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ABSTRACT: A new non-fullerene acceptor (IHIC-N) differs from IDT acceptors in having a naphthalene rather than a
benzene ring in the core. A key intermediate in the synthesis of IHIC-N, which has a quasi-linear 2,3,6,7-substituted core
rather than the 1,2,5,6-pattern of recently reported regioisomers accessed through electrophilic substitution, is dimethyl
3,7-bis(2-thienyl)naphthalene-2,6-dicarboxylate, previously obtained in six steps from 2,6-dihydroxynaphthalene, but here
obtained from naphthalene-2,6-dicarboxylic acid in 62% yield using palladium-catalyzed carboxylate-directed C-H bond
functionalization. IHIC-N exhibits an absorption maximum of 641 nm in chloroform. Solar cells with PTB7-Th as the donor
give a power conversion efficiency of 6.91%. However, the new acceptor was more effectively used in a ternary blend with
PTB7-Th and IHIC, a related non-fullerene acceptor based on a thienothiophene core. The best device was obtained for a
1:0.51 PTB7-Th:IHIC-N:IHIC blend and gave an open-circuit voltage of 0.785 V, a short-circuit current density of 21.3 mA
cm ™, a fill factor of 70.8%, and a power conversion efficiency of 11.9%. The complementarity of IHIC-N and IHIC absorption,
balanced carrier mobilities, and appropriate domain sizes for effective exciton harvesting likely all contribute to one of the

highest efficiencies obtained for a single-junction fullerene-free PTB7-Th device.

Some of the most significant recent advances in organic so-
lar cells (OSCs) have been in developing non-fullerene ac-
ceptors (NFAs),"”” potential advantages of which over full-
erenes include easier and lower cost synthesis and purifi-
cation, stronger absorption, and easier tunability of ab-
sorption bands and electron affinities (EAs) via structural
changes.*® Indacenodithiophene (IDT)-based NFAs have
attracted particular interest, owing to their high electron
mobilities (comparable to or exceeding those of fullerenes)
and strong absorption at ca. 600-800 nm.”" To comple-
ment their absorption in bulk heterojunction blends, wide-
or medium-bandgap polymers are usually chosen as do-
nors.” However, to exploit the low-bandgap donor poly-
mers extensively developed for use with fullerenes, NFAs
with even lower bandgaps in the near-infrared (NIR), are
desirable. THIC (Figure 1),” in which the central arene of
IDT derivatives is replaced with thienothiophene, was re-
cently reported as a NIR-absorbing NFA. OSCs based on
binary blends of THIC with PTB7-Th (Figure 1) show high
power conversion efficiency (PCE) of 9.77%.

To increase the PCE of PTB7-Th:IHIC OSCs, we were in-
spired by recent reports of OSCs using ternary blends of a

donor polymer with two acceptors.”™ The third compo-
nent should ideally: (i) have an EA lower than that of IHIC,
in order to avoid compromising Voc, but still sufficiently
large to accept an electron from photoexcited PTB7-Th;
and (ii) absorb at higher energy than IHIC and PTB7-Th
and/or significantly more strongly than PTB7-Th in order
to afford a more panchromatic absorption and higher
short-circuit current density (Jsc). Here we report a new
NFA - THIC-N (Figure 1) - in which a naphthalene core is
chosen to provide a higher n-surface area than that of IDT
to potentially interact more strongly with the polymer n-
system. The synthesis of a key intermediate is enabled by a
double carboxylate-directed C-H bond functionalization.”
Optimized ternary PTBT-Th:IHIC-N:IHIC OSCs give PCE
=11.9%.

Molecules similar to IHIC-N (structures I and II, Figure
1) have recently been reported;*** however, these differ in
the solubilizing substituents (R) and in the regioisomerism
of the naphthalene cores, which are 1,2,5,6-substituted (ra-
ther than the quasi-linear 2,3,6,7-substitution pattern in
IHIC-N). The synthesis of both of these cores depends on
the a-positions (C-1 and C-5) of naphthalenes generally



being the most active towards electrophilic reactions.™ “S”-
shaped compounds of type I ultimately rely on the electro-
philic 1,5-dibromination of 2,6-dimethylnaphthalene,
while the cores of compounds of type II are synthesized
through intramolecular Friedel-Crafts alkylation/cycliza-
tions on to the 1,5-positions of 2,6-disubstituted naphtha-
lenes. Compounds of type II ultimately rely on the electro-
philic 1,5-dibromination of 2,6-dimethylnaphthalene. Our
synthesis of IHIC-N relies on the availability of1 (Figure 2),
the recently reported synthesis of which requires six steps
with an overall 16% yield.”* We developed a much more
atom-economical approach to 1 using a highly regioselec-
tive double C-H functionalization of 2,6-naphthalic acid.
Carboxylate-directed bromination conditions first devel-
oped by Yu® gave 3,7-dibromo-2,6-naphthalic acid, which
was then esterified, and coupled with 2-(tribu-
tylstannyl)thiophene to give 1 in 62% overall yield. The re-
giochemistry of the dibromination, and therefore of 1, was
confirmed using 2D NMR methods (see Supporting Infor-
mation). Bromination adjacent to the carboxylic acid is at-
tributable to chelation to form five-membered palladacy-
cle intermediates,” while 1,5-dibromination is presumably
precluded by steric interactions of the Pd with the 4,8-hy-
drogen atoms (Figure 2c,d).
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Figure 1. (a) Chemical structures of materials discussed in the
text. (b) Estimated IEs and EAs for PTB7-Th, IHIC-N, and
[HIC. (c) Thin-film UV-Vis-NIR absorption spectra of PTB7-
Th, THIC, IHIC-N, and blends.

IHIC-N exhibits an absorption band with gnax = 1.2 x 10
M™ cm™ (ca. */ that of IHIC) at Amax = 641 nm in CHCl, (Fig-
ure S3). The absorption maximum is similar to that for I (R
= alkyl)” and is blue-shifted slightly (0.04 eV) and signifi-
cantly (0.28 eV) relative to a core-alkylated IDT derivative*
and to IHIC, respectively.” The blue shift vs. IHIC is also

seen in thin-film absorption spectra in neat films and
blends with PTB7-Th (Figure 1c). This difference can be
mainly attributed to disruption of the delocalization of the
frontier molecular orbitals in IHIC-N, relative to those of
[HIC, by the more aromatic central part of the core (Figure
Ss). This localization is also reflected in the frontier energy
levels (Figure 1b) estimated from cyclic voltammetry (see
Supporting Information), in which IHIC-N exhibits higher
ionization energy (IE, by 0.13 eV) and lower EA (by 0.12 V)
than IHIC.
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Figure 2. (a) Six-step synthesis of key intermediate 1.** (b)
Synthesis of 1 based on carboxylic acid-directed 3,7-dibromin-
ation and cross coupling. (c) Presumed intermediate in 3-bro-
mination and (d) intermediate for 1-bromination, destabilized
by Pd/8-hydrogen steric interactions.

There is considerable overlap between the photolumi-
nescence spectrum of IHIC-N and the absorption spectrum
of the THIC, indicating the possibility of energy transfer
from the former to the latter (Figure S4a). The emission
spectra of films of neat IHIC-N, neat IHIC, and a 1:2 w/w
IHIC-N:IHIC blend, all excited at 305 nm, were also com-
pared (Figure S4b). The emission of neat IHIC-N is rela-
tively strong and broad (at ca. 650-850 nm) and that of
[HIC (at ca. 770-850 nm) is relatively weak. The emission
of IHIC-N is strongly quenched in the blend, and that of
IHIC somewhat enhanced, consistent with efficient energy
transfer from IHIC-N to ITHIC.

ITO/ZnO/PTB7-Th:IHIC-N:IHIC/M0oO;/Ag OSCs were
fabricated using a PTB7-Th:(total NFA) ratio of 1:1.5 (w/w)
and varying the NFA from 100% IHIC-N to 100% IHIC (Ta-
ble 1). Fabrication conditions, such as additives and spin-
coating speed, were optimized for PTB7-Th:IHIC-N (Table
S1). 1,8-Diiodooctane (DIO) is known to improve the per-
formance of PTB7-Th:IHIC;** we found it also improves
PTB7-Th:IHIC-N OSCs, reducing average Jsc, but increas-
ing the open-circuit voltage (Voc) and fill factor (FF), re-
sulting in slightly higher average PCE. All parameters are
strongly affected by the addition of IHIC. With increasing
IHIC content, average Voc gradually decreases, although
not in a linear fashion (Figure S7); presumably the higher
EA of IHIC plays a role. The average FF generally increases.
Jsc and PCE are both maximized at a 1:2 ratio and the PCE
of 11.9% for these devices is among the highest for single-



junction fullerene-free PTB7-Th OSCs (Figure 3a). How-
ever, the PCE of the ternary OSCs is relatively insensitive
to the NFA composition, exceeding 1% for IHIC-N:THIC
ratios varying from 11 to 1:5.

EQE spectra (Figures 3b, S6, and S8) show a clear en-
hancement for the champion ternary device over the PTB7-
Th:IHIC-N device, accounting for the improved Jsc; in par-
ticular, the high EQE values seen at ca. 750-850 nm are at-
tributable to the strong NIR absorption of IHIC. The most
obvious improvement in the EQE of the champion device
over that of a PTB7-Th:IHIC control is at 500-700 nm,
where IHIC-N absorbs. IHIC-N excitons may, in principle
at least, be harvested both by electron transfer from PTB7-
Th and by energy transfer to IHIC (see above), followed by
electron transfer from the donor. However, the champion
ternary blend also shows somewhat improved EQE at ca.
750-850 nm relative to the control, despite absorbing less
strongly in this range (Figure S8).

The space-charge limited current (SCLC) method was
used to measure hole and electron mobilities (u, and p.) of
blend films (Figures Sg and Si0; Table S2). A ternary blend
(1:2 THIC-N:IHIC) exhibited ph = 1.1 x 107 cm® V™'s™, some-
what higher than either PTB7-Th:IHIC-N (4.3 x 10™* cm*V~
's7) or PTB7-Th:IHIC (7.1 x 10 em® V™' s7). Values of pe
show more variation: 2.8 x 10, 1.6 x 10 > and 3.1 x 10 * cm”
V7 s™ for PTB7-Th:IHIC-N, PTB7-Th:IHIC, PTB7-Th:IHIC-
N:IHIC, respectively.” These data suggest that the ternary
blends and PTB7-Th:IHIC blends both exhibit more bal-
anced charge transport than PTB7-Th:IHIC-N blends, con-
sistent with the much lower FF seen for the IHIC-free de-
vices (Table 1).
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Figure 3. (a) J-V characteristics and (b) EQE spectra of the

best PTB7-Th:NFA OSCs (1:1.5) under AM 1.5 G at 100 mW cm”™
%, For the ternary cells the IHIC-N:IHIC ratio is 1:2.

Table 1. Data for PTB7:Acceptor (1:1.5 w/w) OSCs with Different IHIC-N:IHIC Ratios as Acceptor”

Acceptor %v/v DIO” Voc /| mV Jsc / mA cm™ Calc. Js¢ /mAcm™ | FF /% PCE /%
[HIC-N o 832 (83216) 14.1 (13.80.4) 14.3 57.5 (56.1%1.0) 6.74 (6.46+0.17)
[HIC-N 0.5 846 (841%3) 13.5 (13.420.4) | 13.3 60.6 (58.6+1.0) | 6.91(6.5920.18)
2:1 HIC- | 05 807 (807+2) 18.8 (18.8x0.3) | 18.0 69.3 (66.0%1.7) | 10.5 (10.0£0.3)
N:IHIC

11 [HIC-N:IHIC | o.5 787 (790%5) 20.5 (20.420.3) | 19.7 68.8 (67.1£1.2) 1.1 (10.9+0.2)
12 HIC- | 05 785 (782+2) 21.3 (21.2£0.3) 20.3 70.8 (68.8x1.2) | 1.9 (1.5+0.3)
N:IHIC

5 HIC- 1 05 781 (778+4) 20.1 (19.90.4) | 19.8 70.3 (68.7+1.7) | 1.0 (10.6+0.3)
N:IHIC

[HIC 0.5 752 (749+8) 19.4 (19.4+0.3) | 185 72.5 (70.0£1.8) | 10.6 (10.2%0.3)

“Values are for the highest-PCE device, with average values and standard devices obtained from 20 devices listed in parentheses.
’DIO = 1,8-diiodooctane. “Expected Jsc value from integration of the EQE spectra with the AM 1.5G reference spectrum; these

values are within 5% of those from J-V curves.

GIWAXS (Figures 4a-d and S12) and GISAXS (Figures 4e
and S13) were used to investigate molecular packing and
nanoscale phase separation® in thin films of blends and
neat materials. A neat IHIC-N film shows no obvious scat-
tering peaks (Figure S13a), indicating low crystallinity, as
intended by our choice of alkyl, rather than aryl, core sub-
stituents. The PTB7-Th:IHIC-N film (Figure 4a) shows a
strong lamellar peak concentrated along the g, axis (¢: =

0.284 A, d = 2.21 nm) and a peak attributed to m-stacking
concentrated along the g, axis (¢, =1.73 A", d = 0.362 nm).
These features differ somewhat from those of neat PTB7-
Th for which lamellar and n-i peaks are at g = ca. 0.30 and
1.60 A7, respectively;” indeed, while neat PTB7-Th shows a
strong feature attributed to aggregation at ca. 710 nm in its
UV-vis. absorption spectrum,” only a weak shoulder is
seen in this region for PTB7-Th:IHIC-N, also suggesting



IHIC-N disrupts the polymer crystallinity. The observed n-
m peak might be to the scattering of IHIC-N crystalline
“face-on” domains, but cannot be reliably assigned as such
since neat IHIC-N exhibits poor crystallinity and so its lat-
tice constants are unknown. The PTB7-Th:IHIC film (Fig-
ure 4b) exhibits two lamellar peaks (g, = 0.278 and 0.354 A’
") and two 1t-m peaks (g, = 1.60 and 1.80 A™), suggesting that
both the PTB7-Th and IHIC domains are crystalline, both
with preferred “face-on” orientation. The observation of
polymer scattering is consistent with the observation of the
PTB7-Th aggregate peak in the absorption spectrum of the
blend.”® The n-stacking distance assigned to IHIC (0.349
nm) is somewhat smaller than that seen for the PTB7-
Th:IHIC-N blend (0.362 nm). Similar broadened n-mt scat-
tering features along the g, axis are observed in the scatter-
ing pattern of the ternary PTB7-Th:IHIC-N:IHIC film,

2
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suggesting “face-on” m-mt stacking for both donor (PTB7-
Th) and acceptor (IHIC and/or IHIC-N) materials, con-
sistent with the more balanced carrier mobility observed in
the ternary film. Figure 4e shows the GISAXS intensity pro-
files and best fittings along the in-plane direction. We
adopted Debye-Anderson-Brumberger (DAB) and fractal-
like network models to account for the scattering contri-
bution from intermixed amorphous phases and acceptor
domains respectively.” The acceptor domain sizes (2Rg)
are estimated to be 21.4, 22.6 and 22 nm for PTB7-Th:IHIC-
N, PTB7-Th:IHIC and PTB7-Th:IHIC-N:IHIC films, respec-
tively, which would allow efficient exciton dissociation.
The corresponding correlation lengths of the amorphous
intermixed phases are fitted to be 26.9, 58.9, 27.5 nm,
broadly consistent with TEM images (Figure Si12), which
show increasing domain size with increasing IHIC content.
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Figure 4. 2D GIWAXS patterns of (a) PTB7-Th:IHIC-N, (b) PTB7-Th:IHIC, (c) PTB7-Th:IHIC-N:IHIC (2:1:2), and (d) the corre-
sponding GIWAXS intensity profiles along the in-plane (solid lines) and out-of-plane (dotted line) directions. (e) GISAXS intensity

profiles and best fittings along the in-plane direction.

In summary, we have obtained a new NFA, THIC-N.
PTB7-Th:IHIC-N:IHIC OSCs based a PCE of 1.9%, due to
balanced carrier mobilities, favorable domain sizes, and
broad absorption, resulting in a panchromatic photovol-
taic response from 300-9goo nm. These results also high-
light the ability of C-H functionalization to access com-
pounds that are difficult to obtain by other routes, but
which are desirable to fulfill specific requirements.
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