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Abstract. We show that Fourier coefficients of automorphic forms
attached to minimal or next-to-minimal automorphic representations
of SLn(A) are completely determined by certain highly degenerate
Whittaker coefficients. We give an explicit formula for the Fourier
expansion, analogously to the Piatetski-Shapiro–Shalika formula. In
addition, we derive expressions for Fourier coefficients associated to all
maximal parabolic subgroups. These results have potential applications
for scattering amplitudes in string theory.
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1. Introduction

1.1. Background and motivation. Let F be a number field and A be the
associated ring of adeles. Let G be a reductive algebraic group defined over
F and π an (irreducible) automorphic representation of G(A) as defined in
[BJ79, FGKP18].

Fix a Borel subgroup B and let P ⊂ G be a standard parabolic subgroup
with Levi decomposition P = LU , and let ψ ∶ U(F )/U(A)→ C× be a global
unitary character. Given any automorphic form ϕ ∈ π one can consider the
following function on G(A):

FU(ϕ,ψ; g) = ∫
U(F )/U(A)

ϕ(ug)ψ−1(u)du .

This can be viewed as a Fourier coefficient of the automorphic form ϕ with
respect to the unipotent subgroup U . Fourier coefficients of automorphic
forms carry a wealth of arithmetic and representation-theoretic information.
For example, in the case of classical modular forms on the upper half-plane,
Fourier coefficients are well-known to encode information about the count
of rational points on elliptic curves. On the other hand, for higher rank
Lie groups their arithmetic content is not always transparent, but they
always encode important representation-theoretic information. Langlands
showed that the constant terms in the Fourier expansion of Eisenstein series
provide a source for automorphic L-functions [Lan67], and Shahidi extended
this method (now called the Langlands-Shahidi method) to include also the
non-constant Fourier coefficients [Sha78, Sha81].

Theta correspondences provide realizations of Langlands functorial transfer
between automorphic representations π and π′ of two different groups G and
G′. In this context automorphic forms attached to minimal automorphic
representations play a key role [Gin06]. The wave front set of a minimal
representation πmin of a group G is the closure of the smallest non-trivial
nilpotent coadjoint orbit Omin of G [Jos76, KS90]. The automorphic
realizations of minimal representations are characterized by having very
few non-vanishing Fourier coefficients [GRS97]. Conversely, the method of
descent [GRS11] can be viewed as an inverse to the functorial lifting, in which
an automorphic representation of a general linear group GLn is transferred to
a representation of a smaller classical group G. Also in this case do Fourier
coefficients of small representations enter in a crucial way.

In general it is a difficult problem to obtain explicit formulas for Fourier
coefficients for higher rank groups, let alone settle the question of whether an
automorphic form ϕ can be reconstructed from only a subset of its Fourier
coefficients. For cusp forms on GLn this is possible due to the Piatetski-
Shapiro–Shalika formula [Sha74, PS79] that allows to reconstruct ϕ from
its Whittaker coefficients; i.e. the Fourier coefficients with respect to the
unipotent radical N of the Borel subgroup B ⊂ G. These coefficients are
sums of Eulerian Whittaker coefficients on subgroups of G, and their non-
archimedean parts can be obtained from the Casselman–Shalika formula
[Shi76, CS80] as described in [FGKP18]. However, even if this gives us
complete control of the Fourier expansion with respect to N it does not
automatically give us a way of calculating an arbitrary Fourier coefficient
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FU(ϕ,ψ; g) with respect to some other unipotent subgroup U . Such
coefficients play an important role in the construction of L-functions, and
also carry information about non-perturbative effects in string theory as
described in section 1.3.

Expanding upon the classic results of [GRS97], Miller and Sahi proved in
[MS12] that for automorphic forms ϕ attached to a minimal representation
πmin of E6 and E7, any Fourier coefficient FU(ϕ,ψ; g) is completely
determined by maximally degenerate Whittaker coefficients of the form

∫
N(F )/N(A)

ϕ(ng)ψα(n)−1 dn ,(1.1)

where ψα is non-trivial only on the one-parameter subgroup of N correspond-
ing to the simple root α. This result maybe viewed as a global version of
the classic results of Moeglin-Waldspurger in the non-archimedean setting
[MW87], and Matumoto in the archimedean setting [Mat87].

For the special cases of SL3 and SL4 the Miller–Sahi results were generalized
in [GKP16] (following related results in [FKP14]) to automorphic forms
attached to a next-to-minimal automorphic representation πntm. It was
shown that any Fourier coefficient is completely determined by (1.1) and
coefficients of the following form

∫
N(F )/N(A)

ϕ(ng)ψα,β(n)−1 dn ,

where ψα,β is only supported on strongly orthogonal pairs of simple roots
(α,β) which here reduces to that [Eα,Eβ] = 0 [Kna02]. The main goal of the
present paper is to use the techniques of [JL13, JLS16, GGS17], in particular
the notion of Whittaker pair, to extend the above results to all of SLn.

1.2. Summary of results. We now summarize our main results. In the
rest of this paper we will consider SLn for n ≥ 5 where we have fixed a Borel
subgroup with the unipotent radical N . Let also T be the diagonal elements
of SLn(F ) and, for a character ψ0 on N , let Tψ0 be the stabilizer of ψ0 under

the action [h.ψ0](n) = ψ0(hnh−1) for h ∈ T .
Define

(1.2) Γi(ψ0) ∶=
⎧⎪⎪⎨⎪⎪⎩

(SLn−i(F ))Ŷ /SLn−i(F ) 1 ≤ i ≤ n − 2

(Tψ0 ∩ Tψαn−1
)/Tψ0 i = n − 1 ,

where (SLn−i(F ))Ŷ is the stabilizer of Ŷ = t(1,0,0, . . . ,0) ∈ Mat(n−i)×1(F )
and consists of elements ( 1 ξ

0 h
), with h ∈ SLn−i−1(F ) and ξ ∈Mat1×(n−i−1)(F ).

When ψ0 = 1 we write Γi(1) as Γi.

Similarly, let (SLj(F ))X̂ be the stabilizer of X̂ = (0, . . . , 0, 1) ∈Mat1×j(F )
with respect to multiplication on the right, ψ0 a character on N , and define

(1.3) Λj(ψ0) ∶=
⎧⎪⎪⎨⎪⎪⎩

(SLj(F ))X̂/SLj(F ) 2 ≤ j ≤ n − 1

(Tψ0 ∩ Tψα1
)/Tψ0 j = 1 ,

where, again, we denote Λj(1) = Λj .



4 O. AHLÉN, H. GUSTAFSSON, A. KLEINSCHMIDT, B. LIU, AND D. PERSSON

Define also the embeddings ι, ι̂ ∶ SLn−i → SLn for any 0 ≤ i ≤ n − 1 as

(1.4) ι(γ) = (Ii 0
0 γ

) ι̂(γ) = (γ 0
0 Ii

) ,

where we for brevity suppress their dependence on i. Note that for i = 0,
they are just the identity maps for SLn.

The following theorem expands an automorphic form ϕ attached to a
small automorphic representation of SLn in terms of highly degenerate
Whittaker coefficients similar to how cusp forms on GLn can be expanded in
terms of Whittaker coefficients with the Piatetski-Shapiro–Shalika formula
[Sha74, PS79]. Expansion of non-cuspidal automorphic forms on GLn in
terms of Whittaker coefficients were discussed in [Yuk93, JL13].

Theorem A. Let π be a minimal or next-to-minimal irreducible automorphic
representation of SLn(A), n ≥ 5, and let ϕ ∈ π.

(i) If π = πmin, then ϕ has the expansion

ϕ(g) = ∫
N(F )/N(A)

ϕ(ng)dn +
n−1

∑
i=1
∑
γ∈Γi

∫
N(F )/N(A)

ϕ(nι(γ)g)ψ−1
αi (n)dn .

(ii) If π = πntm, then ϕ has the expansion

ϕ(g) = ∫
N(F )/N(A)

ϕ(ng)dn +
n−1

∑
i=1
∑
γ∈Γi

∫
N(F )/N(A)

ϕ(nι(γ)g)ψ−1
αi (n)dn +

+
n−3

∑
j=1

n−1

∑
i=j+2

∑
γi∈Γi(ψαj)
γj∈Γj

∫
N(F )/N(A)

ϕ(nι(γi)ι(γj)g)ψ−1
αj ,αi(n)dn .

Note that the Whittaker coefficients in the last sum of case (ii) have
characters supported on two strongly orthogonal (or commuting) simple
roots. As mentioned in section 1.1 and further described in [FGKP18],
the Whittaker coefficients are sums of Eulerian Whittaker coefficients on
smaller subgroups SLn, whose non-archimedean parts can be computed
by the Casselman–Shalika formula [Sha74, CS80]. The more degenerate a
Whittaker coefficient is the smaller the subgroup we need to consider (and on
which character becomes generic). Thus, maximally degenerate Whittaker
coefficients, and the ones with characters supported on two commuting simple
roots become particularly simple and are, in principle, one, or a product of
two, known SL2 Whittaker coefficients respectively.

Next, we consider Fourier coefficients on maximal parabolic subgroups. Let
Pm the maximal parabolic subgroup of SLn with respect to the simple root
αm and let U = Um be the unipotent radical and Lm be the corresponding Levi
subgroup which stabilizes Um under conjugation. For an element l ∈ Lm(F )
and a character ψU on Um we obtain another character ψlU by conjugation as

ψlU(u) = ψU(lul−1) .
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Fourier coefficients FU with conjugated characters are related by l-
translates of their arguments

FU(ϕ,ψlU ; g) = ∫
U(F )/U(A)

ϕ(ug)ψ−1
U (lul−1)du(1.5)

= ∫
U(F )/U(A)

ϕ(l−1u′lg)ψ−1
U (u′)du′ = FU(ϕ,ψU ; lg) ,

where we have first made the variable substitution u′ = lul−1 and then used
the automorphic invariance since l ∈ Lm(F ). This means that we only need
to compute the Fourier coefficients of one character per Lm(F )-orbit.

We show in section 2 that a character can be parametrized by an element
y ∈ g by (2.3) denoted by ψy, which, under conjugation, satisfies ψly = ψl−1yl

according to (2.3).
In section 4 and appendix D, we describe these orbits following [Nev11]

and construct standard characters ψy(Yr(d)) on Um based on anti-diagonal

(n −m) ×m rank r matrices Yr(d), where d ∈ F×/(F×)2 for n = 2r = 2m and
d = 1 otherwise (in which case we suppress the d), and y(Yr(d)) is defined as

y(Yr(d)) = (
0m 0
Yr(d) 0n−m

) .

Let π be a minimal or next-to-minimal automorphic representations, and

rπ =
⎧⎪⎪⎨⎪⎪⎩

1 if π is a minimal automorphic representation

2 if π is a next-to-minimal automorphic representation.

We will show that only the characters with rank r ≤ rπ ≤ 2 give non-
vanishing Fourier coefficients. Let us briefly define the characters with rank
r ≤ 2 which will be used in the next theorem, postponing a more general
definition to section 4. The rank zero character is the trivial character
ψy(Y0) = 1 and the corresponding Fourier coefficient has been computed in
[MW95] as reviewed in [FGKP18]. The rank one character is ψy(Y1) = ψαm
and the rank two character can be defined as follows

(1.6) ψy(Y2)(u) = ψ(um,m+1 + um−1,m+2) u ∈ Um(A) .

The following theorem, together with the known constant term, then
allows us to compute any Fourier coefficient with respect to the unipotent
radical of a maximal parabolic subgroups for automorphic forms attached
to minimal and next-to-minimal automorphic representations in terms of
Whittaker coefficients.

Theorem B. Let π be a minimal or next-to-minimal irreducible automorphic
representation of SLn(A), n ≥ 5, and let rπ be 1 or 2 respectively (which
denotes the maximal rank of the character matrix Yr). Let also, ϕ ∈ π, Pm be
the maximal parabolic subgroup described above with its associated subgroups
U ≡ Um and Lm, and let ψU be a non-trivial character on U with Fourier
coefficient

FU(ϕ,ψU ; g) = ∫
U(F )/U(A)

ϕ(ug)ψ−1
U (u)du .
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Then, there exists an element l ∈ Lm(F ) such that

FU(ϕ,ψU ; g) = FU(ϕ,ψy(Yr(d)); lg)
for some standard character ψy(Yr(d)) described above and in the proof.

Additionally, all FU(ϕ,ψy(Yr(d)); lg) for r > rπ vanish identically. The
remaining (non-constant) coefficients can be expressed in terms of Whittaker
coefficients on N as follows.

(i) If π = πmin:

FU(ϕ,ψy(Y1); g) = ∫
N(F )/N(A)

ϕ(ng)ψ−1
αm(n)dn .

(ii) If π = πntm:

FU(ϕ,ψy(Y1); g) = ∫
N(F )/N(A)

ϕ(ng)ψ−1
αm(n)dn +

+
m−2

∑
j=1

∑
γ∈Λj(ψαm)

∫
N(F )/N(A)

ϕ(nι̂(γ)g)ψ−1
αj ,αm(n)dn +

+
n−1

∑
i=m+2

∑
γ∈Γi(ψαm)

∫
N(F )/N(A)

ϕ(nι(γ)g)ψ−1
αm,αi(n)dn .

(iii) If π = πntm:

FU(ϕ,ψy(Y2); g) = ∫
C(A)

∫
N(F )/N(A)

ϕ(nωcg)ψ−1
α1,α3

(n)dndc ,

where ω is the Weyl element mapping the torus elements

(t1, t2, . . . , tn)↦ (tm−1, tm+2, tm, tm+1, t1, t2, . . . , tm−2, tm+3, tm+4, . . . , tn) ,
and the subgroup C of Um will be detailed in the proof in section 4.

As described in detail in section 2, F -rational nilpotent orbits of SLn are
characterized by (p, d) where p is a partition of n and d ∈ F×/(F×)k with

k = gcd(p). If k = 1 we will often suppress the extra d = 1 and only write out
the partition.

There we will also see that, for each orbit, there are natural choices of
unipotent subgroups and characters related by conjugations with elements
γ ∈ SLn(F ) and the corresponding Fourier coefficients (2.2) are related by
γ-translates of their arguments.

The orbits may be partially ordered and the minimal and next-to-minimal
orbits are described by the partitions [21n−2] and [221n−4], respectively.
Besides the trivial partition, these are the only partitions whose associated
Fourier coefficients are non-vanishing for ϕ in a minimal or next-to-minimal
irreducible automorphic representation. In section 5 we choose standard
representatives for these orbits and specify the associated standard Fourier
coefficients which we denote by F [211...] and F [221...]. For n ≥ 5, we have that
the trivial, minimal and next-to-minimal orbit all have k = 1.

The following theorems express these standard Fourier coefficients
associated with the two partitions above in terms of Fourier coefficients
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on maximal parabolic subgroups that, in turn, were written in terms of
Whittaker coefficients in theorem B.

Theorem C. Let π be an irreducible automorphic representation of SLn(A),
ϕ ∈ π and Y = Πn

i=3Xei−e2. Then,

F [211...](ϕ; g) = ∑
y∈Y (F )

∫
U1(F )/U1(A)

ϕ(uy−1g)ψ−1
α1
(u)du ,

where U1 is the unipotent radical of P1 consisting of the first row of N .
The Fourier coefficient F [211...] is for a particular standard choice of orbit
representative detailed in the proof; all other choices are related simply by
SLn(F ) translation.

Theorem D. Let π be an irreducible automorphic representation of SLn(A),
ϕ ∈ π, Y ′ =∏ni=5Xei−e4∏ni=5Xei−e3 and ω be the Weyl element mapping the
torus elements

(t1, t2, . . . , tn)↦ (t1, t3, t4, t2, t5, t6, . . . , tn) .
Then,

F [221...](ϕ; g) = ∑
y∈Y ′(F )

∫
U2(F )/U2(A)

ϕ(uy−1ωg)ψ−1
y(Y2)(u)du ,

where U2 is the unipotent radical of P2 consisting of the first two rows of N

and ψy(Y2) is defined in (1.6) with m = 2. The Fourier coefficient F [221...] is
for a particular standard choice of orbit representative detailed in the proof;
all other choices are related simply by SLn(F ) translation.

1.3. Applications in string theory. String theory is a quantum theory
of gravity describing maps X ∶ Σ→M , where Σ is a Riemann surface (the
string worldsheet) and M is a ten-dimensional pseudo-Riemannian manifold
(spacetime). Its low-energy limit is a supersymmetric extension of Einstein’s
theory of gravity in 10 dimensions coupled to additional matter in the form
of scalar fields Φ ∶M → C and differential forms on spacetime M . Our main
focus here will be the scalar fields. The scalar fields parametrize the space of
string theory vacua, i.e. the moduli space M.

To make contact with a lower-dimensional world, one choice is to
decompose spacetime into

M = R1,9−n × Tn ,
where R1,9−n is the flat Minkowski space in 10 − n dimensions and Tn is an
n-dimensional torus. In the limit when the size of the torus is small, the
physics looks effectively (10 − n)-dimensional and one says that the theory
has been compactified. As the size of the torus is increased the moduli space
M gets larger and larger due to an increased number of scalar fields Φ. The
moduli space for this toroidal compactification is always of the form

M = G(Z)/G(R)/K ,

where G(R) is a semi-simple Lie group in its split real form, K its maximal
compact subgroup and G(Z) an arithmetic subgroup. The group G(Z) is
known as the U-duality group and is a symmetry of the full quantum string
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theory. The extreme case when n = 0, i.e. for no compactification, the moduli
space is given by

M = SL2(Z)/SL2(R)/SO2 .

Another extreme case is n = 6, corresponding to four spacetime dimensions,
for which the moduli space is given by [HT95]

M = E7(Z)/E7(R)/(SU8/Z2) .

Here E7(R) is the split real form and E7(Z) its Chevalley group of integer
points. The sequence of groups in between are obtained by successively
removing nodes from the E7 Dynkin diagram; see table 1 for the complete
list.

Constraints from U -duality and supersymmetry ensure that certain
quantum corrections to Einstein’s gravitational theory involve functions
f ∶ M → C that must be eigenfunctions of the ring of G(R)-invariant
differential operators. In particular they are eigenfunctions of the Laplacian
on G(R)/K with specific eigenvalues. In addition, they must have well-
behaved growth properties in certain limits corresponding to ‘cusps’ of M.
Such quantum corrections are therefore controlled by automorphic forms on
M.

It turns out that the relevant automorphic forms are very special and
are precisely those attached to a minimal and next-to-minimal automorphic
representation of the groups G [GMRV10, Pio10, GMV15]. The Fourier
coefficients of such automorphic forms therefore have a direct physical
interpretation: the constant terms encode perturbative quantum corrections,
while the non-constant terms correspond to non-perturbative, instanton,
effects [FK12, FKP14, BV14, BV15a, BV15b, BCHP17b, BP17, BCHP17a].
For a recent book on automorphic representations and the connection with
string theory, see [FGKP18].

Fourier coefficients with respect to different choices of parabolic subgroups
P ⊂ G correspond to different limits in string theory, and reveal different types
of effects. The ones of main interest are certain maximal parabolic subgroups.
Let Pα = LαUα denote the maximal parabolic whose Levi subgroup is Lα =
Mα×GL1, where Mα is obtained by removing the node in the Dynkin diagram
of G corresponding to the simple root α. There are three types of maximal
parabolics of main interest in string theory (the numbering of nodes are
according to the Bourbaki convention of the exceptional Lie algebras):

● Pα1 : this is the perturbative, or string theory, limit where the Levi is
of orthogonal type Mα1 = Dn;
● Pα2 : this is the M-theory limit where the Levi is of type Mα2 = An;
● Pαn+1 : this is the decompactification limit where the Levi is of

exceptional type Mαn+1 = En (for n < 6 these are strictly speaking
not exceptional, but given by table 1).

Theorem B, together with its counterpart in [GKP16], then provides
explicit results for the Fourier coefficients of automorphic forms in all these
parabolics for the cases n = 2 or n = 3 when the symmetry groups are
SL2 × SL3 or SL5, respectively. The case of SL5 will be treated in detail in
section 6.
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Table 1. List of U-duality groups in compactifications of
(type IIB) string theory on Tn.

n G(R) K(R) G(Z)
0 SL2(R) SO2 SL2(Z)
1 GL2(R) SO2 SL2(Z)
2 SL2(R) × SL3(R) SO2 × SO2 SL3(Z) × SL2(Z)
3 SL5(R) SO5 SL5(Z)
4 Spin5,5(R) (Spin5 × Spin5)/Z2 Spin5,5(Z)
5 E6(R) USp8/Z2 E6(Z)
6 E7(R) SU8/Z2 E7(Z)
7 E8(R) Spin16/Z2 E8(Z)
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2. Nilpotent orbits and Fourier coefficients

In this section, first, we introduce Whittaker pairs and nilpotent orbits
with their associated Fourier coefficients following [GGS17], which is slightly
more general and easier to use than the one given in [Gin06]. Then we
recall the parametrization of F -rational nilpotent orbits of SLn in terms of
partitions of n from [Nev11] and a lemma for exchanging roots in Fourier
integrals from [GRS11].

As before, let F be a number field, A be the adele ring of F and fix a
non-trivial additive character ψ on F /A. Let also G be a reductive group
defined over F , or a central extension of finite degree, and let g be the Lie
algebra of G(F ). For a semi-simple element s ∈ g, let gsi be defined as the
eigenspace of s in g with eigenvalue i under the adjoint action decomposing
g to a direct sum of eigenspaces over different eigenvalues. For any r ∈ Q, we
further define gs≥r = ⊕r′≥rgsr′ and similarly for other inequality relations. For
an element X ∈ g, we will also denote the centralizer of X in g as

gX = {x ∈ g ∣ [x,X] = 0} .

Furthermore, a semi-simple element s is called rational semi-simple if all
of its eigenvalues under the adjoint action on g are in Q. For such a rational
semi-simple element s and a non-trivial nilpotent element u ∈ gs−2 we call
the ordered pair (s, u) a Whittaker pair. If, for such a pair, s is also called
a neutral element for u or (s, u) a neutral pair if there exists a nilpotent
element v ∈ g such that (v, s, u) is an sl2-triple. Recall that an sl2-triple is an
ordered triple (v, s, u) of elements in g that satisfy the standard commutation



10 O. AHLÉN, H. GUSTAFSSON, A. KLEINSCHMIDT, B. LIU, AND D. PERSSON

relations for sl2,

[s, v] = 2v [s, u] = −2u [v, u] = s ,
where we say that v is a nil-positive element for s, u is a nil-negative element
for s.

By the Jacobson–Morozov theorem, there exists an sl2 triple for any
nilpotent element u ∈ g. Moreover, the G-conjugacy classes of sl2-triples are
one-to-one with the nilpotent orbits OX = {gXg−1 ∣ g ∈ G(F )} in g [CM93].

We will now construct the Fourier coefficient that is associated to a
Whittaker pair (s, u). The pair defines a unipotent subgroup Ns and a
character ψu on Ns as follows. Following [GGS17, Lemma 3.2.6], let

ns = gs>1 ⊕ gs1 ∩ gu ,
which is a nilpotent subalgebra of g, and define Ns = exp(ns) as the
corresponding unipotent subgroup of G. Then ψu, defined by

ψu(n) = ψ(⟨u, log(n)⟩) n ∈ Ns(A) ,
is a character on Ns(A) where ⟨⋅, ⋅⟩ is the Killing form.

Note that if the Whittaker pair (s, u) comes from an sl2-triple (v, s, u),
then, by sl2 representation theory, ad(s) has integer eigenvalues with a
graded decomposition of the Lie algebra g =⊕i∈Z g

s
i and gu ⊂⊕i≤0 g

s
i [CM93],

and thus,

(2.1) ns = gs≥2 (for neutral s).
Let π be an automorphic representation of G(A) and ϕ an automorphic

form attached to π. The Fourier coefficient associated with a Whittaker pair
(s, u) is

Fs,u(ϕ)(g) = ∫
Ns(F )/Ns(A)

ϕ(ng)ψ−1
u (n)dn, g ∈ G(A) ,

and let Fs,u(π) = {Fs,u(ϕ) ∣ ϕ ∈ π}. For convenience, we introduce the
following notation for a unipotent subgroup U

[U] = U(F )/U(A) .
Consider the Fourier coefficient associated with a neutral Whittaker pair

(s, u), and let (s′, u′) = (γsγ−1, γuγ−1) which is also neutral for any γ ∈
G(F ). Because of the invariance of the Killing form we have that ψu′(n′) =
ψu(γ−1n′γ) where n′ ∈ [Ns′], and because of (2.1) we have that Ns′ = γNsγ

−1.
Thus, with a variable substitution n′ = γnγ−1,

Fs′,u′(ϕ)(g) = ∫
[γNs′γ−1]

ϕ(n′g)ψ−1
u (γ−1n′γ)dn

= ∫
[Ns]

ϕ(γnγ−1g)ψ−1
u (n)dn = Fs,u(ϕ)(γ−1g) ,

(2.2)

using the automorphic invariance of ϕ. Note the resemblance with (1.5) where
we made a conjugation keeping Ns invariant. In particular, (2.2) means that
if Fs,u vanishes identically then so do all Fourier coefficients associated to
neutral Whittaker pairs (s′, u′) where u′ ∈ Ou. For an F -rational nilpotent
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orbit O, we say that the coefficients Fs,u with neutral s and u ∈ O are Fourier
coefficients attached to the nilpotent orbit O.

We define the (global) wave-front set WF(π) of an automorphic
representation π of G(A) as the set of nilpotent orbits O such that Fs,u(π)
is non-zero, for some (and therefore all) neutral Whittaker pairs (s, u) with
u ∈ O. Note that nilpotent orbits can be partially ordered with respect to
the inclusion of Zariski closures O′ ≤ O if O′ ⊆ O.

We recall [GGS17, Theorem C] as follows.

Theorem 2.1 (Theorem C, [GGS17]). Let π be an automorphic representa-
tion of G(A), let (s, u) be a Whittaker pair, and (h,u) a neutral Whittaker
pair such that Fh,u(π) is zero. Then, Fs,u(π) is zero.

This means that if u ∈ O where O ∉ WF(π) then, for any Whittaker
pair (s, u), not necessarily neutral, the associated Fourier coefficient Fs,u(ϕ)
vanishes identically for ϕ ∈ π.

In this paper, we focus on the group SLn where we parametrize a character
on Ns by u ∈ gs−2 as

(2.3) ψu(n) = ψ(tr(u log(n))) n ∈ Ns(A).
Then, for any l in the normalizer of Ns(A) in G(A)

ψly(x) = ψy(lxl−1) = ψ(tr(y log(lxl−1))) = ψ(tr(yl log(x)l−1))
= ψ(tr(l−1yl log(x))) = ψl−1yl(x) .

(2.4)

The nilpotent orbits of SLn can be described by partitions p of n. Let us

characterize the F -rational orbits of SLn following [Nev11].

Proposition 2.2 (Proposition 4, [Nev11]). Let p = [p1p2⋯pr] be an

ordered partition of n, with p1 ≥ p2 ≥ . . . ≥ pr and let m = gcd(p) =
gcd(p1, p2, . . . , pr). For d ∈ F×, define D(d) = diag(1,1, . . . ,1, d) and let
also Jp be the standard (lower triangular) Jordan matrix corresponding to

p: Jp = diag(J[p1], J[p2], . . . , J[p3]), where J[p] is a p× p matrix with non-zero

elements only on the subdiagonal which are one.

(1) For each d ∈ F×, the matrix D(d)Jp is a representative of an F -

rational nilpotent orbit of SLn parametrized by p, and conversely,
every orbit parametrized by p has a representative of this form. We

say that the F -rational orbit represented by D(d)Jp is parametrized

by (p, d).
(2) The SLn(F )-orbits represented by D(d)Jp and D(d′)Jp′ coincide if

and only if p = p′ and d ≡ d′ in F×/(F×)m.

Example 2.3. The F -rational orbit ([322],1) of SL7 is represented by

J[322] = diag(J[3], J[2], J[2]) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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Remark 2.4. Over F the F -rational orbits for different d become the same,
meaning that they are completely characterized by partitions of n. There
is partial ordering for partitions that agrees with the partial ordering of
the F -orbits, where [p1p2 . . . pr] ≤ [q1q2 . . . qr] (possibly padded by zeroes) if
[CM93]

∑
1≤j≤n

pj ≤ ∑
1≤j≤n

qj for 1 ≤ n ≤ r .

The Zarisky topology over F is induced from that of F which means that
we can use this partial ordering of partitions for the F -rational orbits as well.
Thus, when discussing the partial ordering of orbits or the closure of orbits
we will sometimes not specify the F -rational orbit, but only the partition,
that is, the SLn(F )-orbit.

An automorphic representation π of SLn(A) is called minimal if WF(π)
is the set of orbits in the closure of the minimal (non-trivial) orbit which is
represented by the partition [21n−2], and it is called next-to-minimal if it is
instead the set of orbits in the closure of the next-to-minimal orbit [221n−4].

We will now recall a general lemma for exchanging roots in Fourier
coefficients from [GRS11]. In [GRS11], the groups considered are quasi-
split classical groups, but the lemma holds for any connected reductive group
with exactly the same proof.

Let G be a connected reductive group defined over F and let C be an
F -subgroup of a maximal unipotent subgroup of G. Let also ψC be a non-
trivial character on [C] = C(F )/C(A), and X,Y two unipotent F -subgroups
satisfying the following conditions:

(1) X and Y normalize C;
(2) X ∩C and Y ∩C are normal in X and Y , respectively, (X ∩C)/X

and (Y ∩C)/Y are abelian;
(3) X(A) and Y (A) preserve ψC under conjugation;
(4) ψC is trivial on (X ∩C)(A) and (Y ∩C)(A);
(5) [X,Y ] ⊂ C;
(6) there is a non-degenerate pairing

(X ∩C)(A) × (Y ∩C)(A)→ C×

(x, y)↦ ψC([x, y])

which is multiplicative in each coordinate, and identifies
(Y ∩ C)(F )/Y (F ) with the dual of X(F )(X ∩ C)(A)/X(A), and
(X ∩C)(F )/X(F ) with the dual of Y (F )(Y ∩C)(A)/Y (A).

Let B = CY and D = CX, and extend ψC trivially to characters of
[B] = B(F )/B(A) and [D] =D(F )/D(A), which will be denoted by ψB and
ψD respectively.

Lemma 2.5 (Lemma 7.1 of [GRS11]). Assume that (C,ψC ,X,Y ) satisfies
all the above conditions. Let f be an automorphic form on G(A). Then for
any g ∈ G(A),

∫[B] f(vg)ψ
−1
B (v)dv = ∫(Y ∩C)(A)/Y (A)∫[D] f(vyg)ψ

−1
D (v)dv dy .
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For simplicity, we will use ψC to denote its extensions ψB and ψD when
using the lemma.

3. Proof of theorem A

Before we prove Theorem A in this section, let us first introduce a few
definitions and useful lemmas.

Let Vi be the unipotent radical of the parabolic subgroup of type (1i, n−i),
that is, the parabolic subgroup with Levi subgroup (GL1)i ×GLn−i together
with a determinant one condition. Then, N = Vn = Vn−1 is the unipotent
radical of the Borel subgroup and Vi can be seen as the first i rows of N .
For 1 ≤ i ≤ n − 1, let αi = ei − ei+1 be the i-th simple root of SLn, and let ψαi
be the character of N defined by

ψαi(n) = ψ(ni,i+1),∀n ∈ N(A) .
For a list of simple roots, we let ψαi1 ,...,αim = ψαi1⋯ ψαim and we also regard
ψαj for j ≤ i as a character of Vi via restriction.

Also, let Ri+1 be the subgroup of Vi+1, consisting of the elements v with
conditions that vp,q = 0, for all 1 ≤ p ≤ i and p < q ≤ n, that is Ri+1 consists of
the row i+ 1 in Vi+1. It is clear that Ri+1 ≅ Vi/Vi+1 is an abelian subgroup of
Vi+1.

For a character ψN on N , we say that ψN is trivial along a simple root αi
if the restriction of ψN to Ri is identically zero.

Example 3.1. For SL5 we have that

V3 = {
⎛
⎝

1 ∗ ∗ ∗ ∗
1 ∗ ∗ ∗

1 ∗ ∗
1

1

⎞
⎠
} R3 = {

⎛
⎝

1
1

1 ∗ ∗
1

1

⎞
⎠
} .

Thus, we have that [Ri] ≅ (F /A)n−i and the dual of [Ri] is Fn−i, which
can be identified with the nilpotent subalgebra tri(F ) = log(tRi(F )), where
tRi(F ) is the transpose of Ri(F ). Given y ∈ tri(F ), the corresponding
character ψy on [Ri] is given by (2.3) as

ψy(x) = ψ(tr(y logx)), ∀x ∈ [Ri] .

Example 3.2. For SL5 with R3 above, let

y =
⎛
⎝

0
0

0
y1 0
y2 0

⎞
⎠
∈ tr3(F ) x =

⎛
⎝

1
1

1 x1 x2
1

1

⎞
⎠
∈ [R3] .

Then, ψy(x) = ψ(tr(y logx)) = ψ(y1x1 + y2x2).

Define

trdiag(⋅) = diag(⋅) − 1

n
tr(diag(⋅))

and let s = sVi
(3.1) sVi = trdiag(2(i − 1),2(i − 2), . . . , 0,−2, . . . ,−2)
for which gs1 = ∅ and ns = gs≥2 with the corresponding Ns = Vi. In particular,
we have sN = sVn−1 = trdiag(2(n − 2), . . . , 0,−2)
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Lemma 3.3. Let ϕ be an automorphic form on SLn(A). Then, for 1 ≤ i ≤
n − 2,

∑
y∈tri(F )
y≠0

∫
[Ri]

ϕ(xg)ψ−1
y (x)dx = ∑

γ∈Γi
∫
[Ri]

ϕ(xι(γ)g)ψ−1
αi (x)dx ,

where Γi is defined in (1.2) and ι(γ) in (1.4).

We note that the left-hand side of the equation in this lemma equals ϕ(g)
up to constant terms corresponding to y = 0.

Proof. With Y ∈Mat(n−i)×1(F ), we parametrize y ∈ tri(F ) as

y(Y ) = (
0i−1 0 0

0 0 0
0 Y 0n−i

) .

Let Ŷ = t(1, 0, . . . , 0) ∈Mat(n−i)×1(F ). Then the surjective map SLn−i(F )→
Mat(n−i)×1(F )× defined by γ ↦ γ−1Ŷ gives that

Mat(n−i)×1(F )× ≅ (SLn−i(F ))Ŷ /SLn−i(F ) = Γi

from (1.2). (With Mat(n−i)×1(F )× we mean the set of all non-zero matrices.)
We then have that,

(3.2) ∑
y≠0
∫
[Ri]

ϕ(xg)ψ−1
y (x)dx = ∑

γ∈Γi
∫
[Ri]

ϕ(xg)ψ−1
y(γ−1Ŷ )(x)dx .

We now rewrite the character using that for any Y ∈Mat(n−i)×1(F )

y(γ−1Y ) = (
0i−1 0 0

0 0 0
0 γ−1Y 0n−i

) = (
Ii−1 0 0

0 1 0
0 0 γ−1

)(
0i−1 0 0

0 0 0
0 Y 0n−i

)(
Ii−1 0 0

0 1 0
0 0 γ

) = l−1yl ,

where we have introduced l = ι(γ) and denoted y(Y ) simply as y, which
according to (2.4) gives, for any x ∈ [Ri], that

ψy(γ−1Y )(x) = ψl−1yl(x) = ψy(lxl−1) .
The element l is in the Levi subgroup of the parabolic subgroup

corresponding to Vi, meaning that it preserves Vi under conjugation. In
particular, it also normalizes Ri since for x ∈ Ri parametrized by X ∈
Mat1×n−1

lx(X)l−1 = (
Ii−1 0 0

0 1 0
0 0 γ

)(
Ii−1 0 0

0 1 X
0 0 In−i

)(
Ii−1 0 0

0 1 0
0 0 γ−1

) = (
Ii−1 0 0

0 1 Xγ−1

0 0 In−i
) = x(Xγ−1) .

We can thus make the variable substitution lxl−1 → x in (3.2) to obtain

∑
γ∈Γi
∫
[Ri]

ϕ(xlg)ψ−1
y(Ŷ )(x)dx ,

where we have used the fact that ϕ is left-invariant under l−1. Noting that
ψy(Ŷ ) = ψαi this proves the lemma. �

We will now state a similar lemma for the last row Rn−1, that needs to be
treated separately. The freedom in choosing a character ψ0 in this lemma
will be of importance later.
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Lemma 3.4. Let ϕ be an automorphic form on SLn(A). Then, for any
character ψ0 on N trivial on Rn−1 and either on α1 or along (at least) two
adjacent simple roots not including αn−1,

∑
y∈trn−1(F )

y≠0

∫
[Rn−1]

ϕ(xg)ψ−1
y (x)dx = ∑

γ∈Γn−1(ψ0)
∫

[Rn−1]

ϕ(xι(γ)g)ψ−1
αn−1
(x)dx ,

where Γn−1(ψ0) is defined in (1.2).

Proof. With Y ∈ F , we parametrize y ∈ trn−1(F ) as

y(Y ) = ( 0n−2 0 0
0 0 0
0 Y 0

) .

We recall from page 3 that Tψ0 is the subgroup of diagonal elements
in SLn(F ) stabilizing ψ0 under conjugation of its argument and that y ∈
trn−1(F ) ≅ F . The map Tψ0 → trn−1(F )× ∶ h↦ h−1y(1)h is surjective, which
can be shown as follows. If the character ψ0 is trivial along at least two
adjacent simple roots not including αn−1. Pick such a pair αj−1 and αj where
2 ≤ j ≤ n−2 and for an arbitrary m ∈ F× let h = diag(1, . . . , 1,m, 1, . . . 1, 1/m)
where the first non-trivial element is at the jth position. Then h ∈ Tψ0

since y0 ∈ tn corresponding to ψ0 is zero at both rows and columns j and
n and h ↦ y(m) . If the character ψ0 is trivial along α1, we can choose
h = diag(m,1, . . . , 1, . . . 1,1/m) to arrive at surjectivity.

Because of (2.4) we have that the centralizer of y(1) in T is Tψαn−1
, and

thus,

trn−1(F ) ≅ (Tψ0 ∩ Tψαn−1
)/Tψ0 = Γn−1(ψ0) .

We then have that

∑
y∈trn−1(F )

y≠0

∫
[Rn−1]

ϕ(xg)ψ−1
y (x)dx = ∑

γ∈Γn−1(ψ0)
∫

[Rn−1]

ϕ(xg)ψ−1
γ−1y(1)γ(x)dx

= ∑
γ∈Γn−1(ψ0)

∫
[Rn−1]

ϕ(xg)ψ−1
y(1)(γxγ

−1) = ∑
γ∈Γn−1(ψ0)

∫
[Rn−1]

ϕ(xγg)ψ−1
αn−1
(x) ,

after making the variable change γxγ−1 → x, which concludes the proof. �

Remark 3.5. For n ≥ 5 any character ψ0 on N that is non-trivial along at
most a single simple root which is not αn−1 satisfies the character condition
in lemma 3.4.

The following lemma will be used to iteratively expand in rows. The lemma,
which is valid for any automorphic representation, will be followed by two
corollaries that specialize to a minimal and a next-to-minimal representation
respectively.

Lemma 3.6. Let ϕ be an automorphic form on SLn(A), 1 ≤ i ≤ n − 2, and
ψ0 be a character on N trivial on the complement of Vi in N . For i = n−2 we
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also require that ψ0 is trivial either along α1 or along (at least) two adjacent
simple roots not including αn−1. Then,

(3.3)

∫
[Vi]

ϕ(vg)ψ−1
0 (v)dv = ∫

[Vi+1]

ϕ(vg)ψ−1
0 (v)dv +

+ ∑
γ∈Γi+1(ψ0)

∫
[Vi+1]

ϕ(vι(γ)g)ψ−1
0 (v)ψ−1

αi+1
(v)dv .

Proof. For x ∈ Ri+1(F ) and v ∈ Vi(A) we have that ϕ(xvg) = ϕ(vg) and can
thus Fourier expand along the abelian unipotent Ri+1 as

ϕ(vg) = ∑
y∈tri+1(F )

∫
[Ri+1]

ϕ(xvg)ψ−1
y (x)dx .

Then, using lemma 3.3 (for i + 1 ≤ n − 2) or lemma 3.4 (for i + 1 = n − 1)

ϕ(vg) = ∫
[Ri+1]

ϕ(xvg)dx + ∑
γ∈Γi+1(ψ0)

∫
[Ri+1]

ϕ(xι(γ)vg)ψ−1
αi+1
(x)dx .

Let v ∈ Vi be parametrized as

v = (A B
0 In−i−1

) ,

where A ∈Mat(i+1)×(i+1) is upper unitriangular and B ∈Mat(i+1)×(n−i−1) with
the elements in the last row being zero. Since B does not intersect the
abelianization [N,N]/N (that is, the Lie algebra of B does not contain any
generator of a simple root), we have, by assumption, that ψ0 only depends
on A. Similarly, we parametrize x ∈ Ri+1 as

x = (Ii+1 B′

0 In−i−1
) ,

where B′ ∈ Mat (i + 1) × (n − i − 1) with non-zero elements only in the last
row. Then,

xv = (A B +B′
0 In−i−1

) ,

which means that ψ0(v) = ψ0(xv), and since ψαi+1 only depends on the last
row in B′ which is the same as for B + B′, we also have that ψαi+1(x) =
ψαi+1(xv).
• For 1 ≤ i ≤ n−3 with γ ∈ Γi+1, l = ι(γ) is in the Levi subgroup corresponding
to Vi and we will now show that ψ0(l−1vl) = ψ0(v) for v ∈ [Vi]. We have that

l−1vl = (Ii+1 0
0 γ−1)(

A B
0 In−i−1

)(Ii+1 0
0 γ

) = (A Bγ
0 In−i−1

)

and ψ0(v) only depends on A.
• For i = n − 2 with γ ∈ Γn−1(ψ0), l = ι(γ) = γ is in the stabilizer Tψ0 which

normalizes Vi and, by definition, means that ψ0(v) = ψ0(lvl−1).
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Thus, for 1 ≤ i ≤ n − 2,

∫
[Vi]

ϕ(vg)ψ−1
0 (v)dv = ∫

[Vi]
∫

[Ri+1]

ϕ(xvg)ψ−1
0 (v)dxdv +

+ ∑
γ∈Γi+1(ψ0)

∫
[Vi]

∫
[Ri+1]

ϕ(xvlg)ψ−1
αi+1
(x)ψ−1

0 (v)dxdv ,

where we have made the variable change lvl−1 → v.
Using that Ri+1Vi = Vi+1 the above expressions simplifies to

∫
[Vi+1]

ϕ(vg)ψ−1
0 (v)dv + ∑

γ∈Γi+1(ψ0)
∫
[Vi+1]

ϕ(vι(γ)g)ψ−1
0 (v)ψ−1

αi+1
(v)dv .

�

Corollary 3.7. Let π be an irreducible minimal automorphic representation
of SLn(A), ϕ ∈ π, and ψ0 be a character on N trivial on the complement of
Vi in N , 1 ≤ i ≤ n−2. Then, Fψ0

∶= ∫[Vi]ϕ(vg)ψ
−1
0 dv can be further expanded

as follows.

(i) If ψ0 = 1, then

Fψ0 = ∫
[Vi+1]

ϕ(vg)dv + ∑
γ∈Γi+1

∫
[Vi+1]

ϕ(vι(γ)g)ψ−1
αi+1
(v)dv,

where Γi+1(ψ0) with Γi+1 = Γi+1(1) is defined in (1.2).
(ii) If ψ0 = ψαj (1 ≤ j ≤ i), then

Fψ0 = ∫
[Vi+1]

ϕ(vg)ψ−1
0 (v)dv.

Proof. We will use lemma 3.6 where all the considered ψ0 satisfy the character
condition for the last row according to remark 3.5.

For ψ0 = 1, the expression is already in the form of lemma 3.6. This proves
case (i).

For ψ0 = ψαj with 1 ≤ j ≤ i we have that ψ0(v)ψαi+1(v) = ψαj ,αi+1(v) =
ψu(v) for some u ∈ g which is in the next-to-minimal orbit. Theorem 2.1
with the Whittaker pair (sVi+1 , u) gives that FsVi+1

,u(ϕ) vanishes for ϕ in a

minimal representation which leaves only the constant (or trivial) mode in
lemma 3.6. This proves case (ii). �

Corollary 3.8. Let π be an irreducible next-to-minimal automorphic
representation of SLn(A), ϕ ∈ π, and ψ0 be a character on N trivial on
the complement of Vi in N , 1 ≤ i ≤ n − 2. Then, Fψ0

∶= ∫[Vi]ϕ(vg)ψ
−1
0 dv can

be further expanded as follows.

(i) If ψ0 = 1, then

Fψ0 = ∫
[Vi+1]

ϕ(vg)dv + ∑
γ∈Γi+1

∫
[Vi+1]

ϕ(vι(γ)g)ψ−1
αi+1
(v)dv .

(ii) If ψ0 = ψαj (1 ≤ j < i), then

Fψ0 = ∫
[Vi+1]

ϕ(vg)ψ−1
αj (v)dv +∑

γ∈Γi+1(ψαj)
∫
[Vi+1]

ϕ(vι(γ)g)ψ−1
αj ,αi+1

(v)dv .
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(iii) If ψ0 = ψαi, then

Fψ0 = ∫
[Vi+1]

ϕ(vg)ψ−1
αi (v)dv .

(iv) If ψ0 = ψαj ,αk (1 < j + 1 < k ≤ i), then

Fψ0 = ∫
[Vi+1]

ϕ(vg)ψ−1
αj ,αk

(v)dv .

Where Γi+1(ψ0) with Γi+1 = Γi+1(1) is defined in (1.2).

Proof. We will use lemma 3.6 where the considered ψ0 in cases (i)–(iii) satisfy
the character condition for the last row according to remark 3.5.

• For ψ0 = 1, the expression is already in the form of lemma 3.6. This proves
case (i).
• For ψ0 = ψαj with 1 ≤ j < i we get that ψ0(v)ψαi+1(v) = ψαj ,αi+1(v). This
proves case (ii).
• For ψ0 = ψαi we get that ψ0(v)ψαi+1(v) = ψαi,αi+1(v) = ψu(v) for some
u ∈ g belonging to an orbit higher than the next-to-minimal. Theorem 2.1
with the Whittaker pair (sVi+1 , u) gives that FsVi+1

,u(ϕ) vanishes both for
ϕ in a minimal and next-to-minimal representation which leaves only the
constant mode in lemma 3.6. This proves case (iii).
• Lastly, for ψ0 = ψαj ,αk with 2 ≤ j + 1 < k ≤ i we first consider i ≤ n − 3 with
lemma 3.6. We get that ψ0(v)ψαi+1(v) = ψαj ,αk,αi+1(v) = ψu(v) for some
u ∈ g belonging to an orbit higher than the next-to-minimal. Theorem 2.1
with the Whittaker pair (sVi+1 , u) gives that FsVi+1

,u(ϕ) vanishes for ϕ in

next-to-minimal representation which leaves only the first term in (3.3).

For i = n− 2, we expand along the last row and obtain a sum over characters
ψu = ψ0ψy on N for all y ∈ trn−1(F ) where only y = 0 gives a u ∈ g belonging to
an orbrit in the closure of the next-to-minimal orbit. Again, using theorem 2.1
only the constant mode remains. This proves case (iv) and completes the
proof. �

Proof of theorem A. Since ϕ(x1g) = ϕ(g) for x1 ∈ V1(F ) we can make a
Fourier expansion on V1 and then use lemma 3.3 to obtain

(3.4) ϕ(g) = ∫
[V1]

ϕ(vg)dv + ∑
γ1∈Γ1

∫
[V1]

ϕ(vι(γ1)g)ψ−1
α1
(v)dv .

We will now make an iteration in the rows of the nilpotent, starting with
the row i = 1 and continue until we reach the last row i = n − 1.

• For case (i), that is, with ϕ in a minimal representation, the first step,
using corollary 3.7, is

ϕ(g) = ∫
[V2]

ϕ(vg)dv + ∑
γ2∈Γ2

∫
[V2]

ϕ(vι(γ2)g)ψ−1
α2
(v)dv +

+ ∑
γ1∈Γ1

∫
[V2]

ϕ(vι(γ1)g)ψ−1
α1
(v)dv ,
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where we note that the extra second term comes from the constant term on
V1. We will, after the iteration end up with

ϕ(g) = ∫
[N]

ϕ(ng)dn +
n−1

∑
i=1
∑
γ∈Γi
∫
[N]

ϕ(nι(γ)g)ψ−1
αi (n)dn .

This completes the proof for a minimal representation.
• For case (ii), where ϕ is in a next-to-minimal-representation, we start
again from (3.4) and expand using corollary 3.8. We get, for the first step,
that

ϕ(g) = ( ∫
[V2]

ϕ(vg)dv + ∑
γ2∈Γ2

∫
[V2]

ϕ(vι(γ2)g)ψ−1
α2
(vg)dv) +

+ ∑
γ1∈Γ1

∫
[V2]

ϕ(vι(γ1)g)ψ−1
α1
(v)dv ,

where the parenthesis comes from the expansion of the constant term in
(3.4). Expanding in the next row as well, this becomes

(∫
[V3]

ϕ(vg)dv +∑
γ3∈Γ3

∫
[V3]

ϕ(vι(γ3)g)ψ−1
α3
(v)dv +∑

γ2∈Γ2

∫
[V3]

ϕ(vι(γ2)g)ψ−1
α2
(v)dv)+

+∑
γ1∈Γ1

(∫
[V3]

ϕ(vι(γ1)g)ψ−1
α1
(v)dv +∑

γ3∈Γ3(ψα1)
∫
[V3]

ϕ(vι(γ3)ι(γ1)g)ψ−1
α1,α3

(v)dv) .

For each expansion adding a row i, the constant term gives an extra sum
over Γi of a Fourier integral with character ψαi , and from all terms with
characters ψαj with j < i− 1 we get an extra sum over Γi(ψαj) together with
a character ψαj ,αi . Corollary 3.8 (iv) implies that these terms with characters
non-trivial along two simple roots do not receive any further contributions.
Thus, after repeatedly using corollary 3.8 to the last row, we get that

ϕ(g) = ∫
[N]

ϕ(ng)dn +
n−1

∑
i=1
∑
γ∈Γi
∫
[N]

ϕ(nι(γ)g)ψ−1
αi (n)dn +

+
n−3

∑
j=1

n−1

∑
i=j+2

∑
γi∈Γi(ψαj)
γj∈Γj

∫
[N]

ϕ(nι(γi)ι(γj)g)ψ−1
αj ,αi(n)dn ,

which completes the proof of Theorem A.

�

4. Proof of theorem B

In this section, we prove Theorem B which relates Fourier coefficients
on a maximal parabolic subgroup with Whittaker coefficients on the Borel
subgroup. Recalling that the constant terms are known from [MW95], we
only focus on non-trivial characters, but first we need to introduce some
notation and lemmas.

For 1 ≤ m ≤ n − 1, let Um be the unipotent radical of the maximal
parabolic subgroup Pm with Levi subgroup Lm isomorphic to the subgroup
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of GLm × GLn−m defined by {(g, g′) ∈ GLm × GLn−m ∶ det(g)det(g′) = 1}.
Um is abelian and is isomorphic to the set of all m× (n−m) matrices. Write
Um as

Um = {(
Im X
0 In−m

) ∶X ∈Matm×(n−m)} .

Let Um = tUm be the unipotent radical of the opposite parabolic Pm. Then
the Lie algebra of Um can be written as

(4.1) um = tum = {y(Y ) = (
0m 0
Y 0n−m

) ∶ Y ∈Mat(n−m)×m} .

It is clear that the character group of Um can be identified with tum. Lm
acts on tum via conjugation and with (2.4) this becomes a conjugation of the
corresponding character’s argument. Because of (1.5), the Fourier coefficients
for characters in the same Lm(F )-orbit are related by translates of their
arguments, which means that we only need to compute one Fourier coefficient
for each orbit. We will therefore now describe the Lm(F )-orbits of elements
y(Y ) ∈ tum but leave the details to be proven in appendix D.

Starting first with F the number of Lm(F )-orbits is min(m,n −m) + 1
and the orbits are classified by the rank of the (n −m) ×m matrix Y . A
representative of an Lm(F )-orbit corresponding to rank r can be chosen as
y(Yr) where Yr is an (n−m)×m matrix, zero everywhere except for the upper
right r × r submatrix which is anti-diagonal with all anti-diagonal elements
equal to one. For each rank r, 0 ≤ r ≤ min(m,n −m), the corresponding
G(F )-orbit is parametrized by the partition [2r1n−2r].

As shown in appendix D, the Lm(F )-orbits are characterized by the
same data as the G(F )-orbits with ([2r1n−2r], d), 0 ≤ r ≤ min(m,n −m),
d ∈ F×/(F×)k and k ∈ gcd([2r1n−2r]) with representatives y(Yr(d)) where
Yr(d) is of the same form as Yr above, but with the lower left element in the
r × r matrix equal to d

Yr(d) =
⎛
⎜⎜⎜
⎝

0 [
1⋱

1
d

]

0 0

⎞
⎟⎟⎟
⎠
∈Mat(n−m)×m(F ) .

We will continue to write Yr(1) = Yr. Note that for 0 ≤ r ≤ 2 and n ≥ 5, k
is equal to 1. Each such Lm(F )-orbit is also part of the G(F )-orbit of the
same data.

From (2.3) the corresponding character on Um is

ψy(Yr)(u) = ψ(tr(y(Yr) log(u))), u ∈ Um(A).

Let sm be the semisimple element trdiag(1,1, . . . ,1,−1,−1, . . . ,−1) with m
copies of 1’s and (n −m) copies of −1’s. Then, for any automorphic form ϕ
on SLn(A), the following Fourier coefficient

∫[Um]
ϕ(ug)ψ−1

y(Yr(d))(u)du

is exactly the degenerate Fourier coefficient Fsm,y(Yr(d))(ϕ).



FOURIER COEFFICIENTS OF SMALL AUTOMORPHIC REPRESENTATIONS 21

Note that in this paper, we focus on minimal and next-to-minimal
representations, hence we only need to consider the cases of 0 ≤ r ≤ 2.
Indeed, for 3 ≤ r ≤ min(m,n −m), by definition, the generalized Fourier
coefficient attached to the partition [2r1n−2r] is identically zero for minimal
and next-to-minimal representations. By Theorem 2.1 and since y(Yr(d)) is
in the G(F )-orbit [2r1n−2r], all the Fourier coefficients Fsm,y(Yr)(ϕ) are also
identically zero.

This leaves r ∈ {1,2} and with our assumption that n ≥ 5, we thus
only need to consider the representatives y(Y1) and y(Y2) with d = 1 since
gcd([2r1n−2r]) = 1.

The above arguments proves the first part of theorem B, that there exists an
element l ∈ Lm(F ) such that FU(ϕ,ψU ; g) = FU(ϕ,ψy(Yr); lg) (note the slight
difference in notation ψy(Yr) instead of ψYr), and that all FU(ϕ,ψy(Yr); lg)
for r > rπ vanish identically where rπmin = 1 and rπntm = 2.

We will now determine the remaining Fourier coefficients FU(ϕ,ψy(Yr); g)
in terms of Whittaker coefficients. For 1 ≤m ≤ n− 1, 0 ≤ i ≤m− 1, let U im be
the unipotent radical of the parabolic of type (m − i,1i, n −m). Note that
U0
m = Um. Note that the character ψy(Y1) can be extended to a character of

any subgroup of N containing Um, still denoted by ψy(Y1). Let Cm−i be the

subgroup of U i+1
m consisting of elements with up,q = 0 except when q =m − i

and the diagonal elements. Note that Cm−i is an abelian subgroup and its
character group can be identified with tcm−i, the Lie algebra of tCm−i. Write
Cm−i as

Cm−i = {c(X) = (
Im−i−1 X 0

0 1 0
0 0 In−m+i

)}

and tcm−i as

tcm−i = {y(Y ) = (
0m−i−1 0 0
Y 0 0
0 0 0n−m+i

)} .

For each y ∈ tcm−i, the corresponding character ψy of Cm−i is defined by
ψy(c) = ψ(tr(y log(c)).

Example 4.1. For SL5 we have that

U3 =
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

1 ∗ ∗
1 ∗ ∗

1 ∗ ∗
1

1

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
U1

3 =
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

1 ∗ ∗ ∗
1 ∗ ∗ ∗

1 ∗ ∗
1

1

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
C3 =

⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

1 ∗
1 ∗

1
1

1

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
.

Note that Um−1
m = Vm and U i+1

m = Cm−iU im. We will sometimes use j =m−i
instead to denote column as follows Um−j+1

m = CjUm−jm .
We will now construct a semi-simple element s = sU im for which gs1 = ∅ and

such that ns = gs≥2 corresponds to Ns = U im. These conditions are satisfied by

(4.2) trdiag(2i, . . . , 2i,2(i − 1) . . . , 2,0,−2, . . . ,−2)

with m − i copies of 2i and n −m copies of −2.
Note that any character ψ on N trivial on the complement of U im in N

is also a character on U im by restriction and can be expressed as ψy with
y ∈ gs−2 where s = sU im such that (s, y) forms a Whittaker pair. Indeed, we

have that y ∈ gsN−2 where sN = trdiag(2(n − 1),2(n − 2), . . . ,0,−2) from (3.1)



22 O. AHLÉN, H. GUSTAFSSON, A. KLEINSCHMIDT, B. LIU, AND D. PERSSON

and the complement of U im is described by s−sN meaning that [y, s−sN ] = 0
for ψ to be trivial on the complement and thus [y, s] = [y, sN ] = −2y.

Lemma 4.2. Let ϕ be an automorphic form on SLn(A) and 2 ≤ j ≤ n. Let
also ψ0 be a character on N which, if j = 2, should be trivial along α1 and
either along αn−1 or along (at least) two adjacent other simple roots. Then,

∑
y∈tcj(F )
y≠0

∫
[Cj]

ϕ(xg)ψ−1
y (x)dx = ∑

γ∈Λj−1(ψ0)
∫
[Cj]

ϕ(xι̂(γ)g)ψ−1
αj−1
(x)dx .

where Λj(ψ0) is defined in (1.3) and only depends on ψ0 for j = 2. The
embedding ι̂ is defined in (1.4).

Proof. The proof is similar to those of lemmas 3.3 and 3.4.

• For 2 < j ≤ n, we parametrize y ∈ tcj(F ) by row vectors Y ∈Mat1×(j−1)(F )
with representative X̂ = (0, . . . , 0,1) such that ψy(X̂) = ψαj−1 .

The surjective map SLj−1(F ) → tcj(F )× ∶ γ ↦ X̂γ gives that tcj(F )× ≅
(SLj−1(F ))X̂/SLj−1(F ) = Λj−1.

As in lemma 3.3, we can write the action as a conjugation y(X̂γ) =
ι̂(γ)−1y(X̂)ι̂(γ) and, using (2.4), ψy(X̂γ)(x) = ψy(X̂)(ι̂(γ)xι̂(γ)

−1). Since

ι̂(γ) normalizes Cj a variable change gives the wanted expression.
• For j = 2, with y ∈ tc2(F ) ≅ F we instead consider the map Tψ0 → tc2(F )× ∶
h↦ h−1y(1)h which is surjective by similar arguments as in lemma 3.4 and
thus gives tc2(F )× ≅ (Tψ0 ∩ Tψα1

)/Tψ0 = Λ1(ψ0). Writing the conjugation of
y as a conjugation of the character’s argument and then substituing variables
in the Fourier integral thus proves the lemma.

�

Lemma 4.3. Let ϕ be an automorphic form on SLn(A), 1 ≤ m ≤ n − 1,

2 ≤ j ≤m and ψ0 a character on N trivial on the complement of Um−jm in N .
For j = 2, ψ0 should also be trivial either along αn−1 or along (at least) two
adjacent simple roots other than α1.

∫
[Um−jm ]

ϕ(ug)ψ−1
0 (u)du =

= ∫
[Um−j+1
m ]

ϕ(ug)ψ−1
0 (u)du +∑

γ∈Λj−1(ψ0)
∫

[Um−j+1
m ]

ϕ(uι̂(γ)g)ψ−1
0 (u)ψ−1

αj−1
(u)du .

Proof. For 2 ≤ j ≤ m we have that ϕ(xug) = ϕ(ug) for x ∈ Ci(F ) and
u ∈ U im(A) and since Cj is abelian

(4.3) ϕ(ug) = ∑
y∈tcj(F )

∫
[Cj]

ϕ(xug)ψ−1
y (x)dx .

Using lemma 4.2, we get that

ϕ(ug) = ∫
[Cj]

ϕ(xug)dx + ∑
γ∈Λj−1(ψ0)

∫
[Cj]

ϕ(xι̂(γ)ug)ψ−1
αj−1
(x)dx .
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Let u ∈ Um−jm be parametrized as

u = (Ij−1 B
0 A

)

where A ∈ Mat(n−j+1)×(n−j+1) is upper unitriangular (with several upper
triangular elements being zero) and B ∈ Mat(j−1)×(n−j+1) with elements in
the first column being zero. Since B does not intersect the abelianization
[N,N]/N (that is, the Lie algebra of B does not contain any generator of a
simple root), we have, by assumption, that ψ0 only depends on A. We also
have that x ∈ Cj can be parametrized as

x = (Ij−1 B′

0 In−j+1
)

where B′ ∈Mat(j−1)×(n−j+1) with only the first column non-zero. Thus,

xu = (Ij−1 B +B′A
0 A

)

which means that ψ0(u) = ψ0(xu). The first column of B is zero and A is
upper unitriangular which means that the first column of B +B′A is the
same as the first column of B′ and since ψαj−1 only depends on the first
column of B′ this implies that ψαj−1(x) = ψαj−1(xu).
• For 3 ≤ j ≤m with γ ∈ Λj−1 and l = ι̂(γ),

lul−1 = (γ 0
0 In−j+1

)(Ij−1 B
0 A

)(γ
−1 0
0 In−j+1

) = (Ij−1 γB
0 A

)

and since ψ0, by assumption, only depends on A we have that ψ0(u) =
ψ0(lul−1).
• For j = 2 with γ ∈ Λ1 and l = ι̂(γ) = γ is in the stabilizer Tψ0 which, by

definition, means that ψ0(u) = ψ0(lul−1).
Hence, for 2 ≤ j ≤m, and after making a variable change lul−1 → u, we get

that

∫
[Um−jm ]

∫
[Cj]

ϕ(xlug)ψ−1
0 (u)ψ−1

αj−1
(x)dxdu =

= ∫
[Um−jm ]

∫
[Cj]

ϕ(xulg)ψ−1
0 (u)ψ−1

αj−1
(x)dxdu

= ∫
[Um−jm ]

∫
[Cj]

ϕ(xulg)ψ−1
0 (xu)ψ−1

αj−1
(xu)dxdu

= ∫
[Um−j+1
m ]

ϕ(ulg)ψ−1
0 (u)ψ−1

αj−1
(u)du .
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After similar manipulations for the constant term we obtain

∫
[Um−jm ]

ϕ(ug)ψ−1
0 (u)du =

= ∫
[Um−j+1
m ]

ϕ(ug)ψ−1
0 (u)du +∑

γ∈Λj−1(ψ0)
∫

[Um−j+1
m ]

ϕ(ulg)ψ−1
0 (u)ψ−1

αj−1
(u)du .

�

What the above lemma describes is the inclusion of column Cj in the
integration domain which is why an additional character along αj−1 appears.

Remark 4.4. We note that if ψ0 is trivial along α1 but not along at least
two adjacent other simple roots we cannot use lemma 4.2, but we could still
make an expansion over C2 and keep the sum over y ∈ tc2(F ) ≅ F in the
proof above. Since the character ψy has the same support as ψα1 on N we

still have that ψy(x) = ψy(xu) for x ∈ Cj(A) and u ∈ Um−jm (A) and since ψ0

is still a character on N trivial on the complement of Um−jm it is still true
that ψ0(u) = ψ0(xu). Thus, using (4.3)

∫
[Um−2
m ]

ϕ(ug)ψ−1
0 (u)du = ∑

y∈tc2(F )
∫

[Um−2
m ]

∫
[C2]

ϕ(xug)ψ−1
0 (u)ψ−1

y (x)dxdu

= ∑
y∈tc2(F )

∫
[Um−2
m ]

∫
[C2]

ϕ(xug)ψ−1
0 (xu)ψ−1

y (xu)dxdu

= ∑
y∈tc2(F )

∫
[Vm]

ϕ(vg)ψ−1
0 (v)ψ−1

y (v)dv .

Lemma 4.5. Assume that π is an irreducible minimal automorphic
representation of SLn(A), ϕ ∈ π. For 1 ≤ m ≤ n − 1, 0 ≤ i ≤ m − 2, and
g ∈ SLn(A),

∫[U im]
ϕ(ug)ψ−1

y(Y1)(u)du = ∫[U i+1
m ]

ϕ(ug)ψ−1
y(Y1)(u)du .

Proof. Using lemma 4.3 with ψ0 = ψy(Y1) = ψαm (cf. also remark 3.5) we get
that
(4.4)

∫
[U im]

ϕ(ug)ψ−1
0 (u)du = ∫

[U i+1
m ]

ϕ(ug)ψ−1
0 (u)du + ∑

γ∈Λm−i−1(ψ0)
F(ϕ;m, i, γ, g) ,

where we have introduced

F(ϕ;m, i, γ, g) = ∫
[U i+1
m ]

ϕ(uι̂(γ)g)ψ−1
0 (u)ψαm−i−1(u)du .

Let s = sU i+1
m

from (4.2), and let u ∈ sln with two non-zero entries,

both being 1, at positions (m − i,m − i − 1) and (m + 1,m). Then,
F(ϕ;m, i, γ, g) = Fs,u(ϕ)(ι̂(γ)g) and since u is not in the closure of the
minimal orbit, theorem 2.1 gives that Fs,u(ϕ) is identically zero leaving only
the constant mode in (4.4). �
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Proof of Theorem B.

• Minimal representation. Assume that π be an irreducible minimal
automorphic representation of SLn(A), and ϕ ∈ π. Applying Lemma 4.5
repeatedly, we get that for each 1 ≤m ≤ n − 1,

∫[Um]
ϕ(ug)ψ−1

y(Y1)(u)du = ∫[Um−1
m ]

ϕ(ug)ψ−1
y(Y1)(u)du .

Note that Um−1
m = Vm and ψy(Y1) = ψαm . Applying corollary 3.7 repeatedly,

we get that for each 1 ≤m ≤ n − 1,

∫[Um−1
m ]

ϕ(ug)ψ−1
y(Y1)(u)du = ∫[N]ϕ(ng)ψ

−1
y(Y1)(n)dn ,

which is exactly

∫[N]ϕ(ng)ψ
−1
αm(n)dn .

• Next-to-minimal representation - rank 1. Let π be an irreducible
next-to-minimal automorphic representation of SLn(A) and let ϕ ∈ π.
Recalling that Um = U0

m and applying lemma 4.5 with ψ0 = ψy(Y1) = ψαm we
get

∫
[Um]

ϕ(ug)ψ−1
y(Y1)(u)du = ∫

[U1
m]

ϕ(ug)ψ−1
0 (u)du

since ψ0ψαm−1 = ψαm,αm−1 = ψu for some u that is not in the closure of the
next-to-minimal orbit and thus the non-constant modes in lemma 4.5 can be
expressed as Fourier coefficients Fs,u with s = sU1

m
from (4.2) which vanish

according to theorem 2.1.
Let us make an iteration in 1 ≤ i ≤m − 2. Using lemma 4.5 we have that

(4.5) ∫
[U im]

ϕ(ug)ψ−1
0 (u)du =

= ∫
[U i+1
m ]

ϕ(ug)ψ−1
0 (u)du + ∑

γ∈Λm−i−1(ψαm)
∫

[U i+1
m ]

ϕ(uι̂(γ)g)ψ−1
αm−i−1,αm(u)du .

Since ψαm,αm−i−1 is a character on N trivial on the complement of U i+1
m

we can expand the second term further with lemma 4.3 (or remark 4.4
if m − i − 1 = 2 and ψαm,αm−i−1 is not trivial along at least two adjacent
roots other than α1). This would lead to characters ψu = ψαm,αm−i−1,αm−i−2

(or ψu = ψαm,αm−i−1ψy with y ∈ tc2(F ) respectively) where u is not in the
closure of the next-to-minimal orbit. Then, Fs,u with s = sU i+2

m
from (4.2)

vanishes according to theorem 2.1 and the second term only receives the
constant mode contribution. Repeating these arguments for the second term
in (4.5), it becomes

∑
γ∈Λm−i−1(ψαm)

∫
[Vm]

ϕ(uι̂(γ)g)ψ−1
αm−i−1,αm(u)du .
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Iterating over i, starting from i = 1 above, we get that

(4.6) ∫
[Um]

ϕ(ug)ψ−1
y(Y1)(u)du =

∫
[Vm]

ϕ(ug)ψ−1
αm(u)du +

m−2

∑
j=1

∑
γ∈Λj(ψαm)

∫
[Vm]

ϕ(uι̂(γ)g)ψ−1
αj ,αm(u)du .

For m = 1, U1 = V1 and for m = 2 we only get the first term in (4.6).
We will now use the methods of section 3 to expand along rows. Using

corollary 3.8 case (iv), we see that the second term in (4.6) does not get any
further contributions when expanding to N . Starting with the first term in
(4.6) and using corollary 3.8 first with case (iii) to Vm+1 and then repeatedly
with cases (ii) and (iv) it becomes

∫
[Vm+1]

ϕ(ug)ψ−1
αm(u)du =

= ∫
[N]

ϕ(ng)ψ−1
αm(n)dn +

n−1

∑
i=m+2

∑
γ∈Γi(ψαm)

∫
[N]

ϕ(nι(γ)g)ψ−1
αm,αi(n)dn .

Lastly,

∫
[Um]

ϕ(ug)ψ−1
y(Y1)(u)du = ∫

[N]

ϕ(ng)ψ−1
αm(n)dn +

+
m−2

∑
j=1

∑
γ∈Λj(ψαm)

∫
[N]

ϕ(nι̂(γ)g)ψ−1
αj ,αm(n)dn +

+
n−1

∑
i=m+2

∑
γ∈Γi(ψαm)

∫
[N]

ϕ(nι(γ)g)ψ−1
αm,αi(n)dn .

• Next-to-minimal representation - rank 2. Let π be an irreducible
next-to-minimal automorphic representation of SLn(A) and let ϕ ∈ π. We
start from the integral

∫[Um]
ϕ(ug)ψ−1

y(Y2)(u)du .

For each root α, let Xα be the corresponding one-dimensional root
subgroup in SLn. Let

C1 =Xem−em+2

m−2

∏
i=1

Xei−em+2 ,

and

R1 =Xem−1−em
m−2

∏
i=1

Xem−1−ei .

Then C1 is a subgroup of Um. Let U ′m be the subgroup of Um with C1-part
identically zero. Then one can see that the quadruple

(U ′m, ψy(Y2),C1,R1)
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satisfies all the conditions of Lemma 2.5. By this lemma,

∫[Um]
ϕ(ug)ψ−1

y(Y2)(u)du

= ∫
C1(A)

∫[R1U ′m]
ϕ(ucg)ψ−1

y(Y2)(u)dudc .

Let

C2 =
m−2

∏
i=1

Xei−em+1 ,

and

R2 =
m−2

∏
i=1

Xem−ei .

Then C2 is a subgroup of R1U
′
m. Let U ′′m be the subgroup of R1U

′
m with

C2-part identically zero. Then one can see that the quadruple

(U ′′m,C2,R2, ψy(Y2))
satisfies all the conditions of Lemma 2.5. Applying this lemma and by
changing of variables,

∫
C1(A)

∫[R1U ′m]
ϕ(ucg)ψ−1

y(Y2)(u)dudc

= ∫
C1(A)

∫
C2(A)

∫[R2U ′′m]
ϕ(uc2c1g)ψ−1

y(Y2)(u)dudc2 dc1

= ∫(C1C2)(A)
∫[R2U ′′m]

ϕ(ucg)ψ−1
y(Y2)(u)dudc .

(4.7)

Let ω be the Weyl element sending torus elements

(t1, t2, . . . , tn)
to torus elements

(tm−1, tm+2, tm, tm+1, t1, t2, . . . , tm−2, tm+3, tm+4, . . . , tn) .
Conjugating ω cross from left, the integral in (4.7) becomes

(4.8) ∫
C(A)∫[Uωm]

ϕ(uωcg)ψω,−1
y(Y2)(u)dudc ,

where Uωm = ωR2U
′′
mω
−1, C = C1C2, for u ∈ Uωm, ψωy(Y2)(u) = ψy(Y2)(ω−1uω).

Uωm = Uω,1m V1 ,

where elements u ∈ Uω,1m have the following form

(I2 0
0 u′

) ,

and Uω,1m normalizes V1. Recall that Vi be unipotent radical of parabolic
subgroup of type (1i, n − i). Note that ψωy(Y2)∣V1 = ψα1 , ψωy(Y2)∣Uω,1m

= ψα3 .

Recall that α1 = e1 − e2, α3 = e3 − e4. Hence, the integral in (4.8) becomes

(4.9) ∫
C(A)∫[Uω,1m ]∫[V1]

ϕ(vuωcg)ψ−1
α1
(v)ψ−1

α3
(u)dv dudc .
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Since π is an irreducible next-to-minimal automorphic representation of
SLn(A), by corollary 3.8, case (iii), the integral in (4.9) becomes

(4.10) ∫
C(A)∫[Uω,1m ]∫[V2]

ϕ(vuωcg)ψ−1
α1
(v)ψ−1

α3
(u)dv dudc .

Uω,1m still normalizes V2, and

Uω,1m V2 = Uω,2m V3 ,

where elements u ∈ Uω,2m have the following form

(I4 0
0 u′′

) ,

u′′ is in the radical of the parabolic subgroup of type (m − 2, n −m − 2) in

SLn−4, and Uω,2m normalizes V3. Note that ψωy(Y2)∣V3 = ψα1,α3 and ψωy(Y2)∣Uω,2m

is the trivial character. By corollary 3.8, case (iv), the integral in (4.10)
becomes

(4.11) ∫
C(A)∫[Uω,2m ]∫[V4]

ϕ(vuωcg)ψ−1
α1,α3

(v)dv dudc .

Applying corollary 3.8, case (iv), repeatedly, the integral in (4.11) becomes

∫
C(A)∫[Uω,2m ]∫[N]ϕ(nuωcg)ψ

−1
α1,α3

(n)dndudc ,

which becomes

∫
C(A)∫[Uω,2m ]∫[N]ϕ(nωcg)ψ

−1
α1,α3

(n)dndudc ,

by changing of variables. Since ∫[Uω,2m ] du = 1, we have obtained that

∫[Um]
ϕ(ug)ψ−1

y(Y2)(u)du = ∫C(A)∫[N]ϕ(nωcg)ψ
−1
α1,α3

(n)dndc .

This completes the proof of Theorem B. �

5. Proof of theorems C and D

Proof of Theorem C. Let π be any irreducible automorphic represen-
tation of SLn(A) and let ϕ ∈ π. The generalized Fourier coefficient of ϕ
attached to the partition [21n−2] has been defined in Section 2. We recall it
as follows.

Let s = (1,−1,0, . . . ,0), and let u = J[21n−2] which is a matrix zero
everywhere except the (2,1) entry being 1. Then the generalized Fourier
coefficient of ϕ attached to the partition [21n−2] is as follows:

F [211...](ϕ; g) = Fs,u(ϕ; g) = ∫[Ns]
ϕ(ng)ψ−1

u (n)dn ,

where elements in the one-dimensional unipotent Ns have the form

⎛
⎜
⎝

1 ∗ 0
0 1 0
0 0 In−2

⎞
⎟
⎠
.

Let X = ∏ni=3Xe1−ei and Y = ∏ni=3Xei−e2 . Then one can see that Y (F )
can be identified with the character space of [X] as follows: given y ∈ Y (F ),
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ψy(x) = ψu([x, y]), for any x ∈ [X]. Note that both X and Y normalize Ns.
Taking the Fourier expansion of Fs,u(ϕ)(g) along [X], we obtain that

Fs,u(ϕ; g) = ∑
y∈Y (F )

∫[X]∫[Ns]
ϕ(xng)ψ−1

u (n)ψ−1
y (x)dndx .

Since y−1 ∈ Y (F ) and ϕ is automorphic, the above integral becomes

∑
y∈Y (F )

∫[X]∫[Ns]
ϕ(xng)ψ−1

u (n)ψ−1
y (x)dndx

= ∑
y∈Y (F )

∫[X]∫[Ns]
ϕ(y−1xng)ψ−1

u (n)ψ−1
y (x)dndx

= ∑
y∈Y (F )

∫[X]∫[Ns]
ϕ(y−1xnyy−1g)ψ−1

u (n)ψ−1
y (x)dndx

= ∑
y∈Y (F )

∫[X]∫[Ns]
ϕ(xn′y−1g)ψ−1

u (n)ψ−1
y (x)dndx ,

where n′ = n + [x, y]. By changing variables, we obtain that

∑
y∈Y (F )

∫[X]∫[Ns]
ϕ(xn′y−1g)ψ−1

u (n)ψ−1
y (x)dndx

= ∑
y∈Y (F )

∫[X]∫[Ns]
ϕ(xny−1g)ψ−1

u (n)ψ−1
u (−[x, y])ψ−1

y (x)dndx .

Note that

ψ−1
u (−[x, y])ψ−1

y (x)
= ψu([x, y])ψu(−[x, y])
= 1 .

Hence, we have that

Fs,u(ϕ; g) = ∑
y∈Y (F )

∫[X]∫[Ns]
ϕ(xny−1g)ψ−1

u (n)dndx .

Note that XNs = U1 and ψu = ψα1 . Therefore, we have that

Fs,u(ϕ; g) = ∑
y∈Y (F )

∫[U1]
ϕ(uy−1g)ψ−1

α1
(u)du .

This completes the proof of Theorem C. �
Proof of Theorem D. Let π be any irreducible automorphic represen-

tation of SLn(A) and let ϕ ∈ π. The generalized Fourier coefficient of ϕ
attached to the partition [221n−4] has also been defined in Section 2. We
recall it as follows.

Let s = (1,−1,1,−1,0, . . . ,0), and let u = J[221n−4] which is a matrix zero
everywhere except the (2,1) and (4,3) entries being 1. Then the generalized
Fourier coefficient of ϕ attached to the partition [221n−4] is as follows:

F [221...](ϕ; g) = Fs,u(ϕ; g) = ∫[Ns]
ϕ(ng)ψ−1

u (n)dn ,
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where elements in Ns have the form

⎛
⎜⎜⎜⎜⎜
⎝

1 ∗ 0 ∗ 0
0 1 0 0 0
0 ∗ 1 ∗ 0
0 0 0 1 0
0 0 0 0 In−4

⎞
⎟⎟⎟⎟⎟
⎠

.

Let ω be the Weyl element sending the torus element

(t1, t2, . . . , tn)
to the torus element

(t1, t3, t4, t2, t5, t6, . . . , tn) .
Conjugating ω across from left, we obtain that

Fs,u(ϕ; g) = ∫[Nω
s ]
ϕ(nωg)ψω,−1

u (n)dn ,

where Nω
s = ωNsω

−1, and for n ∈ Nω
s , ψωu (n) = ψu(ω−1nω). Elements in

n ∈ Nω
s have the following form

n = n(z) =
⎛
⎜
⎝

I2 z 0
0 I2 0
0 0 In−4

⎞
⎟
⎠
,

and ψωu (n) = ψ(z1,2 + z2,1).
Let

X ′ =
n

∏
i=5
Xe1−ei

n

∏
i=5
Xe2−ei

and

Y ′ =
n

∏
i=5
Xei−e4

n

∏
i=5
Xei−e3 .

Then one can see that Y ′(F ) can be identified with the character space
of [X ′] as follows: given y ∈ Y ′(F ), ψy(x) = ψωu ([x, y]), for any x ∈ [X ′].
Note that both X ′ and Y ′ normalize Ns. Taking the Fourier expansion of
Fs,u(ϕ)(g) along [X ′], we obtain that

Fs,u(ϕ; g) = ∑
y∈Y ′(F )

∫[X′]∫[Nω
s ]
ϕ(xnωg)ψω,−1

u (n)ψ−1
y (x)dndx .

Since y−1 ∈ Y ′(F ) and ϕ is automorphic, the above integral becomes

∑
y∈Y ′(F )

∫[X′]∫[Nω
s ]
ϕ(xnωg)ψω,−1

u (n)ψ−1
y (x)dndx

= ∑
y∈Y ′(F )

∫[X′]∫[Nω
s ]
ϕ(y−1xnωg)ψω,−1

u (n)ψ−1
y (x)dndx

= ∑
y∈Y ′(F )

∫[X′]∫[Nω
s ]
ϕ(y−1xnyy−1ωg)ψω,−1

u (n)ψ−1
y (x)dndx

= ∑
y∈Y ′(F )

∫[X′]∫[Nω
s ]
ϕ(xn′y−1ωg)ψω,−1

u (n)ψ−1
y (x)dndx ,
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where n′ = n + [x, y]. By changing variables, we obtain that

∑
y∈Y ′(F )

∫[X′]∫[Nω
s ]
ϕ(xn′y−1ωg)ψω,−1

u (n)ψ−1
y (x)dndx

= ∑
y∈Y ′(F )

∫[X′]∫[Nω
s ]
ϕ(xny−1ωg)ψω,−1

u (n)ψω,−1
u (−[x, y])ψ−1

y (x)dndx .

Note that

ψω,−1
u (−[x, y])ψ−1

y (x) = ψωu ([x, y])ψωu (−[x, y]) = 1 .

Hence, we have that

Fs,u(ϕ; g) = ∑
y∈Y ′(F )

∫[X′]∫[Nω
s ]
ϕ(xny−1ωg)ψ−1

u (n)dndx .

Note that X ′Nω
s = U2 and ψu = ψy(Y2), using the notation from section 4.

Therefore, we have that

Fs,u(ϕ; g) = ∑
y∈Y ′(F )

∫[U2]
ϕ(uy−1ωg)ψ−1

y(Y2)(u)dudx .

This completes the proof of Theorem D. �

6. Applications

As is evident from table 1, the case SL5 appears in the list of symmetry
and duality groups in string theory. It is related to compactification of
type II string theory on a three-torus T 3 from ten to seven spacetime
dimensions. Fourier coefficients of automorphic forms on SL5 are related
to non-perturbative effects as discussed in the introduction. Therefore we
analyse here in some detail the structure of Fourier coefficients of automorphic
forms, in particular Eisenstein series, attached to a minimal or next-to-
minimal automorphic representation of SL5 that are relevant to the first two
higher-derivative corrections in four-graviton scattering amplitudes.

We will first give a detailed description of how the formalism developed
above can be used to calculate explicit expressions for Fourier coefficients on
maximal parabolic subgroups for automorphic forms attached to a minimal
or next-to-minimal automorphic representation of SLn for n ≥ 5. Following a
general discussion, we will treat two explicit examples for n = 5.

6.1. Generalities. With applications to string theory in mind, throughout
this section we are restricting to F = Q and let A ≡ AQ. Let G = SLn for
n ≥ 5 and P a parabolic subgroup of G with Levi decomposition P = LU .
The types of expressions that are of interest are of the form:

(6.1) FR(ϕ,ψ; g) = ∫
U(Z)/U(R)

ϕ(ug)ψ−1(u)du ,

where ψ is some rank-1 or rank-2 character on U(R) and ϕ is an automorphic
form attached to a minimal or next-to-minimal automorphic representations
of G(R). Recall that Fourier coefficients with higher rank characters vanish
for the representations of interest.

Similar to the adelic case, the real rank-1 and rank-2 Fourier coefficients
can be brought to standard forms using the action of the arithmetic Levi
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subgroup L(Z). For rank-1 this form is ψ = ψy(kY1) for some integer k ≠ 0
and for rank-2 one has ψ(k1um,m+1 + k2um−1,m+2) for non-zero integers k1

and k2, cf. (1.6). For simplicity, we will mainly discuss the case ψy(Y1) and
demonstrate how to apply theorem B, but the techniques demonstrated here
can be generalized for the remaining Fourier coefficients of automorphic
forms attached to a minimal and next-to-minimal representations on SLn.

In order to apply theorem B, we first perform an adelic lift as described
in [FGKP18]

FR(ϕ,ψ; g∞) = FA(ϕ,ψ; (g∞, In, In,⋯)) = ∫
[U]

ϕ(u(g∞, In, In, . . . ))ψ−1(u)du ,

where we abuse notation and denote the adelic lifts of the automorphic form
and character also as ϕ and ψ. The theorem now gives FA in terms of adelic
Whittaker functions. For Eisenstein series of weight λ, these Whittaker
functions will then be evaluated using the adelic reduction formula

(6.2) Wψ(λ, a) = ∑
wcw′0∈Cψ

a(wcw
′

0)−1λ+ρM(w−1
c , λ)W ′

ψa(w−1
c λ,1)

of [FKP14]. The power of this formula lies in that it expresses a degenerate
Whittaker function evaluated on the Cartan torus of a group G(A) as a sum
of generic Whittaker functions on a subgroup G′(A) with w−1

c λ orthogonally
projected onto its weight space. This subgroup G′(A) is determined by
deleting all nodes in the Dynkin diagram of G(A) on which ψ is not supported.
Here, w′0 denotes the longest Weyl word on G′, Cψ denotes the set

Cψ = {w ∈W ∣ wΠ′ < 0}
where Π′ is the set of simple roots of G′ and wc is hence the summation
variable and corresponds to a specific representative of the quotient Weyl
group W/W ′ described in [FKP14]. ρ denotes the Weyl vector, M denotes
the intertwiner

M(w,λ) = ∏
α>0
wα<0

ξ(⟨λ∣α⟩)
ξ(⟨λ∣α⟩ + 1)

as featured in the Langlands constant term formula, where ξ is the completed
Riemann zeta function and ψa denotes the “twisted character”, both defined
in appendix A.

The evaluation of a real rank-1 Fourier coefficient schematically looks like

FR(ϕ,ψ; g∞) = FA(ϕ,ψ; (g∞, In, In,⋯)) Adelic lift

= ∑
ψ

∑
l∈Λ or l∈Γ

Wψ(l(g∞, In, In,⋯)) Theorem B

= ∑
ψ

∑
l∈Λ or l∈Γ

Wψ((n∞a∞k∞, n2a2k2, n3a3k3,⋯)) Iwasawa-decomposition

= ∑
ψ

⎛
⎝∏p≤∞

ψp(np)
⎞
⎠ ∑
l∈Λ or l∈Γ

Wψ((a∞, a2, a3,⋯)) Wψ(nak) = ψ(n)Wψ(a)
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= ∑
ψ

ψ∞(n∞) ∑
l∈Λ or l∈Γ

∑
w

a...M(⋯)W ′
ψa(⋯,1) Reduction formula (6.2).

The fourth line extracts the unipotent np-dependence at each of the local
places p ≤ ∞. In the fifth line we have used that only the archimedean
unipotent n∞ contributes. The reason that the p-adic unipotent matrices np
of the p-adic Iwasawa-decomposition of l ∈ G(F ) ⊂ G(Qp) above drop out is
as follows. In using theorem B, we will be faced with evaluating Whittaker
functions such as

Wαj ,αm(ι̂(λj)g) for j ≤m − 2 where λj ∈ Λj and

Wαm,αi(ι(γi)g) for i ≥m + 2 where γi ∈ Γi .

We have that γi and λj are embedded in SLn as (cf. (1.4))

ι̂(λj) = ( λj In−j ) and ι(γi) = ( Ii γi ) .

It is clear from their block-diagonal form that the unipotent np in the p-adic
Iwasawa-decomposition of ι̂(λj) (and ι(γi)) will feature the same block-
diagonal form. Since Wαj ,αm (and Wαm,αi) is only sensitive to the unipotent
on rows j and m ≥ j + 2 > j (on rows i and m ≤ i − 2 ≤ i), the block diagonal
structure of np implies ψαj ,αm;p(np) = 1 (and ψαm,αi;p(np) = 1).

For a real matrix g ∈ SLn(R), we will denote its Iwasawa-decomposition

(6.3) g = n∞a∞k∞ =
⎛
⎜
⎝

1 x12 ⋯ ⋯ x1n
1 ⋱ ⋱ ⋮
⋱ ⋱ ⋮

1 xn−1,n

1

⎞
⎟
⎠

⎛
⎜
⎝

y1

y2/y1
⋱
yn−1/yn−2

1/yn−1

⎞
⎟
⎠
k∞ .

Similarly, for a p-adic matrix g ∈ SLn(Qp) we denote it as

(6.4) g = npapkp = np
⎛
⎜
⎝

η1,p

η2,p/η1,p
⋱
ηn−1,p/ηn−2,p

1/ηn−1,p

⎞
⎟
⎠
kp .

Appendix B contains closed formulae for the x’s and the y’s, as well as a
closed formula for the p-adic norm ∣ηi,p∣p of the η’s.

In what follows, we will make use of all formulae that are derived or stated
in appendices A, B and C along with the following notation

● A prime on a variable, eg. x′, generally denotes x′ ≠ 0.

● For sums we write ∑
x

≡ ∑
x∈Q

.

● We write ∑
x′
f(x) ≡ ∑

x∈Q∖{0}
f(x) and ∑

x′∈Z
f(x) ≡ ∑

x∈Z∖{0}
f(x). Note

that the prime is used to indicate whether or not zero is included in
the sum but the prime is omitted in the summand.

● For products we write ∏
p

≡ ∏
p prime

. Writing ∏
p≤∞

denotes the product

over all primes p (the non-archimedean places) as well as the element
p =∞ (the archimedean place).

● For x ∈ R we denote e (x) ≡ e2πix.
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wc ⟨w−1
c λ + ρ∣α4⟩ M (w−1

c , λ) (wcw′0)
−1
λ + ρ

Id 0 1 . . .
w1 0 . . . . . .
w12 0 . . . . . .

∗ w123 2 (s − 3
2
) ξ(2s−3)

ξ(2s) [0,0,0,5 − 2s]

Table 2. Data for the reduction formula (6.2) to evaluate
Wα4(a) on SL5 with λ = 2sΛ1−ρ. The star in the first column
indicates the one and only row that contributes in the sum
over Weyl words. The second column is used to compute the
projected weight for the G′ Whittaker coefficient, the third
column gives the intertwiner, and the last column gives the
weight for first factor of (6.2) as a vector with the fundamental
weights as basis.

6.2. Example: Rank-1 coefficient of πmin on Pα4 ⊂ SL5. Here, we will
calculate the real rank-1 Fourier coefficient (6.1) for the Eisenstein series
E(λ; g) with λ = 2sΛ1 − ρ attached to a minimal automorphic representation,
with respect to the unipotent radical of the maximal parabolic

Pα4 = GL4 ×GL1 ×Uα4 ⊂ SL5 subject to det(GL4 ×GL1) = 1 ,

obtained by removing the “last” node in the Dynkin diagram of SL5. The
unipotent radical is

U(R) = Uα4(R) =
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

1 ∗
1 ∗

1 ∗
1 ∗

1

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
.

Theorem B gives for the unramified character ψy(Y1) that

FA(E(2sΛ1 − ρ), ψy(Y1); g) =Wα4(g) .
The Whittaker function is found by the reduction formula with data

given in table 2. In this case, there is no diagonally embedded rational
matrix l, or equivalently l = I5, in the general procedure and hence we have
∣η1,p∣p = ∣η2,p∣p = ∣η3,4∣p = ∣η4,p∣p = 1. Using (6.2) and (A.5) with s′ = s − 3/2,
we get

Wα4(λ; (g∞, I5, I5,⋯)) =

= e (x45)
⎛
⎝
y5−2s

4

ξ (2s − 3)
ξ (2s) ∏

p<∞
∣η4,p∣5−2s

p

⎞
⎠
Ks−3/2 (

y2
4

y3
,1)

× ∏
p<∞

γp
⎛
⎝
η2

4,p

η3,p

⎞
⎠
(1 − p−2(s−3/2))

1 − p−2(s−3/2)+1 ∣η
2
4,p

η3,p
∣
2(s−3/2)−1

p

1 − p−2(s−3/2)+1

= e (x45)y5−2s
4

1

ξ (2s)2 ∣
y2

4

y3
∣
s−2

∞
Ks−2 (2π ∣

y2
4

y3
∣
∞
)

= 2e (x45)y2−s
3 y4

1

ξ (2s)Ks−2 (2π ∣
y2

4

y3
∣
∞
) = FR(E(2sΛ1 − ρ), ψy(Y1); g∞) .
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The x’s and y’s are the Iwasawa coordinates for the matrix g∞ as in (6.3).
The function Ks that appears is a more compact way of writing the SL2

Whittaker vector defined explicitly in (A.3).
Parameterizing g∞ as

g∞ = ue = ( I4 Q0 1
)( r−1/4e4 0

0 r
) where e4 ∈ SL4(R) ,

we get in particular that

y3 = r−3/4∣∣Ne4∣∣ and y4 = r−1 ,

where N = ( 0 0 0 1 ) so that Ne4 is equal to the last row in e4. This is
obtained using the formula (B.1). We get in particular that

y2−s
3 y4 = r2s−5 (r−5/4∣∣Ne4∣∣)

s−2
and

y2
4

y3
= r−5/4∣∣Ne4∣∣ .

One can show that the more general (real) Fourier coefficient with a
character ψ on Uα4 parametrized by integers N = (m1 m2 m3 m

′

4 ), where m′4
is non-zero, has the expression
(6.5)

∫ E
⎛
⎜
⎝

2sΛ1 − ρ;
⎛
⎜
⎝

1 u1
1 u2

1 u3
1 u4

1

⎞
⎟
⎠
g∞
⎞
⎟
⎠

e (m1u1 +m2u2 +m3u3 +m′4u4)d4u =

= e (NQ)r2s−5 2

ξ(2s)σ4−2s(k) (r−5/4∣∣Ne4∣∣)
s−2

Ks−2 (2πr−5/4∣∣Ne4∣∣)

=e (NQ)r
3s
4
− 5

2
2

ξ(2s)
σ2s−4(k)
∣k∣s−2

∣∣Ñe4∣∣s−2Ks−2 (2π∣k∣r−5/4∣∣Ñe4∣∣)

and that, for non-integer rational m’s, it vanishes. Here g∞ has been
parametrized as above, N = kÑ and k = gcd(N). This expression can
be found by starting from ψy(kY1) for the standard Fourier coefficient,
which corresponds to N = ( 0 0 0 k ), and compute its L(Z) orbit using (1.5).
Formula (6.5) agrees with [GMV15, Eq. (H.37)] where the Fourier coefficients
were computed by Poisson resummation techniques, after a translation of
conventions.

6.3. Example: Rank-1 coefficient of πntm on Pα4 ⊂ SL5. Here, we
will calculate the real rank-11 Fourier coefficient (6.1) for the Eisenstein
series E(λ; g) with λ = 2sΛ2 − ρ attached to a next-to-minimal automorphic
representation, with respect to the unipotent radical of the maximal parabolic

Pα4 = GL4 ×GL1 ×Uα4 ⊂ SL5 subject to det(GL4 ×GL1) = 1

obtained by removing the “last” node in the Dynkin diagram of SL5. The
unipotent radical is

U(R) = Uα4(R) =
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

1 ∗
1 ∗

1 ∗
1 ∗

1

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
.

1There is no rank-2 character for this parabolic.
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wc ⟨w−1
c λ + ρ∣α4⟩ M (w−1

c , λ) (wcw′0)
−1
λ + ρ

Id 0 1 . . .
w2 0 . . . . . .
w21 0 . . . . . .

∗ w23 2 (s − 1) ξ(2s−2)
ξ(2s) [2s − 1,0,0,4 − 2s]

∗ w213 2 (s − 1) ξ(2s−2)2
ξ(2s)ξ(2s−1) [3 − 2s,2s − 2,0,4 − 2s]

∗ w2132 2 (s − 1) ξ(2s−3)ξ(2s−2)
ξ(2s)ξ(2s−1) [0,4 − 2s,2s − 3,4 − 2s]

w213243 0 . . . . . .

Table 3. Data for the reduction formula (6.2) to evaluate
Wα4(a) on SL5 with λ = 2sΛ2 − ρ. The stars indicate which
rows contribute in the sum over Weyl words.

Theorem B gives

FA(E(2sΛ2 − ρ), ψy(Y1); g) =
=Wα4(g) + ∑

λ1∈Λ1(ψα4)
Wα1,α4(ι̂(λ1)g) + ∑

λ2∈Λ2

Wα2,α4(ι̂(λ2)g)

=Wα4(g)

+ ∑
z′
Wα1,α4

⎛
⎝
⎛
⎝

z
1

1/z
1

1

⎞
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
lz

g
⎞
⎠

+ ∑
x′,y

Wα2,α4((
x−1

y x
I3
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
lxy

g)

+ ∑
x′
Wα2,α4((

0 −x−1

x 0
I3
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
lx

g) ,

(6.6)

using the representatives derived in appendix C.
The first Whittaker function is found by the reduction formula with the

data of table 3. In this case, there is no diagonally embedded rational matrix
l, or equivalently l = I5, and hence we have ∣η1,p∣p = ∣η2,p∣p = ∣η3,p∣p = ∣η4,p∣p = 1.
We get

(6.7)

Wα4(λ; (g∞, In, In,⋯)) =

= e (x45)Ks−1 (
y2

4

y3
,1)
⎛
⎝
y2s−1

1 y4−2s
4

ξ (2s − 2)
ξ (2s) ∏

p<∞
∣η1,p∣2s−1

p ∣η4,p∣4−2s
p

+ y3−2s
1 y2s−2

2 y4−2s
4

ξ(2s − 2)2
ξ(2s)ξ(2s − 1) ∏p<∞

∣η1,p∣3−2s
p ∣η2,p∣2s−2

p ∣η4,p∣4−2s
p +
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wc ⟨w−1
c λ + ρ∣α1⟩ ⟨w−1

c λ + ρ∣α4⟩ M (w−1
c , λ) (wcw′0)

−1
λ + ρ

Id 0 0 1 . . .
w2 2 (s − 1

2
) 0 . . . . . .

∗ w23 2 (s − 1
2
) 2(s − 1) ξ(2s−2)

ξ(2s) v

w2132 0 2(s − 1) . . . . . .
w213243 0 0 . . . . . .

Table 4. Data for the reduction formula (6.2) to evaluate
Wα1,α4(a) on SL5 with λ = 2sΛ2−ρ. The stars indicate which
Weyl words contribute to the reduction formula. We wrote
v = [3 − 2s,2s − 2,0,4 − 2s] here to conserve space.

+ y4−2s
2 y2s−3

3 y4−2s
4

ξ(2s − 3)ξ(2s − 2)
ξ(2s)ξ(2s − 1) ∏

p<∞
∣η2,p∣4−2s

p ∣η3,p∣2s−3
p ∣η4,p∣4−2s

p

⎞
⎠

∏
p<∞

γp
⎛
⎝
η2

4,p

η3,p

⎞
⎠
(1 − p−2(s−1))

1 − p−2(s−1)+1 ∣η
2
4,p

η3,p
∣
2(s−1)−1

p

1 − p−2(s−1)+1

= e (x45)(y2s−1
1 y4−2s

4

1

ξ (2s) + y
3−2s
1 y2s−2

2 y4−2s
4

ξ(2s − 2)
ξ(2s)ξ(2s − 1)

+ y4−2s
2 y2s−3

3 y4−2s
4

ξ(2s − 3)
ξ(2s)ξ(2s − 1))2 ∣y

2
4

y3
∣
s−3/2

∞
Ks−3/2 (2π ∣

y2
4

y3
∣
∞
)

= 2e (x45)(y2s−1
1 y

3/2−s
3 y4

1

ξ (2s) + y
3−2s
1 y2s−2

2 y
3/2−s
3 y4

ξ(2s − 2)
ξ(2s)ξ(2s − 1)

+ y4−2s
2 y

s−3/2
3 y4

ξ(2s − 3)
ξ(2s)ξ(2s − 1))Ks−3/2 (2π ∣

y2
4

y3
∣
∞
) .

The x’s and y’s are the Iwasawa coordinates for the matrix g∞ as in (6.3).
The second Whittaker function is found by the reduction formula with

the data given in table 4. The p-adic Iwasawa-decomposition of lz has

∣η1,p∣p = ∣η2,p∣p = ∣z∣p and ∣η3,p∣p = ∣η4,p∣p = 1 .

We get

(6.8)

∑
z′
Wα1,α4 (λ; lz(g∞, In, In,⋯)) =

=∑
z′

e (x̃12 + x̃45)ỹ3−2s
1 ỹ2s−2

2 ỹ4−2s
4

ξ(2s − 2)
ξ(2s)

×Ks−1/2 (
ỹ2

1

ỹ2
,1)Ks−1 (

ỹ2
4

ỹ3
,1)∏

p<∞
∣η1,p∣3−2s

p ∣η2,p∣2s−2
p ∣η4,p∣4−2s

p

× ∏
p<∞

γp
⎛
⎝
η2

1,p

η2,p

⎞
⎠
(1 − p−2(s−1/2))

1 − p−2(s−1/2)+1 ∣η
2
1,p

η2,p
∣
2(s−1/2)−1

p

1 − p−2(s−1/2)+1
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wc ⟨w−1
c λ + ρ∣α2⟩ ⟨w−1

c λ + ρ∣α4⟩ M (w−1
c , λ) (wcw′0)

−1
λ + ρ

Id 2s 0 1 . . .
w21 0 0 . . . . . .
w23 0 2(s − 1) . . . . . .

∗ w213 2(s − 1) 2(s − 1) ξ(2s−2)2
ξ(2s)ξ(2s−1) v

w213243 0 0 . . . . . .

Table 5. Data for the reduction formula (6.2) to evaluate
Wα2,α4(a) on SL5 with λ = 2sΛ2 − ρ. The star indicates the
Weyl word that contributes to the reduction formula. We
wrote v = [0,4 − 2s,2s − 3,4 − 2s] to save space.

× ∏
p<∞

γp
⎛
⎝
η2

4,p

η3,p

⎞
⎠
(1 − p−2(s−1))

1 − p−2(s−1)+1 ∣η
2
4,p

η3,p
∣
2(s−1)−1

p

1 − p−2(s−1)+1

= ∑
z′∈Z

e (x̃12 + x̃45)ỹ3−2s
1 ỹ2s−2

2 ỹ4−2s
4

1

ξ(2s)ξ(2s − 1) ∏p<∞
∣z∣1p

× 4( ỹ
2
1

ỹ2
)
s−1

( ỹ
2
4

ỹ3
)
s−3/2

Ks−1 (2π
ỹ2

1

ỹ2
)Ks−3/2 (2π

ỹ2
4

ỹ3
)

× σ−2(s−1/2)+1(∣z∣∞)

= ∑
z′∈Z

4e (x̃12 + x̃45)ỹ1ỹ
s−1
2 ỹ

3/2−s
3 ỹ4

1

ξ(2s)ξ(2s − 1) ∣z∣
−1
∞

×Ks−1 (2π
ỹ2

1

ỹ2
)Ks−3/2 (2π

ỹ2
4

ỹ3
)σ2−2s(∣z∣∞) .

The x̃’s and ỹ’s are the Iwasawa coordinates for the matrix lzg∞. Writing g∞
in the coordinates (6.3) we find explicitly for the archimedean components

x̃12 = zx12, x̃45 = x45, ỹ1 = ∣z∣∞y1, ỹ2 = ∣z∣∞y2, ỹ3 = y3, ỹ4 = y4.

The third and fourth Whittaker functions are found by the reduction
formula with the data from table 5. The p-adic Iwasawa-decomposition of
lxy has

∣η1,p∣−1
p =max{∣y∣p, ∣x∣p} and ∣η2,p∣p = ∣η3,p∣p = ∣η4,p∣p = 1 .

We get

(6.9)

∑
x′,y

Wα2,α4 (λ; lxy(g∞, In, In,⋯)) =

= ∑
x′,y

e (x̃23 + x̃45)ỹ4−2s
2 ỹ2s−3

3 ỹ4−2s
4

ξ(2s − 2)2
ξ(2s)ξ(2s − 1)

×Ks−1 (
ỹ2

2

ỹ1ỹ3
,1)Ks−1 (

ỹ2
4

ỹ3
,1)∏

p<∞
∣η2,p∣4−2s

p ∣η3,p∣2s−3
p ∣η4,p∣4−2s

p
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× ∏
p<∞

γp
⎛
⎝

η2
2,p

η1,pη3,p

⎞
⎠
(1 − p−2(s−1))

1 − p−2(s−1)+1 ∣ η2
2,p

η1,pη3,p
∣
2(s−1)−1

p

1 − p−2(s−1)+1

× ∏
p<∞

γp
⎛
⎝
η2

4,p

η3,p

⎞
⎠
(1 − p−2(s−1))

1 − p−2(s−1)+1 ∣η
2
4,p

η3,p
∣
2(s−1)−1

p

1 − p−2(s−1)+1

= ∑
x′,y∈Z

e (x̃23 + x̃45)ỹ4−2s
2 ỹ2s−3

3 ỹ4−2s
4

1

ξ(2s)ξ(2s − 1)4 ∣
ỹ2

2

ỹ1ỹ3
∣
s−3/2

∞
∣ ỹ

2
4

ỹ3
∣
s−3/2

∞

×Ks−3/2 (2π ∣
ỹ2

2

ỹ1ỹ3
∣
∞
)Ks−3/2 (2π ∣

ỹ2
4

ỹ3
∣
∞
)σ−2(s−1)+1(k)

= ∑
x′,y∈Z

4e (x̃23 + x̃45)ỹ3/2−s
1 ỹ2ỹ4

1

ξ(2s)ξ(2s − 1)

×Ks−3/2 (2π ∣
ỹ2

2

ỹ1ỹ3
∣
∞
)Ks−3/2 (2π ∣

ỹ2
4

ỹ3
∣
∞
)σ3−2s(k) ,

where k = gcd(∣y∣, ∣x∣). Here, the x̃’s and ỹ’s are the Iwasawa coordinates for
the matrix lxyg∞. Explicitly, we have for the archimedean components

x̃23 = xx23 + yx13 , x̃45 = x45 ,

ỹ1 =
y1√

(x + yx12)2 + (yy2
1y
−1
2 )2

, ỹ2 = y2 , ỹ3 = y3 , ỹ4 = y4 .

Turning to the last piece in (6.6), the p-adic Iwasawa-decomposition of lx
has

∣η1,p∣−1
p =max{∣0∣p, ∣x∣p} = ∣x∣p and ∣η2,p∣p = ∣η3,p∣p = ∣η4,p∣p = 1 .

We get therefore

∑
x′
Wα2,α4 (λ; lx(g∞, In, In,⋯)) =

=∑
x′

e (x̃23 + x̃45)ỹ4−2s
2 ỹ2s−3

3 ỹ4−2s
4

ξ(2s − 2)2
ξ(2s)ξ(2s − 1)

×Ks−1 (
ỹ2

2

ỹ1ỹ3
,1)Ks−1 (

ỹ2
4

ỹ3
,1)∏

p<∞
∣η2,p∣4−2s

p ∣η3,p∣2s−3
p ∣η4,p∣4−2s

p

× ∏
p<∞

γp
⎛
⎝

η2
2,p

η1,pη3,p

⎞
⎠
(1 − p−2(s−1))

1 − p−2(s−1)+1 ∣ η2
2,p

η1,pη3,p
∣
2(s−1)−1

p

1 − p−2(s−1)+1

× ∏
p<∞

γp
⎛
⎝
η2

4,p

η3,p

⎞
⎠
(1 − p−2(s−1))

1 − p−2(s−1)+1 ∣η
2
4,p

η3,p
∣
2(s−1)−1

p

1 − p−2(s−1)+1

= ∑
x′∈Z

e (x̃23 + x̃45)ỹ4−2s
2 ỹ2s−3

3 ỹ4−2s
4

1

ξ(2s)ξ(2s − 1)4 ∣
ỹ2

2

ỹ1ỹ3
∣
s−3/2

∞
∣ ỹ

2
4

y3
∣
s−3/2

∞
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×Ks−3/2 (2π ∣
ỹ2

2

ỹ1ỹ3
∣
∞
)Ks−3/2 (2π ∣

ỹ2
4

ỹ3
∣
∞
)σ−2(s−1)+1(∣x∣∞)

= ∑
x′∈Z

4e (x̃23 + x̃45)ỹ3/2−s
1 ỹ2ỹ4

1

ξ(2s)ξ(2s − 1)

×Ks−3/2 (2π ∣
ỹ2

2

ỹ1ỹ3
∣
∞
)Ks−3/2 (2π ∣

ỹ2
4

ỹ3
∣
∞
)σ3−2s(∣x∣∞) .(6.10)

The x̃’s and ỹ’s are the Iwasawa coordinates for the matrix lxg∞. For the
archimedean part we find explicitly

x̃23 = xx13 , x̃45 = x45 ,

ỹ1 =
y1√

(xx12)2 + (xy2
1y
−1
2 )2

, ỹ2 = y2 , ỹ3 = y3 , ỹ4 = y4 .

The complete Fourier coefficient FR(E(2sΛ2−ρ), ψy(Y1); g∞) is then given
by the combination of (6.7), (6.8), (6.9) and (6.10). We note that our final
result differs formally from the one given in [GMV15, Eq. (H.52)] where the
result is given as a convoluted integral over two Bessel functions whereas we
do not have any remaining integral. The two results need not be in actual
disagreement as there are many non-trivial relations involving infinite sums
or integrals of Bessel functions.

The automorphic form

lim
s→1/2

2ζ(3)ξ(2s − 3)
ξ(2s) E(2sΛ2 − ρ; g) = 2ζ(3)E(3Λ4 − ρ)

lies in a minimal automorphic representation and controls the first non-
trivial corrections that string theory predicts to the four-graviton scattering
amplitude beyond standard general relativity [GMRV10, Pio10]. The Fourier
coefficients that we computed above can then be used to extract so-called
1/2 BPS instanton contributions in the string perturbation limit of the
amplitude. More precisely, they represent non-perturbative corrections to
the scattering amplitude that, albeit smooth, are not analytic in the string
coupling constant around vanishing coupling. They are therefore not visible
in standard perturbation theory for small coupling but represent important
corrections nonetheless. Their interpretation is in terms of specific Dp-branes
(p ≤ 2) that are extended (p+1)-dimensional objects that can wrap non-trivial
cycles of the torus T 3 that is present when SL5 is the duality group. The
detailed structure of the Fourier coefficient, in particular the arithmetic
divisor sums appearing, can shed some light on the combinatorics of these
D-branes similar to what is happening in the SL2 case [Yi97, SS98, MNS00].

For the next non-trivial correction to the four-graviton scattering amplitude
one requires an automorphic form in a next-to-minimal automorphic
representation [GMRV10, Pio10, GMV15]. This function is not a single
Eisenstein series of the type we have analysed above but a very special
combination of two formally divergent Eisenstein series with some Fourier
coefficients computed using the Mellin transform of a theta lift in [GMV15].
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Appendix A. Euler products and twisted characters

This appendix contains details and explanations for section 6, which is
why we restrict to the field F = Q with the corresponding ring of adeles
A = AQ.

An Euler product is a product over the primes. The p-adic norm is denoted
∣ ⋅ ∣p and is defined for the p-adic numbers Qp. The absolute value norm or
“infinity norm” is denoted ∣ ⋅ ∣∞ and is defined for real numbers R = Q∞. The
p-adic numbers as well as the real numbers (being completions of the rational
numbers) all contain the rational numbers: Q ⊂ Qp for all p prime. The norm
of an adele x = (x∞, x2, x3, x5, . . . ) ∈ A is denoted ∣ ⋅ ∣ (without ornaments)
and is the product of norms at the local places

∣x∣ = ∏
p≤∞
∣xp∣p .

The rational numbers Q are diagonally embedded into the adeles A
Q ⊂ A in the sense that (q, q, q, q, . . . ) ∈ A for q ∈ Q .

Product of norms. For a rational number x ∈ Q with a decomposition into
primes as

x = ±∏
p

pm
(p)

,

we get a particularly simple result for the adelic norm of x, namely

∏
p≤∞
∣x∣p = ∣x∣∞∏

p

p−m
(p) = ∣x∣∞∣x∣−1

∞ = 1 .

This is most often used as

x ∈ Q ⇒ ∏
p

∣x∣p = ∣x∣−1
∞ .

Greatest common divisor. For a set of natural numbers {xi} where each
xi has a decomposition into primes as

xi =∏
p

pm
(p)
i ,

one can express the greatest common divisor k as

k ≡ gcd({xi}) =∏
p

p
mini{m(p)i }.

Together with

∣xi∣p = p−m
(p)
i ,

we are led to the expression

k =∏
p

p
mini{m(p)i } =∏

p

min
i
{pm

(p)
i } =∏

p

min
i
{∣xi∣−1

p } =∏
p

(max
i
{∣xi∣p})

−1

.

We also have the formula

∣k∣p =max
i
{∣xi∣p} .
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Note that

gcd(x1,⋯, xn,0) = gcd(x1,⋯, xn) ,
since every (nonzero) integer divides 0. Additionally, we define

gcd(x) = x ∀x ∈ Z ,
including x = 0.

Divisor sum. We have the identity

∏
p

1 − p−s ∣m∣sp
1 − p−s = ∑

d∣m
d−s ≡ σ−s(m) ,

for s ∈ C and m ∈ Z.

The completed Riemann zeta function. The Riemann zeta function

ζ(s) =
∞
∑
n=1

n−s, Re(s) > 1

can be written as an Euler product as

ζ(s) =∏
p

1

1 − p−s , Re(s) > 1

and can be analytically continued to the whole complex plane except at s = 0
and s = 1 where it has simple poles. This is done by defining the completed
Riemann zeta function

ξ(s) ≡ Γ(s
2
)π−s/2ζ(s)

which obeys the functional relation

ξ(s) = ξ(1 − s)
as shown by Riemann.

p-adic gaussian. The p-adic gaussian γp ∶ Qp → {0,1} is defined as

γp(x) =
⎧⎪⎪⎨⎪⎪⎩

1, ∣x∣p ≤ 1

0, ∣x∣p > 1
=
⎧⎪⎪⎨⎪⎪⎩

1, x ∈ Zp
0, x ∉ Zp .

For a rational number x we then get

∏
p

γp(x) =
⎧⎪⎪⎨⎪⎪⎩

1, x ∈ Zp∀p
0, else

=
⎧⎪⎪⎨⎪⎪⎩

1, x ∈ Z
0, else .

Notice also that for rational numbers x1, . . . , xn ∈ Q and picking an x ∈ Q
such that for all primes p

(A.1) ∣x∣p =max{∣x1∣p,⋯, ∣xn∣p} ,
we have

γp(x) =
n

∏
i=1
γp(xi).
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A consequence of this is that for an eulerian function depending only on the
p-adic norms of its argument

f(x) =∏
p

fp(∣x∣p) ,

then with x as in (A.1), we have

f(x)∏
p

γp(x) =∏
p

fp(∣x∣p)γp(x) =∏
p

fp(∣k∣p)γp(x) = f(k)∏
p

γp(x) ,

where

k = gcd(∣x1∣∞,⋯, ∣xn∣∞) .
This equation makes sense as ∏p γp(x) ensures that the left- and right hand
sides are nonzero only when each xi is integer for which k is well defined.
We now see how a sum over rationals with x as in (A.1) can collapse to a
sum over integers due to the p-adic gaussian

∑
x1,...,xn

f(x)∏
p

γp(x) = ∑
x1,...,xn

f(k)∏
p

γp(x) = ∑
x1,...,xn∈Z

f(k) .

SL2 Whittaker function. The ramified (meaning m not necessarily unity
but rational) SL2(A) Whittaker function evaluated at

g = (g∞, I, I, . . . ) = ((
1 x
0 1

)( y 0
0 1

y
)k, I, I, . . .)

written as an Euler product reads

Wα (2sΛ − ρ,m; g) =Wα (2sΛ − ρ,m; (( 1 x
1 ) (

y
1
y
)k, I, I, . . . )) =

= e (mx)y2(1−s)Ks(m,y2)∏
p

γp(m) (1 − p−2s)
1 − p−2s+1∣m∣2s−1

p

1 − p−2s+1
,

(A.2)

where α is the simple root and Λ is the fundamental weight. Here

Ks(m,y) ≡
2πs

Γ(s)y
s−1/2∣m∣s−1/2

∞ Ks−1/2 (2π∣m∣∞y)(A.3)

should be seen as the archimedean SL2-Whittaker function and each factor
in the Euler product in (A.2) as the non-archimedean Whittaker functions.
The product

∏
p

γp(m)

restricts to m ∈ Z as explained above. The expression can then be written as

Wα (2sΛ − ρ,m; g) = e (mx) 2

ξ(2s)y∣m∣
s−1/2
∞ σ1−2s(∣m∣∞)Ks−1/2 (2π∣m∣∞y2) .

Notice how the factors of the Eulerian expression for the Riemann zeta
function in the non-archimedean part combines with πs/Γ(s) in the
archimedean part to form a completed Riemann zeta function.
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Twisted character. Let m ∈ Q and ψp,m be an additive character on Qp

defined as

ψ∞,m(x) = e2πimx ; m,x ∈ R for real numbers

ψp,m(x) = e−2πi[mx]p ; m,x ∈ Qp for p-adic numbers .

A unitary multiplicative character on the unipotent radical N(A) of the
Borel subgroup of SLn(A) can then be parametrized by m1, . . . ,mn−1 ∈ Q as

ψ(n) = ψ(e∑α∈∆+ uαEα) = ψ(e∑α∈Π uαEα) = ∏
p≤∞

n

∏
i=1
ψp,mi ((uαi)p) ,

where ∆+ is the set of positive roots and Π = {α1, . . . , αn−1} ⊂∆+ is the set
of simple roots. The second equality is due to the fact that the additive
character is only sensitive to the abelianization of N(A). In the final equality,
(xαi)p denotes the p-adic (or real) component of the adelic coordinate xαi .

For an element a ∈ A(A), we would like to evaluate the twisted character

ψa(n) ≡ ψ(ana−1) .
We can interpret the transformation ψ → ψa as that the parameters mi

transform according to

mi →m′i = (
y2
i

yi−1yi+1
)mi, i = 1, . . . , n − 1 ,(A.4)

where we have defined y0 = yn = 1. Note that starting with rational
parameters mi, the transformed parameters m′i are no longer necessarily
rational, depending on what the yi are. The Whittaker coefficients
W ′
ψa(w−1

c λ,1) of (6.2) should in this case be interpreted as the Jacquet

integral over N ′(A) as detailed in [FGKP18].
The Whittaker coefficients W ′

ψa(w−1
c λ, 1) from the examples in section 6 all

have G′ = SL2 or G′ = SL2 × SL2, and since the Whittaker coefficients for the
latter can be reduced to a product of two Whittaker coefficients for the former,
we only need to consider G′ = SL2 corresponding to some root αi of G. In the
examples, the character ψ, which is supported only on αi, is parametrized by
mi = 1 which, by the twist, is transformed to m′i = (m′i,∞,m′i,2,m′i,3, . . .) ∈ A
according to (A.4). Let us denote the projection of w−1

c λ onto the G′ weight
space as λ′ = 2s′Λ′−ρ′ = (2s′−1)Λ′ where Λ′ and ρ′ are the SL2 fundamental
weight and Weyl vector respectively. Parametrizing the real and p-adic parts
of a as in (6.3) and (6.4) using ỹi ∈ R and ηi ∈ Qp with ỹ0 = ỹn = η0 = ηn = 1
one can show that

W ′
ψa(λ′,1) = Ks′(

ỹ2
i

ỹi−1ỹi+1
,1)

× ∏
p<∞

γp(
η2
i,p

ηi−1,pηi+1,p
) (1 − p−2s′)

1 − p−2s′+1∣ η2
i,p

ηi−1,pηi+1,p
∣2s′−1
p

1 − p−2s′+1

(A.5)

by arguing that each local factor (p ≤∞) of the Jacquet integral only depends
on the norm ∣m′i,p∣p ∈ Q of m′p, which means that it can be identified with the
same local factor of an SL2 Whittaker coefficient with character parametrized
by this rational number.
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Appendix B. Iwasawa-decomposition

Proof of the following results can be found in [Ahl16]. For a real matrix
g ∈ SLn(R) written in Iwasawa form

g = n∞a∞k∞ =
⎛
⎜
⎝

1 x12 ⋯ ⋯ x1n
1 ⋱ ⋱ ⋮
⋱ ⋱ ⋮

1 xn−1,n

1

⎞
⎟
⎠

⎛
⎜
⎝

y1

y2/y1
⋱
yn−1/yn−2

1/yn−1

⎞
⎟
⎠
k∞ ,

we have

xµν = y2
ν−1ε (Vµ, Vν+1, . . . , Vn;Vν , Vν+1, . . . , Vn) , µ < ν, and

y−2
µ = ε (Vµ+1, . . . , Vn;Vµ+1, . . . , Vn) ,(B.1)

where Vµ is the µth row of g (regarded as an n-vector). Furthermore, ε
denotes the totally antisymmetric product

ε (A1, . . . ,Am;B1, . . . ,Bm) = δi1—im
a1—am (A1)a1 . . . (Am)am (B1)i1 . . . (Bm)im ,

where the A’s and B’s are n-vectors and

δi1—im
a1—am =m!δi1[a1

. . . δim
am] =

1

(n −m)!εa1—amαm+1—αnε
i1—imαm+1—αn

denotes the generalized Kronecker delta. Put in words, ε takes two sets of
vectors and returns the sum of every possible product of scalar products
between the two sets weighted by the signs of the given permutations. For
example

ε(A1,A2;B1,B2) = (A1 ⋅B1)(A2 ⋅B2) − (A1 ⋅B2)(A2 ⋅B1) .

For a p-adic matrix g ∈ SLn(Qp), the Iwasawa-decomposition

g = npapkp = np
⎛
⎜
⎝

η1,p

η2,p/η1,p
⋱
ηn−1,p/ηn−2,p

1/ηn−1,p

⎞
⎟
⎠
kp

is no longer unique. The p-adic norms of the η’s however are constant across
the family of decompositions and are given by

∣ηn−k∣p = (max
σ∈Θn

k

{∣g ( n−k+1 ... n
σ(1) ... σ(k) )∣p})

−1

, where k ∈ {1, . . . , n − 1} ,

and Θn
k detones the set of all ordered subsets of {1, . . . , n} of order k. Here,

g ( r1 ... rkc1 ... ck ) denotes a minor of order k, given as the determinant of the
submatrix of g obtained by only picking the k rows {ri} and k columns {ci}.
For example, the matrix

⎛
⎜⎜
⎝

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
12

1
13

1
14

1
15

1
16

⎞
⎟⎟
⎠
,
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has

∣η2∣3 = max{∣∣
1
9

1
10

1
13

1
14

∣∣
3
, ∣∣

1
9

1
11

1
13

1
15

∣∣
3
, ∣∣

1
9

1
12

1
13

1
16

∣∣
3
, ∣∣

1
10

1
11

1
14

1
15

∣∣
3
, ∣∣

1
10

1
12

1
14

1
16

∣∣
3
, ∣∣

1
11

1
12

1
15

1
16

∣∣
3
} =

= max{∣ 1

4095
∣
3
, ∣ 8

19305
∣
3
, ∣ 1

1872
∣
3
, ∣ 1

5775
∣
3
, ∣ 1

3360
∣
3
, ∣ 1

7920
∣
3
,}

= max{32,33,32,31,31,32} = 33 = 9 .

Appendix C. Parametrizing Γi and Λj

Recall the definitions

Γi(ψ0) ∶=
⎧⎪⎪⎨⎪⎪⎩

(SLn−i(F ))Ŷ /SLn−i(F ) 1 ≤ i ≤ n − 2

(Tψ0 ∩ Tψαn−1
)/Tψ0 i = n − 1 ,

where

(SLn−i(F ))Ŷ = {( 1 ξT

0 h
) ∶ h ∈ SLn−i−1(F ), ξ ∈ Fn−i−1} ;

and

Λj(ψ0) ∶=
⎧⎪⎪⎨⎪⎪⎩

(SLj(F ))X̂/SLj(F ) 2 ≤ j ≤ n − 1

(Tψ0 ∩ Tψα1
)/Tψ0 j = 1 ,

where

(SLj(F ))X̂ = {(
h ξ
0 1
) ∶ h ∈ SLj−1(F ), ξ ∈ F j−1} .

T denotes the diagonal matrices in SLn(F ) and Tψ denotes the stabilizer of
a character ψ in T . In this appendix, we will find convenient representatives
for these coset spaces. We begin with a lemma.

Lemma C.1. Let Sk(F ) denote the set of all k×k matrices m over the field
F satisfying dim kerm = 1. GLk(F ) acts on Sk(F ) by left multiplication and
the quotient this the action GLk(F )/Sk(F ) can then be parametrized as

GLk(F )/Sk =
k−1

⋃
a=0
{(

0 0 0
Ia 0 0
0 v Ik−a−1

) ∶ v ∈ F k−a−1} .

Proof. We will use induction to prove the lemma. Assume that the result
holds up to and including matrices of size k × k and consider the quotient
GLk+1(F )/Sk+1(F ). Start with a matrix mk+1 ∈ Sk+1(F ). Left action of the
group GLk+1(F ) ∋ hk+1 taking mk+1 → hk+1mk+1 is equivalent to performing
Gauss elimination among the rows of mk+1. Since we have dim kermk+1 = 1
we can bring mk+1 to the form

mk+1 → ( 0 0
v m ) ,

where v ∈ F k and m is a k × k matrix satisfying dim kerm ≤ 1. We cannot
have dim kerm ≥ 2 as we could then perform additional row manipulations
to produce two zero rows in m and hence another zero row in mk+1 which
violates mk+1 ∈ Sk+1(F ).
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Case 1: dim kerm = 0. Here m is invertible and we can bring mk+1 to the
form

( 0 0
v m )→ ( 0 0

v Ik
)

having relabelled v. This is the contribution

{(
0 0 0
Ia 0 0
0 v Ik+1−a−1

) ∶ v ∈ F k+1−a−1}∣
a=0

.

Case 2: dim kerm = 1. We now have m =mk for some mk ∈ Sk and we can
apply the induction assumption which leads us to consider matrices of the
form

⎛
⎝

0 0 0 0
v(1) 0 0 0
v(2) Ia 0 0

v(3) 0 u Ik−a−1

⎞
⎠
, where a ∈ [0, k − 2] ∩Z .

We see that we must have v(1) ≠ 0 and with further row manipulations we
can thus bring this to the form

⎛
⎝

0 0 0 0
v(1) 0 0 0
v(2) Ia 0 0

v(3) 0 u Ik−a−1

⎞
⎠
→ (

0 0 0 0
1 0 0 0
0 Ia 0 0
0 0 u Ik−a−1

) .

We get the contributions

k−2

⋃
a=0
{(

0 0 0 0
1 0 0 0
0 Ia 0 0
0 0 v Ik−a−1

) ∶ v ∈ F k−a−1} =
k−1

⋃
a=1
{(

0 0 0
Ia 0 0
0 v Ik+1−a−1

) ∶ v ∈ F k+1−a−1} .

This combines with the contribution from case 1 to give the form stated in
the lemma.

That the base case k = 1 has the correct form is trivial. Peano’s axiom of
induction now establishes the lemma. �

Lemma C.2. The coset space

(SLn−i(F ))Ŷ /SLn−i(F ) 1 ≤ i ≤ n − 2

can be parametrized as

(SLn−i(F ))Ŷ /SLn−i(F ) =

= {(
x′−1 0 0
y x′ 0
v 0 In−i−2

) ∶ x′ ∈ F×, y ∈ F, v ∈ Fn−i−2}

∪
n−i−2

⋃
a=0

⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

0 0 (−1)a+1x′−1 0
x′ 0 0 0
0 Ia 0 0
0 0 v In−i−a−2

⎞
⎠
∶ x′ ∈ F×, v ∈ Fn−i−a−2

⎫⎪⎪⎬⎪⎪⎭
.

Proof. Denote k ≡ n − i. Consider a matrix

G = ( s TT

B m
) ∈ SLk(F ) ,

where s is a scalar, m is a (k − 1) × (k − 1)-matrix and T and B (for “top”
and “bottom”) are (k − 1)-column vectors. The action of an element

M = ( 1 ξT

0 h
) ∈ (SLk(F ))Ŷ

on G is

G→MG = ( s+ξTB TT+ξTm
hB hm

) .
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Parametrizing the coset space (SLk(F ))Ŷ /SLk(F ) amounts to choosing

ξ ∈ F k−1 and h ∈ SLk−1(F ) such that the product MG takes a particularly
nice form, manifestly with at most k degrees of freedom which is the dimension
of this coset space.

Even though h ∈ SLk−1(F ) we will proceed with h ∈ GLk−1(F ) and restore
the unit determinant of h at the end by left multiplication of the matrix

(
1 0 0
0 x′ 0
0 0 Ik−2

) where 0 ≠ x′ = (deth)−1. By having h ∈ GLk−1(F ) we are free to

perform Gauss elimination among the bottom k − 1 rows in G.
We consider the two cases dim kerm = 0 and dim kerm = 1. Note that the

cases dim kerm ≥ 2 do not arise as with row elimination it would then be
possible to produce two zero-rows in m and hence a zero-row in G which
violates G ∈ SLk(F ).

Case 1: dim kerm = 0. We choose h = m−1 and ξT = −TTm−1. Since h has
full rank, we can redefine hB → B without loss of generality and redefine
s + ξTB → s. This leads to the representative

G→ ( s 0
B Ik−1

) .
We now restore the unit determinant to h

G→ (
1 0 0
0 x′ 0
0 0 Ik−2

)( s 0
B Ik−1

) = (
s 0 0
y x′ 0
v 0 Ik−2

) ,

where we have split the (k − 1)-vector into a scalar y and a (k − 2)-vector v.
The condition detG = 1 now sets s = x′−1 leading to

G = (
x′−1 0 0
y x′ 0
v 0 Ik−2

) .

This is a nice form of the representative G which manifestly has k degrees of
freedom.

Case 2: dim kerm = 1. We can no longer choose h =m−1. Having promoted
h to be an element of GLk−1(F ), we can make use of lemma C.1 which leads
us to consider representatives of the form

G→
⎛
⎜
⎝

s T (1)T T (2) T (3)T

B(1) 0 0 0
B(2) Ia 0 0

B(3) 0 v Ik−a−2

⎞
⎟
⎠

for a ∈ [0, k − 2] ∩N and v ∈ F k−a−2 .

We see that B(1) ≠ 0 in order for G to remain non-singular. With further
row elimination we can therefore bring this to the form

⎛
⎜
⎝

s T (1)T T (2) T (3)T

B(1) 0 0 0
B(2) Ia 0 0

B(3) 0 v Ik−a−2

⎞
⎟
⎠
→ (

s T (1)T T (2) T (3)T
1 0 0 0
0 Ia 0 0
0 0 v Ik−a−2

) .

Next, using the ξ-freedom we can bring this to the form

(
s T (1)T T (2) T (3)T
1 0 0 0
0 Ia 0 0
0 0 v Ik−a−2

)→
⎛
⎝

1 ξ(1) ξ(2)T ξ(3)T

0 1 0 0
0 0 Ia 0
0 0 0 Ik−a−2

⎞
⎠
(
s T (1)T T (2) T (3)T
1 0 0 0
0 Ia 0 0
0 0 v Ik−a−2

)

=
⎛
⎝
s+ξ(1) T (1)T+ξ(2)T T (2)+ξ(3)Tv T (3)T+ξ(3)T

1 0 0 0
0 Ia 0 0
0 0 v Ik−a−2

⎞
⎠
→ (

0 0 T (2) 0
1 0 0 0
0 Ia 0 0
0 0 v Ik−a−2

) ,
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with a suitable choice of ξ and having redefined T (2). We now restore the
unit determinant to h

(
0 0 T (2) 0
1 0 0 0
0 Ia 0 0
0 0 v Ik−a−2

)→ (
1 0 0
0 x′ 0
0 0 Ik−2

)(
0 0 T (2) 0
1 0 0 0
0 Ia 0 0
0 0 v Ik−a−2

) =
⎛
⎝

0 0 T (2) 0
x′ 0 0 0
0 Ia 0 0
0 0 v Ik−a−2

⎞
⎠
.

The condition detG = 1 now sets T (2) = (−1)a+1x′−1, leading to the
representative

⎛
⎝

0 0 (−1)a+1x′−1 0
x′ 0 0 0
0 Ia 0 0
0 0 v Ik−a−2

⎞
⎠
.

�

Lemma C.3. The coset space

(SLj(F ))X̂/SLj(F ) 2 ≤ j ≤ n − 1

can be parametrized as

(SLj(F ))X̂/SLj(F ) =

= {(
Ij−2 0 0

0 x′ 0
vT y x′−1

) ∶ x′ ∈ F×, y ∈ F, v ∈ F j−2}

∪
j−2

⋃
a=0

⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

Ia 0 0 0
0 0 Ij−a−2 0

0 0 0 x′

0 (−1)j+a+1x′−1 vT 0

⎞
⎠
∶ x′ ∈ F×, v ∈ F j−a−2

⎫⎪⎪⎬⎪⎪⎭
.

Proof. Denote k ≡ j. Consider a matrix

G = ( m T
BT s

) ∈ SLk(F ) ,

where s is a scalar, m is a (k − 1) × (k − 1)-matrix and T and B (for “top”
and “bottom”) are (k − 1)-column vectors. The action of an element

M = ( h hξ
0 1
) ∈ (SLk(F ))X̂

on G is

G→MG = ( h(m+ξBT) h(T+sξ)
BT s

) .

Parametrizing the coset space (SLk(F ))X̂/SLk(F ) amounts to choosing

ξ ∈ F k−1 and h ∈ SLk−1(F ) such that the product MG takes a particularly
nice form, manifestly with at most k degrees of freedom which is the dimension
of this coset space.

Even though h ∈ SLk−1(F ) we will proceed with h ∈ GLk−1(F ) and restore
the unit determinant of h at the end by left multiplication of the matrix

(
Ik−2 0 0

0 x′ 0
0 0 1

) , where 0 ≠ x′ = (deth)−1. By having h ∈ GLk−1(F ) we are free to

perform Gauss elimination among the top k − 1 rows in G.
We consider the two cases s ≠ 0 and s = 0.
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Case 1: s = s′ ≠ 0. We choose ξ = −1
s′ T . This leads to the representative

G→ (m−
1
s′
TBT 0

BT s′
) .

From the condition

1 = detG = det(m − 1

s′
TBT) s′

we get that

det(m − 1

s′
TBT) ≠ 0 ,

and hence the matrix m− 1
s′TB

T can be inverted using our h-freedom which
leads to the representative

(m−
1
s′
TBT 0

BT s′
)→ ( Ik−1 0

BT s′
) .

We now restore the unit determinant to h

G→ (
Ik−2 0 0

0 x′ 0
0 0 1

)( Ik−1 0

BT s′
) = (

Ik−2 0 0
0 x′ 0
vT y s′

) ,

where we have split B into a scalar y and a (k − 2)-vector v. The condition
detG = 1 now sets s′ = x′−1 leading to

G = (
Ik−2 0 0

0 x′ 0
vT y x′−1

) .

This is a nice form of the representative G which manifestly has k degrees of
freedom.

Case 2: s = 0. We can no longer eliminate T with our ξ-freedom. The group
element G takes the form

G = ( m T ′

B′T 0
) ,

where the vectors T ′ and B′ must be non-zero (as indicated by the primes)
in order for G to be non-singular. A ξ-transformation takes the form

( m T ′

B′T 0
)→ (m+ξB′T T ′

B′T 0
) .

We now consider the k − 1 distinct cases labelled by a ∈ [0, k − 2] ∩N defined
by that B′T takes the form B′T = ( 01×a b

′ v ), where v is a k−a−2-vector and
0 ≠ b′ ∈ F . The ξ-transformation then lets us eliminate the (a + 1)th column
of m. This works since the (a + 1)th column of the matrix ξB′T is b′ξ where
b′ ≠ 0 by assumption. We are led to the representative

( m T ′

B′T 0
)→ (m1 0 m2 T

′

0 b′ vT 0
) ,

where m1 is a (k − 1) × a-matrix and m2 is a (k − 1) × (k − a − 2)-matrix.
The (k − 1) × (k − 1) matrix (m1 0 m2 ) clearly has column-rank at most

k − 2. Since column-rank and row-rank for matrices are equal, we know that
the row-rank is also at most k − 2 and with row manipulations we can thus
produce a zero row

(m1 0 m2 T
′

0 b′ vT 0
)→ (

0 0 0 t′

m21 0 m22 T
−

0 b′ vT 0
) ,
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where 0 ≠ t′ ∈ F in order for G to be non-singular. With further row
manipulations we can then eliminate the vector T− and bring this to the
form

(
0 0 0 t′

m21 0 m22 T
−

0 b′ vT 0
)→ (

0 0 0 1
m21 0 m22 0

0 b′ vT 0
) .

The (k − 2) × (k − 2)-matrix (m21 m22 ) must have full rank in order for G to
be non-singular and can thus be inverted, leading to the representative

(
0 0 0 1
m21 0 m22 0

0 b′ vT 0
)→ (

0 0 0 1
Ia 0 0 0
0 0 Ik−a−2 0

0 b′ vT 0

) .

We permute the first k − 1 rows to get

(
0 0 0 1
Ia 0 0 0
0 0 Ik−a−2 0

0 b′ vT 0

)→ (
Ia 0 0 0
0 0 Ik−a−2 0
0 0 0 1
0 b′ vT 0

) .

Lastly, we restore the unit determinant to h

(
Ia 0 0 0
0 0 Ik−a−2 0
0 0 0 1
0 b′ vT 0

)→ (
Ik−2 0 0

0 x′ 0
0 0 1

)(
Ia 0 0 0
0 0 Ik−a−2 0
0 0 0 1
0 b′ vT 0

) =
⎛
⎝

Ia 0 0 0
0 0 Ik−a−2 0
0 0 0 x′

0 b′ vT 0

⎞
⎠
.

The condition detG = 1 now sets b′ = (−1)k+a+1x′−1, leading to the
representative

⎛
⎝

Ia 0 0 0
0 0 Ik−a−2 0
0 0 0 x′

0 (−1)k+a+1x′−1 vT 0

⎞
⎠
.

�

Remark C.4. Another way of parametrizing the coset (SLk(F ))X̂/SLk(F )
is to parametrize the coset SLk(F )/(SLk(F ))X̂ which works completely
analogously to the how the coset (SLk(F ))Ŷ /SLk(F ) was parametrized in
lemma C.2 and then invert the resulting matrices.

We lastly provide parametrizations of Γn−1(ψαi) for the cases 1 ≤ i ≤ n − 3
and of Λ1(ψαj) for the cases 3 ≤ j ≤ n − 1.

Lemma C.5. The coset space Γn−1(ψαi) = (Tψαi ∩ Tψαn−1
)/Tψαi can be

parametrized as

(Tψα1
∩ Tψαn−1

)/Tψα1
=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛
⎜⎜
⎝

1
1
z′

1
⋱

1
z′−1

⎞
⎟⎟
⎠
∶ z′ ∈ F×

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
for i = 1 while for 2 ≤ i ≤ n − 3 it can be parametrized as

(Tψαi ∩ Tψαn−1
)/Tψαi =

⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

z′
1
⋱

1
z′−1

⎞
⎠
∶ z′ ∈ F×

⎫⎪⎪⎬⎪⎪⎭
.

Further possible parametrizations are discussed in the proof below.

Proof. For any αk, the stabilizer Tψαk is given by

Tψαk = {(
t1
yk

yk
t2

)←row k ∶ yk ∈ F×, ( t1 t2 ) ∈ T
′(y−2

k )} , 1 ≤ k ≤ n − 1
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where T ′(y−2
k ) are the diagonal matrices in GLn−2(F ) with determinant y−2

k .
This is seen by the group action of a diagonal element h ∈ Tαk on an upper
triangular element n ∈ N ,

hnh−1 = (
∗
yk

yk+1 ∗
)(
∗ ∗ ∗

1 xi,i+1

1
∗
∗
)
⎛
⎝

∗
y−1
k

y−1
k+1 ∗

⎞
⎠
= (

∗ ∗ ∗
1

yk
yk+1

xi,i+1

1
∗
∗
).

Since the expression ψαk(n) only depends on xi,i+1 we require yk = yk+1 in
order to have ψ(n) = ψ(hnh−1). We get that the intersection Tψαi ∩ Tψαn−1

can be written

Tψαi ∩Tψαn−1
=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

t1
yi
yi
t2
yn−1

yn−1

⎞
⎟
⎠
∶ yi, yn−1 ∈ F×; ( t1 t2 ) ∈ T

′′(y−2
i y
−2
n−1)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

where T ′′(y−2
i y
−2
n−1) are the diagonal matrices in GLn−4(F ) with determinant

y−2
i y
−2
n−1. Looking at the left action of an element of this intersection on an

element of the stabilizer Tαi gives

⎛
⎜
⎝

t1
yi
yi
t2
yn−1

yn−1

⎞
⎟
⎠
⎛
⎝

u1
αi

αi
u2

αn−1
αn

⎞
⎠
=

=
⎛
⎜
⎝

t1u1
yiαi

yiαi
t2u2

yn−1αn−1
yn−1αn

⎞
⎟
⎠
.

For finding representatives, the task is to choose t1, yi, t2 and yn−1 to simplify
the form of the matrix. We pick yi = α−1

i and with yn−1 we can eliminate
either αn−1 or αn but not both. After fixing t1 and t2 as well we can arrive
at a particular class of convenient final forms

(A B ) where A = (
Ia

z′

In−3−a

) and B = ( z′−1

1
) or B = ( 1

z′−1 )

where the allowed choices for a are a = 0, . . . , i − 2, i + 1, . . . , n − 3.
For i = 1 we can choose

(Tψα1
∩ Tψαn−1

)/Tψα1
=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛
⎜⎜
⎝

1
1
z′

1
⋱

1
z′−1

⎞
⎟⎟
⎠
∶ z′ ∈ F×

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
while for 2 ≤ i ≤ n − 3 we can choose

(Tψαi ∩ Tψαn−1
)/Tψαi =

⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

z′
1
⋱

1
z′−1

⎞
⎠
∶ z′ ∈ F×

⎫⎪⎪⎬⎪⎪⎭
, 2 ≤ i ≤ n − 3.

�

Lemma C.6. The coset space Λ1(ψαi) = (Tψαi ∩ Tψα1
)/Tψαi can be

parametrized as

(Tψαn−1
∩ Tψα1

)/Tψαn−1
=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛
⎜⎜
⎝

z′
1
⋱

1
z′−1

1
1

⎞
⎟⎟
⎠
∶ z′ ∈ F×

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
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for i = n − 1 while for 3 ≤ i ≤ n − 2 it can be parametrized as

(Tψαi ∩ Tψα1
)/Tψαi =

⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

z′
1
⋱

1
z′−1

⎞
⎠
∶ z′ ∈ F×

⎫⎪⎪⎬⎪⎪⎭
.

Further possible parametrizations can be deduced from the proof of lemma
C.5.

Proof. Analogous to the proof of lemma C.5. �

Remark C.7. The lemmas can be extended to include the cosets Γn−1(ψαn−2)
and the trivial Γn−1(ψαn−1) (as well as the corresponding Λ-cosets). They
are, however, never needed in theorem A or B.

Appendix D. Levi orbits

Let Pm for 1 ≤ m ≤ n − 1 be the maximal parabolic subgroup of SLn
associated to the simple root αm with Levi decomposition LUm (where we
drop the subscript for L for convenience) and let y ∈ tum(F ) be parametrised
by a matrix Y ∈Mat(n−m)×m(F ) as in (4.1)

y(Y ) = (0m 0
Y 0n−m

) .

We will now study the L(F )-orbits of elements y(Y ). We parametrise
an element l ∈ L(F ) by the two matrices A ∈ Matm×m(F ) and B ∈
Mat(n−m)×(n−m)(F ) with det(A) = det(B) ≠ 0 as l = diag(A−1,B). This

element acts by conjugation on y(Y ) as ly(Y )l−1 = y(BY A). Using unit
determinant matrices A and B we may perform standard row and column
additions to put Y on a form which has zero elements everywhere except for
an anti-diagonal r × r matrix with non-vanishing determinant in the upper
right corner of Y where 0 ≤ r ≤min(m,n −m) is the rank of Y . This can be
seen as follows.

The case rankY = 0 is trivial so we may assume that Y has non-zero
elements. If the top right element of Y is zero, pick any non-zero element
whose row-column position we denote (i, j) and add multiples of row i to
the first row, and column j to the last column to make the upper right
element non-zero. Then, use the non-zero upper right element to cancel all
remaining non-zero elements on the first row and last column by further
row and column additions. Repeat the procedure for the matrix obtained
by removing the first row and last column. The iteration terminates when
we run out of rows or columns, or when the remaining elements are all zero.
This proves the above statement.

We will now rescale the anti-diagonal elements by conjugating y with
diagonal matrices l, meaning that the ith diagonal element in l rescales
both row i and column i (inversely). Each rescaling of an element in the
anti-diagonal of the r × r matrix then leaves two less diagonal elements in l
for further rescalings. Since the non-zero elements of Y at this stage do not
share any rows or columns (because of the anti-diagonal r × r submatrix),
we may then perform any and all rescalings until we run out of free diagonal
elements in l. The number of free diagonal elements in l is n − 1 because of
the determinant condition which means that we can make ⌊n−1

2 ⌋ independent
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rescalings. We have that 1 ≤m ≤ n − 1 and r ≤ min(m,n −m) ≤ ⌊n2 ⌋. Thus,
it is possible to rescale all anti-diagonal elements to one unless n = 2r = 2m,
for which there will be one remaining anti-diagonal element d that we may
assume is in the lower left corner of Y and therefore also of y(Y ). Using
conjugations with l = diag(a, 1, . . . , 1, 1/a), a ∈ F× this d can be shown to be
in F×/(F×)2.

We have now shown that the L(F )-orbits of elements y(Y ) ∈ tum(F )
are characterized by matrices Y = Yr(d) ∈ Mat(n−m)×m(F ), where Yr(d) is
non-zero only for an anti-diagonal r × r matrix in its upper right corner. The
anti-diagonal elements of this r × r matrix are all one except the for the
element in the lower left corner which is d:

Yr(d) =
⎛
⎜⎜⎜
⎝

0 [
1⋱

1
d

]

0 0

⎞
⎟⎟⎟
⎠
.

For n = 2r = 2m, d ∈ F×/(F×)2 and otherwise d = 1. For convenience we will
denote Yr(1) as Yr. Thus, the Lm(F )-orbits on tum(F ) are characterized
by the same data as the SLn(F )-orbits ([2r1n−2r], d) with d ∈ F×/(F×)k,
k = gcd([2r1n−2r]) and 0 ≤ r ≤min(m,n −m).

By conjugating with a Weyl element w ∈ SLn(F ) that maps torus
elements (t1, t2, . . . , tn) ↦ (tm, tm+1, tm−1, tm+2, . . . , tm−r+1, tm+r, t1, . . . tm−r,

tm+r+1, . . . tn), where we have underlined different groups for readability, we

see that y(Yr(d)) is put on the form of the standard representative for the
SLn(F )-orbit ([2r1n−2r], d) shown in proposition 2.2.

In this paper we will always be able to find a representative on the form
Yr(1), that is, to rescale all elements, since we consider n ≥ 5 and r ≤ 2 where
the latter restriction comes from the fact that higher rank elements have
vanishing associated Fourier coefficients in a next-to-minimal or minimal
automorphic representation according to theorem 2.1.

Lastly, we note that if we instead consider L(F )-orbits, the last remaining
rescaling in the maximal rank n = 2r case would be possible by conjugation
with l = diag(

√
d,1, . . . , 1,1/

√
d).
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