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Spin-orbit-coupled fermions in an optical lattice
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Engineered spin-orbit coupling (SOC) in cold-atom systems can
enable the study of new synthetic materials and complex condensed
matter phenomena!~8. However, spontaneous emission in alkali-
atom spin-orbit-coupled systems is hindered by heating, limiting
the observation of many-body effects'">> and motivating research
into potential alternatives®!!. Here we demonstrate that spin—
orbit-coupled fermions can be engineered to occur naturally in a
one-dimensional optical lattice clock'2. In contrast to previous SOC
experiments'~!!, here the SOC is both generated and probed using a
direct ultra-narrow optical clock transition between two electronic
orbital states in 3Sr atoms. We use clock spectroscopy to prepare lattice
band populations, internal electronic states and quasi-momenta, and
to produce spin-orbit-coupled dynamics. The exceptionally long
lifetime of the excited clock state (160 seconds) eliminates decoherence
and atom loss from spontaneous emission at all relevant experimental
timescales, allowing subsequent momentum- and spin-resolved in
situ probing of the SOC band structure and eigenstates. We use these
capabilities to study Bloch oscillations, spin-momentum locking and
Van Hove singularities in the transition density of states. Our results
lay the groundwork for using fermionic optical lattice clocks to probe
new phases of matter.

When tunnelling is allowed, SOC for fermions emerges naturally in
a nuclear-spin-polarized ¥Sr optical lattice clock during laser interro-
gation of the narrow-linewidth 'Sy(|g)) —*Po(|e)) clock transition at
wavelength \. =698 nm (Fig. 1a), where |g) and |e) are the ground and
excited states. The lattice used to confine the atoms has a wavelength
AL =813 nm. At this ‘magic’ wavelength'?, the band structures of the
two clock states are identical, with band energies E,,_(¢) determined by
the discrete band index 7, and quasi-momentum g in units of #/a,
where a = A\1/2 is the lattice constant and # is the reduced Planck
constant. When an atom is excited from |g) to |e) using a clock laser
with Rabi frequency {2 and frequency detuning 6 from the bare clock
transition, energy and momentum conservation require a change in
atomic momentum of 27h/ ..

The resulting Hamiltonian can be diagonalized in quasi-momentum
space by performing a gauge transformation e, q),, — |e,q + @)n..
where ¢ =7\ /A~ 77/6. Figure 1b shows the transformed |g) and |e)
bands for n, =0 (the ground-state band) under the rotating-wave
approximation when 6= 0. The transformed spin-orbit-coupled
Hamiltonian is given by'?

Hsoc=—hy_ B,.(q,12,6)-S 1)
q

where the components of S are the spin-1/2 angular momentum
aX.Y, . .

operators § for the two clock states. B, (q, £2,6) is an effective,

quasi-momentum-dependent magnetic field given by

B,.(4,0,8)=[B}.(), 0, B} (4,0)] o
=[Q, 0,(En(q) — En.(q+¢))/h+0]

where in the tight-binding limit Eo(q) = —2hJcos(q), and ] is the
tunnelling rate between nearest-neighbour lattice sites. The eigenstates
of Hso are described by Bloch vectors in the X—Z plane, pointing
along the magnetic field B,, (g, 2, §), with their orientations specified
by the chiral Bloch vector angle 0 with respect to the Z axis'?, where

O = arctan| 2 (3)

(En(q) —En g+ @))/h+06

The g dependence of 5 is a manifestation of chiral spin-momentum
locking!>!,

To connect this system to related works on synthetic gauge
fields>6-8111516 wve can treat the internal clock transition (|g) —|e)) asa
synthetic dimension'’, as shown in Fig. 1a. In this case, an atom following
a closed trajectory about a single plaquette (|m, g) — |m + 1, g) —
|m+ 1, e) — |m, &) — |m, g)) accumulates a phase ¢, which resembles
the flux experienced by a charged particle in the presence of an external
magnetic field. In this equally valid description, the chiral Bloch
vector angle 03 is directly connected to the topological nature of chiral
edge modes of the two-dimensional Hofstadter model®!*. Coupling
multiple nuclear spin states with our synthetic gauge fields should
enable the realization of topological bands!*® and exotic phases in
higher dimensions'®.

In our experiment, several thousand nuclear-spin-polarized
fermionic %’Sr atoms are cooled to temperatures of about 2 pK and
loaded into a horizontal one-dimensional optical lattice aligned along
the Z axis. The lattice is formed using a high-power (P; ~3 W)
incoming beam that is focused down to a beam waist wy~45pm and
a strongly attenuated retro-reflection with tunable power
(0 <P, <50mW; Fig. 1a). This method enables the radial trap fre-
quency to effectively remain constant at v/, ~ 450 Hz, while the axial
trapping potential U, can be tuned via P, over a wide range from
U,/E,=0 to U,/E, > 200, where E, = hzkf/(Zm) is the lattice recoil
energy and m is the atomic mass. This range of U, corresponds to axial
trap frequencies v, ~ 2E,/U,/E, /(2~h) up to about 100kHz. When
v, 2 40kHz, the timescale of site-to-site tunnelling is longer than
experimentally relevant timescales and so the atoms are effectively
localized to single lattice sites, as is standard in optical lattice clock
operation!?. However, for smaller v,, tunnelling between nearest-
neighbour lattice sites is important, and occurs at a rate J,, that depends
on the radial mode index n,. In this regime, atomic motion in the axial
direction is described by delocalized Bloch states characterized by n,
and q. For a thermal distribution of approximately 2 uK, the atoms are
predominantly in the n,=0 axial ground band and completely fill the
band. The average radial mode occupation |n,| 2 100.

The clock laser is locked to an ultra-stable optical cavity!® with a
linewidth of approximately 26 mHz. Because the clock laser is collinear
with the lattice axis, coupling to the radial motional modes is
suppressed and we treat the system as quasi-one-dimensional, with
relatively minor corrections arising from the thermal average of
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Figure 1 | Spin-orbit-coupled fermions in an optical lattice clock with
tunable tunnelling. a, Top, atoms are trapped in a one-dimensional
optical lattice with a beam waist wy, formed by interfering a strong
trapping beam (red arrow; power P, wavelength A, =813 nm) with a
counter-propagating, tunably attenuated retro-reflection (pink arrow;
variable power P,). The atoms, which are shown in both the ground (red)
and excited (blue) clock states, are probed on the narrow clock transition
with an ultra-stable clock laser (orange waveform; A. =698 nm, Rabi
frequency (2). The atoms tunnel to neighbouring lattice sites at a rate J,
which can be tuned by varying P,. The axis z of the one-dimensional
lattice is horizontal with respect to the axis of gravity ¢. Bottom, the
resulting spin-orbit-coupled Hamiltonian is equivalent to that of charged
fermions on a synthetic two-dimensional ladder with horizontal
tunnelling rate J between neighbouring physical lattice sites m, m + 1, ...,
vertical tunnelling rate (2 between the ground and excited clocks states |g)
and |e), and a synthetic magnetic field flux ¢) = wAi/Ac. b, The clock laser
couples the dispersion curve for |g), (dashed red line) to the quasi-

the Rabi frequency (2, and the tunnelling rate J,,, over the radial mode
occupation. Therefore, for the sake of clarity, we drop the radial mode
index from (2 and J. The clock laser Rabi frequency 2 is measured on
resonance with the carrier at 6 =0 with a high axial trapping frequency
v, > 50kHz. The mean particle number per lattice site was kept in the
range N~ 1-10, which for the operating conditions used results in a
density-dependent many-body interaction rate of Nx/(2w) $1Hz,
where Y is the two-body interaction rate'®. For the experiments
presented here, £2>> Ny and so the results are well described by a
single-particle model.

Unlike previous studies of SOC in ultracold atoms, for which time-
of-flight imaging was used to determine the momentum distribu-
tion!"!1, all of the data presented here is measured i situ using clock
spectroscopy'?. Clock spectroscopy provides precise measurement and
control of the atomic spin and motional degrees of freedom and access
to the atomic density of states, and offers the prospect for real-time,
non-destructive measurement of atom dynamics in the lattice. At the
end of each experiment, the number of atoms in each of the |e) and
|g) states is counted using a cycling transition (see Methods) and the
normalized population fraction in each state is extracted. For example,
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momentum-shifted curve for |e), (dashed blue line), resulting in spin—
orbit-coupled bands (solid dichromatic lines), with the splitting between
the bands given by (2, and the bandwidth of each of the uncoupled bands
given by 4]. The y-axis is energy in arbitrary units (a.u.). ¢, Clock
spectroscopy ({2~ 27 x 200 Hz, 80-ms pulse duration) at four axial
trapping potentials (U,/E,; data and fits are vertically separated for clarity).
When P, =0, the sidebands and carrier merge into a Doppler-broadened
Gaussian (red diamonds). The solids lines represent theoretical
calculations using a model that treats the axial and radial coupling
perturbatively (see Methods). d, Spectroscopy of atoms in |e), prepared by
driving the |g)o — |e)o transition and then removing any remaining atoms
in |g). Inset, the Bloch bands for the |g) and |e) clock states, and the inter-
band and carrier transitions out of |e)o. The colours of the final bands
correspond to the colours of the respective transition peaks in the main
panel. In c and d, each data point corresponds to a single measurement
sequence with a new sample of thousands of #’Sr atoms.

Fig. 1c presents spectroscopy of the carrier and motional sideband
transitions at four different axial trapping potentials, with the
atoms initially prepared in the ground clock state and ground Bloch
band, |g)o. At U,/E,=43.9 (blue squares in Fig. 1c) the atoms are
strongly confined and the data are well described by a model that
neglects tunnelling between lattice sites?’. However, as P, is turned
down and the trapping potential is reduced to U,/E,=5.5 (green
circles), the carrier transition exhibits a broad splitting of two sharp
resonances, which is inconsistent with atoms localized to single sites.
A model that treats the axial and radial coupling perturbatively®® fully
reproduces the measured line shapes (solid lines in Fig. 1c;
see Methods).

The narrow |g)o — |e)o carrier transition centred at 6/(27) =0kHz
enables the preparation of atoms in the excited clock state and ground
Bloch band |e)o, from which spectroscopy can also be performed, as
shown in Fig. 1d. Owing to the long lifetime of |¢), we do not observe spin
state relaxation to |g) over the timescales explored in this experiment
(<150 ms; see Methods). In addition to the carrier transition,
motional sidebands corresponding to axial inter-band transitions are
also apparent in Fig. 1c. The measured line shape in this case is also
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Figure 2 | Van Hove singularities and band mapping. a, Excited state
fraction following a  pulse ({2=27 x 100 Hz) at four axial trapping
potentials U,/E,, with the atoms initially prepared in |g),. The split peaks
for U,/E, <13.7 are a result of divergences in the atomic density of states
known as Van Hove singularities (VHSs). The fits are a convolution of the
expected joint transition density of states for the spin-orbit-coupled bands
with the measured Rabi line shape at high U,/E, (see Methods).

b, Ground state fraction following a Rabi pulse for the same potentials

as in a, with the atoms initially prepared in |e);. The duration of the

Rabi pulse was varied to improve population contrast (see Methods).

In a and b, each data point corresponds to a single measurement sequence
with a new sample of thousands of ¥Sr atoms. The data and fits are offset
vertically and horizontally for clarity. The diagonal axes are included as
guides to the eye, with the tick marks corresponding to zero detuning

and zero excited or ground state fraction for each measured line shape.

¢, The splitting between the VHS peaks in the |g)o — |e)o (purple circles)
and |e); — |g)1 (orange squares) transitions as a function of trapping
potential, extracted using fits as shown in a and b. Horizontal error bars
are 1o standard error estimates from spectroscopy of the axial sidebands;
vertical error bars are 1o standard error estimates for the extracted VHS
splitting. The no-free-parameter VHS splittings predicted for atoms in
the ground and first-excited bands of a one-dimensional sinusoidal lattice
(purple and orange dashed lines, respectively) and the splittings predicted
by a model that includes the transverse motional modes and finite atomic
temperatures (solid lines) are shown for comparison.

fully captured by the perturbative model (solid lines; see Methods).
At high trapping potential (blue squares in Fig. 1c), the prominent
blue-detuned sideband at /(2w) ~ 40 kHz corresponds to the |g)o—
|e); transition, where |e); refers to the atoms in the excited clock state and
first excited Bloch band. The corresponding red-detuned sideband at
6/(2) =~ —40kHz is suppressed because the atoms have been prepared
predominantly in the n,=0 ground band. The inter-band transitions
can also be used to selectively prepare the atoms in specific Bloch
bands. For example, to prepare atoms exclusively in the n,=1 band, a
clock laser pulse is applied to the [g)o— |e)1 blue sideband transition.
A strong ‘clearing’ pulse is then applied to remove any remaining
atoms in |g), leaving atoms in |e) unperturbed. The remaining
atoms are thus purified in the n, =1 Bloch band and can be used for
further experiments or measurements.

In Fig. 2, we demonstrate the use of selective band preparation
to probe the effect of SOC on the |g)o— |e)o and |e); — |g)1 carrier
transitions. In Fig. 2a, the atoms are initially prepared in |g)o and a
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Figure 3 | Bloch oscillations. Lower-right inset, the split Rabi lines
shown in Fig. 2a, b enable the spectral selection of atoms with a particular
quasi-momentum ¢ . At a trapping potential of U,/E,=11.4, a 7 pulse
(£2=2m x 100 Hz) tuned to the left VHS peak is applied (red arrow) and
the remaining ground state atoms are removed. Upper-left inset, the lattice
is tilted by an angle ©/2 — ¢ with respect to gravity ¢ (top). As a result,
the atoms initially prepared with q* ~ T (red arrow) undergo Bloch
oscillations, with their quasi-momenta cycling through the entire

band (bottom). Main panel, following a variable wait time ¢ from the end
of the first 7 pulse, a second = pulse is applied, revealing a highly
asymmetric line shape (first blue curve at 25 ms). The atoms undergo
Bloch oscillations, resulting in periodic oscillations of the line shape as the
waiting time between the first and second pulse is varied. The curves are
horizontally and vertically offset as a function of wait time for clarity.
Each data point corresponds to a single measurement sequence with

a new sample of thousands of ¥’Sr atoms.

7 pulse of the clock laser is applied. At U,/E, = 63.2 (narrow blue
diamonds) the |g)o— |e)o transition has a typical Fourier-limited Rabi
line shape. However, as U, is reduced (but in the regime U, > E,), the
transition begins to broaden and splits into two peaks, with the splitting
scaling proportionally to the tunnelling rate in the lowest Bloch band,

which scales® as

3/4
~ LEr[z] exp[—Zy 3 ]
hvT | E, E,
As shown in Fig. 2b, the same behaviour is observed when the atoms
are initially prepared in the |e); state, with the |e); — |g) transition
exhibiting much larger splitting compared to the |g)o — |e) transition
for the same axial potential.

The split line shapes of the clock carrier transition at low U,, which
have been theoretically predicted'*?!, can be understood by considering
the band dispersion curves presented in Fig. 1b. Because the quasi-
momentum dependence of the |g) and |e), bands differ by ¢
(see equations (1) and (2)), the transition frequency is g dependent.
In the tight-binding approximation, the largest momentum-induced
detuning from the bare clock transition frequency is given by
A=4]|sin(¢/2)|, where 4] is the bandwidth of the n,= 0 ground band
and sin(¢/2) =0.97 ~ 1, which results in an overall broadening of the
transition by 2A ~ 8]. The probability of a transition between the two
bands at a specific g is then determined by the joint transition density
of states, which diverges at saddle points in the energy difference

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Figure 4 | Rabi measurements of the chiral Bloch
vector. a, Atoms are selectively prepared in a
quasi-momentum window using a 7 pulse

(£2=2m x 10Hz,) with five different pulse detunings
(coloured arrows). An axial potential of U,/E,=15.6
is used, resulting in A/(2w) ~ 67 Hz. A second,
stronger Rabi pulse ({2=27 x 100 Hz) tuned to the
right VHS peak (red star) is used to generate SOC.
b, The chiral Bloch vectors corresponding to the
detunings in a are shown as arrows, along with

the clock state spin precession for each vector
(corresponding coloured lines) where {2 and B0 (g, 6)
are the axes of the Bloch sphere as defined in the
spin-orbit-coupled Hamiltonian (equations (1) and
(2)). ¢, The spin-orbit-coupled band structure
experienced by the atoms during the second pulse,

1 with each quasi-momentum window colour-coded
1 to match the detunings in a. The clock states are

1 completely mixed by SOC at g=0. At quasi-

1 momenta far from g =0, the red band has more of
1 the character of |g), while the blue band has more

1 of the character of |e). The selection windows

Excited state fraction

1 overlap; the width of each window is for illustrative

1 purposes only, to indicate the relative values.

1 d, Excited state fraction as a function of the duration
1 of the second pulse 7 for the five initial pulse

1 detunings shown in a (colour-coded data points),

1 along with the no-free-parameter dynamics

1 predicted by a semi-classical model (solid lines;
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between the band dispersion curves. These divergence points in the
density of states of a crystalline lattice are called Van Hove singularities
(VHSs) and are well known from optical absorption spectra in solids
and scanning tunnelling microscopy*>?*. The measured line shapes are
a convolution of the atomic transition density of states with the Rabi
line shape for a single atom (see Methods). For A > (2 two VHS peaks
(at 6==+A) are evident; at higher trapping potentials, A < {2 and the
two VHS peaks merge to give the standard Rabi line shape (Fig. 2a, b).

Optical clock spectroscopy also provides a direct, in situ probe of
the Bloch bandwidths, and thus of the tunnelling rate J, through the
VHS splitting. We demonstrate this technique by measuring Rabi line
shapes at a range of axial potentials from U,/E,=5.5 to U,/E,=63.2 and
then fitting a convolution of the joint transition density of states for the
spin-orbit-coupled bands with the measured Rabi line shape at high
U,/E; to extract the VHS splitting (example fits are shown in Fig. 2a, b;
see Methods). The extracted splittings for the |g)o— |e)o (purple cir-
cles) and |e); — |g)1 (orange squares) transitions are plotted as a func-
tion of trapping potential in Fig. 2c. Only splittings for which the two
peaks are resolvable are shown. At U,/E, = 5.5 the VHS splitting of the
le)1 — |g)1 transition overlapped with the inter-band transitions and the
splitting could not be unambiguously extracted. The no-free-parameter
VHS splitting that is anticipated for spin-orbit-coupled fermions in a
one-dimensional lattice (purple and orange dashed lines for n,=0 and
n,= 1, respectively, in Fig. 2c) and the splitting that is predicted by the
perturbative model (solid lines) are shown for comparison. The origin
of the slight difference between the experimental data and the model
prediction in the ground band at lower trapping potentials might be
related to inhomogeneities in the axial trapping potential across the
populated lattice sites or to an incomplete theoretical description of
the coupling between the axial and radial modes.

Just as the spectroscopically resolved sidebands enabled band
preparation, the quasi-momentum dependence of the clock tran-
sition frequency enables the selective preparation and subsequent
manipulation of atoms with particular quasi-momenta (Fig. 3).

12 14

corresponds to a single measurement sequence with
a new sample of thousands of ¥’Sr atoms.

Following initialization in the |g), state, a clock pulse with Rabi
frequency (2 < 2A is applied to the carrier transition with a detuning
|6%] < A. Only atoms with quasi-momenta in a window centred
around q" azarccos(6'/A) and with a width bounded by 272/ A will
be excited to |e)o; atoms with quasi-momenta outside this window will
be left in |g). A strong clearing pulse is applied to remove atoms in
|¢), leaving only the atoms in |e), with quasi-momenta in the window
centred around g". Following a variable wait time ¢, a second = pulse
is used to measure the line shape. If the lattice is tilted with respect
to gravity, then the atoms will undergo Bloch oscillations during the
wait time?%, with their quasi-momenta evolving as () = qo + vt,
where g is the initial quasi-momentum of the atom and the value of
q(t) is restricted to the first Brillouin zone, and the Bloch oscillation
frequency vp =mgAsin(6y)/(4nh), where g is the acceleration due to
gravity and 6y is the angle of tilt of the lattice. In this in situ observation
of Bloch oscillations in a tilted lattice?, the highly asymmetric line
shapes oscillate back and forth as the quasi-momenta cycle through
the Brillouin zone at a frequency of 3= 14 Hz, which corresponds to
a lattice tilt of #, =16 x 107> rad.

We characterize the g dependence of the chiral Bloch vector angle 6
(equation (3)) using the same quasi-momentum selection technique
that was used to observe Bloch oscillations. For these measurements
the lattice tilt was adjusted to minimize vy < 3 Hz, with
0. <3.5x 107> rad. As shown in Fig. 4a, atoms are prepared in |e), with
quasi-momentum g". In five separate experiments, q" is varied using a
range of detunings §" spanning the two VHS peaks (coloured arrows).
A strong Rabi pulse of duration 7 is applied with detuning ¢ corre-
sponding to the right VHS peak (red star in Fig. 4a), generating
SOC with the corresponding q"-dependent chiral Bloch vector
(pointing along the direction of the effective magnetic field B, ({2, ¢, 6),
equation (2)) shown in Fig. 4b, and with the SOC band structure shown
in Fig. 4c. In Fig. 4d, the resultant population fraction in |e) for each
prepared g is plotted as a function of the evolution time 7. The
dynamics are entirely captured by the g"-dependent spin precessions
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about the chiral Bloch vectors (eigenstates of equation (1)), depicted in
Fig. 4b. The theoretical calculations involve no free parameters and use
only the experimental values of 6", 6, vg and 2 (solid lines in Fig. 4d;
see Methods). The dephasing of the spin precession at longer 7 is well
described by the known initial distribution of quasi-momenta q" (see
Methods), and could be mitigated by reducing the Rabi frequency used
for the " selection with respect to the VHS splitting 2, at the cost of
reduced signal-to-noise ratio due to the smaller number of atoms
selected. In the inset of Fig. 4d we plot the corresponding chiral Bloch
vector angle |0g| that was extracted for each initial pulse detuning as a
function of prepared quasi-momentum q". Because there is a one-to-
one correspondence between the topological chiral edge modes of the
two-dimensional Hofstadter model'>!¢ and the energy bands and
eigenstates of the synthetic ladder®!* shown in Fig. 1a, the q* depen-
dence of |0p| that we measure spectroscopically is a direct manifestation
of the well-defined chirality of the edge states of the Hofstadter
Hamiltonian. The presence of spin-momentum locking in the eigen-
modes of the ladder has previously been observed using time-of-flight
imaging®®.

We have studied spin-orbit-coupled fermions in an optical lattice
clock and characterized the associated synthetic momentum-
dependent magnetic field. We observed clean experimental signatures
of SOC physics at microkelvin temperatures without cooling to Fermi
degeneracy, and observed no decoherence or heating on timescales of
hundreds of milliseconds. The recent realization of a Fermi-degenerate
three-dimensional optical lattice clock (S. L. Campbell et al., manu-
script in preparation) opens the possibility of implementing two- and
three-dimensional SOC, tuning the SOC phase ¢ and reaching the
lower temperatures that are required for the preparation of new many-
body states">*>2¢, Although we have focused entirely on single-particle
physics, many-body correlations and SU(N) symmetry have previously
been observed in optical lattice clocks'®?, offering prospects for
studying the interplay between SOC and interactions in higher
synthetic dimensions">*>17:18,

Following the completion of this work, implementations of SOC
using the direct optical transition in '*Yb atoms?® and using a two-
dimensional manifold of discrete atomic momentum states in Rb
atoms?’ were reported.

Online Content Methods, along with any additional Extended Data display items and
Source Data, are available in the online version of the paper; references unique to
these sections appear only in the online paper.
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METHODS
Experimental methods. Measurement protocol. To load the optical lattice, ¥Sr
atoms are cooled with two sequential three-dimensional magneto-optical traps—
the first using the strong 'Sy — 'P; transition (461 nm) and the second using the
narrower 'Sy — *P; transition (689 nm). Following the second magneto-optical
trap, the atoms are sufficiently cold and dense to be trapped in the optical lattice.
Once in the lattice, the atoms are first nuclear spin-polarized and then further
cooled using axial sideband and radial Doppler cooling on the 689-nm transition.
At the end of each experiment, the population of the |g) state is measured by
driving the atoms on the 461-nm cycling transition and counting the emitted
photons. After 5ms, all |g) atoms have been heated out of the lattice, at which point
the atoms in |e) are optically pumped into the |g) state and are counted in the same
manner. A 5-ms-long 461-nm pulse is also used as the ‘clearing’ pulse to remove
ground state atoms in the protocols used for preparing atoms in specific bands and
with select quasi-momenta.
Characterization of the trapping potential. The cylindrically symmetric trapping
potential experienced by an atom at position z along the axis of propagation of the
lattice beams and a distance r from the centre of the beams is given by

V(r,2) = — [ Vions + Uscos(kpz)]e /%5 4)

where

P1+P2—2 P1P2

Veonst = a(A1) 2
TENCWy

U, =4a(A1) VPP

2
TEGCW

ky =27/, £ is the permittivity of free space, c is the speed of light and a/(\r) is
the a.c. polarizability evaluated at \;. Because P; >> P, to first order the trapping
potential in the radial direction V¢ ong is proportional to P; and the periodic axial
trapping potential U, is proportional to ./ P1P,. In contrast to previous experiments
that generate synthetic gauge fields by periodically shaking the optical lattice
potential®*~3, here the lattice potential is kept constant, and it is the probing laser
itself that induces the SOC.

Band preparation. In Extended Data Fig. 1, we demonstrate the way in which
the inter-band transitions can be used for band preparation. Extended Data
Fig. 1a shows spectroscopy of the carrier and inter-band transitions from the initial
|g)o state. To prepare atoms exclusively in the n,=1 band, a clock laser pulse
is applied to the |g)o— |e) blue sideband transition, which is at a detuning of
6/(2m) = v, — E,/(2mh) =35kHz for U,/E,=30.5. A strong clearing pulse is then
applied to remove any remaining atoms in |g), leaving atoms in |e) unperturbed.
The remaining atoms are thus purified in the n,= 1 Bloch band and can be used
for further experiments or measurements. Extended Data Fig. 1b shows spec-
troscopy of the sidebands following this protocol, with the anharmonicity of the
band spacing resulting in an unequal frequency spacing between the |e); — |g)2
and |e); — |g)o sideband transitions about the |e); — [g); carrier transition. The
transitions out of |e), from Fig. 1d are shown for comparison. In contrast to
previous experiments®**?>, no band relaxation was observed out of the |e); state
over a waiting time of greater than 500 ms, owing to the dilute atomic conditions
achieved in our experiment.

Measurements of axial heating and loss rates. The axial heating rate in our lattice
was measured using spectroscopy of the axial motional sidebands. The atoms were
prepared in |e)o, and the clock laser was applied on resonance with the carrier tran-
sition for a variable wait time of up to 155ms. The atoms in |g) were removed with
a clearing pulse and spectroscopy of the remaining atoms in |e) was performed.
The axial sideband asymmetry was then used to determine the temperature and
heating rate. The measurement was performed in both the strong confinement
(U,/E,~200) and tunnelling-allowed (U,/E, ~ 10) regimes. In both cases, the
results were consistent with no axial heating over the 155-ms wait time. This is
consistent with previous measurements of the temperature dependence of the clock
transition coherence?.

The loss rates out of |e) were measured by preparing the atoms in |e), leaving
the atoms in the dark for a variable wait time of up to 1.5s and then counting the
number of atoms in the |e) and |g) states. Loss of atoms due to inelastic p-wave
e—e scattering was observed with a density-dependent loss rate consistent with
previous measurements®®. For the atomic densities used here, the measured loss
rate corresponded to approximately 1.5s! and so did not have an impact on the
measurements presented, owing to their shorter timescales. For future many-body
experiments with higher desired densities, the temperature can be lowered by
loading the lattice from a Fermi-degenerate gas (S. L. Campbell et al., manuscript
in preparation), in which case the inelastic p-wave e-e collisions will be greatly
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suppressed. An additional one-body loss rate of approximately 0.2s™! was
observed, consistent with the vacuum-limited lifetime in the chamber. Finally, a
le) — |g) spin-flip rate of about 0.1s! was observed, consistent with previously
measured two-photon Raman scattering from the lattice light via the *P; state®’.
Although this spin-flip rate is negligible for the measurements presented here,
it may set a limit on future SOC experiments, potentially requiring a different
lattice geometry.

Theoretical methods. Perturbative model. For the experimental temperatures
and loading conditions we used, to an excellent approximation we can treat the
coupling between the axial and radial degrees of freedom perturbatively and
expand equation (4) up to second order in r:

V(r,2) = Vi(2) 4+ Vi(r) + nVeoupi(r, 2) + O(r*)

with V,(2) = — U,cos¥(ki.2), Vi(r) = mw’r?/2 and Viguu(r, 2) = — V,(1)sin®(k12).
Here, w, = 2./ (U, +Vions)/ (mwg) , m is the atom mass and 1= U,/(U, + Veongt) is
an expansion parameter. To zeroth order in 7, the Hamiltonian is separable in r
and z coordinates. In this limit, the radial eigenfunctions are harmonic oscillator
functions (r|n,,v) = b, (1) With eigenenergies E,, , = hw(Jv| 421, 4+ 1)

parameterized by the radial quantum number n,=0, 1, ... and the azimuthal
quantum number —n, <wv < n,. The axial eigenfunctions are Bloch functions
(2|nz, q) = ¥, 4(2) with aband structure E,,.(q). For the cosinusoidal potential in
consideration, the Bloch functions and band structure can be obtained analytically
in terms of even and odd Mathieu functions

Y,..(2) = MathieuC|a(g, U-/(4E.)), U/(4E,), 2|
+ iMathieuS {a(q, U./(4E;)), Uz/(4Er))Z]

and

Enz(q)/Er = ﬂ(q, Uz/(4Er))

where the parameter a is the characteristic Mathieu value, for suitably chosen
n,-dependent ranges of g.
Treating Veoupi(7, 2) using first-order perturbation theory in 7 yields the energies

1 .
Enpnpi(q) =Ep,u+ Eny(q) — ET]Enn’U<nZ’ ‘1|5m2(kLz)‘”z’ q)

This expression generalizes that obtained in ref. 20 in the deep lattice limit to
include quasi-momentum dependence of the energies and beyond-lowest-order
anharmonic effects in the axial dimension. We can also analytically compute
the first-order corrections in terms of the unperturbed band energies using the
Feynman-Hellman theorem:

(n2rq L, 6Enz(q)]

sin?(ki2)|nz, q) = [5 BU
z

This term has both g-independent and g-dependent components. The former
lead to thermally dependent shifts in the mean band energies and the latter give a
renormalization of the tunnelling rate, which depends on the radial temperature.
We explicitly checked the validity of the perturbative energy expression by
numerically finding the exact eigenstates of equation (4)3.

Line shapes. To evaluate the line shapes we perform a thermal average using
Boltzmann distributions with radial and axial temperatures T, and T, respectively.
The contribution to the line shape from the (th axial sideband, assuming atoms
are initially populating the ¢, band and internal state o = = (here + is for gand
—isfore),is

2

q, (Lo, nz,q)q, (Lo, 1z, 1, v) | 204, o[t ket
pE= vk z é > :Ee’:'fz 1| sin2 E‘Qf’:f,%"n“ (5)
Nz,NpU,q 'On/z,f,q,n,,,?;

/
wheren;, =n, + {yand

g = | Pl (0 s t1,0q + 6) = B @) /AP
is the effective Rabi frequency,
Qg 2nz +6,q+ 6[e™/X<|n., q)

are the Rabi frequencies and (2 is the ‘bare’ Rabi frequency. In the regime in which
the tight-binding approximation is valid (that is, not very shallow lattices), £2,,, ¢4
is a slowly varying function of q. On the other hand, it has a strong dependence on
£and for|£] > 0is suppressed by the Lamb-Dicke parameter 7, , = ky/h/(2w.m),
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resulting in an effective Rabi frequency for the first sidebands (£ = £ 1) that is
approximately an order of magnitude below that of the carrier.
We have also introduced the Boltzmann factors

9. (Lo, 12, q) = exp{—DB,[En, +£000(9) — E00(0)]}

q,(ZO’ Nz Ny U) = eXP| - %E [Enz+io,nr,v(ql) - Enz+[0,0,0(q/)]
7

with (,,=1/kgT,, and L the total number of lattice sites. Z=3"

Nz, q,Np,U
q,(lo, nz, 4)q,(€o, 1z, 1y, v) is the partition function.

There are three leading mechanisms that lead to broadening of the line shape.
One arises from the thermal population of different quasi-momentum states com-
bined with the finite momentum transfer by the probe laser when interrogating the
clock states. This type of motion-induced broadening, which is a direct signature
of the SOC mechanism, is the lattice analogue of Doppler broadening?’, generally
discussed in the context of the spectra of free particles. For the lattice case, instead
of plane waves carrying specific momentum, we need to think about Bloch waves
described by two quantum numbers—the quasi-momentum and the band index.
The second broadening mechanism is power broadening arising for strong Rabi
pulses. For our spectroscopic parameters, only the carrier transition is affected
by this mechanism. The third source of broadening is the coupling between the
radial and axial degrees of freedom, and so is strongly determined by the trapping
frequencies and radial temperature. At short probing times (less than T pulses),
this type of broadening in the carrier transition can be characterized by using a
temperature-dependent tunnelling rate, as we explain below. For the sidebands,
axial-radial coupling is the leading broadening mechanism?’, and it has been
shown that this mechanism is well captured by the perturbative approach.

However, the first-order perturbative approach neglects the radial dependence
of the Rabi frequencies and radial sideband transitions induced by the laser.
As discussed in detail in ref. 20, the omitted higher-order terms can lead to a
dephasing of the coherent oscillations in Péi at long times compared to a 7 pulse
and induce additional broadening of the sideband spectra. Nevertheless, those
effects can be accounted for by using an effective radial temperature, which
we used as an effective fitting parameter, and by performing a time-average of
equation (5) for the case of long probe times:

2
pr_l q,(lo, 1z, 9)q, (Lo, 121y, 0) | 207 04 ©)
L=y Z 7z Qj:eff
NzMp0,q nl,lq,npv

The clock spectroscopy shown in Fig. 1c was taken by applying the clock laser at
high power (£2=27 x 200 Hz) and for many Rabi periods (during 80 ms), and so
we used equation (6) to model the experiment and treated the radial temperature
as a fitting parameter. The radial temperatures that provided the best fit varied
between 7pK and 9 uK and so were higher than the radial temperatures measured
experimentally through motional spectroscopy of the sidebands, consistent with
previous detailed studies of the sideband line shapes?.

For the carrier transition, the dominant decoherence mechanism arising from
radial sideband transitions manifests at long probing times as dephasing. This
effect is shown in Extended Data Fig. 2, where it can be seen that the perturbative
model (equation (5) with £=0) does an excellent job for pulses shorter than a
w pulse. However, for the longer pulse used (Extended Data Fig. 2e), the perturbative
theory captures only the width of the line shape and not its amplitude.
Theoretical fit function to extract the VHS splittings. The coupling between the
radial and axial degrees of freedom can be accounted for in the carrier line shape
by defining an effective thermally averaged tunnelling rate. In the regime in which
the tight-binding approximation is valid,

(AEpn, (D) = (Ennpoo(@ + ) = Enpn,ooq))
~ — 2hJ} [cos(q + ¢) — cos(q)]

where (-) denotes radial thermal averaging, and n, and v the radial and azimuthal
harmonic oscillator mode numbers. Therefore, we can replace the effective Rabi

coupling _Qf:g o0 for the carrier (£ = 0):
Qo QETq) = [ 22 4 (264 4]1 sin(6/2) sin(6/2 + )

where | Z’z is the thermally averaged tunnelling rate and £2,,_ ¢, is the Rabi coupling
for the (th axial sideband. Even when the tight-binding approximation no longer
holds, we can reproduce the VHS splittings by matching the thermally averaged
bandwidth, computed from the analytic expression for the perturbative energies
given above, to the tight-binding expression:

maxg(AEu, u,0(q)) — ming(AE,, ,,.(q)) = 8hJ1 sin(¢/2)

This expression, together with the approximation that all atoms are initially in the
lo=0,1band and that 4] Z') < kT, is used to fit the carrier line shapes shown in
Fig. 2, by convolving the resulting Rabi line shape with the joint transition density
of states Dy, 7;:

2 |47 sin(/2)| )
_ o} 0 2
Pim g 2 w=y [ Pantog T
Sl 4 (4T sin(o/2) 000 €
where
1

T ~|#sin0/2) << |4 sinto/2)
Dy rle) =1, [4]28 sm(qﬁ/Z)} —e

0 otherwise

When fitting this function to the split line data of the type shown in Fig. 2a, b to
extract the VHS splitting plotted in Fig. 2¢, the only free parameters used are a
single parameter for the thermally averaged tunnel coupling J and an additional
parameter for the amplitude of the split line. The amplitude is required as a free
parameter only when a pulse longer than a single w pulse is used to increase the
excitation fraction. The no-free-parameter theory predictions plotted in Fig. 2¢
were generated by applying the perturbative model to measured spectra of the
motional sidebands at each axial trapping potential. As mentioned above, the radial
temperatures used for the perturbative model varied between 7pK and 9 uK.
Chiral Bloch vector dynamics. To model the chiral Bloch vector dynamics, the
Rabi oscillations measured after preparing the atoms within a window of quasi-
momenta centred around g" and with width Aq are expressed as

2
00,0

02
—_— SInl
20g" +q— Dgp2)

5 1
Po@) =52
Aq qelq

t e N
- g +q-20gp)

To model the window, we simulate the atom preparation using a 7 pulse
(£2=27 x 10Hz) with five different initial pulse detunings §". Because the Rabi
frequency and tunnelling rates are comparable, the window is relatively broad,
resulting in dephasing of the quasi-momentum-dependent Rabi oscillations shown
in Fig. 4d when a second, stronger Rabi pulse is applied. Extended Data Fig. 3
shows the expected quasi-momentum distributions. Additionally, for the
theoretical lines presented in Fig. 4, we set A=4] % sin(¢/2)=2m x 67 s~ and
Aq=h/a.

Data availability. The data supporting the findings of this study are available
within the paper and its Extended Data.
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Extended Data Figure 1 | Bloch band preparation and spectroscopy. a, Spectroscopy of atoms prepared in |g), reveals the band spacing of the lattice,
with inter-band transitions colour-coded by the final band. b, Spectroscopy of atoms in |e);, prepared by driving the |g)o— |e); transition shown in a and
then removing any remaining atoms in |g). The spectrum for atoms in |e) from Fig. 1d is shown for comparison (dashed grey line).
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Extended Data Figure 2 | Rabi line shape modelling. a—e, Theoretical modelling of carrier line shapes starting from the |g)o (a—c) or |e); (d, e) state.
For the ground band transitions (a—c), all data were taken using a  pulse, and are well reproduced by a perturbative model (solid lines). Three specific
cases are shown covering from the deep-lattice regime (U, ~ 65E,; a) to the moderate-lattice regime (U,~ 10E; b), and down to the shallow-lattice
limit (U, ~ 3E,; c). For the first excited band transitions, the data in the deeper-lattice case (U, ~ 21.3E,), taken with a = pulse, are well reproduced by
the perturbative model (d). However, for the case of U,~ 16E, where a longer pulse was used, the perturbative theory, which ignores radial sideband

transitions induced by the laser, captures only the width of the line shape and not its amplitude (e).
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= —4Jsin ¢/2 § = —2J sin(¢/2) d =2Jsin(¢/2) § = 4Jsin(¢/2)
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Extended Data Figure 3 | Modelling of quasi-momentum selection. Theoretical probability distribution P(q, n,) of quasi-momentum and radial
quantum number n, of |e) excitations resulting from exciting a thermal distribution in |g) with a 50-ms = pulse. The lattice depth is U, ~

in a tunnelling rate of J~ 17 Hz. The distribution of atoms among ¢q is broadened owing to the fact that the Rabi frequency and tunnelling rates are
comparable, but can be made narrower by decreasing the Rabi frequency.

16E,, resulting
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