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Spin–orbit-coupled fermions in an optical lattice 
clock
S. Kolkowitz1*, S. L. Bromley1*, T. Bothwell1, M. L. Wall1†, G. E. Marti1, A. P. Koller1, X. Zhang1†, A. M. Rey1 & J. Ye1

Engineered spin–orbit coupling (SOC) in cold-atom systems can 
enable the study of new synthetic materials and complex condensed 
matter phenomena1–8. However, spontaneous emission in alkali-
atom spin–orbit-coupled systems is hindered by heating, limiting 
the observation of many-body effects1,2,5 and motivating research 
into potential alternatives9–11. Here we demonstrate that spin–
orbit-coupled fermions can be engineered to occur naturally in a 
one-dimensional optical lattice clock12. In contrast to previous SOC 
experiments1–11, here the SOC is both generated and probed using a 
direct ultra-narrow optical clock transition between two electronic 
orbital states in 87Sr atoms. We use clock spectroscopy to prepare lattice 
band populations, internal electronic states and quasi-momenta, and 
to produce spin–orbit-coupled dynamics. The exceptionally long 
lifetime of the excited clock state (160 seconds) eliminates decoherence 
and atom loss from spontaneous emission at all relevant experimental 
timescales, allowing subsequent momentum- and spin-resolved in 
situ probing of the SOC band structure and eigenstates. We use these 
capabilities to study Bloch oscillations, spin–momentum locking and 
Van Hove singularities in the transition density of states. Our results 
lay the groundwork for using fermionic optical lattice clocks to probe 
new phases of matter.

When tunnelling is allowed, SOC for fermions emerges naturally in 
a nuclear-spin-polarized 87Sr optical lattice clock during laser interro-
gation of the narrow-linewidth 1S0(|​g〉​) – 3P0(|​e〉​) clock transition at 
wavelength λc =​ 698 nm (Fig. 1a), where |​g〉​ and |​e〉​ are the ground and 
excited states. The lattice used to confine the atoms has a wavelength 
λL =​ 813 nm. At this ‘magic’ wavelength13, the band structures of the 
two clock states are identical, with band energies E q( )nz  determined by 
the discrete band index nz and quasi-momentum q in units of ħ/a, 
where a =​ λL/2 is the lattice constant and ħ is the reduced Planck  
constant. When an atom is excited from |​g〉​ to |​e〉​ using a clock laser 
with Rabi frequency Ω and frequency detuning δ from the bare clock 
transition, energy and momentum conservation require a change in 
atomic momentum of 2π​ħ/λc.

The resulting Hamiltonian can be diagonalized in quasi-momentum 
space by performing a gauge transformation φ→ +e q e q, , ,n nz z  
where φ =​ π​λL/λc ≈​ 7π​/6. Figure 1b shows the transformed |​g〉​ and |​e〉​ 
bands for nz =​ 0 (the ground-state band) under the rotating-wave 
approximation when δ =​ 0. The transformed spin–orbit-coupled 
Hamiltonian is given by12

∑ Ω δ=− ⋅B SH ħ q( , , ) (1)
q

nSOC z

where the components of S are the spin-1/2 angular momentum 
operators ŜX Y Z, ,  for the two clock states. Ω δB q( , , )nz  is an effective, 
quasi-momentum-dependent magnetic field given by
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where in the tight-binding limit E0(q) =​ −​2ħJcos(q), and J is the 
tunnelling rate between nearest-neighbour lattice sites. The eigenstates 
of HSOC are described by Bloch vectors in the −X Zˆ ˆ  plane, pointing 
along the magnetic field Ω δB q( , , )nz , with their orientations specified 
by the chiral Bloch vector angle θB with respect to the Ẑ axis12, where
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The q dependence of θB is a manifestation of chiral spin–momentum 
locking12,14.

To connect this system to related works on synthetic gauge  
fields1,2,6–8,11,15,16, we can treat the internal clock transition (|​g〉​ →​ |​e〉​) as a 
synthetic dimension17, as shown in Fig. 1a. In this case, an atom following  
a closed trajectory about a single plaquette (|​m, g〉 → |​m + 1, g〉 →​  
|​m + 1, e〉 → |​m, e〉 → |​m, g〉) accumulates a phase φ, which resembles 
the flux experienced by a charged particle in the presence of an external  
magnetic field. In this equally valid description, the chiral Bloch 
vector angle θB is directly connected to the topological nature of chiral 
edge modes of the two-dimensional Hofstadter model8,14. Coupling  
multiple nuclear spin states with our synthetic gauge fields should 
enable the realization of topological bands1,2,5 and exotic phases in 
higher dimensions18.

In our experiment, several thousand nuclear-spin-polarized 
fermionic 87Sr atoms are cooled to temperatures of about 2 μ​K and 
loaded into a horizontal one-dimensional optical lattice aligned along 
the ẑ  axis. The lattice is formed using a high-power (P1 ≈​ 3 W) 
incoming beam that is focused down to a beam waist w0 ≈​ 45 μ​m and 
a strongly attenuated retro-reflection with tunable power 
(0 ≤​ P2 ≤​ 50 mW; Fig. 1a). This method enables the radial trap fre-
quency to effectively remain constant at νr ≈​ 450 Hz, while the axial 
trapping potential Uz can be tuned via P2 over a wide range from 
Uz/Er =​ 0 to Uz/Er >​ 200, where = /E ħ k m(2 )r

2
L
2  is the lattice recoil 

energy and m is the atomic mass. This range of Uz corresponds to axial 
trap frequencies ν ≈ / / πE U E ħ2 (2 )z zr r  up to about 100 kHz. When 
νz ≳ 40 kHz, the timescale of site-to-site tunnelling is longer than 
experimentally relevant timescales and so the atoms are effectively 
localized to single lattice sites, as is standard in optical lattice clock 
operation13. However, for smaller νz, tunnelling between nearest-
neighbour lattice sites is important, and occurs at a rate Jn r that depends 
on the radial mode index nr. In this regime, atomic motion in the axial 
direction is described by delocalized Bloch states characterized by nz 
and q. For a thermal distribution of approximately 2 μ​K, the atoms are 
predominantly in the nz =​ 0 axial ground band and completely fill the 
band. The average radial mode occupation |​nr|​ ≈​ 100.

The clock laser is locked to an ultra-stable optical cavity13 with a 
linewidth of approximately 26 mHz. Because the clock laser is collinear 
with the lattice axis, coupling to the radial motional modes is 
suppressed and we treat the system as quasi-one-dimensional, with 
relatively minor corrections arising from the thermal average of  
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the Rabi frequency Ωn r and the tunnelling rate Jn r over the radial mode 
occupation. Therefore, for the sake of clarity, we drop the radial mode 
index from Ω and J. The clock laser Rabi frequency Ω is measured on 
resonance with the carrier at δ =​ 0 with a high axial trapping frequency 
νz >​ 50 kHz. The mean particle number per lattice site was kept in the 
range N ≈​ 1–10, which for the operating conditions used results in a 
density-dependent many-body interaction rate of Nχ/(2π​) ≲ 1 Hz, 
where χ is the two-body interaction rate19. For the experiments 
presented here, Ω χ�N  and so the results are well described by a 
single-particle model.

Unlike previous studies of SOC in ultracold atoms, for which time-
of-flight imaging was used to determine the momentum distribu-
tion1–11, all of the data presented here is measured in situ using clock 
spectroscopy13. Clock spectroscopy provides precise measurement and 
control of the atomic spin and motional degrees of freedom and access 
to the atomic density of states, and offers the prospect for real-time, 
non-destructive measurement of atom dynamics in the lattice. At the 
end of each experiment, the number of atoms in each of the |​e〉​ and  
|​g〉​ states is counted using a cycling transition (see Methods) and the 
normalized population fraction in each state is extracted. For example,  

Fig. 1c presents spectroscopy of the carrier and motional sideband 
transitions at four different axial trapping potentials, with the 
atoms initially prepared in the ground clock state and ground Bloch 
band, |​g〉​0. At Uz/Er =​ 43.9 (blue squares in Fig. 1c) the atoms are 
strongly confined and the data are well described by a model that 
neglects tunnelling between lattice sites20. However, as P2 is turned 
down and the trapping potential is reduced to Uz/Er =​ 5.5 (green 
circles), the carrier transition exhibits a broad splitting of two sharp 
resonances, which is inconsistent with atoms localized to single sites.  
A model that treats the axial and radial coupling perturbatively20 fully  
reproduces the measured line shapes (solid lines in Fig. 1c;  
see Methods).

The narrow |​g〉​0 →​ |​e〉​0 carrier transition centred at δ/(2π​) =​ 0 kHz 
enables the preparation of atoms in the excited clock state and ground 
Bloch band |​e〉​0, from which spectroscopy can also be performed, as 
shown in Fig. 1d. Owing to the long lifetime of |​e〉​, we do not observe spin 
state relaxation to |​g〉​ over the timescales explored in this experiment 
(<​150 ms; see Methods). In addition to the carrier transition,  
motional sidebands corresponding to axial inter-band transitions are 
also apparent in Fig. 1c. The measured line shape in this case is also 
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Figure 1 | Spin–orbit-coupled fermions in an optical lattice clock with 
tunable tunnelling. a, Top, atoms are trapped in a one-dimensional 
optical lattice with a beam waist w0, formed by interfering a strong 
trapping beam (red arrow; power P1, wavelength λL =​ 813 nm) with a 
counter-propagating, tunably attenuated retro-reflection (pink arrow; 
variable power P2). The atoms, which are shown in both the ground (red) 
and excited (blue) clock states, are probed on the narrow clock transition 
with an ultra-stable clock laser (orange waveform; λc =​ 698 nm, Rabi 
frequency Ω). The atoms tunnel to neighbouring lattice sites at a rate J, 
which can be tuned by varying P2. The axis ẑ  of the one-dimensional 
lattice is horizontal with respect to the axis of gravity ĝ . Bottom, the 
resulting spin–orbit-coupled Hamiltonian is equivalent to that of charged 
fermions on a synthetic two-dimensional ladder with horizontal 
tunnelling rate J between neighbouring physical lattice sites m, m + 1, …, 
vertical tunnelling rate Ω between the ground and excited clocks states |​g〉​ 
and |​e〉​, and a synthetic magnetic field flux φ =​ π​λL/λc. b, The clock laser 
couples the dispersion curve for |​g〉​0 (dashed red line) to the quasi-

momentum-shifted curve for |​e〉​0 (dashed blue line), resulting in spin–
orbit-coupled bands (solid dichromatic lines), with the splitting between 
the bands given by Ω, and the bandwidth of each of the uncoupled bands 
given by 4J. The y-axis is energy in arbitrary units (a.u.). c, Clock 
spectroscopy (Ω ≈​ 2π​ ×​ 200 Hz, 80-ms pulse duration) at four axial 
trapping potentials (Uz/Er; data and fits are vertically separated for clarity). 
When P2 =​ 0, the sidebands and carrier merge into a Doppler-broadened 
Gaussian (red diamonds). The solids lines represent theoretical 
calculations using a model that treats the axial and radial coupling 
perturbatively (see Methods). d, Spectroscopy of atoms in |​e〉​0, prepared by 
driving the |​g〉​0 →​ |​e〉​0 transition and then removing any remaining atoms 
in |​g〉​. Inset, the Bloch bands for the |​g〉​ and |​e〉​ clock states, and the inter-
band and carrier transitions out of |​e〉​0. The colours of the final bands 
correspond to the colours of the respective transition peaks in the main 
panel. In c and d, each data point corresponds to a single measurement 
sequence with a new sample of thousands of 87Sr atoms.
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fully captured by the perturbative model (solid lines; see Methods). 
At high trapping potential (blue squares in Fig. 1c), the prominent 
blue-detuned sideband at δ/(2π​) ≈​ 40 kHz corresponds to the |​g〉​0 →​  
|​e〉​1 transition, where |​e〉​1 refers to the atoms in the excited clock state and  
first excited Bloch band. The corresponding red-detuned sideband at 
δ/(2π​) ≈​ −​40 kHz is suppressed because the atoms have been prepared 
predominantly in the nz =​ 0 ground band. The inter-band transitions 
can also be used to selectively prepare the atoms in specific Bloch 
bands. For example, to prepare atoms exclusively in the nz =​ 1 band, a 
clock laser pulse is applied to the |​g〉​0 →​ |​e〉​1 blue sideband transition. 
A strong ‘clearing’ pulse is then applied to remove any remaining 
atoms in |​g〉​, leaving atoms in |​e〉​ unperturbed. The remaining  
atoms are thus purified in the nz =​ 1 Bloch band and can be used for 
further experiments or measurements.

In Fig. 2, we demonstrate the use of selective band preparation 
to probe the effect of SOC on the |​g〉​0 →​ |​e〉​0 and |​e〉​1 →​ |​g〉​1 carrier 
transitions. In Fig. 2a, the atoms are initially prepared in |​g〉​0 and a  

π​ pulse of the clock laser is applied. At Uz/Er =​ 63.2 (narrow blue 
diamonds) the |​g〉​0 →​ |​e〉​0 transition has a typical Fourier-limited Rabi 
line shape. However, as Uz is reduced (but in the regime Uz >​ Er), the 
transition begins to broaden and splits into two peaks, with the splitting 
scaling proportionally to the tunnelling rate in the lowest Bloch band, 
which scales3 as
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As shown in Fig. 2b, the same behaviour is observed when the atoms 
are initially prepared in the |​e〉​1 state, with the |​e〉​1 →​ |​g〉​1 transition 
exhibiting much larger splitting compared to the |​g〉​0 →​ |​e〉​0 transition 
for the same axial potential.

The split line shapes of the clock carrier transition at low Uz, which 
have been theoretically predicted12,21, can be understood by considering 
the band dispersion curves presented in Fig. 1b. Because the quasi-
momentum dependence of the |​g〉​0 and |​e〉​0 bands differ by φ  
(see equations (1) and (2)), the transition frequency is q dependent.  
In the tight-binding approximation, the largest momentum-induced 
detuning from the bare clock transition frequency is given by  
Δ =​ 4J|​sin(φ/2)|​, where 4J is the bandwidth of the nz =​ 0 ground band 
and sin(φ/2) =​ 0.97 ≈​ 1, which results in an overall broadening of the 
transition by 2Δ ≈​ 8J. The probability of a transition between the two 
bands at a specific q is then determined by the joint transition density 
of states, which diverges at saddle points in the energy difference 
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Figure 2 | Van Hove singularities and band mapping. a, Excited state 
fraction following a π​ pulse (Ω =​ 2π​ ×​ 100 Hz) at four axial trapping 
potentials Uz/Er , with the atoms initially prepared in |​g〉​0. The split peaks 
for Uz/Er ≤​ 13.7 are a result of divergences in the atomic density of states 
known as Van Hove singularities (VHSs). The fits are a convolution of the 
expected joint transition density of states for the spin–orbit-coupled bands 
with the measured Rabi line shape at high Uz/Er (see Methods).  
b, Ground state fraction following a Rabi pulse for the same potentials  
as in a, with the atoms initially prepared in |​e〉​1. The duration of the  
Rabi pulse was varied to improve population contrast (see Methods).  
In a and b, each data point corresponds to a single measurement sequence 
with a new sample of thousands of 87Sr atoms. The data and fits are offset 
vertically and horizontally for clarity. The diagonal axes are included as 
guides to the eye, with the tick marks corresponding to zero detuning 
and zero excited or ground state fraction for each measured line shape. 
c, The splitting between the VHS peaks in the |​g〉​0 →​ |​e〉​0 (purple circles) 
and |​e〉​1 →​ |​g〉​1 (orange squares) transitions as a function of trapping 
potential, extracted using fits as shown in a and b. Horizontal error bars 
are 1σ standard error estimates from spectroscopy of the axial sidebands; 
vertical error bars are 1σ standard error estimates for the extracted VHS 
splitting. The no-free-parameter VHS splittings predicted for atoms in 
the ground and first-excited bands of a one-dimensional sinusoidal lattice 
(purple and orange dashed lines, respectively) and the splittings predicted 
by a model that includes the transverse motional modes and finite atomic 
temperatures (solid lines) are shown for comparison.

0 2 4 6

0.4

Clock laser frequency (kHz)
G

ro
un

d
 s

ta
te

 fr
ac

tio
n

0.0

0.2

0.6

0.8

8 10

1.0

1.2

Clock laser detuning (kHz)

E
xc

ite
d

 s
ta

te
 fr

ac
tio

n

–1.0
0.00

0.05

0.10

0.15

0.20

0.25

0 0.5 1.0–0.5
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Figure 3 | Bloch oscillations. Lower-right inset, the split Rabi lines  
shown in Fig. 2a, b enable the spectral selection of atoms with a particular 
quasi-momentum q*. At a trapping potential of Uz/Er =​ 11.4, a π​ pulse 
(Ω =​ 2π​ ×​ 100 Hz) tuned to the left VHS peak is applied (red arrow) and 
the remaining ground state atoms are removed. Upper-left inset, the lattice 
is tilted by an angle π​/2 −​ θL with respect to gravity ĝ  (top). As a result,  
the atoms initially prepared with q* ≈​ π​ (red arrow) undergo Bloch 
oscillations, with their quasi-momenta cycling through the entire  
band (bottom). Main panel, following a variable wait time t from the end 
of the first π​ pulse, a second π​ pulse is applied, revealing a highly 
asymmetric line shape (first blue curve at 25 ms). The atoms undergo 
Bloch oscillations, resulting in periodic oscillations of the line shape as the 
waiting time between the first and second pulse is varied. The curves are 
horizontally and vertically offset as a function of wait time for clarity.  
Each data point corresponds to a single measurement sequence with  
a new sample of thousands of 87Sr atoms.
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between the band dispersion curves. These divergence points in the 
density of states of a crystalline lattice are called Van Hove singularities 
(VHSs) and are well known from optical absorption spectra in solids 
and scanning tunnelling microscopy22,23. The measured line shapes are 
a convolution of the atomic transition density of states with the Rabi 
line shape for a single atom (see Methods). For Δ > Ω two VHS peaks 
(at δ =​ ±​Δ) are evident; at higher trapping potentials, Δ Ω�  and the 
two VHS peaks merge to give the standard Rabi line shape (Fig. 2a, b).

Optical clock spectroscopy also provides a direct, in situ probe of 
the Bloch bandwidths, and thus of the tunnelling rate J, through the 
VHS splitting. We demonstrate this technique by measuring Rabi line 
shapes at a range of axial potentials from Uz/Er =​ 5.5 to Uz/Er =​ 63.2 and 
then fitting a convolution of the joint transition density of states for the 
spin–orbit-coupled bands with the measured Rabi line shape at high 
Uz/Er to extract the VHS splitting (example fits are shown in Fig. 2a, b; 
see Methods). The extracted splittings for the |​g〉​0 →​ |​e〉​0 (purple cir-
cles) and |​e〉​1 →​ |​g〉​1 (orange squares) transitions are plotted as a func-
tion of trapping potential in Fig. 2c. Only splittings for which the two 
peaks are resolvable are shown. At Uz/Er =​ 5.5 the VHS splitting of the  
|​e〉​1 →​ |​g〉​1 transition overlapped with the inter-band transitions and the 
splitting could not be unambiguously extracted. The no-free-parameter 
VHS splitting that is anticipated for spin–orbit-coupled fermions in a 
one-dimensional lattice (purple and orange dashed lines for nz =​ 0 and 
nz =​ 1, respectively, in Fig. 2c) and the splitting that is predicted by the 
perturbative model (solid lines) are shown for comparison. The origin 
of the slight difference between the experimental data and the model 
prediction in the ground band at lower trapping potentials might be 
related to inhomogeneities in the axial trapping potential across the 
populated lattice sites or to an incomplete theoretical description of 
the coupling between the axial and radial modes.

Just as the spectroscopically resolved sidebands enabled band 
preparation, the quasi-momentum dependence of the clock tran-
sition frequency enables the selective preparation and subsequent 
manipulation of atoms with particular quasi-momenta (Fig. 3). 

Following initialization in the |​g〉​0 state, a clock pulse with Rabi 
frequency Ω <​ 2Δ is applied to the carrier transition with a detuning 
|​δ*|​ ≤​ Δ. Only atoms with quasi-momenta in a window centred 
around q* ≈​ arccos(δ*/Δ) and with a width bounded by 2π​Ω/Δ will 
be excited to |​e〉​0; atoms with quasi-momenta outside this window will 
be left in |​g〉​. A strong clearing pulse is applied to remove atoms in  
|​g〉​, leaving only the atoms in |​e〉​0 with quasi-momenta in the window 
centred around q*. Following a variable wait time t, a second π​ pulse 
is used to measure the line shape. If the lattice is tilted with respect 
to gravity, then the atoms will undergo Bloch oscillations during the 
wait time24, with their quasi-momenta evolving as q(t) =​ q0 +​ νBt, 
where q0 is the initial quasi-momentum of the atom and the value of 
q(t) is restricted to the first Brillouin zone, and the Bloch oscillation 
frequency νB =​ mgλLsin(θL)/(4π​ħ), where g is the acceleration due to 
gravity and θL is the angle of tilt of the lattice. In this in situ observation 
of Bloch oscillations in a tilted lattice25, the highly asymmetric line 
shapes oscillate back and forth as the quasi-momenta cycle through 
the Brillouin zone at a frequency of νB =​ 14 Hz, which corresponds to 
a lattice tilt of θL =​ 16 ×​ 10−3 rad.

We characterize the q dependence of the chiral Bloch vector angle θB 
(equation (3)) using the same quasi-momentum selection technique 
that was used to observe Bloch oscillations. For these measurements 
the lattice tilt was adjusted to minimize νB ≤ ​ 3 Hz, with 
θL ≤​ 3.5 ×​ 10−3 rad. As shown in Fig. 4a, atoms are prepared in |​e〉​0 with 
quasi-momentum q*. In five separate experiments, q* is varied using a 
range of detunings δ* spanning the two VHS peaks (coloured arrows). 
A strong Rabi pulse of duration τ is applied with detuning δ corre-
sponding to the right VHS peak (red star in Fig. 4a), generating  
SOC with the corresponding q*-dependent chiral Bloch vector 
(pointing along the direction of the effective magnetic field Ω δB q( , , )nz , 
equation (2)) shown in Fig. 4b, and with the SOC band structure shown 
in Fig. 4c. In Fig. 4d, the resultant population fraction in |​e〉​ for each 
prepared q* is plotted as a function of the evolution time τ. The 
dynamics are entirely captured by the q*-dependent spin precessions 
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Figure 4 | Rabi measurements of the chiral Bloch 
vector. a, Atoms are selectively prepared in a  
quasi-momentum window using a π​ pulse 
(Ω =​ 2π​ ×​ 10 Hz,) with five different pulse detunings 
(coloured arrows). An axial potential of Uz/Er =​ 15.6 
is used, resulting in Δ/(2π​) ≈​ 67 Hz. A second, 
stronger Rabi pulse (Ω =​ 2π​ ×​ 100 Hz) tuned to the 
right VHS peak (red star) is used to generate SOC.  
b, The chiral Bloch vectors corresponding to the 
detunings in a are shown as arrows, along with  
the clock state spin precession for each vector 
(corresponding coloured lines) where Ω̂ and δB qˆ ( , )

Z
0  

are the axes of the Bloch sphere as defined in the 
spin–orbit-coupled Hamiltonian (equations (1) and 
(2)). c, The spin–orbit-coupled band structure 
experienced by the atoms during the second pulse, 
with each quasi-momentum window colour-coded 
to match the detunings in a. The clock states are 
completely mixed by SOC at q =​ 0. At quasi-
momenta far from q =​ 0, the red band has more of 
the character of |​g〉​, while the blue band has more  
of the character of |​e〉​. The selection windows 
overlap; the width of each window is for illustrative 
purposes only, to indicate the relative values.  
d, Excited state fraction as a function of the duration 
of the second pulse τ for the five initial pulse 
detunings shown in a (colour-coded data points), 
along with the no-free-parameter dynamics 
predicted by a semi-classical model (solid lines;  
see Methods). Inset, corresponding chiral Bloch 
vector angle θB extracted for each quasi-momentum 
window centred at q*. In a and d, each data point 
corresponds to a single measurement sequence with 
a new sample of thousands of 87Sr atoms.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



7 0  |  N A T U R E  |  V O L  5 4 2  |  2  F E B R U A R Y  2 0 1 7

LETTERRESEARCH

about the chiral Bloch vectors (eigenstates of equation (1)), depicted in 
Fig. 4b. The theoretical calculations involve no free parameters and use 
only the experimental values of δ*, δ, νB and Ω (solid lines in Fig. 4d; 
see Methods). The dephasing of the spin precession at longer τ is well 
described by the known initial distribution of quasi-momenta q* (see 
Methods), and could be mitigated by reducing the Rabi frequency used 
for the q* selection with respect to the VHS splitting 2Δ, at the cost of 
reduced signal-to-noise ratio due to the smaller number of atoms 
selected. In the inset of Fig. 4d we plot the corresponding chiral Bloch 
vector angle |​θB|​ that was extracted for each initial pulse detuning as a 
function of prepared quasi-momentum q*. Because there is a one-to-
one correspondence between the topological chiral edge modes of the 
two-dimensional Hofstadter model15,16 and the energy bands and 
eigenstates of the synthetic ladder8,14 shown in Fig. 1a, the q* depen
dence of |​θB|​ that we measure spectroscopically is a direct manifestation 
of the well-defined chirality of the edge states of the Hofstadter 
Hamiltonian. The presence of spin–momentum locking in the eigen-
modes of the ladder has previously been observed using time-of-flight 
imaging6–8.

We have studied spin–orbit-coupled fermions in an optical lattice 
clock and characterized the associated synthetic momentum-
dependent magnetic field. We observed clean experimental signatures 
of SOC physics at microkelvin temperatures without cooling to Fermi 
degeneracy, and observed no decoherence or heating on timescales of 
hundreds of milliseconds. The recent realization of a Fermi-degenerate 
three-dimensional optical lattice clock (S. L. Campbell et al., manu-
script in preparation) opens the possibility of implementing two- and 
three-dimensional SOC, tuning the SOC phase φ and reaching the 
lower temperatures that are required for the preparation of new many-
body states1,2,4,5,26. Although we have focused entirely on single-particle 
physics, many-body correlations and SU(N) symmetry have previously 
been observed in optical lattice clocks19,27, offering prospects for  
studying the interplay between SOC and interactions in higher 
synthetic dimensions1,2,4,5,17,18.

Following the completion of this work, implementations of SOC 
using the direct optical transition in 173Yb atoms28 and using a two- 
dimensional manifold of discrete atomic momentum states in 87Rb 
atoms29 were reported.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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METHODS
Experimental methods. Measurement protocol. To load the optical lattice, 87Sr 
atoms are cooled with two sequential three-dimensional magneto-optical traps—
the first using the strong 1S0 →​ 1P1 transition (461 nm) and the second using the 
narrower 1S0 →​ 3P1 transition (689 nm). Following the second magneto-optical 
trap, the atoms are sufficiently cold and dense to be trapped in the optical lattice. 
Once in the lattice, the atoms are first nuclear spin-polarized and then further 
cooled using axial sideband and radial Doppler cooling on the 689-nm transition.

At the end of each experiment, the population of the |​g〉​ state is measured by 
driving the atoms on the 461-nm cycling transition and counting the emitted  
photons. After 5 ms, all |​g〉​ atoms have been heated out of the lattice, at which point 
the atoms in |​e〉​ are optically pumped into the |​g〉​ state and are counted in the same 
manner. A 5-ms-long 461-nm pulse is also used as the ‘clearing’ pulse to remove 
ground state atoms in the protocols used for preparing atoms in specific bands and 
with select quasi-momenta.
Characterization of the trapping potential. The cylindrically symmetric trapping 
potential experienced by an atom at position z along the axis of propagation of the 
lattice beams and a distance r from the centre of the beams is given by

=− + − /V r z V U k z( , ) [ cos ( )]e (4)z
r w

const
2

L
2 2

0
2

where

α λ
ε

α λ
ε

=
+ −

π

=
π

V P P P P
cw

U P P
cw

( ) 2

4 ( )z

const L
1 2 1 2

0 0
2

L
1 2

0 0
2

kL =​ 2π​/λL, ε0 is the permittivity of free space, c is the speed of light and α(λL) is 
the a.c. polarizability evaluated at λL. Because �P P1 2, to first order the trapping 
potential in the radial direction Vconst is proportional to P1 and the periodic axial 
trapping potential Uz is proportional to P P1 2. In contrast to previous experiments 
that generate synthetic gauge fields by periodically shaking the optical lattice 
potential30–33, here the lattice potential is kept constant, and it is the probing laser 
itself that induces the SOC.
Band preparation. In Extended Data Fig. 1, we demonstrate the way in which 
the inter-band transitions can be used for band preparation. Extended Data  
Fig. 1a shows spectroscopy of the carrier and inter-band transitions from the initial  
|​g〉​0 state. To prepare atoms exclusively in the nz =​ 1 band, a clock laser pulse 
is applied to the |​g〉​0 →​ |​e〉​1 blue sideband transition, which is at a detuning of  
δ/(2π​) ≈​ νz −​ Er/(2π​ħ) =​ 35 kHz for Uz/Er =​ 30.5. A strong clearing pulse is then 
applied to remove any remaining atoms in |​g〉​, leaving atoms in |​e〉​ unperturbed. 
The remaining atoms are thus purified in the nz =​ 1 Bloch band and can be used 
for further experiments or measurements. Extended Data Fig. 1b shows spec-
troscopy of the sidebands following this protocol, with the anharmonicity of the 
band spacing resulting in an unequal frequency spacing between the |​e〉​1 →​ |​g〉​2  
and |​e〉​1 →​ |​g〉​0 sideband transitions about the |​e〉​1 →​ |​g〉​1 carrier transition. The 
transitions out of |​e〉​0 from Fig. 1d are shown for comparison. In contrast to 
previous experiments34,35, no band relaxation was observed out of the |​e〉​1 state 
over a waiting time of greater than 500 ms, owing to the dilute atomic conditions 
achieved in our experiment.
Measurements of axial heating and loss rates. The axial heating rate in our lattice 
was measured using spectroscopy of the axial motional sidebands. The atoms were 
prepared in |​e〉​0, and the clock laser was applied on resonance with the carrier tran-
sition for a variable wait time of up to 155 ms. The atoms in |​g〉​ were removed with 
a clearing pulse and spectroscopy of the remaining atoms in |​e〉​ was performed. 
The axial sideband asymmetry was then used to determine the temperature and 
heating rate. The measurement was performed in both the strong confinement 
(Uz/Er ≈​ 200) and tunnelling-allowed (Uz/Er ≈​ 10) regimes. In both cases, the 
results were consistent with no axial heating over the 155-ms wait time. This is 
consistent with previous measurements of the temperature dependence of the clock 
transition coherence20.

The loss rates out of |​e〉​ were measured by preparing the atoms in |​e〉​0, leaving 
the atoms in the dark for a variable wait time of up to 1.5 s and then counting the 
number of atoms in the |​e〉​ and |​g〉​ states. Loss of atoms due to inelastic p-wave 
e–e scattering was observed with a density-dependent loss rate consistent with 
previous measurements36. For the atomic densities used here, the measured loss 
rate corresponded to approximately 1.5 s−1 and so did not have an impact on the 
measurements presented, owing to their shorter timescales. For future many-body 
experiments with higher desired densities, the temperature can be lowered by 
loading the lattice from a Fermi-degenerate gas (S. L. Campbell et al., manuscript 
in preparation), in which case the inelastic p-wave e–e collisions will be greatly  

suppressed. An additional one-body loss rate of approximately 0.2 s−1 was 
observed, consistent with the vacuum-limited lifetime in the chamber. Finally, a 
|​e〉​ →​ |​g〉​ spin-flip rate of about 0.1 s−1 was observed, consistent with previously 
measured two-photon Raman scattering from the lattice light via the 3P1 state37. 
Although this spin-flip rate is negligible for the measurements presented here, 
it may set a limit on future SOC experiments, potentially requiring a different 
lattice geometry.
Theoretical methods. Perturbative model. For the experimental temperatures 
and loading conditions we used, to an excellent approximation we can treat the 
coupling between the axial and radial degrees of freedom perturbatively and 
expand equation (4) up to second order in r:

η= + + +OV r z V z V r V r z r( , ) ( ) ( ) ( , ) ( )z r coupl
4

with Vz(z) =​ −​Uzcos2(kLz), ω= /V r m r( ) 2r r
2 2  and Vcoupl(r, z) =​ −​Vr(r)sin2(kLz). 

Here, ω = + /U V mw2 ( ) ( )r z const 0
2 , m is the atom mass and η =​ Uz/(Uz + Vconst) is 

an expansion parameter. To zeroth order in η, the Hamiltonian is separable in r 
and z coordinates. In this limit, the radial eigenfunctions are harmonic oscillator 
functions υ φ= υr rn , ( )r n ,r  with eigenenergies ω υ= + +υE ħ n( 2 1)n r r,r   
parameterized by the radial quantum number nr =​ 0, 1, … and the azimuthal 
quantum number −​nr ≤​ υ ≤​ nr. The axial eigenfunctions are Bloch functions 

ψ=z n q z, ( )z n q,z  with a band structure E q( )nz . For the cosinusoidal potential in 
consideration, the Bloch functions and band structure can be obtained analytically 
in terms of even and odd Mathieu functions
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where the parameter a is the characteristic Mathieu value, for suitably chosen 
nz-dependent ranges of q.

Treating Vcoupl(r, z) using first-order perturbation theory in η yields the energies

η= + − 〈 | | 〉υ υ υE q E E q E n q k z n q( ) ( ) 1
2

, sin ( ) ,n n n n n z z, , , ,
2

Lz r r z r

This expression generalizes that obtained in ref. 20 in the deep lattice limit to 
include quasi-momentum dependence of the energies and beyond-lowest-order 
anharmonic effects in the axial dimension. We can also analytically compute 
the first-order corrections in terms of the unperturbed band energies using the 
Feynman–Hellman theorem:
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This term has both q-independent and q-dependent components. The former 
lead to thermally dependent shifts in the mean band energies and the latter give a 
renormalization of the tunnelling rate, which depends on the radial temperature.  
We explicitly checked the validity of the perturbative energy expression by 
numerically finding the exact eigenstates of equation (4)38.
Line shapes. To evaluate the line shapes we perform a thermal average using 
Boltzmann distributions with radial and axial temperatures Tr and Tz, respectively. 
The contribution to the line shape from the �th axial sideband, assuming atoms 
are initially populating the �0 band and internal state α =​ ±​ (here +​ is for g and 
−​ is for e), is

∑
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is the effective Rabi frequency,

Ω Ω φ≈ 〈 + + | | 〉λπ /�� n q n q, e ,n q z
i z
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c

are the Rabi frequencies and Ω is the ‘bare’ Rabi frequency. In the regime in which 
the tight-binding approximation is valid (that is, not very shallow lattices), Ω �n q, ,z  
is a slowly varying function of q. On the other hand, it has a strong dependence on 
� and for >� 0 is suppressed by the Lamb–Dicke parameter η ω= /k ħ m(2 )zLD L , 
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resulting in an effective Rabi frequency for the first sidebands ( =±� 1) that is 
approximately an order of magnitude below that of the carrier.

We have also introduced the Boltzmann factors
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with βz,r = 1/kBTz,r and L the total number of lattice sites. =∑ υZ n q n, , ,z r
 

υ� �q n q q n n( , , ) ( , , , )z z r z r0 0  is the partition function.
There are three leading mechanisms that lead to broadening of the line shape. 

One arises from the thermal population of different quasi-momentum states com-
bined with the finite momentum transfer by the probe laser when interrogating the 
clock states. This type of motion-induced broadening, which is a direct signature 
of the SOC mechanism, is the lattice analogue of Doppler broadening21, generally 
discussed in the context of the spectra of free particles. For the lattice case, instead 
of plane waves carrying specific momentum, we need to think about Bloch waves 
described by two quantum numbers—the quasi-momentum and the band index. 
The second broadening mechanism is power broadening arising for strong Rabi 
pulses. For our spectroscopic parameters, only the carrier transition is affected 
by this mechanism. The third source of broadening is the coupling between the 
radial and axial degrees of freedom, and so is strongly determined by the trapping 
frequencies and radial temperature. At short probing times (less than π​ pulses), 
this type of broadening in the carrier transition can be characterized by using a 
temperature-dependent tunnelling rate, as we explain below. For the sidebands, 
axial–radial coupling is the leading broadening mechanism20, and it has been 
shown that this mechanism is well captured by the perturbative approach.

However, the first-order perturbative approach neglects the radial dependence 
of the Rabi frequencies and radial sideband transitions induced by the laser.  
As discussed in detail in ref. 20, the omitted higher-order terms can lead to a 
dephasing of the coherent oscillations in ±

�P  at long times compared to a π​ pulse 
and induce additional broadening of the sideband spectra. Nevertheless, those 
effects can be accounted for by using an effective radial temperature, which  
we used as an effective fitting parameter, and by performing a time-average of 
equation (5) for the case of long probe times:
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The clock spectroscopy shown in Fig. 1c was taken by applying the clock laser at 
high power (Ω =​ 2π​ ×​ 200 Hz) and for many Rabi periods (during 80 ms), and so 
we used equation (6) to model the experiment and treated the radial temperature 
as a fitting parameter. The radial temperatures that provided the best fit varied 
between 7 μ​K and 9 μ​K and so were higher than the radial temperatures measured 
experimentally through motional spectroscopy of the sidebands, consistent with 
previous detailed studies of the sideband line shapes20.

For the carrier transition, the dominant decoherence mechanism arising from 
radial sideband transitions manifests at long probing times as dephasing. This 
effect is shown in Extended Data Fig. 2, where it can be seen that the perturbative 
model (equation (5) with ℓ =​ 0) does an excellent job for pulses shorter than a  
π​ pulse. However, for the longer pulse used (Extended Data Fig. 2e), the perturbative  
theory captures only the width of the line shape and not its amplitude.
Theoretical fit function to extract the VHS splittings. The coupling between the 
radial and axial degrees of freedom can be accounted for in the carrier line shape 
by defining an effective thermally averaged tunnelling rate. In the regime in which 
the tight-binding approximation is valid,

φ
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where 〈​·〉​ denotes radial thermal averaging, and nr and υ the radial and azimuthal 
harmonic oscillator mode numbers. Therefore, we can replace the effective Rabi 
coupling Ω υ

±
�n q, , ,
eff
z

 for the carrier ( =� 0):
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where Jn
T
z
r  is the thermally averaged tunnelling rate and Ω �n q, ,z  is the Rabi coupling 

for the �th axial sideband. Even when the tight-binding approximation no longer 
holds, we can reproduce the VHS splittings by matching the thermally averaged 
bandwidth, computed from the analytic expression for the perturbative energies 
given above, to the tight-binding expression:

φ〈Δ 〉− 〈Δ 〉= /υ υE q E q ħJmax ( ) min ( ) 8 sin( 2)q n n q n n n
T

, , , ,z r z r z
r

This expression, together with the approximation that all atoms are initially in the 
=� 0, 10  band and that ��ħJ k TT

zBr
0

, is used to fit the carrier line shapes shown in 
Fig. 2, by convolving the resulting Rabi line shape with the joint transition density 
of states �D T, r0 :
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When fitting this function to the split line data of the type shown in Fig. 2a, b to 
extract the VHS splitting plotted in Fig. 2c, the only free parameters used are a 
single parameter for the thermally averaged tunnel coupling J and an additional 
parameter for the amplitude of the split line. The amplitude is required as a free 
parameter only when a pulse longer than a single π​ pulse is used to increase the 
excitation fraction. The no-free-parameter theory predictions plotted in Fig. 2c 
were generated by applying the perturbative model to measured spectra of the 
motional sidebands at each axial trapping potential. As mentioned above, the radial 
temperatures used for the perturbative model varied between 7 μ​K and 9 μ​K.
Chiral Bloch vector dynamics. To model the chiral Bloch vector dynamics, the 
Rabi oscillations measured after preparing the atoms within a window of quasi- 
momenta centred around q* and with width Δq are expressed as

∑
Ω

Ω
Ω=

Δ + −Δ




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
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Δ
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P q
q q q

t q q( ) 1
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q q

0
0,0,0

0
eff

q 2

2
2

0
eff

q 2

To model the window, we simulate the atom preparation using a π​ pulse 
(Ω =​ 2π​ ×​ 10 Hz) with five different initial pulse detunings δ*. Because the Rabi 
frequency and tunnelling rates are comparable, the window is relatively broad, 
resulting in dephasing of the quasi-momentum-dependent Rabi oscillations shown 
in Fig. 4d when a second, stronger Rabi pulse is applied. Extended Data Fig. 3 
shows the expected quasi-momentum distributions. Additionally, for the 
theoretical lines presented in Fig. 4, we set φ πΔ= / = × −

�J4 sin( 2) 2 67 sT 1r
0

 and 
Δq ≈​ πħ/a.
Data availability. The data supporting the findings of this study are available 
within the paper and its Extended Data.
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Extended Data Figure 1 | Bloch band preparation and spectroscopy. a, Spectroscopy of atoms prepared in |​g〉​0 reveals the band spacing of the lattice, 
with inter-band transitions colour-coded by the final band. b, Spectroscopy of atoms in |​e〉​1, prepared by driving the |​g〉​0 →​ |​e〉​1 transition shown in a and 
then removing any remaining atoms in |​g〉​. The spectrum for atoms in |​e〉​0 from Fig. 1d is shown for comparison (dashed grey line).

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



LETTERRESEARCH

Extended Data Figure 2 | Rabi line shape modelling. a–e, Theoretical modelling of carrier line shapes starting from the |​g〉​0 (a–c) or |​e〉​1 (d, e) state. 
For the ground band transitions (a–c), all data were taken using a π​ pulse, and are well reproduced by a perturbative model (solid lines). Three specific 
cases are shown covering from the deep-lattice regime (Uz ≈​ 65Er; a) to the moderate-lattice regime (Uz ≈​ 10Er; b), and down to the shallow-lattice 
limit (Uz ≈​ 3Er; c). For the first excited band transitions, the data in the deeper-lattice case (Uz ≈​ 21.3Er), taken with a π​ pulse, are well reproduced by 
the perturbative model (d). However, for the case of Uz ≈​ 16Er where a longer pulse was used, the perturbative theory, which ignores radial sideband 
transitions induced by the laser, captures only the width of the line shape and not its amplitude (e).
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Extended Data Figure 3 | Modelling of quasi-momentum selection. Theoretical probability distribution P(q, nr) of quasi-momentum and radial 
quantum number nr of |​e〉​ excitations resulting from exciting a thermal distribution in |​g〉​ with a 50-ms π​ pulse. The lattice depth is Uz ≈​ 16Er, resulting 
in a tunnelling rate of J ≈​ 17 Hz. The distribution of atoms among q is broadened owing to the fact that the Rabi frequency and tunnelling rates are 
comparable, but can be made narrower by decreasing the Rabi frequency.
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