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ABSTRACT

We analyzed several multi-year wind speed datasets from four different geographical locations. The probability density

functions (pdfs) of wind ramps from all these sites revealed remarkably similar shapes. The tails of the pdfs are much

heavier than a Gaussian distribution, and they also systematically depend on time increments. Quite interestingly, from

a purely statistical standpoint, the characteristics of the extreme ramp-up and ramp-down events are found to be almost

identical. With the aid of extreme value theory, we describe several other inherent features of extreme wind ramps in this

paper. Copyright c© 2018 John Wiley & Sons, Ltd.
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1. INTRODUCTION

One of the major challenges facing the wind energy industry is the accurate prediction of sudden and sharp fluctuations

in the wind field (a.k.a. wind ramps) near the lower part of the atmospheric boundary layer (ABL; [1, 2, 3, 4]). These

not-so-rare and inauspicious events can drastically modulate deficiencies (ramp down) and/or surpluses (ramp-up) in wind

power production causing disruptions in operations and energy supply balance. Therefore, as the demand for more reliable

wind power increases there is an ever-present need for further advancement in the understanding of how to properly

characterize and quantify the ramp events [5]. It is well-known in the literature that various meteorological factors can

contribute to ramp events including (but not limited to): thunderstorm outflows, low-level jets, dry lines, cold fronts [6].

Since most of these phenomena are location-specific (for example, dry lines occur predominantly over the southern Great

Plains of the US), one would naı̈vely expect the statistical properties of the ramp events to also be site-dependent. In this

paper, we confront this expectation with reality. By making use of long-term observational data from several field sites, we

demonstrate that a key trait of wind ramp statistics behaves in a quasi-universal manner.

Before delving into the detailed quantitative aspects, we provide qualitative support for our claim via Fig. 1. Here,

we have plotted the probability density functions (pdfs) of wind speed increments (δu) normalized by standard deviation

(σδu). For a specific time increment (τ ), the wind speed increments (or ramps) are defined as:

δu (t) = u (t+ τ)− u (t) (1)

where u(t) is the wind speed at time t. Positive (negative) values of δu signify ramp-up (down) events. From a wind

energy perspective, τ values on the order of a few minutes to a few hours (the so-called mesoscale regime) are of utmost

importance [5, 7, 8, 9]. As illustrative examples, in Fig. 1, we show the observed wind ramp pdfs corresponding to τ = 10
min (left panel) and τ = 60 min (right panel). A number of inferences can be drawn by visual inspection of this figure.

First and foremost, all the pdfs, representing four diverse geographical and meteorological conditions (ranging from coastal

environment to complex terrain), reveal remarkably similar shapes. They portray strong peakedness near the mode of the

distribution, and more importantly, they all possess tails which are much heavier than a Gaussian pdf. These tails seem to
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Figure 1. Probability density functions of wind ramps (δu) from four tall-tower sites (FINO1, Høvsøre, Cabauw, and NWTC). Multi-

year, 10-min averaged wind data measured by the topmost sensors on these towers are utilized here. Further details are provided

in Section 2. The wind increment values are normalized by the corresponding standard deviations (σδu). The left and right panels

represent time increments (τ ) of 10 min and 60 min, respectively. A Gaussian pdf is overlaid (dashed line) as a reference.

depend on τ in a subtle yet systematic manner. These unexpected findings inspired us to probe further into this problem

by addressing a suite of science questions in this paper:

• Do the pdf tails corresponding to the ramp-up and ramp down events behave differently?

• How do the tails depend on the height (above ground level)?

• What is the impact of aggregation (filtering) on the tails?

• Can the dependence of tail properties on the sample size be quantified?

To the best of our knowledge, none of these questions have been answered in the literature in a comprehensive manner.

We do point out that a handful of studies [10, 11, 12, 13, 14, 15, 16] provided important building blocks for our research.

Unfortunately, several of these papers focused on wind gusts, and thus, their findings cannot be very relevant for mesoscale

wind ramps. More critically, most of these studies utilized very limited amount of observational data (often with durations

of a few hours to merely a few days) and came up with conflicting results. For example, by analyzing only a few days worth

of data, Liu et al. [15] concluded that wind ramps follow truncated stable distributions. In a follow-up study, however, Liu

and Hu [16] arrived at an opposite conclusion when they made use of a slightly larger dataset. We argue that, in lieu of

converged statistics, the results from these past studies cannot be faithfully generalized.

The present study differs from the others in two areas. First, it primarily relies on rigorous statistical analyses for pdf

characterization instead of qualitative visual inspection. Second, it utilizes multi-year wind datasets from four tall-tower

sites: FINO 1 (North Sea), Høvsøre (Denmark), Cabauw (the Netherlands), and NWTC (USA). Since these sites are quite

diverse in nature, we have more confidence in generalizing the outcomes. In the following section, we briefly describe

these datasets.

2. DESCRIPTION OF WIND DATASETS

Over the past decades, the wind energy and boundary layer meteorology communities have invested significant resources in

installing and operating a few tall-towers around the world. A multitude of research-grade sensors (e.g., high-fidelity cup-

anemometers) are mounted on these towers at various heights. Owing to their periodic calibration and regular maintenance,

the meteorological datasets (including wind speed time-series) collected by these sensors are deemed to be of the highest

quality. Thus, it is not surprising that these datasets have been heavily utilized to advance our understanding of the lower

part of the ABL. For example, very recently, Kiliyanpilakkil et al. [17, 18] conducted rigorous scaling analyses of wind

datasets from three of these prominent tall-towers: FINO 1, Cabauw, and NWTC. We also leverage on the same datasets,

supplemented by measurements from Høvsøre, to demonstrate the statistical characterization of wind ramps. Table I, along

with the following subsections, provide more details into these locations.

2.1. FINO 1

It is an offshore platform in the North Sea [19, 20, 21]. It consists of a 100-m tall meteorological tower equipped with wind

speed measurement sensors (cup anemometers) at heights of 33 m, 40 m, 50 m, 60 m, 70 m, 80 m, 90 m, and 100 m. A
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Table I. Description of measurement sites

Site Elevation (m; mean sea level) Location No. of Months

FINO 1 0 54.01◦ N, 6.59◦ E 91

Høvsøre 0 58.44◦ N, 8.15◦ E 132

Cabauw - 0.7 51.97◦ N, 4.93◦ E 170

NWTC 1855 39.91◦ N, 105.23◦ W 132

total of 91 months of wind speed data collected over a period of nine years (2004–2012) are utilized in the present study.

Each time-series (output rate: 10-min) contains ∼ 478 thousand samples.

2.2. Høvsøre

This meteorological tower is situated in a rural area close to the west coast of Jutland, Denmark and played a pivotal role

in numerous wind energy studies [22, 23]. We analyze 10-min-average wind data from six levels: 10 m, 40 m, 60 m, 80 m,

100 m, and 116 m collected during the years 2005–2015. In this case, each time-series consists of ∼567 thousand samples.

2.3. Cabauw

The Cabauw Experimental Site for Atmospheric Research (CESAR) tower is located in the western part of the Netherlands

[24, 25, 26]. We use 170 months of 10-min-average wind speed data from the years 2001-2015 (∼ 736 thousand samples)

measured by propeller wind vanes at heights of 10 m, 20 m, 40 m, 80 m, 140 m, and 200 m.

2.4. NWTC

We analyze multi-year (2004–2014) wind data from a 80-m tall tower (called M2) located at the foothills of the Colorado

Rocky near Boulder, Colorado and maintained by the National Renewable Energy Laboratory (NREL) National Wind

Technology Center (NWTC). This location represents complex terrain and is prone to various wind flows and disturbances

[27]. The NWTC dataset includes 1-min averaged, cup anemometer-based, wind speed time series from four heights: 10

m, 20 m, 50 m, and 80 m. Each time-series is made up of ∼5.78 million points with virtually no data gaps.

3. METHODOLOGY

In order to investigate the tail features of the wind ramp events, we have borrowed a well-established methodology, called

the Hill plot [28], from the extreme value (EV) theory [29, 30, 31]. In this section, we explain this approach in detail by

using synthetically generated random variates from two heavy-tailed distributions.

By definition, a heavy-tailed distribution (F ) satisfies [32]:

F (x) = 1− F (x) ∼ λ

xγ
; x → ∞, γ > 0, (2)

where F is the so-called complementary cumulative distribution function (ccdf). λ is a positive constant and γ is known as

the tail-index (or shape parameter). In principle, γ can be estimated from the slope, − d logF (x)
d log x

[32]. However, in practice,

the most common approach is to invoke the concept of order statistics [33].

The rank-ordered values (in decreasing order) of x can be written as: Φk = xk, where k = 1, ..., N . If the variates x
follow Eq. (2), it is expected to exhibit the following power-law behavior (a.k.a. Zipf law; [34]):

Φk ∝
(

k

N

)− 1
γ

. (3)

Over the years, several estimators for γ have been proposed in the literature, including (but not limited to) Pickand’s

estimator [35], Hill estimator [36], and the Dekkers-Einmahl-de Haan estimator [37]. In this work, we use the popular Hill

estimator (γH ):

γH =

[

1

k

k
∑

i=1

log

(

Φi

Φk+1

)

]−1

, (4)

where k = 1, ..., N − 1. When γH is plotted against k, it is known as the Hill plot [28]. For EV distributions (e.g., Pareto),

estimated γH is supposed to stabilize with increasing values of k. In Fig. 2, we show an illustrative example utilizing

generalized Pareto (GP) distributed variates.
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The pdf of the GP distribution can be written as:

f(x) =

(

1

a

)(

1 +
c(x− b)

a

)−1−1/c

; x > b, c > 0, (5)

where a, b, c are the parameters of GP. By integrating this equation, one can derive the ccdf of GP as:

F (x) =

(

1 +
c(x− b)

a

)−1/c

. (6)

Thus, the ccdf of GP is expected to decline as a power-law with tail index γ = 1/c.
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Figure 2. Left panel: rank-order (a.k.a. Zipf) plots for generalized Pareto distributed variates with three different c values. The

parameters a and b are assumed to be equal to 1 and 0, respectively. Right panel: the estimated γH values for these cases. It

is clear that γH ≈ 1/c for k > 1000.

In Fig. 2 (left panel), the rank-order plots for the GP distribution are shown for three values of c. For each case, the

sample size is 107 and the parameters a and b are assumed to be equal to 1 and 0, respectively. By construction, only

positive random variates are generated in this case. The tail indices are determined via the Hill plot in the right panel of

Fig. 2. Clearly, the γH values rapidly stabilize towards 1
c

for all the three cases, as would be desired. This example attests

to the prowess of the Hill plot in estimating the tail indices from a rather simple EV distribution. Next, we investigate the

usefulness of the Hill plot using a far more complicated distribution with two distinct tail behaviors.

The generalized hyperbolic skew student’s t (GHSST) distribution is often used in financial modeling and risk

management [38, 39]. It has the innate ability to fit pdfs with heavy tails and significant asymmetry. A brief overview

of this distribution is provided in Appendix A. A realization of the GHSST variates is shown in the top-panel of Fig. 3.

Large positive values, signifying a heavy right tail, can be readily observed in this plot.

The pdf of the generated GHSST variates is shown in the middle-left panel of Fig. 3. For comparison, a Gaussian pdf

is overlaid on this plot. Clearly, both the left and right tails of the GHSST variates are much heavier than the Gaussian

pdf. They also show different decaying behaviors as evident in the middle-right panel. For large values of x, the right tail

portrays a quasi-linear appearance in this log-log representation. In other words, the right tail is characterized by a power-

law distribution which is in-line with the asymptotic limit discussed in Appendix A. In contrast, the left tail strongly departs

from linearity highlighting its mixed-exponential-power-law behavior. The rank-order plot, shown in the bottom-left panel

of Fig. 3, provides further supporting evidence.

At this point, we would like to point out that Eq. (2) has limited applicability in real-world scenarios. For such cases,

this equation should be generalized as:

F (x) = 1− F (x) ∼ L(x)

xγ
; x → ∞, γ > 0, (7)

where, L is a slowly varying function (e.g., exponential). For large x, L(x) may be approximated as a constant λ.

The tail indices from the GHSST variates are estimated via the Hill plot and shown in the bottom-right panel of Fig. 3.

These results should be interpreted carefully by taking into consideration Eq. (7). In the case of right tail, the γH values

stabilize rapidly as in the case of GP distributed variates. For the left tail, the γH values are significantly higher; also,

4 Wind Energ. 2018; 00:1–16 c© 2018 John Wiley & Sons, Ltd.
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Figure 3. A realization of the GHSST variates (sample size = 10
7) is generated using the following parameters: ν = 6, β = 0.5,

µ = −0.125, and δ = 1. A subset of these variates is shown in the top panel as an illustrative example. The mean of the variates is

depicted by the dashed red line. The green lines denote three times the standard deviation around the mean. The analytical (black

line; [39]) and sample (magenta circles) pdfs are shown in the middle-left panel. For comparison, a Gaussian pdf (dot-dashed line)

with zero mean and unit variance is overlaid on this panel. The tails of the GHSST and Gaussian pdfs are shown the middle-right

panel. Since the right and the left tails of the GHSST pdf behave differently, they are shown separately. Clearly, the right tail exhibits

a linear behavior in this log-log representation. Rank-order (a.k.a. Zipf) plots for the GHSST and Gaussian distributed variates are

shown in the bottom-left panel. Estimated tail indices (γH ) utilizing the Hill plot are documented in the bottom-right panel.

the stabilization is slightly slower (difficult to detect in this figure without zooming in). In this case, the exponential term

modulates the power-law tail. Please note that the estimated γH values are very high for the random Gaussian variates

and they never stabilize as the tails simply follow exponential behavior. In Fig. 4, we document the influence of sample

size on γH estimation using the GHSST variates. In the case of the right tail (exhibiting power-law behavior), γH values

are more-or-less insensitive to sample size (N ). In contrast, for the left tail, γH keeps increasing as N increases. This

non-convergence essentially corroborates the fact that the left tail of the GHSST pdf does not exhibit a purely power-law

behavior; rather, it follows a mixed-exponential-power-law.∗

In summary, with the aid of randomly generated variates, we have demonstrated that the Hill plots can be very

effective in characterizing different types of tail behaviors. It is also computationally very efficient. For these reasons,

in the following section, we will invoke this methodology to address the science questions posed in the Introduction.

The idealized examples shown in Figs. 2, 3, and 4 will provide guidance for interpreting the wind ramp characteristics

observed within various observational datasets.

∗In a recent paper [40], we reported a similar trend for the normal inverse Gaussian (NIG) distribution, which also possesses mixed-exponential-power-law tails.
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Figure 4. Sensitivity of estimated γH values with respect to sample size. All the GHSST variates are generated using the same

parameters as in Fig. 3. The left and right panels correspond to the left and right tails, respectively.

Figure 5. Complementary cumulative distribution function (F ) from the NWTC1min and NWTC10min datasets at z = 80 m are shown.

The left and right panels represent time increments (τ ) of 10 min and 60 min, respectively. The wind increment values are normalized

by the corresponding standard deviations (σδu). A Gaussian pdf is overlaid (dashed line) as a reference.

4. RESULTS

Given that the NWTC dataset offers the largest sample size, we select it first for comprehensive analysis. The original

granularity of the wind time-series is 1-min. Henceforth, we refer to this series as NWTC1min. In order to study the

effects of aggregation on the tail characteristics, we created a 10-min-average series (sample size: ∼578 thousand) by

simple moving averaging (followed by downsampling) of the NWTC1min series. This new series will be identified as

NWTC10min. In addition to the results reported in the current section, these series are also utilized in Appendices B and

C to investigate the issues of nonstationarity and correlation.

The ccdf (F ) for both the NWTC1min and NWTC10min time-series are shown in Fig. 5. The left and right panels

represent τ = 10 min, and τ = 60 min, respectively. On these plots, F for a Gaussian distribution is also shown for

comparison. In this log-log representation, we only focus on the right tail (ramp-up) of the pdf. Several remarks can be

made from this figure. First of all, both the NWTC1min and NWTC10min cases clearly portray non-Gaussian tails. The

implication of this heavy-tail behavior is rather crucial for the wind energy community. For example, the exceedance

probability of a strong ramp-up event of magnitude 5σδu is very small (much less than 10−6) if one assumes Gaussianity.

According to observations, however, the exceedance probability is almost 10−2. In other words, the assumption of

Gaussianity leads to severe underestimation of extreme wind ramp events.

In Fig. 1, we reported that the tails of the wind ramp pdfs systematically depend on τ . Thus, it is not surprising that the

same dependence is also evident from the ccdfs. From Fig. 5, one can discern that, in comparison with τ = 10 min, the

right tail decays faster in the case of τ = 60 min. Later on, we will establish that this trend is actually monotonic in the

range of τ = 10 – 360 min.

According to Fig. 5, the agreement between NWTC1min- and NWTC10min-based F curves are excellent up to

δu ≈ 5σδu . Beyond that point, the NWTC1min-based F curve starts to decline faster. With the aid of the Hill plots,

we will further investigate if this discrepancy is due to the disparity in sample sizes or it is an artifact of aggregation.
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Figure 6. The Hill plots for wind ramp distributions based on the NWTC1min time-series. The red (solid) and blue (dashed) lines

represent ramp-up (δu+) and ramp-down (δu−) cases, respectively. The top-left, top-right, bottom-left, and bottom-right panels

correspond to the following scenarios, respectively: (i) τ= 10 min, z = 80 m; (ii) τ= 60 min, z = 80 m; (iii) τ= 180 min, z = 80 m;

and (iv) τ= 180 min, z = 10 m.

The Hill plots for NWTC1min are shown in Fig. 6. The values of γH are found to be noticeably higher for larger τ
values. In other words, the wind ramp pdf tails decay faster for larger τ values, which is in-line with our earlier finding.

Both the ramp-up (noted as δu+) and ramp-down (δu−) cases follow similar trends. However, the γH curves never fully

stabilize for either case in the considered range (1 < k ≤ 3000). Thus, we can deduce that the wind ramp pdf tails do not

obey power-laws. Later on, we will explore further if these NWTC data-based results also hold for other datasets.

In order to quantify the effect of sample size on the γH values, we adopted a Monte-Carlo-type strategy. From the

NWTC1min time-series (sample size 5.78 million), we extract one hundred contiguous subsets from random locations.

Each subset is called NWTCi

sub and contains 578 thousand samples. The index i varies from 1 to 100 to demarcate each

subset. We then perform Hill plot analysis on each subset separately and compute ensemble statistics. These ensemble Hill

plots are shown in Fig. 7. The ramp-up and ramp-down cases are shown separately in the left and right panels, respectively.

The overall trends of the γH values reported in Fig. 6 and Fig. 7 are qualitatively very similar. However, the magnitudes

of γH for the NWTCi

sub cases are significantly lower than the NWTC1min series. We would like to remind the readers that

a similar sample size dependency was reported earlier in the case of the left tail (depicting a mixed-exponential-power-law

behavior) of the GHSST pdf (refer to bottom-left panel of Fig. 4). Thus, on the basis of the Hill plot analyses and ccdf

plots, we can confidently claim that the wind ramp distributions do not exhibit power-law tails.

In order to further bolster our claim, we have computed γH for three other locations: FINO 1, Høvsøre, and Cabauw.

Wind data from the topmost sensor levels are utilized. Figs. 8 – 10 show the Hill plots for three different values of τ , 10

min, 60 min and 180 min, respectively. In each of these figures, we also included the Hill plot for the NWTC10min series.

Based on these figures, several assertions can be made. First of all, the Hill plots from all the locations look remarkably

similar. For (almost) all the cases, the differences between the ramp-up and ramp-down events are marginal. At the same

time, for all plots, the values of γH do not stabilize and continue to decrease with increasing k. Thus, we can safely rule

out power-law being a viable candidate for wind ramp distributions. In-line with our earlier finding, the γH values exhibit

dependence on τ . Thus, stable distributions [33] should not be used to characterize wind ramp distributions.

Earlier, we have concluded that the γH values strongly depend on sample size. Now, in order to probe the impact of

aggregation, we compare the γH values for the NWTC10min series (bottom right panels of Figs. 8 – 10) against the

corresponding values from the NWTCi

sub series (reported in Fig. 7). Please note that these series have identical sample

size; albeit, they have different granularity. From the plots, it is quite evident that the γH values from the NWTC10min and

NWTCi

sub series are very much comparable. Thus, within the limited filtering range of 1-min to 10-min, the aggregation

effect is negligible. However, one should not downplay the effects of sample size.
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Figure 7. The Hill plots for wind ramp distributions based on the subsets of 1-min-average NWTC wind speed time-series. Each

subset contains contiguous 578 thousand samples. A total of one hundred randomly selected subsets are utilized for these plots.

The top, middle, and bottom panels represent τ = 10 min, 60 min, and 180 min, respectively. Ramp-up and ramp-down results are

shown in left and right panels, respectively. The solid lines, dark shaded areas, and the light shaded areas correspond to the medians,

25th-75th percentile ranges, and 10th-90th percentile ranges, respectively.

Thus far, we have only focused on wind data from the topmost sensors of all the four meteorological towers. It would

be interesting to find out if/how the γH values depend on sensor height. Instead of plotting several individual Hill plots,

we opt for plotting averaged γH values so as to report all the results succinctly in Figs. 11 and 12. The values of 〈γH〉
are computed for 2000 ≤ k ≤ 3000. We intentionally (and incorrectly) assume that over this range the values of γH have

fully stabilized. Despite this ad-hoc assumption, the results are quite revealing. For both the ramp-up and ramp-down

cases, 〈γH〉 increase monotonically from ∼ 4 (at τ = 10 min) to ∼ 6− 7 (at τ = 360 min). The diversity in 〈γH〉 values

across various heights is rather small (especially for τ < 180 min). Among all the locations, the spread of 〈γH〉 is the

most significant at Cabauw; the 〈γH〉 curves from the top two sensors, located at heights of 140 m and 200 m, seem to

branch out from others for τ > 180 min. We speculate that certain meteorological processes (e.g., low-level jets) influence

the wind ramp statistics at higher altitudes. However, we need more observational datasets from higher altitudes (possibly

collected by lidars and/or sodars) to shed further light on this intriguing finding.

5. CONCLUSIONS

In this study, we analyzed several long-term wind speed datasets comprised of four different geographical locations,

from offshore to complex terrain. We showed that the wind ramp pdfs from all the sites reveal amazingly similar shape

characteristics. Most interestingly, the tails of the wind ramp pdfs are much heavier than Gaussian and decay faster as time

increments increase. With the aid of the Hill plots, we showed that the extreme ramp-up and ramp-down events behave
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Figure 8. The Hill plots of wind ramp distributions from four field sites: FINO1 (top-left panel; sensor height: 100 m), Høvsøre (top-right

panel; sensor height: 116 m), Cabauw (bottom-left panel; sensor height: 200 m), NWTC (bottom-right panel; sensor height: 80 m).

For all the cases, 10-min-averaged wind speed are utilized. The time increment (τ ) is 10 min. The ramp-up (δu+) and ramp-down

(δu−) statistics are denoted by red (solid) and blue (dashed) lines, respectively.
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Figure 9. Same as Fig. 8, except for time increment (τ ) of 60 min.

similarly from a statistical point-of-view. Moreover, the tail-index statistics exhibited minimal dependence with respect to

height above the ground.

Another important aspect of these results showed that the tails of the wind ramp distributions do not follow a power-law

distribution, rather modulated by a slowly varying function. We speculate this function to be an exponential. Therefore, in

future work, we will use several types of pdfs from the generalized hyperbolic distribution family (e.g., GHSST, NIG) to

determine the ideal candidate for capturing the tail characteristics of wind ramp distributions.
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Figure 10. Same as Fig. 8, except for time increment (τ ) of 180 min.

As the wind energy industry continues to flourish and wind ramp prediction becomes increasingly important, the results

from this study should be utilized for model validations and improvement. It would be critical to find out if the state-of-the-

art numerical weather prediction models and time-series forecasting tools are able to capture the extreme ramp behaviors

accurately. It is also envisaged that the contemporary synthetic wind speed generators (e.g., [41, 42]), heavily relying on

statistical information, will tremendously benefit from our findings.

A. GENERALIZED HYPERBOLIC SKEW STUDENT’S t (GHSST) DISTRIBUTION

The GHSST distribution is a subclass of the generalized hyperbolic (GH) family and its pdf is defined as [39, 43, 44]:

f (x; ν, β, µ, δ) =
2

1−ν
2 δν√

πΓ(ν/2)

(

yx
|β|

)− ν+1

2

K ν+1

2

(|β|yx) eβ(x−µ), β 6= 0, (8)

where ν, β, µ, and δ are the four parameters of the GHSST distribution. yx =
√

δ2 + (x− µ)2 and Γ is the gamma

function. The parameters ν and β together control the degree of heavy-tailedness and skewness of the tails. µ is the

location parameter and is slightly different from the mean of the distribution. δ is a scale or peakedness parameter and it

controls the shape of the pdf near its mode. Kν(x) is the so-called modified Bessel function [45].

The tails of the distribution exhibit the following traits:

fx(x) ∼ C|x|−ν/2−1 exp(−|βx|+ βx) as x → ±∞. (9a)

Thus, the heavier tail decays as:

fx(x) ∼ C|x|−ν/2−1
when

{

β < 0 and x → −∞,

β > 0 and x → +∞,
(9b)

and the lighter tail behaves as:

fx(x) ∼ C|x|−ν/2−1 exp(−2|βx|) when

{

β < 0 and x → +∞,

β > 0 and x → −∞.
(9c)

In this work, we generated GHSST distributed random variates following an algorithm described by Aas and Hobæk

Haff [43]:
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Figure 11. The averaged values of tail indices (〈γH〉) as a function time-increment (τ ). Wind ramp-up data from all the available

sensors from all the four sites are utilized here.

• Generate Gamma distributed variates (G) with parameters ν/2 and δ2/2.

• Obtain the Inverse Gamma variates by simply using Z = G−1.

• Generate Gaussian random variates Y with zero mean and unit variance.

• Compute the GHSST random variates, X = µ+ βZ +
√
ZY .

B. EFFECTS OF NONSTATIONARITY

For observational time-series, quantifying the effects of nonstationarity on the computed statistics is a challenging task.

In meteorology literature, quite often time-varying mean and variance of a series are used to establish the (non-)existence

of nonstationarity (for example see [46] and the references therein). A far more stringent test of nonstationarity is usually

employed in the dynamical systems literature. Quite often a specific higher-order statistic (e.g, correlation dimension,

Lyapunov exponent, Shannon entropy) is computed for different segments of a series [47]. In the case of systematic trends

and/or significant variations of this specific statistic, the series is flagged as nonstationary.

In this appendix, we use the NWTC1min time-series to probe into the issue of nonstationarity. Given the large sample

size, we are able to divide it into one hundred non-overlapping and contiguous subsets. Each subset has a sample size of

approximately 57,800. We perform Hill plot analysis on each subset in sequence. For each subset, 〈γH〉 is computed for

2000 ≤ k ≤ 3000. The resultant 〈γH〉 series for ramp-up and ramp-down cases with various time-increment (τ ) values

are reported in Fig. 13.

A few observations can be readily made based on Fig. 13. First of all, the estimated 〈γH〉 values are much smaller

than those reported in Figs. 6–7. This behavior is completely in line with our earlier findings related to the sample size

dependency of γH (thus, 〈γH〉) values. Second, the average values of 〈γH〉 marginally increases with τ . This trend was

also reported earlier in Section 4. Furthermore, similar to Fig. 7, we see that the variability of 〈γH〉 increases slightly with
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Figure 12. Same as Fig. 11, except for ramp-down events.

larger τ values. Most importantly, we do not see any trend or significant variations of 〈γH〉 with time (proxied by subset

#). In other words, there is no tell-tale sign of nonstationarity that we can detect in the NWTC dataset.

C. EFFECTS OF CORRELATION

Rigorously speaking, the tail-index analysis should be performed on independent and identically distributed (i.i.d) random

variates. However, observational data often possess intrinsic correlation. In this appendix, we report the autocorrelation

functions of wind ramp time-series. We make use of both the NWTC1min and NWTC10min time-series from z = 80 m

level. In Fig. 14, the results are shown for τ = 10 min (left panel) and τ = 60 min (right panel). Clearly, the autocorrelation

function decreases rapidly for all the cases. In the case of τ = 10 min, the minimum autocorrelation occurs around lag =

10 min; in contrast, the minimum occurs at lag = 60 min for τ = 60 min. As a matter of fact, for all the other cases that

we analyzed (not shown), the autocorrelation function always passed through a local minimum close to their respective τ
values. Several years ago, [48] reported identical results in the context of fully developed turbulence.

Last, we would like to point out that most of our analyses reported in Section 4 were based on 10-min averaged data from

several sites. Like the NWTC time-series, the autocorrelation function in other cases were also close to zero for τ = 10
min (not shown); for these cases, the samples could be considered independent. For higher values of τ , the samples were

correlated.
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Figure 13. The averaged values of tail indices (〈γH〉) based on the non-overlapping and contiguous subsets of NWTC1min time-

series. The left and right panels correspond to ramp-up and ramp-down events, respectively. Time increments (τ ) of 10 min, 60 min,

and 180 min are utilized in top, middle, and bottom panels, respectively. For visual aid, the temporal mean values of 〈γH〉 and one

standard deviation around the mean are depicted with the red and blue dashed lines, respectively.
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