associated
primarilywith root-specifically salt up-regulated genes.
In contrast, the regulation of shoot salt up-regulated
genes relies primarily on a general pCRE set. Consid-
ering that substantially more genes were up-regulated
in the root (2,100) compared with the shoot (524), this
difference in the composition of relevant pCREs may
reflect differences in regulatory complexity and the fact
that root is the primary organ exposed to high-salinity
treatment. Filtering pCREs based on in vitro TF binding
data, chromatin accessibility, and conservation, we found
that ;40 pCREs could predict organ salt up-regulation
with the same performance as the model using all
pCREs (39 root and 40 shoot pCREs, with 10 pCREs in
common; Supplemental Table S3). Nonetheless, the
organ salt up-regulation models considering combi-
nations of pCREs had significantly improved perfor-
mance over themodels considering pCREs collectively
but treating each pCRE as an independent predictor.

Most importantly, most pCREs in the combinatorial
rules were not considered important when they were
treated as independent predictors and would have been
false negatives in common motif-finding practices.

One limitation of our study is that the pCREs were
identified based on the expression data alone without
knowledge of whether the sites mapped by these
pCREs were bound by TFs. To alleviate this limitation,
we incorporated in vitro binding that led to models
with the same performance as those considering only
pCREs. Nonetheless, we found that the pCREs identi-
fied are complementary to in vitro-derived TF binding
information. Because the in vitro TF binding provides
an assessment of what kinds of sequences could be
bound and not where the in vivo binding sites are in the
genome, the binding data alone were not expected
to predict condition-specific expression well. By com-
bining the pCREs identified using condition-specific
information and the in vitro binding data, condition-
specific regulators and regulatory sequences could be
pinpointed. In addition to in vitro TF binding data,
chromatin accessibility data (DHS) were incorporated
into prediction models but led to reduced or identical
model performance compared with the model using
pCREs only. This is likely because the DHS data we
usedwere generated for different developmental stages
of Arabidopsis under conditions not related to salt stress
(see “Materials and Methods”). Finally, CNS were in-
corporated to filter pCRE sites but yielded models with
the lowest prediction performance. One explanation is
that stress response pCREs may have higher evolution-
ary rates and are not well conserved. Another possible
reason is that CNS are defined in a stringent fashion.
Although some pCRE sites relevant to organ salt
up-regulation are under selection, they are beyond the
limit of detection. These possibilities can be tested by
incorporating conserved site information defined us-
ing multiple thresholds and methods detecting selec-
tion that do not rely only on sequence comparisons.

Another limitation of our study is that our model
could only predict salt up-regulation with reasonable
performance. Although we identified pCREs from
coexpression clusters overrepresented with salt down-
regulated genes, the performance of predictive models
using these pCREs was no better than random guesses
(AUC-ROC = ;0.5). One potential reason is that pre-
dictions of salt down-regulation (or down-regulation
of the stress response in general) require additional
levels of information beyond cis-regulatory sequences,
such as microRNAs and RNA turnover. Related to
this, other areas of future interest include the identi-
fication of pCRE sites outside of the putative promoter
regions. We currently focused only on 1 kb upstream
of the TSS, and we have missed CRE sites located in
introns and/or coding regions. For example, one study
showed that at least 21 introns are involved in enhancing
gene expression in Arabidopsis (Rose et al., 2008). It also
has been shown that putative cis-regulatory sites in ex-
onic regions have significantly reduced nucleosome oc-
cupancy, which is correlatedwith gene expression levels
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(Liu et al., 2015). Another important factor that we did
not consider in ourmodels is pCRE copy number, which
has been shown to play an important regulatory role. For
example, cis-elements such as ABREs drive gene ex-
pression when present in multiple copies (Narusaka
et al., 2003). Our earlier attempt to consider copy number
information (in an additive fashion) to predict overall
salt up-regulation was not successful (Zou et al., 2011). It
is likely necessary to consider pCRE copy number non-
additively (i.e. to model the effect of copy number by
considering cooperativity between sites). However, this
will introduce more parameters and require more ex-
pression data (e.g. time series) to prevent model over-
fitting. Thus, there remain substantial challenges that
must be overcome in future studies.
Finally, we also need to improve the resolution of

spatial response from the organ to the cell type level.
The next logical step is to identify pCREs that can be
used to predict the differential expression of genes in
a cell type-specific manner. Our results show that
coexpression-based CRE identification in conjunction
with machine learning-based modeling is a promising
method for globally assessing spatial gene regulation
in the context of stress. In addition to providing a genome-
wide view of potential cis-regulatory mechanisms, this
approach may have possible applications in engineering
plants that can respond to stresses. The use of native,
tissue-specific inducible promoters to engineer plants
is promising, but it is limited by the promoters that are
available already in nature (Potenza et al., 2004). The
methods we used here may help to identify individual
and/or combinations of cis-regulatory sequences that
can be used in synthetic promoters to drive tissue-
specific expression in the context of stress.

MATERIALS AND METHODS

Expression Data Processing and Analysis

Arabidopsis (Arabidopsis thaliana) abiotic stress expression data for the root
and shoot (Kilian et al., 2007) and biotic stress data for the shoot were down-
loaded from the AtGenExpress Web site (http://www.weigelworld.org/
resources/microarray/AtGenExpress/). The data came preprocessed and
normalized.We calculated the log2 fold change and associated P values for each
stress condition and its corresponding control at each time point and each organ
using limma (Ritchie et al., 2015) in the R environment (R Core Team, 2012). The
P values were adjusted (Benjamini and Hochberg, 1995) to control for the false
discovery rate. Genes were considered up-regulated at log2 fold change$ 1 and
adjusted P# 0.05. Genes up-regulated after salt treatment for 3 h in the root and
shoot were referred to as root and shoot up-regulated genes, respectively.
Genes were considered nonresponsive if they were not significantly differ-
entially expressed (up- or down-regulated) under any stress condition at any
time point in the root or the shoot. Each organ had its own set of nonre-
sponsive genes (root nonresponsive and shoot nonresponsive). This stringent
definition of nonresponsive genes was chosen because cis-regulatory se-
quences may be relevant to regulating responses not only to salt but also to
other stress conditions.

To assess the relationship between the degree of differential expression in the
root and shoot under different stress conditions, PCCs of log2 fold-change values
were calculated for all conditions and organ combinations. A heat map of the
PCC values (Fig. 1) was generated using the gplots package in R (Warnes et al.,
2015). To identify the functional categories enriched in salt up-regulated genes
(3 h) in the root, in the shoot, or in both root and shoot, each plant GO slim
category (http://www.geneontology.org/ontology/subsets/goslim_plant.obo)

was tested to determine if it contained an overrepresented/underrepresented
number of genes up-regulated in the root, shoot, or both organs with FET
implemented in SciPy (http://www.scipy.org/). The P values were adjusted for
multiple testing (Storey, 2003).

In Vitro TF Binding, DNase I Hypersensitivity, and
Conserved Noncoding Data Sets

Two sets of in vitro binding data were used. The first set included position
frequency matrices (PFMs) obtained from the CIS-BP database Web site
(Weirauch et al., 2014). These PFMs are based on either protein-binding
microarray data or TRANSFAC motifs (Weirauch et al., 2014). The PFMs
were converted to PWMs adjusted for the background AT (0.33) and CG (0.17)
contents of the Arabidopsis genome using the TAMO package (Gordon et al.,
2005). This resulted in a final set of 355 PWMs (referred to as TFBMs). To map
the TFBMs, first the 1-kb sequences upstream of TSS of all genes in Arabidopsis
were downloaded from The Arabidopsis Information Resource (ftp://ftp.
arabidopsis.org/). The TFBMs from CIS-BP were mapped to the putative
promoter sequences using Motility (http://cartwheel.caltech.edu) with a
threshold of P , 1e-06. The second set of in vitro binding data included
344 DAP-seq experiments testing in vitro binding to naked genomic DNA of
598 TFs from the Plant Cistrome Database (O’Malley et al., 2016). A DAP-seq
peak (;200 bp long) contains the TF binding site, and only peaks with the
fraction of reads in peaks of 5% or greater were considered further. We
identified TFBM sites and DAP-seq peaks that were overrepresented in the
promoters of the root up-regulated and shoot up-regulated genes by per-
forming FET against the root-nonresponsive and shoot-nonresponsive genes,
respectively.

DHS data (Sullivan et al., 2014) were obtained from the Gene Expression
Omnibus (GSE53322 and GSE53324) in the form of peaks in bed format. The
DHS data sets were derived from multiple developmental stages and tissues
including 7-d-old dark-grown Arabidopsis Columbia-0 seedlings, roots, root
hair cells, root nonhair cells, and seed coats. In our study, eachDHS data set was
treated as a distinct feature for predicting salt up-regulation. Arabidopsis-based
coordinates of ;90,000 CNS among Brassicaceae species were obtained
(http://mustang.biol.mcgill.ca:8885; Haudry et al., 2013) to assess whether
CNS may be informative for predicting salt up-regulation. In addition, both
DHS and CNS regions were used to filter pCRE sites to see if sites with different
degrees of chromatin accessibility and conservation contribute differently to
salt up-regulation prediction.

Salt Up-Regulation pCRE Identification

To identify pCREs associated with salt up-regulated genes in the root and
shoot, we used a published pipeline with modifications (Zou et al., 2011). The
stress expression data set in the form of a log2 fold-change expression matrix
was used to identify coexpression clusters using iterated rounds of k-means
clustering such that all clusters contained 60 genes or less, while clusters smaller
than 10 genes were excluded. Clusters enriched in salt up-regulated genes in
any time point in either roots or shoots were used to identify 6- to 18-bp motifs
in the putative promoter regions of genes in each cluster. Six motif-finding
programs were used: AlignACE (Roth et al., 1998), MDScan (Liu et al., 2002),
MEME (Bailey and Elkan, 1994), Motif Sampler (Thijs et al., 2001), Weeder
(Pavesi et al., 2006), and YMF (Sinha and Tompa, 2000). In the initial motif-
finding step, ;300,000 motifs were identified, many of which were redundant.
Two rounds of pCRE merging/enrichment testing were performed. In the first
round, the ;300,000 motifs were merged if their consensus sequences shared
the same International Union of Pure and Applied Chemistry codes and/or if
they were highly similar to each other (in the same cluster) based on clusters
defined using Kullback-Leibler distance (Zou et al., 2011). In the enrichment
step, these merged pCREs were mapped to the 1-kb promoter regions of genes
in Arabidopsis using Motility (http://cartwheel.caltech.edu), and we kept
those motifs that mapped with P , 1e-06. The pCREs were analyzed further if
their mapped sites were significantly overrepresented (FET, adjusted P# 0.05)
in the promoters of salt up-regulated genes.

In the second round, we further merged enriched motifs based on PCC
distance of the motif PWMs. Using the PCC distance matrix, motifs were
clustered hierarchically, and distinct clusters were demarcated with a PCC
distance threshold of 0.1, which was found previously to be the first percentile
of PCC distances for nonredundant motifs in the JASPER CORE data set (Zou
et al., 2011). Within each cluster, a single motif was chosen based on having the
most significant degree of enrichment for genes up-regulated under salt stress
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in roots and/or shoots. The motifs identified from all clusters were collectively
referred to as pCREs. To identify pCREs particularly relevant to root, shoot, or
general salt up-regulation, a final round of FET was done to identify motifs that
were significantly overrepresented (P, 0.05) only in root salt up-regulated genes
(root pCREs), only in shoot salt up-regulated genes (shoot pCREs), and among
genes up-regulated in both organs (general pCREs). In the end, 1,894 shoot, root,
and general pCREswere identified. The log-oddsmatrices and sequence logos of
these pCREs are provided in TAMO format in Supplemental Data S1.

Comparison of pCREs and TFBMs

To assess the similarity between the pCREs identified here and the known
TFBMs fromCIS-BP (Weirauch et al., 2014) and DAP-seq (O’Malley et al., 2016),
the PCCs between the PWMs of all pCRE-TFBM, all pCRE, and all TFBM
combinations were calculated. For each motif pair, the PWM of the shorter
motif was compared against the PWM of the longer one in a moving window
with a step size of one position, and a PCC value was calculated. To account for
the orientation difference between a pair of motifs, the reverse-complement
PWM of one motif also was compared against the other (original orientation).
The maximum PCC value of a motif pair (considering all windows in both
orientations) was used as the representative value of motif similarity. For each
pCRE, the pCRE-TFBM combination with highest PCC was analyzed further.
To assess the statistical significance of the correlation between a pCRE-TFBM
pair, a within-TF family PCC distribution was established using TFBMs from
each TF family. This allowed us to test whether a pCRE was more similar to a
TFBM of a particular family than those between TFBMs within that same
family. The PCC distribution of each TFBM family was fitted with normal or
b-distribution functions based onmaximum likelihood using the MASS package
(Venables andRipley, 2002) in R. Every PCCbetween a pCRE anda TFBM froma
family was compared with the cumulative density function of the fitted within-
family distribution to get a P value. All P values from the pairwise comparisons
were adjusted for multiple testing within the same family (Storey, 2003).

To further assess which TF families pCREs might bind to, between-family
TFBM PCC distributions were generated and fitted as described above. We
compared the PCC for each pCRE-TFBM pair with the between-family distri-
butions to generate a P value, which was adjusted for multiple testing (Storey,
2003). We set a q value of 0.05 as the threshold to say that a pCREmay be bound
by the same family as the TFBM. Because the TFBMs for some families were
more divergent than others (there was a wide range of median PCCs for the
within-family distribution; Supplemental Fig. S1), the false-negative rate (fail-
ure to assign a pCRE to certain families) varied. To assess if pCREs were more
similar to TFBMs than to random genomic sequences, 1,894 random PWMs
with the same length distribution as the pCREs were generated. For a random
PWM of length k, 15 k-mers were generated randomly using the background
distribution of AT-GC in Arabidopsis and consolidated into a PWM using the
MotifTools.Motif_from_counts function in TAMO (Gordon et al., 2005). The
random PWMswere then comparedwith TFBMs to establish the distribution of
PCC to randomized PWMs.

Prediction of Salt Up-Regulation Using Machine Learning
and Feature Selection

Our goal was to model the salt up-regulation of genes in each organ as a
classification problem involving two classes: salt up-regulated genes in an organ
andgenes that arenot responsiveunder anystress condition. TheSupportVector
Machine (SVM; Cortes and Vapnik, 1995) and Random Forest (RF; Breiman,
2001) algorithms were used for the classification implemented in the Waikato
Environment for Knowledge Analysis (Weka; Frank et al., 2004). To get the
importance scores of each feature, RF from the scikit-learn package in Python
(Pedregosa et al., 2011) also was used. Every model in this article had two
components: (1) a set of genes, each of which is classified as up-regulated or
nonresponsive (expression class), and (2) a set of cis-regulatory sites (CIS-BP
TFBMs, DAP-seq peaks, or pCREs) and their presence/absence on the putative
promoter of each gene (promoter features). We established machine learning
models using five sets of pCRE sites: all mapped pCRE sites as well as pCRE
sites that overlapped with CIS-BP TFBM sites, DAP-seq peaks, DHS regions,
and CNS. In this setup, the models predict the genes from the two expression
classes using the presence or absence of the promoter features. Grid searches
were used to find the best combination of the following three parameters in
SVM: (1) the ratio of nonresponsive to up-regulated genes; (2) the parameter of
the soft margin; and (3) the g-parameter of the Radial Basis Function kernel. The
latter two parameters are part of the SVMmethod itself. Similarly, grid searches

were used for RF predictions, including (1) the ratio of nonresponsive to
up-regulated genes and (2) the number of attributes. The ratio of negative to
positive examples was achieved using the Weka class weka.filters.supervised.
instance.SpreadSubsample, which subsamples the nonresponsive genes to
achieve the desired ratio of up-regulated to nonresponsive genes. We used
10-fold cross validation as implemented in Weka, and the average AUC-ROC
from all 10 cross validation runs was calculated using the ROCR package (Sing
et al., 2005). RF model results were reported in that study, as the performances
of SVM and RF models were correlated, and RF was easier to scale up to large
data sets. The parameter combination with the maximum average AUC-ROC
was taken as the best parameter for each model, and this maximum AUC-ROC
is what we report for eachmodel. Precision-recall curves were plotted using the
output from the model with the maximum AUC-ROCs.

To eliminate redundant motifs, we used three univariate feature selection
methods: (1) the Caret R Package, which is PCC based; (2) Correlation Feature
Selection inWeka, where correlation is based on aminimumdescription length,
symmetrical uncertainty, and relief (Hall, 1999); and (3) x2 tests on the pCRE
sets in Weka. For the PCC-based method, we calculated the PCC between each
pairwise feature (pCRE sites). For the pairs of features that have PCC. 0.5, only
one feature was kept. This is an arbitrary threshold; however, removing 15% to
20% of pCREs did not change the AUC-ROC values of the prediction models.
For the Correlation Feature Selection method, we kept the default settings in
Weka. The x2 test in Weka yields ranks for each pCRE based on the x2 statistic.
We used the x2 statistics of 10 and 20 as thresholds for keeping high-ranked
pCREs.

Biological Characteristics of the Most Informative
pCRE Set

We selected the minimal set of pCREs (39 root and 40 shoot pCREs) based on
the top 100 pCRE-evidence pairs identified with a feature selection algorithm
(described in the previous section) and the importance scores for predicting or-
gan salt up-regulation. To determine where these pCREs tend to be located, we
mapped pCREs to the organ up-regulated genes as well as randomized se-
quences. The mapped region included 1 kb upstream and 500 bp downstream of
the TSS of the salt up-regulated genes, which were divided into 15 100-bp bins.
For comparison, we randomized the 100-bp sequences from the up-regulated
gene (while preserving the nucleotide compositions) and mapped the pCREs to
these random sequences as well. To identify the functional categories enriched in
genes that have pCRE sites in their promoters, Arabidopsis GO slim categories
were used. FET was used to assess the statistical significance of enrichment, and
the P values were adjusted for multiple testing (Storey, 2003).

Binary Prediction of Root and Shoot Up-Regulated Genes

Although the AUC-ROC is a good measure of the overall performance of
machine learning models, it does not indicate how well individual genes are
predicted. Thus, it is possible that two models with similar levels of perfor-
mance as measured by AUC-ROC correctly predict different sets of genes. To
assess which genes were predicted bymodels based on different pCRE sets, and
to see if different models correctly predict different sets of genes, the Weka
program CrossValidationAddPredictions was used to identify whether a gene
was correctly predicted as up-regulated or nonresponsive during salt stress.
This program makes a model as described above, but it keeps track of the
prediction for each gene. We used the best parameter combination identified
from the original grid search as the basis for the binary prediction run.We chose
the parameter combinations with the maximum average AUC-ROC. For that
given run, maximum F-measure (harmonic mean of precision and recall, cal-
culated using ROCR) was used as the threshold to create binary predictions for
each gene. We also assessed the overlap of correctly predicted up-regulated
genes (true positives) based on models using different pCRE sets by looking at
the percentage of the up-regulated genes correctly predicted by two different
models.

Combinatorial Motif Rule Discovery

To test if the combinations of specific pCREs were predictive of salt
up-regulation in the root or shoot, the CBA (Ma, 1998) method was used to
identify combinatorial rules in the form pCRE A + pCRE B → up-regulation.
Thismethod is useful for identifying rules where some combinations of features
are associatedwith a class. The features in our case were the presence or absence
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of pCRE pairs in a gene promoter, and the class was root or shoot up-regulation.
The root or shoot up-regulated and nonresponsive genes were broken up into
different subsamples. Each of these subsamples was run through CBA using
multiple values for minimum confidence (percentage of genes where pCRE A +
pCRE B → up-regulation out of all the instances of pCRE A + pCRE B) and
support (percentage of genes with the rule pCRE A + pCRE B→ up-regulation).
Rules for shoot up-regulated genes were discovered using a minimum support
of 0.5% and a minimum confidence of 60%, with a nonresponsive-to-up-
regulated ratio of 2:1. We went through several rounds of CBA to discover
root rules using different values of support, confidence, and nonresponsive-to-
up-regulated ratios.We endedupusing aminimum support of 0.1%, aminimum
confidence of 60%, and subsamples with 976 nonresponsive genes to 488 re-
sponsive genes, which were the same numbers of genes used to generate the
shoot rules. These parameters were chosen because the rules generated gave an
appreciable gain in the AUC-ROC when performing predictions. Due to the
limitation of using the graphical user interface of CBA, wewere not able to do an
extensive exploration of the best CBA parameter values. Thus, it is possible that
there is a more optimal parameter set that will yield a greater performance gain.

To determine if there was a bias in which pCRE subsets were involved in the
rules, we categorized each rule as general pCRE + general pCRE, organ pCRE +
general pCRE, and organ pCRE + organ pCRE. We performed a x2 test for each
rule set, comparing the observed numbers of each rule category with what
would be expected if the pCREs were randomly paired together as a rule. The
distance between pairs of pCREs in a rule was calculated for all instances of the
rules in the putative promoters. The minimal distance between the closest ends
of two pCREs was determined. To determine if the minimal distances were
significantly different from random expectations, background distributions of
pCREs were generated by modeling the frequency of distances between two
random pCREs of the same lengths as the pCREs in the rule pair based on an
earlier approach (Yu et al., 2006). The only difference in ourmethodwas that we
compared the observed distance distributionswith the background distribution
using aMann-Whitney test instead of a Kolmogorov-Smirnov test, as theMann-
Whitney test canmore directly test whether one distribution has higher or lower
distances than the other distribution.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Distributions of PCCs between TFBMs within
and between example TF families.

Supplemental Figure S2. Contribution of general, root, and shoot pCREs
to the prediction of true-positive genes that are globally, root-specifically,
and shoot-specifically up-regulated.

Supplemental Figure S3. Feature selection of pCREs and performance of
RF models using selected pCREs.

Supplemental Figure S4. Distribution of pCRE sites.

Supplemental Figure S5. Summary of the distance between pairs of motifs
in combinatorial rules.

Supplemental Table S1. CIS-BP and DAP-seq TFBMs used in this study.

Supplemental Table S2. pCREs identified and their properties.

Supplemental Table S3. Minimal list of pCREs and their TFBM matches.

Supplemental Table S4. GO Biological Processes enriched among genes
that have the most informative pCRE sites.

Supplemental Table S5. Combinatorial rules and their TFBM matches.

Supplemental Table S6. GO Biological Processes enriched among genes
that have pCRE combinatorial rules.

Supplemental Data S1. Log-odds matrix for motif.
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