
2834 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 11, JUNE 1, 2018

On Nonconvex Decentralized Gradient Descent
Jinshan Zeng and Wotao Yin

Abstract—Consensus optimization has received considerable at-
tention in recent years. A number of decentralized algorithms have
been proposed for convex consensus optimization. However, to the
behaviors or consensus nonconvex optimization, our understand-
ing is more limited. When we lose convexity, we cannot hope that
our algorithms always return global solutions though they some-
times still do. Somewhat surprisingly, the decentralized consensus
algorithms, DGD and Prox-DGD, retain most other properties that
are known in the convex setting. In particular, when diminishing
(or constant) step sizes are used, we can prove convergence to a
(or a neighborhood of) consensus stationary solution under some
regular assumptions. It is worth noting that Prox-DGD can handle
nonconvex nonsmooth functions if their proximal operators can
be computed. Such functions include SCAD, MCP, and �q quasi-
norms, q ∈ [0, 1). Similarly, Prox-DGD can take the constraint to
a nonconvex set with an easy projection. To establish these proper-
ties, we have to introduce a completely different line of analysis, as
well as modify existing proofs that were used in the convex setting.

Index Terms—Nonconvex dencentralized computing, consen-
sus optimization, decentralized gradient descent method, proximal
decentralized gradient descent.

I. INTRODUCTION

W E CONSIDER an undirected, connected network of n
agents and the following consensus optimization prob-

lem defined on the network:

minimize
x∈Rp

f(x) �
n∑

i=1

fi(x), (1)

where fi is a differentiable function only known to the agent
i. We also consider the consensus optimization problem in the
following differentiable+proximable∗ form:

minimize
x∈Rp

s(x) �
n∑

i=1

(fi(x) + ri(x)), (2)
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∗We call a function proximable if its proximal operator proxαf (y) �

argminx {αf (x) + 1
2 ‖x − y‖2} is easy to compute.

where fi, ri are differentiable and proximable functions, respec-
tively, only known to the agent i. Each function ri is possibly
non-differentiable or nonconvex, or both.

The models (1) and (2) find applications in decentralized
averaging, learning, estimation, and control. Some typical ap-
plications include: (i) the distributed compressed sensing prob-
lems [14], [30], [39], [45], [49]; (ii) distributed consensus [9],
[29], [55], [58], [61], [69]; (iii) distributed and parallel machine
learning [15], [21], [33], [43], [55]. More specifically, in these
applications, each fi can be: 1) the data-fidelity term (possibly
nonconvex) in statistical learning and machine learning [15],
[62]; 2) nonconvex utility functions used in applications such
as resource allocation [6], [20]; 3) empirical risk of deep neural
networks with nonlinear activation functions [3]. The proximal
function ri can be taken as: 1) convex penalties such as nons-
mooth �1-norm or smooth �2-norm; 2) the indicator function for
a closed convex set (or a nonconvex set with an easy projection)
[4], that is, ri(x) = 0 if x satisfies the constraint and∞ other-
wise; 3) nonconvex penalties such as �q quasi-norm (0 ≤ q < 1)
[11], [49], smoothly clipped absolute deviation (SCAD) penalty
[16] and the minimax concave penalty (MCP) [68].

When fi’s are convex, the existing algorithms include the
(sub)gradient methods [8], [10], [24], [37], [40], [46], [59],
[65], and the primal-dual domain methods such as the decen-
tralized alternating direction method of multipliers (DADMM)
[9], [51], [52], DLM [31], and EXTRA [53], [54]. When fi’s
are nonconvex, some existing results include [4], [5], [18], [27],
[35], [36], [56], [57], [60], [62], [69]. In spite of the algorithms
and their analysis in these works, the convergence of the simple
algorithm Decentralized Gradient Descent (DGD) [40] under
nonconvex fi’s is still unknown. Furthermore, although DGD is
slower than DADMM, DLM and EXTRA on convex problems,
DGD is simpler and thus easier to extend to a variety of settings
such as [23], [38], [47], [64], where online processing and delay
tolerance are considered. Therefore, we expect our results to
motivate future adoptions of nonconvex DGD.

This paper studies the convergence of two algorithms: DGD
for solving problem (1) and Prox-DGD for problem (2). In each
DGD iteration, every agent locally computes a gradient and then
updates its variable by combining the average of its neighbors’
with the negative gradient step. In each Prox-DGD iteration,
every agent locally computes a gradient of fi and a proximal
map of ri , as well as exchanges information with its neighbors.
Both algorithms can use either a fixed step size or a sequence of
decreasing step sizes.

When the problem is convex and a fixed step size is used,
DGD does not converge to a solution of the original problem
(1) but a point in its neighborhood [65]. This motivates the
use of decreasing step sizes such as in [10], [24]. Assuming
fi’s are convex and have Lipschitz continuous and bounded
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TABLE I
COMPARISONS ON DIFFERENT ALGORITHMS FOR CONSENSUS SMOOTH OPTIMIZATION PROBLEM (1)

gradients, [10] shows that decreasing step sizes αk = 1√
k

lead

to a convergence rate O( ln k
k ) of the running best of objec-

tive errors. [24] uses nested loops and shows an outer-loop
convergence rateO( 1

k 2 ) of objective errors, utilizing Nesterov’s
acceleration, provided that the inner loop performs substantial
consensus computation. Without a substantial inner loop, their
single-loop algorithm using the decreasing step sizes αk = 1

k 1 / 3

has a reduced rate O( ln k
k ).

The objective of this paper is two-fold: (a) we aim to show,
other than losing global optimality, most existing convergence
results of DGD and Prox-DGD that are known in the convex
setting remain valid in the nonconvex setting, and (b) to achieve
(a), we illustrate how to tailor nonconvex analysis tools for
decentralized optimization. In particular, our asymptotic exact
and inexact consensus results require new treatments because
they are special to decentralized algorithms.

The analytic results of this paper can be summarized as
follows.

a) When a fixed step sizeα is used and properly bounded, the
DGD iterates converge to a stationary point of a Lyapunov
function. The difference between each local estimate of x
and the global average of all local estimates is bounded,
and the bound is proportional to α.

b) When a decreasing step sizeαk = O(1/(k + 1)ε) is used,
where 0 < ε ≤ 1 and k is the iteration number, the ob-
jective sequence converges, and the iterates of DGD are
asymptotically consensual (i.e., become equal one an-
other), and they achieve this at the rate ofO(1/(k + 1)ε).
Moreover, we show the convergence of DGD to a station-
ary point of the original problem, and derive the conver-
gence rates of DGD with different ε for objective functions
that are convex.

c) The convergence analysis of DGD can be extended to the
algorithm Prox-DGD for solving problem (2). However,
when the proximable functions ri’s are nonconvex, the
mixing matrix is required to be positive definite and a
smaller step size is also required. (Otherwise, the mixing
matrix can be non-definite.)

The detailed comparisons between our results and the existing
results on DGD and Prox-DGD are presented in Tables I and
II. The global objective error rate in these two tables refers

to the rate of {f(x̄k )− f(xopt)} or {s(x̄k )− s(xopt)}, where
x̄k = 1

n

∑n
i=1 xk(i) is the average of the kth iterate and xopt is a

global solution. The comparisons beyond DGD and Prox-DGD
are presented in Section IV and Table III.

New proof techniques are introduced in this paper, par-
ticularly, in the analysis of convergence of DGD and Prox-
DGD with decreasing step sizes. Specifically, the convergence
of objective sequence and convergence to a stationary point
of the original problem with decreasing step sizes are justi-
fied via taking a Lyapunov function and several new lemmas
(cf. Lemmas 9, 12, and the proof of Theorem 2). Moreover,
we estimate the consensus rate by introducing an auxiliary se-
quence and then showing both sequences have the same rates
(cf. the proof of Proposition 3). All these proof techniques are
new and distinguish our paper from the existing works such as
[4], [10], [18], [24], [35], [40], [57], [62]. It should be men-
tioned that during the revision of this paper, we found some
recent, related but independent work on the convergence of
nonconvex decentralized algorithms including [19], [21], [22],
[33]. We will give detailed comparisons with these work lat-
ter. Some numerical results can be found in [67] due to page
limit.

The rest of this paper is organized as follows. Section II de-
scribes the problem setup and reviews the algorithms. Section III
presents our assumptions and main results. Section IV discusses
related works. Section V presents the proofs of our main results.
We conclude this paper in Section VI.

Notation: Let I denote the identity matrix of the size n× n,
and 1 ∈ Rn denote the vector of all 1’s. For the matrix X , XT

denotes its transpose, Xij denotes its (i, j)th component, and

‖X‖ �
√〈X,X〉 =

√∑
i,j X

2
ij is its Frobenius norm, which

simplifies to the Euclidean norm when X is a vector. Given
a symmetric, positive semidefinite matrix G ∈ Rn×n , we let
‖X‖2G � 〈X,GX〉 be the induced semi-norm. Given a function
h, dom(f) denotes its domain.

II. PROBLEM SETUP AND ALGORITHM REVIEW

Consider a connected undirected network G = {V, E}, where
V is a set of n nodes and E is the edge set. Any edge (i, j) ∈ E
represents a communication link between nodes i and j. Let
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TABLE II
COMPARISONS ON DIFFERENT ALGORITHMS FOR CONSENSUS COMPOSITE OPTIMIZATION PROBLEM (2)

TABLE III
COMPARISONS ON SCENARIOS APPLIED FOR DIFFERENT NONCONVEX DECENTRALIZED ALGORITHMS�

x(i) ∈ Rp denote the local copy of x at node i. We reformulate
the consensus problem (1) into the equivalent problem:

minimize
x

1T f(x) �
n∑

i=1

fi(x(i)),

subject to x(i) = x(j ) , ∀(i, j) ∈ E , (3)

where x ∈ Rn×p , f(x) ∈ Rn with

x �

⎛

⎜⎜⎜⎝

– xT(1) –
– xT(2) –

...
– xT(n) –

⎞

⎟⎟⎟⎠ , f(x) �

⎛

⎜⎜⎜⎝

f1(x(1))
f2(x(2))

...
fn (x(n))

⎞

⎟⎟⎟⎠ .

In addition, the gradient of f(x) is

∇f(x) �

⎛

⎜⎜⎜⎝

– ∇f1(x(1))T –
– ∇f2(x(2))T –

...
– ∇fn (x(n))T –

⎞

⎟⎟⎟⎠ ∈ Rn×p . (4)

The ith rows of the matrices x and ∇f(x), and vector f(x),
correspond to agent i. The analysis in this paper applies to any

integer p ≥ 1. For simplicity, one can let p = 1 and treat x
and ∇f(x) as vectors (rather than matrices).

The algorithm DGD [40] for (3) is described as follows:
Pick an arbitrary x0 . For k = 0, 1, . . . , compute

xk+1 ←Wxk − αk∇f(xk ), (5)

whereW is a mixing matrix andαk > 0 is a step-size parameter.
Similarly, we can reformulate the composite problem (2) as

the following equivalent form:

minimize
x

n∑

i=1

(fi(x(i)) + ri(x(i))),

subject to x(i) = x(j ) , ∀(i, j) ∈ E . (6)

Let r(x) �
∑n

i=1 ri(x(i)). The algorithm Prox-DGD can be
applied to the above problem (6):

Prox-DGD: Take an arbitrary x0 . For k = 0, 1, . . . , perform

xk+1 ← proxαk r (Wxk − αk∇f(xk )), (7)

where the proximal operator is

proxαk r (x) � argmin
u∈Rn ×p

{
αkr(u) +

‖u− x‖2
2

}
. (8)
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III. ASSUMPTIONS AND MAIN RESULTS

This section presents all of our main results.

A. Definitions and Assumptions

Definition 1 (Lipschitz differentiability): A function h is
called Lipschitz differentiable if h is differentiable and its gra-
dient ∇h is Lipschitz continuous, i.e., ‖∇h(u)−∇h(v)‖ ≤
L‖u− v‖,∀u, v ∈ dom(h), where L > 0 is its Lipschitz
constant.

Definition 2 (Coercivity): A function h is called coercive if
‖u‖ → +∞ implies h(u)→ +∞.

The next definition is a property that many functions have
(see [63, Sec. 2.2] for examples) and can help obtain whole
sequence convergence† from subsequence convergence.

Definition 3 (Kurdyka-Łojasiewicz (KŁ) property [2], [7],
[34]): A function h : Rp → R ∪ {+∞} has the KŁ property at
x∗ ∈ dom(∂h) if there exist η ∈ (0,+∞], a neighborhood U
of x∗, and a continuous concave function ϕ : [0, η)→ R+ such
that:

i) ϕ(0) = 0 and ϕ is differentiable on (0, η);
ii) for all s ∈ (0, η), ϕ′(s) > 0;

iii) for all x in U ∩ {x : h(x∗) < h(x) < h(x∗) + η}, the
KŁ inequality holds

ϕ′
(
h(x)− h(x∗)) · dist

(
0, ∂h(x)

) ≥ 1. (9)

Proper lower semi-continuous functions that satisfy the KŁ
inequality at each point of dom(∂h) are called KŁ functions.

Assumption 1 (Objective): The objective functions fi :
Rp → R ∪ {+∞}, i = 1, . . . , n, satisfy the following:

1) fi is Lipschitz differentiable with constant Lfi > 0.
2) fi is proper (i.e., not everywhere infinite) and coercive.
The sum

∑n
i=1 fi(x(i)) is Lf -Lipschitz differentiable with

Lf � maxi Lfi (this can be easily verified via the definition of
∇f(x) as shown in (4)). In addition, each fi is lower bounded
following Part (2) of the above assumption.

Assumption 2 (Mixing matrix): The mixing matrix W =
[wij ] ∈ Rn×n has the following properties:

1) (Graph) If i �= j and (i, j) /∈ E , then wij = 0, otherwise,
wij > 0.

2) (Symmetry) W = WT .
3) (Null space property) null{I −W} = span{1}.
4) (Spectral property) I �W � −I.
By Assumption 2, a solution xopt to problem (3) satisfies

(I −W )xopt = 0. Due to the symmetric assumption of W ,
its eigenvalues are real and can be sorted in the nonincreasing
order. Let λi(W ) denote the ith largest eigenvalue of W . Then
by Assumption 2,

λ1(W ) = 1 > λ2(W ) ≥ · · · ≥ λn (W ) > −1.

Let ζ be the second largest magnitude eigenvalue of W . Then

ζ = max{|λ2(W )|, |λn (W )|}. (10)

†Whole sequence convergence from any starting point is referred to as “global
convergence” in the literature. Its limit is not necessarily a global solution.

B. Convergence Results of DGD

We consider the convergence of DGD with both a fixed step
size and a sequence of decreasing step sizes.

1) Convergence Results of DGD With a Fixed Step Size: The
convergence result of DGD with a fixed step size (i.e., αk ≡ α)
is established based on the Lyapunov function [65]:

Lα (x) � 1T f(x) +
1
2α
‖x‖2I−W . (11)

It is worth reminding that convexity is not assumed.
Theorem 1 (Global convergence): Let {xk} be the sequence

generated by DGD (5) with the step size 0 < α < 1+λn (W )
Lf

.

Let Assumptions 1 and 2 hold. Then {xk} has at least
one accumulation point x∗, and any such point is a sta-
tionary point of Lα (x). Furthermore, the running best rates‡
of the sequences§ {‖xk+1 − xk‖2}, and {‖∇Lα (xk )‖2}, and
{‖ 1

n 1T∇f(xk )‖2} are o( 1
k ). The convergence rate of the se-

quence { 1
K

∑K−1
k=0 ‖ 1

n 1T∇f(xk )‖2} is O( 1
K ).

In addition, ifLα satisfies the KŁ property at an accumulation
point x∗, then {xk} globally converges to x∗.

Remark 1: Let x∗ be a stationary point of Lα (x), and thus

0 = ∇f(x∗) + α−1(I −W )x∗. (12)

Since 1T (I −W ) = 0, (12) yields 0 = 1T∇f(x∗), indicating
that x∗ is also a stationary point to the separable function∑n

i=1 fi(x(i)). Since the rows of x∗ are not necessarily iden-
tical, we cannot say x∗ is a stationary point to Problem (3).
However, the differences between the rows of x∗ are bounded,
following our next result below adapted from [65]:

Proposition 1 (Consensual bound on x∗): For each iteration
k, define x̄k � 1

n

∑n
i=1 xk(i) . Then, it holds for each node i that

‖xk(i) − x̄k‖ ≤
αD

1− ζ , (13)

where D is a universal bound of ‖∇f(xk)‖ defined in
Lemma 6 (Section V.A), ζ is the second largest magnitude
eigenvalue of W specified in (10). As k →∞, (13) yields the
consensual bound

‖x∗(i) − x̄∗‖ ≤
αD

1− ζ ,

where x̄∗ � 1
n

∑n
i=1 x∗(i) .

Take x0 = 0 for proof simplicity. This proposition can be
proved by applying Lemma 7 (Section V.C) to

xk − x̄k = −α
k−1∑

j=0

(
Wk−1−j − 1

n
11T

)
∇f(xj ).

In Proposition 1, the consensual bound is proportional to the
step size α and inversely proportional to the gap between the
largest and the second largest magnitude eigenvalues of W .

Let us compare the DGD iteration with the iteration of cen-
tralized gradient descent (15) for f(x). Averaging the rows of

‡Given a nonnegative sequence ak , its running best sequence is bk =
min{ai : i ≤ k}. We say ak has a running best rate of o(1/k) if bk = o(1/k).
§These quantities naturally appear in the analysis, so we keep the squares.
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(5) yields the following comparison:

DGD averaged: x̄k+1 ← x̄k − α
(

1
n

n∑

i=1

∇fi(xk(i))
)
. (14)

Centralized: x̄k+1 ← x̄k − α
(

1
n

n∑

i=1

∇fi(x̄k )
)
. (15)

Apparently, DGD approximates centralized gradient descent by
evaluating ∇f(i) at local variables xk(i) instead of the global
average. We can estimate the error of this approximation as

∥∥∥∥∥
1
n

n∑

i=1

∇fi(xk(i))−
1
n

n∑

i=1

∇fi(x̄k )
∥∥∥∥∥

≤ 1
n

n∑

i=1

‖∇fi(xk(i))−∇fi(x̄k )‖ ≤
αDLf
1− ζ .

Unlike the convex analysis in [65], it is impossible to bound
the difference between the sequences of (14) and (15) without
convexity because the two sequences may converge to different
stationary points of Lα .

Remark 2: The KŁ assumption on Lα in Theorem 1 can be
satisfied if each fi is a sub-analytic function. Since ‖x‖2I−W is
obviously sub-analytic and the sum of two sub-analytic func-
tions remains sub-analytic, Lα is sub-analytic if each fi is so.
See [63, Sec. 2.2] for more details and examples.

Proposition 2 (KŁ convergence rates): Let the assumptions
of Theorem 1 hold. Suppose that Lα satisfies the KŁ inequal-
ity at an accumulation point x∗ with ψ(s) = cs1−θ for some
constant c > 0. Then, the following convergence rates hold:

a) If θ = 0, xk converges to x∗ in finitely many iterations.
b) If θ ∈ (0, 1

2 ], ‖xk − x∗‖ ≤ C0τ
k for all k ≥ k∗ for some

k∗ > 0, C0 > 0, τ ∈ [0, 1).
c) If θ ∈ ( 1

2 , 1), ‖xk − x∗‖ ≤ C0k
−(1−θ)/(2θ−1) for all k ≥

k∗, for certain k∗ > 0, C0 > 0.
Note that the rates in parts (b) and (c) of Proposition 2 are of

the eventual type.
Using fixed step sizes, our results are limited because the

stationary point x∗ of Lα is not a stationary point of the orig-
inal problem. We only have a consensual bound on x∗. To ad-
dress this issue, the next section uses decreasing step sizes and
presents better convergence results.

2) Convergence of DGD With Decreasing Step Sizes: The
positive consensual error bound in Proposition 1, which is pro-
portional to the constant step size α, motivates the use of prop-
erly decreasing step sizesαk = O( 1

(k+1)ε ), for some 0 < ε ≤ 1,
to diminish the consensual bound to 0. As a result, any accu-
mulation point x∗ becomes a stationary point of the original
problem (3). To analyze DGD with decreasing step sizes, we
add the following assumption.

Assumption 3 (Bounded gradient): For any k, ∇f(xk ) is
uniformly bounded by some constant B > 0, i.e., ‖∇f(xk )‖
≤ B.

Note that the bounded gradient assumption is a regular as-
sumption in the convergence analysis of decentralized gradient
methods (see, [4], [5], [18], [27], [35], [36], [56], [57], [62] for
example), even in the convex setting [24] and also [10], though
it is not required for centralized gradient descent.

We take the step size sequence:

αk =
1

Lf (k + 1)ε
, 0 < ε ≤ 1, (16)

throughout the rest part of this section. (The numerator 1 can
be replaced by any positive constant.) By iteratively applying
iteration (5), we obtain the following expression

xk = Wkx0 −
k−1∑

j=0

αjW
k−1−j∇f(xj ). (17)

Proposition 3 (Asymptotic consensus rate): Let Assump-
tions 2 and 3 hold. Let DGD use (16). Let x̄k � 1

n 11T xk .
Then, ‖xk − x̄k‖ converges to 0 at the rate of O(1/(k + 1)ε).

According to Proposition 3, the iterates of DGD with de-
creasing step sizes can reach consensus asymptotically (com-
pared to a nonzero bound in the fixed step size case in
Proposition 1). Moreover, with a larger ε, faster decaying step
sizes generally imply a faster asymptotic consensus rate. Note
that (I −W )x̄k = 0 and thus ‖xk‖2I−W = ‖xk − x̄k‖2I−W .
Therefore, the above proposition implies the following result.

Corollary 1: Apply the setting of Proposition 3. ‖xk‖2I−W
converges to 0 at the rate of O(1/(k + 1)2ε).

Corollary 1 shows that the sequence {xk} in the (I −W )
semi-norm can decay to 0 at a sublinear rate. For any global
consensual solution xopt to problem (3), we have ‖xk −
xopt‖2I−W = ‖xk‖2I−W so, if {xk} does converge to xopt , then
their distance in the same semi-norm decays at O(1/k2ε).

Theorem 2 (Convergence): Let Assumptions 1, 2 and 3 hold.
Let DGD use step sizes (16). Then

a) {Lαk (xk )} and {1T f(xk )} converge to the same limit;
b) limk→∞ 1T∇f(xk ) = 0, and any limit point of {xk} is a

stationary point of problem (3);
c) In addition, if there exists an isolated accumulation point,

then {xk} converges.
In the proof of Theorem 2, we will establish

∞∑

k=0

(
α−1
k (1 + λn (W ))− Lf

)‖xk+1 − xk‖2 <∞,

which implies that the running best rate of the sequence
{‖xk+1 − xk‖2} is o(1/k1+ε). Theorem 2 shows that the ob-
jective sequence converges, and any limit point of {xk} is a
stationary point of the original problem. However, there is no
result on the convergence rate of the objective sequence to an
optimal value, and it is generally difficult to get such a rate
without convexity.

Although our primary focus is nonconvexity, next we assume
convexity and present the objective convergence rate, which has
an interesting relation with ε.

For any x ∈ Rn×p , let f̄(x) �
∑n

i=1 fi(x(i)). Even if fi’s are
convex, the solution to (3) may be non-unique. Thus, let X∗ be
the set of solutions to (3). Given xk , we pick the solution xopt =
ProjX∗(xk ) ∈ X∗. Also let fopt = f̄(xopt) be the optimal value
of (1). Define the ergodic objective:

f̄K =
∑K

k=0 αk f̄(x̄k+1)
∑K

k=0 αk
, (18)
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where x̄k+1 = 1
n (1T xk+1)1. Obviously,

f̄K ≥ min
k=1,...,K+1

f̄(x̄k ). (19)

Proposition 4 (Convergence rates under convexity): Let
Assumptions 1, 2 and 3 hold. Let DGD use step sizes (16). If
λn (W ) > 0 and each fi is convex, then {f̄K } defined in (18)
converges to the optimal objective value fopt at the following
rates:

a) if 0 < ε < 1/2, the rate is O( 1
K ε );

b) if ε = 1/2, the rate is O( lnK√
K

);
c) if 1/2 < ε < 1, the rate is O( 1

K 1−ε );
d) if ε = 1, the rate is O( 1

lnK ).
The convergence rates established in Proposition 4 are almost

as good as O( 1√
K

) when ε = 1
2 . As ε goes to either 0 or 1, the

rates become slower, and ε = 1/2 may be the optimal choice
in terms of the convergence rate. However, by Proposition 3,
a larger ε implies a faster consensus rate. Therefore, there is a
tradeoff to choose an appropriate ε in the practical implementa-
tion of DGD. The proof of this proposition can be found in [67]
due to page limit.

Remark 3: A related algorithm is the perturbed push-sum
algorithm, also called subgradient-push, which was proposed
in [25] for average consensus problem over time-varying net-
work. Its convergence in the convex setting was developed in
[41]. Recently, its convergence (to a critical point) in the non-
convex setting was established in [57] under some regularity
assumptions. Moreover, by utilizing perturbations on the up-
date process and the assumption of no saddle-point existence,
almost sure convergence to a local minimum of its perturbed
variant was also shown in [57].

Remark 4: Another recent algorithm is decentralized
stochastic gradient descent (D-PSGD) in [33] with support
to nonconvex large-sum objectives. An O( 1

K + 1√
nK

)-ergodic
convergence rate was established assuming K is sufficiently
large and the step size α is sufficiently small. When applied to
the setting of this paper, [33, Th. 1] implies that the sequence
{ 1
K

∑K−1
k=0 ‖ 1

n 1T∇f(xk )‖2} converges to zero at the rateO( 1
K )

if the step size 0 < α < 1−ζ
6Lf
√
n

, where ζ is defined in (10). From

Theorem 1, we can also establish such an O( 1
K )-ergodic con-

vergence rate of DGD as long as 0 < α < 1+λn (W )
Lf

. Similar
rates of convergence to a stationary point have also been shown
for different nonconvex algorithms in [18], [28], [57].

C. Convergence Results of Prox-DGD

Similarly, we consider the convergence of Prox-DGD with
both a fixed step size and decreasing step sizes. The iteration (7)
can be reformulated as

xk+1 = proxαk r (x
k − αk∇Lαk (xk)) (20)

based on which, we define the Lyapunov function

L̂αk (x) � Lαk (x) + r(x),

where we recallLαk (x) =
∑n

i=1 fi(x(i)) + 1
2αk
‖x‖2I−W . Then

(20) is clearly the forward-backward splitting (a.k.a., prox-
gradient) iteration for minimizex L̂αk (x). Specifically, (20)

first performs gradient descent to the differentiable function
Lαk (x) and then computes the proximal of r(x).

To analyze Prox-DGD, we should revise Assumption 1 as
follows.

Assumption 4 (Composite objective): The objective func-
tion of (6) satisfies the following:

1) Each fi is Lipschitz differentiable with constant Lfi > 0.
2) Each (fi + ri) is proper, lower semi-continuous, coercive.
As before,

∑n
i=1 fi(x(i)) is Lf -Lipschitz differentiable for

Lf � maxi Lfi .
1) Convergence Results of Prox-DGD With a Fixed Step Size:

Based on the above assumptions, we can get the global conver-
gence of Prox-DGD as follows.

Theorem 3 (Global convergence of Prox-DGD): Let {xk}
be the sequence generated by Prox-DGD (7) where the step
size α satisfies 0 < α < 1+λn (W )

Lf
when ri’s are convex; and

0 < α < λn (W )
Lf

, when ri’s are not necessarily convex (this case

requires λn (W ) > 0). Let Assumptions 2 and 4 hold. Then
{xk} has at least one accumulation point x∗, and any accumula-
tion point is a stationary point of L̂α (x). Furthermore, the run-
ning best rates of the sequences {‖xk+1 − xk‖2}, {‖gk+1‖2}
and {‖ 1

n 1T∇f(xk ) + 1
n 1T ξk‖2} (where gk+1 is defined in

Lemma 16, and ξk is defined in Lemma 17) are o( 1
k ). The

convergence rate of the sequence { 1
K

∑K−1
k=0 ‖ 1

n 1T (∇f(xk ) +
ξk )‖2} is O( 1

K ).
In addition, if L̂α satisfies the KŁ property at an accumulation

point x∗, then {xk} converges to x∗.
Theorem 3 assumes λn (W ) > 0 when ri’s are nonconvex. If

this fails to hold, we can establish with W being replaced by
I+W

2 . As this changes the spectral property of W , it may slow
down the convergence rate. The rate of convergence of Prox-
DGD can be also established by leveraging the KŁ property.

Proposition 5 (Rate of convergence of Prox-DGD): Under
assumptions of Theorem 3, suppose that L̂α satisfies the KŁ
inequality at an accumulation point x∗ with ψ(s) = c1s

1−θ for
some constant c1 > 0. Then the following hold:

a) If θ = 0, xk converges to x∗ in finitely many iterations.
b) If θ ∈ (0, 1

2 ], ‖xk − x∗‖ ≤ C1τ
k for all k ≥ k∗ for some

k∗ > 0, C1 > 0, τ ∈ [0, 1).
c) If θ ∈ ( 1

2 , 1), ‖xk − x∗‖ ≤ C1k
−(1−θ)/(2θ−1) for all k ≥

k∗, for certain k∗ > 0, C1 > 0.
2) Convergence of Prox-DGD With Decreasing Step Sizes:

In Prox-DGD, we also use the decreasing step size (16). To
investigate its convergence, the bounded gradient Assumption 3
should be revised as follows.

Assumption 5 (Bounded composite subgradient): For each
i, ∇fi is uniformly bounded by some constant Bi > 0, i.e.,
‖∇fi(x)‖ ≤ Bi for any x ∈ Rp . Moreover, ‖ξi‖ ≤ Bri for any
ξi ∈ ∂ri(x) and x ∈ Rp , i = 1 . . . , n.

Let B̄ �
∑n

i=1(Bi +Bri ). Then ∇f(x) + ξ (where ξ ∈
∂r(x) for any x ∈ Rn×p ) is uniformly bounded by B̄. Note
that the same assumption is used to analyze the convergence
of distributed proximal-gradient method in the convex setting
[8], [10], and also is widely used to analyze the convergence of
nonconvex decentralized algorithms like in [35], [36]. In light
of Lemma 17 (Section V.F), the claims in Proposition 3 and
Corollary 1 also hold for Prox-DGD.
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Proposition 6 (Asymptotic consensus and rate): Let As-
sumptions 2 and 5 hold. In Prox-DGD, use the step sizes (16).
There hold

‖xk − x̄k‖ ≤ C
⎛

⎝‖x0‖ζk + B̄

k−1∑

j=0

αjζ
k−1−j

⎞

⎠ ,

and ‖xk − x̄k‖ converges to 0 at the rate of O(1/(k + 1)ε).
Moreover, let x∗ be any global solution of the problem (6). Then
‖xk − x∗‖2I−W = ‖xk‖2I−W = ‖xk − x̄∗‖2I−W converges to 0
at the rate of O(1/(k + 1)2ε).

For any x ∈ Rn×p , define s̄(x) =
∑n

i=1 fi(x(i)) + ri(x(i)).
Let X† be a set of solutions of (6), xopt = ProjX†(xk ) ∈ X†,
and sopt = s̄(xopt) be the optimal value of (6). Define

s̄K =
∑K

k=0 αk s̄(x̄
k+1)

∑K
k=0 αk

. (21)

Theorem 4 (Convergence and rate): Let Assumptions 2, 4
and 5 hold. In Prox-DGD, use the step sizes (16). Then

a) {L̂αk (xk )} and {∑n
i=1 fi(x

k
(i)) + ri(xk(i))} converge to

the same limit;
b)
∑∞

k=0

(
α−1
k (1 + λn (W ))− Lf

)‖xk+1 − xk‖2 <∞
when ri’s are convex; or,

∑∞
k=0

(
α−1
k λn (W )−

Lf
)‖xk+1 − xk‖2 <∞ when ri’s are not necessarily

convex (this case requires λn (W ) > 0);
c) if {ξk} satisfies ‖ξk+1 − ξk‖ ≤ Lr‖xk+1 − xk‖ for each

k > k0 , some constant Lr > 0, and a sufficiently large
integer k0 > 0, then

lim
k→∞

1T (∇f(xk ) + ξk+1) = 0,

where ξk+1 ∈ ∂r(xk+1) is the one determined by the
proximal operator (8), and any limit point is a station-
ary point of problem (6).

d) in addition, if there exists an isolated accumulation point,
then {xk} converges.

e) furthermore, if fi and ri are convex and λn (W ) > 0, then
the claims on the rates of {f̄K } in Proposition 4 hold for
the sequence {s̄K } defined in (21).

Theorem 4(b) implies that the running best rate of ‖xk+1 −
xk‖2 is o( 1

k 1 + ε ). The additional condition imposed on {ξk} in
Theorem 4(c) is some type of restricted continuous regularity of
the subgradient ∂r with respect to the generated sequence. This
condition is only used to establish the desired inequality (68). If
∂r is locally Lipschitz continuous in a neighborhood of a limit
point, then such Lipschitz condition on {ξk} can generally be
satisfied, since {xk} is asymptotic regular, and thus xk will lies
in such neighborhood of this limit point when k is sufficiently
large. There are many kinds of proximal functions satisfying
such assumption as studied in [66] (see, Remark 5 for detailed
information). Theorem 4(e) gives the convergence rates of Prox-
DGD in the convex setting.

Remark 5: A typical proximal function r satisfying the as-
sumption of Theorem 4 (c) is the �q quasi-norm (0 ≤ q < 1)
widely studied in sparse optimization, which takes the form
r(x) =

∑p
i=1 |xi |q .¶ From [11] and [66], there is a positive

¶When q = 0, we denote 00 = 0.

lower bound for the absolute values of non-zero components of
the solutions of �q regularized optimization problem. Further-
more, as shown by [66, Property 1(b)], the sequence generated
by Prox-DGD also has the similar lower bound property. More-
over, by Theorem 4(b), we have ‖xk+1 − xk‖2 → 0 as k →∞.
Together with the lower bound property, we can easily obtain the
finite support and sign convergence of {xk}, that is, the supports
and signs of the non-zero components will freeze for sufficiently
large k. When restricted to such nonzero subspace, the gradi-
ent of ri(u) = |u|q is Lipschitz continuous for any |u| ≥ τ and
some positive constant τ , where τ denotes the lower bound.
Besides �q quasi-norm, there are some other typical cases like
SCAD [16] and MCP [68] widely used in statistical learning,
satisfying the condition (c) of this theorem.

Remark 6: One tightly related algorithm of Prox-DGD is
the projected stochastic gradient descent (Proj SGD) method
proposed by [4] for solving the constrained multi-agent opti-
mization problem with a convex constraint set. When restricted
to the deterministic case as studied in this paper, the convergence
results of Proj SGD are very similar to that of Prox-DGD (see,
Theorem 4 (c)–(d) in this paper and [4, Th. 1]). However, there
are some differences between [4] and this paper. In short, Proj
SGD in [4] uses convex constraints, which correspond to set-
ting r(x) in our paper as indicator functions of those convex sets.
Our paper also considers nonconvex functions like �q quasi-
norm (0 ≤ q < 1), SCAD, and MCP, which are widely used in
statistical learning. Another difference is that Proj SGD of [4]
uses adaptive-then-combine (ATC) and Prox-DGD of this pa-
per does combine-then-adaptive (CTA). By [4, Assumption 2],
Proj SGD uses decreasing step sizes like O(k−ε) for some
ε > 1/2. We study the step sizeαk = O(k−ε) for any 0 < ε ≤ 1
for Prox-DGD, as well as a fixed step size.

IV. RELATED WORKS AND DISCUSSIONS

We summarize some recent nonconvex decentralized al-
gorithms in Table III. Most of them apply to either the
smooth optimization problem (1) or the composite optimization
problem (2) and use diminishing step sizes. Although (1) is a
special case of (2) via letting ri(x) = 0, there are still differences
in both algorithm design and theoretical analysis. Therefore, we
divide their comparisons.

We first discuss the algorithms for (1). In [57], the authors
proved the convergence of perturbed push-sum for nonconvex
(1) under some regularity assumptions. The convergence results
for the deterministic perturbed push-sum algorithm obtained in
[57] are similar to those of DGD developed in this paper un-
der similar assumptions (see, Theorem 2 above and [57, Th. 3]).
The detailed comparisons between two algorithms are illustrated
in Remark 3. In [33], the sublinear convergence to a stationary
point of D-PSGD algorithm was developed under the nonconvex
setting. DGD studied in this paper can be viewed a special D-
PSGD with a zero variance. In [18], a primal-dual approximate
gradient algorithm called ZENITH was developed for (1). The
convergence of ZENITH was given in the expectation of con-
straint violation under the Lipschitz differentiable assumption
and other assumptions. The last one is the proximal primal-dual
algorithm (Prox-PDA) recently proposed in [21]. TheO( 1

k )-rate
of convergence to a stationary point was established in [21].
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Latter, a perturbed variant of Prox-PDA was proposed in [22]
for constrained composite (smooth+nonsmooth) optimization
problem with a linear equality constraint.

Table III includes three algorithms for solving the composite
problem (2), which are related to ours. All of them only deal
with convex ri (whereas ri in this paper can also be noncon-
vex). In [36], the authors proposed NEXT based on the previous
successive convex approximation (SCA) technique. The iterates
of NEXT include two stages, a local SCA stage to update local
variables and a consensus update stage to fuse the information
between agents. While NEXT has results similar to Prox-DGD
using diminishing step sizes. Another interesting algorithm is
decentralized Frank-Wolfe (DeFW) proposed in [62] for non-
convex, smooth, constrained decentralized optimization, where
a bounded convex constraint set is imposed. There are three
steps at each iteration of DeFW: average gradient computa-
tion, local variable evaluation by Frank-Wolfe, and information
fusion between agents. In [62], the authors established conver-
gence results similar to Prox-DGD under diminishing step sizes.
The stochastic version of DeFW has also been developed in [27]
for high-dimensional convex sparse optimization. The next one
is projected stochastic gradient algorithm (Proj SGD) [4] for
constrained, nonconvex, smooth consensus optimization with a
convex constrained set. The detailed comparison between Proj
SGD and Prox-DGD are shown in Remark 6.

Based on the above analysis, the convergence results of DGD
and Prox-DGD with decreasing step sizes of this paper are
comparable with most of the existing ones. However, we allow
nonconvex nonsmooth ri and are able to obtain the estimates
of asymptotic consensus rates. We also establish global conver-
gence using a fixed step size while it is only found in ZENITH.

V. PROOFS

In this section, we present the main proofs of our main theo-
rems and propositions.

A. Proof for Theorem 1

The sketch of the proof is as follows: DGD is interpreted as
the gradient descent algorithm applied to the Lyapunov func-
tion Lα , following the argument in [65]; then, the properties of
sufficient descent, lower boundedness, and bounded gradients
are established for the sequence {Lα (xk )}, giving subsequence
convergence of the DGD iterates; finally, whole sequence con-
vergence of the DGD iterates follows from the KŁ property
of Lα .

Lemma 1 (Gradient descent interpretation): The sequence
{xk} generated by the DGD iteration (5) is the same sequence
generated by applying gradient descent with the fixed step size
α to the objective function Lα (x).

A proof of this lemma is given in [65], and it is based on
reformulating (5) as the iteration:

xk+1 = xk − α(∇f(xk ) + α−1(I −W )xk )

= xk − α∇Lα (xk ). (22)

Although the sequence {xk} generated by the DGD iteration (5)
can be interpreted as a centralized gradient descent sequence of

function Lα (x), it is different to the gradient descent of the
original problem (3).

Lemma 2 (Sufficient descent of {Lα (xk )}): Let Assump-
tions 1 and 2 hold. Set the step size 0 < α < 1+λn (W )

Lf
. It holds

that

Lα (xk+1) ≤ Lα (xk )

− 1
2
(
α−1(1 + λn (W ))− Lf

)‖xk+1 − xk‖2 , ∀k ∈ N.

(23)

Proof: From xk+1 = xk − α∇Lα (xk ), it follows that

〈∇Lα (xk ),xk+1 − xk 〉 = −‖x
k+1 − xk‖2

α
. (24)

Since
∑n

i=1 ∇fi(x(i)) is Lf -Lipschitz, ∇Lα is Lipschitz with
the constant L∗ � Lf + α−1λmax(I −W ) = Lf + α−1(1−
λn (W )), implying

Lα (xk+1) ≤ Lα (xk ) + 〈∇Lα (xk ),xk+1 − xk 〉

+
L∗

2
‖xk+1 − xk‖2 . (25)

Combining (24) and (25) yields (23). �
Lemma 3 (Boundedness): Under Assumptions 1 and 2, if

0 < α < 1+λn (W )
Lf

, then the sequence {Lα (xk )} is lower

bounded, and the sequence {xk} is bounded, i.e., there exists a
constant B > 0 such that ‖xk‖ < B for all k.

Proof: The lower boundedness of Lα (xk ) is due to the
lower boundedness of each fi as it is proper and coercive
(Assumption 1 Part (2)).

By Lemma 2 and the choice of α, Lα (xk ) is nonincreas-
ing and upper bounded by Lα (x0) < +∞. Hence, 1T f(xk ) ≤
Lα (x0) implies that xk is bounded due to the coercivity of
1T f(x) (Assumption 1 Part (2)). �

From Lemmas 2 and 3, we immediately obtain the following
lemma.

Lemma 4 (�22-summable and asymptotic regularity‖): It holds
that

∑∞
k=0 ‖xk+1 − xk‖2 < +∞ and that ‖xk+1 − xk‖→0

as k →∞.
From (22), the result below directly follows:
Lemma 5 (Gradient bound): ‖∇Lα (xk )‖ ≤ α−1‖xk+1

− xk‖.
Based on the above lemmas, we get the global convergence

of DGD.
Proof of Theorem 1: By Lemma 3, the sequence {xk} is

bounded, so there exist a convergent subsequence and a limit
point, denoted by {xks }s∈N → x∗ as s→ +∞. By Lemmas 2
and 3, Lα (xk ) is monotonically nonincreasing and lower
bounded, and thereforeLα (xk )→ L∗ for someL∗ and ‖xk+1 −
xk‖ → 0 as k →∞. Based on Lemma 5, ‖∇Lα (xk )‖ → 0 as
k →∞. In particular, ‖∇Lα (xks )‖ → 0 as s→∞. Hence, we
have ∇Lα (x∗) = 0.

The running best rate of the sequence {‖xk+1 − xk‖2} fol-
lows from [13, Lemma 1.2] or [26, Th. 3.3.1]. By Lemma 5, the
running best rate of the sequence {‖∇Lα (xk )‖2} is o( 1

k ).

‖A sequence {ak } is said to be asymptotic regular if ‖ak+1 − ak ‖ → 0 as
k →∞.
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By (11), ∇Lα (xk ) = ∇f(xk ) + α−1(I −W )xk , which im-
plies 1

n 1T∇f(xk ) = 1
n 1T∇Lα (xk ) due to 1

n 1T (I −W ) = 0.
Thus,
∥∥∥∥

1
n
1T∇f(xk )

∥∥∥∥
2

=
∥∥∥∥

1
n
1T∇Lα (xk )

∥∥∥∥
2

≤ ‖∇Lα (xk )‖2 ,

which implies the running best rate of {‖ 1
n 1T∇f(xk )‖2} is also

o( 1
k ).
By Lemmas 2 and 5, it holds

‖∇Lα (xk )‖2 ≤ 2
α(1 + λn (W )−αLf ) (Lα (xk )−Lα (xk+1)),

which implies

1
K

K−1∑

k=0

‖∇Lα (xk )‖2 ≤ 2(Lα (x0)− L∗)
α(1 + λn (W )− αLf )K .

Moreover, note that ‖ 1
n 1T∇f(xk )‖2 ≤ ‖∇Lα (xk )‖2 . Thus, the

convergence rate of { 1
K

∑K−1
k=0 ‖ 1

n 1T∇f(xk )‖2} is O( 1
K ).

Similar to [2, Th. 2.9], we can claim the global convergence
of the considered sequence {xk}k∈N under the KŁ assumption
of Lα . �

Next, we derive a bound on the gradient sequence {∇f(xk )},
which is used in Proposition 1.

Lemma 6: Under Assumption 1, there exists a point y∗ sat-
isfying∇f(y∗) = 0, and the following bound holds

‖∇f(xk )‖ ≤ D � Lf (B + ‖y∗‖), ∀k ∈ N, (26)

where B is the bound of ‖xk‖ given in Lemma 3.
Proof: By the lower boundedness assumption (Assumption 1

Part (2)), the minimizer of 1T f(y) exists. Let y∗ be a minimizer.
Then by Lipschitz differentiability of each fi (Assumption 1
Part (1)), we have that∇f(y∗) = 0.

Then, for any k, we have

‖∇f(xk )‖ = ‖∇f(xk )−∇f(y∗)‖ ≤ Lf ‖xk − y∗‖
(Lemma 3) ≤ Lf (B + ‖y∗‖).

Therefore, we have proven this lemma. �

B. Proof for Proposition 2

Proof: Note that

‖∇Lα (xk+1)‖ ≤ ‖∇Lα (xk+1)−∇Lα (xk )‖+ ‖∇Lα (xk )‖
≤ L∗‖xk+1 − xk‖+ α−1‖xk+1 − xk‖
= (α−1(2− λn (W )) + Lf )‖xk+1 − xk‖,

where the second inequality holds for Lemma 5 and the Lip-
schitz continuity of ∇Lα with constant L∗ = Lf + α−1(1−
λn (W )). Thus, it shows that {xk} satisfies the so-called rela-
tive error condition as list in [2]. Moreover, by Lemmas 2 and
3, {xk} also satisfies the so-called sufficient decrease and con-
tinuity conditions as listed in [2]. Under such three conditions
and the KŁ property of Lα at x∗ with ψ(s) = cs1−θ , following
the proof of [2, Lemma 2.6], there exists k0 > 0 such that for

all k ≥ k0 , we have

2‖xk+1 − xk‖ ≤ ‖xk − xk−1‖+
cb

a

× ((Lα (xk )− Lα (x∗))1−θ − (Lα (xk+1)− Lα (x∗))1−θ),
(27)

where a� 1
2 (α−1(1+λn (W ))− Lf ) and b�α−1(2−λn (W ))

+ Lf . Then, an easy induction yields

k∑

t=k0

‖xt+1 − xt‖ ≤ ‖xk0 − xk0−1‖+
cb

a

× ((Lα (xk0 )− Lα (x∗))1−θ − (Lα (xk+1)− Lα (x∗))1−θ).

Following a derivation similar to the proof of [1, Th. 5], we can
estimate the rate of convergence of {xk} in the different cases
of θ. �

C. Proof for Proposition 3

In order to prove Proposition 3, we also need the following
lemmas.

Lemma 7: ([40, Proposition 1]) Let Wk �
k︷ ︸︸ ︷

W · · ·W be the
power ofW with degree k for any k ∈ N. Under Assumption 2,
it holds

∥∥∥∥W
k − 1

n
11T

∥∥∥∥ ≤ Cζk (28)

for some constant C > 0, where ζ is the second largest magni-
tude eigenvalue of W as specified in (10).

Lemma 8: ([48, Lemma 3.1]) Let {γk} be a scalar se-
quence. If limk→∞ γk = γ and 0 < β < 1, then limk→∞

∑k
l=0

βk−lγl = γ
1−β .

Proof of Proposition 3: By the recursion (17), note that

xk − x̄k =
(
Wk − 1

n
11T

)
x0

−
k−1∑

j=0

αj

(
Wk−1−j − 1

n
11T

)
∇f(xj ). (29)

Further by Lemma 7 and Assumption 3, we obtain

‖xk − x̄k‖ ≤
∥∥∥∥

(
Wk − 1

n
11T

)∥∥∥∥ ‖x0‖

+
k−1∑

j=0

αj

∥∥∥∥W
k−1−j − 1

n
11T

∥∥∥∥ · ‖∇f(xj )‖

≤ C
⎛

⎝‖x0‖ζk +B

k−1∑

j=0

αjζ
k−1−j

⎞

⎠ . (30)

Furthermore, by Lemma 8 and step sizes (16), we get
limk→∞ ‖xk − x̄k‖ = 0.

Let bk � (k + 1)−ε . To show the rate of ‖xk − x̄k‖, we only
need to show that

lim
k→∞

b−1
k ‖xk − x̄k‖ ≤ C∗
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for some 0 < C∗ <∞. Let j′k � [k − 1 + 2 logζ (b
−1
k )] (where

[x] denotes the integer part of x for any x ∈ R). Note that

b−1
k ‖xk − x̄k‖

≤ Cb−1
k

⎛

⎝‖x0‖ζk +B

k−1∑

j=0

αjζ
k−1−j

⎞

⎠

= C‖x0‖b−1
k ζk + CBb−1

k

j ′k∑

j=0

αjζ
k−1−j

+ CBb−1
k

k−1∑

j=j ′k +1

αjζ
k−1−j

� T1 + T2 + T3 , (31)

where the first inequality holds because of (30).
In the following, we will estimate the above three terms in

the right-hand side of (31), respectively. First, by the definition

of j′k , for any j ≤ j′k , we have b−1
k ζ

k −1−j
2 ≤ b−1

k ζ
k −1−j ′

k
2 ≤ 1.

Thus,

T2 ≤ CB
j ′k∑

j=0

αjζ
(k−1−j )/2 . (32)

Second, for j′k < j ≤ k − 1,

b−1
k αj ≤ (k + 1)ε

Lf (j′k + 1)ε
≤ (k + 1)ε

Lf (k − 1 + 2ε logζ (k + 1))ε
,

and also b−1
k αj ≥ (k+1)ε

Lf (k+1)ε = 1
Lf

. Thus, for any j′k < j ≤
k − 1, limk→∞ b−1

k αj = 1
Lf
. Furthermore, note that limk→∞

b−1
k ζk/2 = 0. Therefore, there exists a k∗ such that for k ≥ k∗,
b−1
k αj ≤ 2

Lf
and b−1

k ζk/2 ≤ 1. The above two inequalities im-
ply that for sufficiently large k,

T1 ≤ C‖x0‖ζk/2 , T3 ≤ 2CB
Lf

k−1∑

j=j ′k +1

ζk−1−j . (33)

From (32) and (33), we get

b−1
k ‖xk − x̄k‖ ≤ C‖x0‖ζk/2

+ CB

⎛

⎝
j ′k∑

j=0

αjζ
(k−1−j )/2 +

2
Lf

k−1∑

j=j ′k +1

ζk−1−j

⎞

⎠ . (34)

By Lemma 8 and (34), there exists a C∗ > 0 such that

lim
k→∞

b−1
k ‖xk − x̄k‖ ≤ C∗. (35)

We have completed the proof of this proposition. �

D. Proof for Theorem 2

To prove Theorem 2, we first note that similar to (22), the
DGD iterates under decreasing step sizes can be rewritten as

xk+1 = xk − αk∇Lαk (xk ), (36)

where Lαk (x) = 1T f(x) + 1
2αk
‖x‖2I−W , and we also need the

following lemmas.
Lemma 9 ([50]): Let {vt} be a nonnegative scalar sequence

such that

vt+1 ≤ (1 + bt)vt − ut + ct

for all t ∈ N, where bt ≥ 0, ut ≥ 0 and ct ≥ 0 with
∑∞

t=0 bt <∞ and
∑∞

t=0 ct <∞. Then the sequence {vt} converges to
some v ≥ 0 and

∑∞
t=0 ut <∞.

Lemma 10: Let αk satisfy (16). Then it holds

α−1
k+1 − α−1

k ≤ 2εLf (k + 1)ε−1 .

Proof: We first prove that

(1 + x)ε − 1 ≤ 2εx, ∀x ∈ [0, 1]. (37)

Let g(x) = (1 + x)ε − 1− 2εx. Then its derivative

g′(x) = ε(1 + x)ε−1 − 2ε < 0, ∀x ∈ [0, 1].

It implies g(x) ≤ g(0) = 0 for any x ∈ [0, 1], that is, the in-
equality (37) holds.

Note that

α−1
k+1 − α−1

k = Lf
(
(k + 2)ε − (k + 1)ε

)

= Lf (k + 1)ε
((

1 +
1

k + 1

)ε
− 1
)

≤ 2εLf (k + 1)ε−1 , (38)

where the last inequality holds for (37). �
The following shows that {(α−1

k+1 − α−1
k )‖xk+1‖2I−W } is

summable.
Lemma 11: Let Assumptions 1, 2, and 3 hold. In DGD,

use step sizes αk in (16). Then {(α−1
k+1 − α−1

k )‖xk+1‖2I−W }
is summable, i.e.,

∑∞
k=0(α

−1
k+1 − α−1

k )‖xk+1‖2I−W <∞.
Proof: Note that

‖xk+1‖2I−W = ‖xk+1 − x̄k+1‖2I−W
≤ (1− λn (W ))‖xk+1 − x̄k+1‖2 . (39)

By Lemma 10,

(α−1
k+1 − α−1

k )‖xk+1‖2I−W ≤ 2εLf (k + 1)ε−1‖xk+1‖2I−W
≤ 2εLf (k + 1)ε−1(1− λn (W ))‖xk+1 − x̄k+1‖2 . (40)

Furthermore, by (40) and Proposition 3, the sequence {(α−1
k+1

− α−1
k )‖xk+1‖2I−W } converges to 0 at the rate of O(1/(k

+ 1)1+ε), which implies that the sequence {(α−1
k+1 − α−1

k )
‖xk+1‖2I−W } is �1-summable, i.e.,

∑∞
k=0(α

−1
k+1 − α−1

k )‖xk+1

‖2I−W <∞. �
Lemma 12 (convergence of weakly summable sequence): Let
{βk} and {γk} be two nonnegative scalar sequences such that

a) γk = 1
(k+1)ε , for some ε ∈ (0, 1], k ∈ N;

b)
∑∞

k=0 γkβk <∞;
c) |βk+1 − βk | � γk ,

where “�”means that |βk+1 − βk | ≤Mγk for some constant
M > 0, then limk→∞ βk → 0.

We call a sequence {βk} satisfying Lemma 12 (a) and (b)
a weakly summable sequence since itself is not necessarily



2844 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 11, JUNE 1, 2018

summable but becomes summable via multiplying another non-
summable, diminishing sequence {γk}. It is generally impossi-
ble to claim that βk converges to 0. However, if the distance of
two successive steps of {βk} with the same order of the multi-
plied sequence γk , then we can claim the convergence of βk . A
special case with ε = 1/2 has been observed in [12].

Proof: By condition (b), we have

k+k ′∑

i=k

γiβi → 0, (41)

as k →∞ and for any k′ ∈ N.
In the following, we will show limk→∞ βk = 0 by contra-

diction. Assume this is not the case, i.e., βk � 0 as k →∞,
then lim supk→∞ βk � C∗ > 0. Thus, for every N > k0 , there
exists a k > N such that βk > C ∗

2 . Let

k′ �
[
C∗

4M
(k + 1)ε

]
,

where [x] denotes the integer part of x for any x ∈ R. By con-
dition (c), i.e., |βj+1 − βj | ≤Mγj for any j ∈ N, then

βk+i ≥ C∗

4
, ∀i ∈ {0, 1, . . . , k′}. (42)

Hence,

k+k ′∑

j=k

γjβj ≥ C∗

4

k+k ′∑

j=k

γj ≥ C∗

4

∫ k+k ′

k

(x+ 1)−εdx (43)

=

{
C ∗

4(1−ε)
(
(k + k′ + 1)1−ε − (k + 1)1−ε) , ε ∈ (0, 1),

C ∗
4 (ln(k + k′ + 1)− ln(k + 1)) , ε = 1.

Note that when ε ∈ (0, 1), the term (k + k′ + 1)1−ε − (k +
1)1−ε is monotonically increasing with respect to k, which im-
plies that

∑k+k ′
j=k γjβj is lower bounded by a positive constant

when ε ∈ (0, 1). While when ε = 1, noting that the specific form
of k′, we have

ln(k + k′ + 1)− ln(k + 1) = ln
(

1 +
k′

k + 1

)
= ln

(
1 +

C∗

4M

)
,

which is a positive constant. As a consequence,
∑k+k ′

j=k γjβj will
not go to 0 as k → 0, which contradicts with (41). Therefore,
limk→∞ βk = 0. �

Proof of Theorem 2: We first develop the following
inequality

Lαk + 1 (x
k+1) ≤ Lαk (xk ) +

1
2
(α−1

k+1 − α−1
k )‖xk+1‖2I−W

− 1
2
(
α−1
k (1 + λn (W ))− Lf

)‖xk+1 − xk‖2 , (44)

and then claim the convergence of the sequences {Lαk (xk )},
{1T f(xk )} and {xk} based on this inequality.

a) Development of (44): From xk+1 = xk − αk∇Lαk (xk ),
it follows that

〈∇Lαk (xk ),xk+1 − xk 〉 = −‖x
k+1 − xk‖2
αk

. (45)

Since
∑n

i=1 ∇fi(x(i)) is Lf -Lipschitz,∇Lαk is Lipschitz with
the constant Lk � Lf + α−1

k λmax(I −W ) = Lf + α−1
k (1−

λn (W )), implying

Lαk (xk+1)

≤ Lαk (xk ) + 〈∇Lαk (xk ),xk+1 − xk 〉+ Lk
2
‖xk+1 − xk‖2

= Lαk (xk )−
1
2
(
α−1
k (1 + λn (W ))− Lf

)‖xk+1 − xk‖2 .
(46)

Moreover,

Lαk + 1 (x
k+1)

= Lαk (xk+1) +
1
2
(α−1

k+1 − α−1
k )‖xk+1‖2I−W . (47)

Combining (46) and (47) yields (44).
b) Convergence of objective sequence: By Lemma 11 and

Lemma 9, (44) yields the convergence of {Lαk (xk )} and
∞∑

k=0

(
α−1
k (1 + λn (W ))− Lf

)‖xk+1 − xk‖2 <∞ (48)

which implies that ‖xk+1 − xk‖2 converges to 0 at the rate of
o(k−ε) and {xk} is asymptotic regular Moreover, notice that

α−1
k ‖xk‖2I−W = α−1

k ‖xk − x̄k‖2I−W
≤ (1− λn (W ))Lf (k + 1)ε‖xk − x̄k‖2 .

By Proposition 3, the term α−1
k ‖xk‖2I−W converges to 0 as

k →∞. As a consequence,

lim
k→∞

1T f(xk ) = lim
k→∞

(
Lαk (xk )−

‖xk‖2I−W
2αk

)

= lim
k→∞

Lαk (xk ).

c) Convergence to a stationary point: Let ∇̄f(xk ) �
1
n 11T∇f(xk ). By the specific form (16) of αk , we have

α−1
k (1 + λn (W ))− Lf

= α−1
k (1 + λn (W )− Lf αk )

≥ α−1
k

(
1 + λn (W )− 1

(k0 + 1)ε

)
(49)

for all k > k0 , where k0 = [(1 + λn (W ))−
1
ε ], i.e., the integer

part of (1 + λn (W ))−
1
ε . Note that

‖x̄k+1 − x̄k‖ =
∥∥∥∥

1
n
11T (xk+1 − xk )

∥∥∥∥

≤ ‖xk+1 − xk‖. (50)

Thus, (48), (49) and (50) yield
∞∑

k=0

α−1
k ‖x̄k+1 − x̄k‖2 <∞. (51)

By the iterate (5) of DGD, we have

x̄k+1 − x̄k = −αk ∇̄f(xk ). (52)
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Plugging (52) into (51) yields

∞∑

k=0

αk‖∇̄f(xk )‖2 <∞. (53)

Moreover,

|‖∇̄f(xk+1)‖2 − ‖∇̄f(xk )‖2 |
≤ ‖∇̄f(xk+1)− ∇̄f(xk )‖ · (‖∇̄f(xk+1)‖+ ‖∇̄f(xk )‖)
≤ 2B‖∇̄f(xk+1)− ∇̄f(xk )‖
≤ 2B‖∇f(xk+1)−∇f(xk )‖
≤ 2BLf ‖xk+1 − xk‖, (54)

where the second inequality holds by the bounded gradient
assumption (Assumption 3), the third inequality holds by the
specific form of ∇̄f(xk ), and the last inequality holds by the
Lipschitz continuity of ∇f . Note that

‖xk+1 − xk‖
= ‖xk+1 − x̄k+1 + x̄k+1 − x̄k + x̄k − xk‖
≤ ‖xk+1 − x̄k+1‖+ ‖x̄k − xk‖+ αk‖∇̄f(xk )‖
� αk , (55)

where the first inequality holds for the triangle inequality and
(52), and the last inequality holds for Proposition 3 and the
bounded assumption of∇f . Thus, (54) and (55) imply

|‖∇̄f(xk+1)‖2 − ‖∇̄f(xk )‖2 | � αk . (56)

By the specific form (16) of αk , (53), (56) and Lemma 12, it
holds

lim
k→∞

‖∇̄f(xk )‖2 = 0. (57)

As a consequence,

lim
k→∞

1T∇f(xk ) = 0. (58)

Furthermore, by the coercivity of fi for each i and the conver-
gence of {1T f(xk )}, {xk} is bounded. Therefore, there exists
a convergent subsequence of {xk}. Let x∗ be any limit point of
{xk}. By (57) and the continuity of∇f , it holds

1T∇f(x∗) = 0.

Moreover, by Proposition 3, x∗ is consensual. As a consequence,
x∗ is a stationary point of problem (3).

In addition, if x∗ is isolated, then by the asymptotic regularity
of {xk} (Lemma 4), {xk} converges to x∗ [44].

�

E. Proofs for Theorem 3 and Proposition 5

In order to prove Theorem 3, we need the following lemmas.
Lemma 13: ([10, Proposition 3]) Let h : Rd → R be a con-

tinuously differentiable function whose gradient is Lipschitz
continuous with constant Lh . Then for any x, y, u ∈ Rp ,

h(u) ≥ h(x) + 〈∇h(y), u− x〉 − Lh
2
‖x− y‖2 .

Lemma 14 (Sufficient descent of {L̂α (xk )}): Let Assump-
tions 2 and 4 hold. Results are given in two cases below:

C1: ri’s are convex. Set 0 < α < 1+λn (W )
Lf

.

L̂α (xk+1) ≤ L̂α (xk )

− 1
2
(
α−1(1 + λn (W ))− Lf

)‖xk+1 − xk‖2 ,∀k ∈ N.

(59)

C2: ri’s are not necessarily convex (in this case, we assume

λn (W ) > 0). Set 0 < α < λn (W )
Lf

.

L̂α (xk+1) ≤ L̂α (xk )

− 1
2
(
α−1λn (W )− Lf

)‖xk+1 − xk‖2 ,∀k ∈ N.

(60)

Proof: Recall from Lemma 2 that ∇Lα (x) is L∗-Lipschitz
continuous for L∗ = Lf + α−1(1− λn (W )), and thus

L̂α (xk+1)− L̂α (xk )

= Lα (xk+1)− Lα (xk ) + r(xk+1)− r(xk )

≤ 〈∇Lα (xk),xk+1 − xk 〉+ L∗

2
‖xk+1 − xk‖2

+ r(xk+1)− r(xk ). (61)

C1: From the convexity of r, (8), and (20), it follows that

0 = ξk+1 +
1
α

(
xk+1 − xk + α∇Lα (xk)

)
, ξk+1 ∈ ∂r(xk+1).

This and the convexity of r further give us

r(xk+1)− r(xk ) ≤ 〈ξk+1 ,xk+1 − xk 〉

= − 1
α
‖xk+1 − xk‖2 − 〈∇Lα (xk),xk+1 − xk 〉.

Substituting this inequality into the inequality (61) and then
expanding L∗ = Lf + α−1(1− λn (W )) yield

L̂α (xk+1)− L̂α (xk ) ≤ −
(

1
α
− L∗

2

)
‖xk+1 − xk‖2

= −1
2
(
α−1(1 + λn (W ))− Lf

)‖xk+1 − xk‖2 .

Sufficient descent requires the last term to be negative, thus
0 < α < 1+λn (W )

Lf
.

C2: From (8) and (20), it follows that the function r(u) +
‖u−(xk −α∇Lα (xk ))‖2

2α reaches its minimum at u = xk+1 . Com-
paring the values of this function at xk+1 and xk yields

r(xk+1)− r(xk ) ≤ 1
2α
‖xk − (xk − α∇Lα (xk))‖2

− 1
2α
‖xk+1 − (xk − α∇Lα (xk))‖2

= − 1
2α
‖xk+1 − xk‖2 − 〈∇Lα (xk),xk+1 − xk 〉.
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Substituting this inequality into (61) and expanding L∗ yield

L̂α (xk+1)− L̂α (xk ) ≤ −
(

1
2α
− L∗

2

)
‖xk+1 − xk‖2

= −1
2

(
α−1λn (W )− Lf

)‖xk+1 − xk‖2 .

Hence, sufficient descent requires 0 < α < λn (W )
Lf

. �
Lemma 15 (Boundedness): Under the conditions of

Lemma 14, the sequence {L̂α (xk )} is lower bounded, and the
sequence {xk} is bounded.

Proof: The lower boundedness of {L̂α (xk )} is due to
Assumption 4 Part (2).

By Lemma 14 and under a proper step size, L̂α (xk )
is nonincreasing and upper bounded by L̂α (x0). Hence,∑n

i=1(fi(x
k
(i)) + ri(xk(i))) is upper bounded by L̂α (x0). Con-

sequently, {xk} is bounded due to the coercivity of each fi + ri
(see Assumption 4 Part (2)). �

Lemma 16 (Bounded subgradient): Let ∂L̂α (xk+1) denote
the (limiting) subdifferential of L̂α , which is assumed to exist
for all k ∈ N. Then, there exists gk+1 ∈ ∂L̂α (xk+1) such that

‖gk+1‖ ≤ (α−1(2− λn (W )) + Lf )‖xk+1 − xk‖.
Proof: By the iterate (20), the following optimality condition

holds

0 ∈ α−1(xk+1 − xk + α∇Lα (xk )) + ∂r(xk+1), (62)

where ∂r(xk+1) denotes the (limiting) subdifferential of r at
xk+1 . For any ξk+1 ∈ ∂r(xk+1), it follows from (62) that

∇Lα (xk+1) + ξk+1

= α−1(xk − xk+1) + (∇Lα (xk+1)−∇Lα (xk )),

which immediate yields

‖∇Lα (xk+1) + ξk+1‖
≤ α−1‖xk+1 − xk‖+ ‖∇Lα (xk+1)−∇Lα (xk )‖
≤ (α−1 + L∗)‖xk+1 − xk‖
≤ (α−1(2− λn (W )) + Lf )‖xk+1 − xk‖.

Thus, then the claim of Lemma 16 holds. �
Based on Lemmas 14–16, we can easily prove Theorem 3

and Proposition 5.
Proof of Theorem 3: The proof of this theorem is similar to

that of Theorem 1 and thus is omitted. �
Proof of Proposition 5: The proof is similar to that of

Proposition 2. We shall however note that in (27), a = 1
2 (α−1

(1 + λn (W ))− Lf ) if ri’s are convex, while a = 1
2 (α−1λn

(W )− Lf ) if ri’s are not necessarily convex and λn (W ) > 0.
�

F. Proofs for Theorem 4 and Proposition 6

Based on the iterate (7) of Prox-DGD, we derive the following
recursion of the iterates of Prox-DGD, which is similar to (17).

Lemma 17 (Recursion of {xk}): For any k ∈ N,

xk = Wkx0 −
k−1∑

j=0

αjW
k−1−j (∇f(xj ) + ξj+1), (63)

where ξj+1 ∈ ∂r(xj+1) is the one determined by the proximal
operator (8), for any j = 0, . . . , k − 1.

Proof: By the definition of the proximal operator (8), the
iterate (7) implies

xk+1 + αkξ
k+1 = Wxk − αk∇f(xk ), (64)

where ξk+1 ∈ ∂r(xk+1), and thus

xk+1 = Wxk − αk (∇f(xk ) + ξk+1). (65)

By (65), we can easily derive the recursion (63). �
Proof of Proposition 6: The proof of this proposition is sim-

ilar to that of Proposition 3. It only needs to note that the subgra-
dient term∇f(xj ) + ξj+1 is uniformly bounded by the constant
B̄ for any j. Thus, we omit it here. �

To prove Theorem 4, we still need the following lemmas.
Lemma 18: Let Assumptions 2 and 4 hold. In Prox-DGD,

use the step sizes (16). Results are given in two cases below:
C1: ri’s are convex. For any k ∈ N,

L̂αk + 1 (xk+1) ≤ L̂αk (xk ) +
1
2
(α−1

k+1 − α−1
k )‖xk+1‖2I−W

− 1
2

(
α−1
k (1 + λn (W ))− Lf

)‖xk+1 − xk‖2 . (66)

C2: ri’s are not necessarily convex. For any k ∈ N,

L̂αk + 1 (xk+1) ≤ L̂αk (xk ) +
1
2
(α−1

k+1 − α−1
k )‖xk+1‖2I−W

− 1
2

(
α−1
k λn (W )− Lf

)‖xk+1 − xk‖2 . (67)

Proof: The proof of this lemma is similar to that of
Lemma 14 via noting that

L̂αk + 1 (x
k+1) = L̂αk (xk ) + (L̂αk + 1 (x

k+1)− L̂αk (xk+1))

+ (L̂αk (xk+1)− L̂αk (xk )),
and

L̂αk + 1 (x
k+1)− L̂αk (xk+1) =

1
2
(α−1

k+1 − α−1
k )‖xk+1‖2I−W .

While the term L̂αk (xk+1)− L̂αk (xk ) can be estimated simi-
larly by the proof of Lemma 14. �

Lemma 19: Let Assumptions 2, 4 and 5 hold. In Prox-DGD,
use the step sizes (16). If further each fi and ri are convex, then
for any u ∈ Rn×p , we have

L̂αk (xk+1)− L̂αk (u) ≤ 1
2αk

(‖xk − u‖2 − ‖xk+1 − u‖2).

The proof of this lemma can be found in [67] due to page
limit.

Proof of Theorem 4: Based on Lemmas 18 and 19, we can
prove Theorem 4. The proof of Theorem 4(a)–(d) is similar to
that of Theorem 2, where one minor difference is that (54) in
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the proof of Theorem 2 is updated as

|‖∇̄f(xk+1) + ξ̄k+1‖2 − ‖∇̄f(xk ) + ξ̄k‖2 |
≤ ‖(∇̄f(xk+1) + ξ̄k+1)− (∇̄f(xk ) + ξ̄k )‖
× (‖∇̄f(xk+1‖+ ‖∇̄f(xk ) + ξ̄k‖)
≤ 2B̄‖(∇̄f(xk+1) + ξ̄k+1)− (∇̄f(xk ) + ξ̄k )‖
≤ 2B̄‖(∇f(xk+1) + ξk+1)− (∇f(xk ) + ξk )‖
≤ 2B̄(Lf + Lr )‖xk+1 − xk‖, (68)

where ξ̄k � 1
n 11T ξk , and the final inequality holds for the

Lipschitz assumption on {ξk} for large k in Theorem 4(c).
The proof of Theorem 4(e) is very similar to that of

Proposition 4. �

VI. CONCLUSION

In this paper, we study the convergence behavior of the al-
gorithm DGD for smooth, possibly nonconvex consensus op-
timization. We consider both fixed and decreasing step sizes.
When using a fixed step size, we show that the iterates of DGD
converge to a stationary point of a Lyapunov function, which
approximates to one of the original problem. Moreover, we esti-
mate the bound between each local point and its global average,
which is proportional to the step size and inversely proportional
to the gap between the largest and the second largest magnitude
eigenvalues of the mixing matrix. This motivate us to study the
algorithm DGD with decreasing step sizes. When using decreas-
ing step sizes, we show that the iterates of DGD reach consensus
asymptotically at a sublinear rate and converge to a stationary
point of the original problem. We also estimate the convergence
rates of objective sequence in the convex setting using different
diminishing step size strategies. Furthermore, we extend these
convergence results to Prox-DGD designed for minimizing the
sum of a differentiable function and a proximal function. Both
functions can be nonconvex. If the proximal function is convex,
a larger fixed step size is allowed. These results are obtained by
applying both existing and new proof techniques.
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