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ABSTRACT. We show that Fourier coefficients of automorphic forms
attached to minimal or next-to-minimal automorphic representations
of SL,(A) are completely determined by certain highly degenerate
Whittaker coefficients. We give an explicit formula for the Fourier
expansion, analogously to the Piatetski-Shapiro—Shalika formula. In
addition, we derive expressions for Fourier coefficients associated to all
maximal parabolic subgroups. These results have potential applications
for scattering amplitudes in string theory.
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1. INTRODUCTION

1.1. Background and motivation. Let F' be a number field and A be the
associated ring of adeles. Let G be a reductive algebraic group defined over
F and 7 an (irreducible) automorphic representation of G(A) as defined in
[BJ79, FGKP18].

Fix a Borel subgroup B and let P c G be a standard parabolic subgroup
with Levi decomposition P = LU, and let ¢ : U(F)\U(A) — C* be a global
unitary character. Given any automorphic form ¢ € 7 one can consider the
following function on G(A):

Fulp, 3 9) = f o(ug)y ™ (u) du.
U(F\U(A)

This can be viewed as a Fourier coefficient of the automorphic form ¢ with
respect to the unipotent subgroup U. Fourier coefficients of automorphic
forms carry a wealth of arithmetic and representation-theoretic information.
For example, in the case of classical modular forms on the upper half-plane,
Fourier coefficients are well-known to encode information about the count
of rational points on elliptic curves. On the other hand, for higher rank
Lie groups their arithmetic content is not always transparent, but they
always encode important representation-theoretic information. Langlands
showed that the constant terms in the Fourier expansion of Eisenstein series
provide a source for automorphic L-functions [Lan67], and Shahidi extended
this method (now called the Langlands-Shahidi method) to include also the
non-constant Fourier coefficients [Sha78, Sha81].

Theta correspondences provide realizations of Langlands functorial transfer
between automorphic representations 7 and 7’ of two different groups G and
G’. In this context automorphic forms attached to minimal automorphic
representations play a key role [Gin06]. The wave front set of a minimal
representation i, of a group G is the closure of the smallest non-trivial
nilpotent coadjoint orbit Opi, of G [Jos76, KS90]. The automorphic
realizations of minimal representations are characterized by having very
few non-vanishing Fourier coefficients [GRS97]. Conversely, the method of
descent [GRS11] can be viewed as an inverse to the functorial lifting, in which
an automorphic representation of a general linear group GL,, is transferred to
a representation of a smaller classical group G. Also in this case do Fourier
coefficients of small representations enter in a crucial way.

In general it is a difficult problem to obtain explicit formulas for Fourier
coeflicients for higher rank groups, let alone settle the question of whether an
automorphic form ¢ can be reconstructed from only a subset of its Fourier
coefficients. For cusp forms on GL,, this is possible due to the Piatetski-
Shapiro—Shalika formula [Sha74, PS79] that allows to reconstruct ¢ from
its Whittaker coefficients; i.e. the Fourier coefficients with respect to the
unipotent radical N of the Borel subgroup B c G. These coefficients are
sums of Eulerian Whittaker coefficients on subgroups of G, and their non-
archimedean parts can be obtained from the Casselman—Shalika formula
[Shi76, CS80] as described in [FGKP18]. However, even if this gives us
complete control of the Fourier expansion with respect to N it does not
automatically give us a way of calculating an arbitrary Fourier coefficient
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Fu(p,1;g) with respect to some other unipotent subgroup U. Such
coefficients play an important role in the construction of L-functions, and
also carry information about non-perturbative effects in string theory as
described in section 1.3.

Expanding upon the classic results of [GRS97], Miller and Sahi proved in
[MS12] that for automorphic forms ¢ attached to a minimal representation
Tmin Of Eg¢ and FE;, any Fourier coefficient Fy(p,1;g) is completely
determined by maximally degenerate Whittaker coefficients of the form

(1) [ egysa(m ™ dn,
N(F)\N(A)

where 1), is non-trivial only on the one-parameter subgroup of N correspond-
ing to the simple root «. This result maybe viewed as a global version of
the classic results of Moeglin-Waldspurger in the non-archimedean setting
[MW87], and Matumoto in the archimedean setting [Mat87].

For the special cases of SLg and SL4 the Miller—Sahi results were generalized
in [GKP16] (following related results in [FKP14]) to automorphic forms
attached to a next-to-minimal automorphic representation mpty,. It was
shown that any Fourier coefficient is completely determined by (1.1) and
coefficients of the following form

0 (ng)haps(n) " dn,
N(FON(A)

where 1), g is only supported on strongly orthogonal pairs of simple roots
(v, B) which here reduces to that [E,, Eg] = 0 [Kna02]. The main goal of the
present paper is to use the techniques of [JL.13, JLS16, GGS17], in particular
the notion of Whittaker pair, to extend the above results to all of SL,,.

1.2. Summary of results. We now summarize our main results. In the
rest of this paper we will consider SL,, for n > 5 where we have fixed a Borel
subgroup with the unipotent radical N. Let also T" be the diagonal elements
of SL,,(F') and, for a character 1) on N, let T, be the stabilizer of 1y under
the action [h.¢g](n) = Yo(hnh™t) for heT.

Define

(SLn_Z(F))Y\SLn_Z(F) 1<i<n-2
(Two n Twan_l )\Two t=n-1 s

where (SL,,—;(F))y is the stabilizer of ¥ = (1,0,0,...,0) € Mat,,_;.1 (F)
and consists of elements ((1) 2), with h € SL;,—;-1(F) and § € Mat . (—i—1)(F').
When g = 1 we write I';(1) as T;.

Similarly, let (SL;(F)) ¢ be the stabilizer of X = (0,...,0,1) € Maty;(F)
with respect to multiplication on the right, g a character on N, and define

(1.2) Ti(4o) =={

(SL;(F))¢\SL;(F) 2<j<n-1
(Tyo N Ty NTyy — J=1,

where, again, we denote A;(1) = A;.

(1.3) Aj(vo) ‘={
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Define also the embeddings ¢, ¢ : SL;,,—; > SL,, for any 0<i<n -1 as

(1.4 -5 %) -5 1)

where we for brevity suppress their dependence on i. Note that for i = 0,
they are just the identity maps for SL,,.

The following theorem expands an automorphic form ¢ attached to a
small automorphic representation of SL, in terms of highly degenerate
Whittaker coefficients similar to how cusp forms on GL,, can be expanded in
terms of Whittaker coefficients with the Piatetski-Shapiro—Shalika formula
[Sha74, PS79]. Expansion of non-cuspidal automorphic forms on GL,, in
terms of Whittaker coefficients were discussed in [Yuk93, JL13].

Theorem A. Let w be a minimal or next-to-minimal irreducible automorphic
representation of SL,(A), n>5, and let p €.

(i) If ™ = Tmin, then @ has the expansion

n—1
o= [ etpdne Y S [ e ) dn.

N(F)\N(4) =Ll (N (a)

(ii) If ™ = Tpim, then ¢ has the expansion

n-1
o= [ wgdnsy S [ eu()g)E(n)dn +
N(F)\N(4) =Llin(EEN(A)
n-3 n-1
vY Y Y[ emna)g)E e, () dn.
V€L

Note that the Whittaker coefficients in the last sum of case (ii) have
characters supported on two strongly orthogonal (or commuting) simple
roots. As mentioned in section 1.1 and further described in [FGKP18],
the Whittaker coefficients are sums of Eulerian Whittaker coefficients on
smaller subgroups SL,, whose non-archimedean parts can be computed
by the Casselman—Shalika formula [Sha74, CS80]. The more degenerate a
Whittaker coefficient is the smaller the subgroup we need to consider (and on
which character becomes generic). Thus, maximally degenerate Whittaker
coeflicients, and the ones with characters supported on two commuting simple
roots become particularly simple and are, in principle, one, or a product of
two, known SLo Whittaker coeflicients respectively.

Next, we consider Fourier coeflicients on maximal parabolic subgroups. Let
P,,, the maximal parabolic subgroup of SL,, with respect to the simple root
am and let U = Uy, be the unipotent radical and L,, be the corresponding Levi
subgroup which stabilizes Uy, under conjugation. For an element [ € L,,(F')
and a character ¥y on U, we obtain another character wlU by conjugation as

VL (u) = Yy (lul™).
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Fourier coefficients Fiy with conjugated characters are related by I-
translates of their arguments

(1.5) Fule, vy 9) = f e(ug)y' (lul™) du
U(FNU(4)

= f (I 1)yt (u) du = Fy (e, vusilg),
UF\U(A)

where we have first made the variable substitution «’ = lul~! and then used
the automorphic invariance since [ € L;,(F"). This means that we only need
to compute the Fourier coefficients of one character per L,,(F')-orbit.

We show in section 2 that a character can be parametrized by an element
y € g by (2.3) denoted by 1, which, under conjugation, satisfies @Z{é = Y1y
according to (2.3).

In section 4 and appendix D, we describe these orbits following [Nev11]
and construct standard characters ¥y, (q4)) on Uy, based on anti-diagonal
(n—m) xm rank r matrices Y,(d), where d € F*/(F>*)? for n = 2r = 2m and
d =1 otherwise (in which case we suppress the d), and y(Y;(d)) is defined as

A A

Let m be a minimal or next-to-minimal automorphic representations, and

{1 if 7 is a minimal automorphic representation
Tr =

2 if 7 is a next-to-minimal automorphic representation.

We will show that only the characters with rank r < r; < 2 give non-
vanishing Fourier coefficients. Let us briefly define the characters with rank
r < 2 which will be used in the next theorem, postponing a more general
definition to section 4. The rank zero character is the trivial character
Yy(v,) = 1 and the corresponding Fourier coefficient has been computed in
[MW95] as reviewed in [FGKP18]. The rank one character is ¥, (y,) = ¥a,,
and the rank two character can be defined as follows

(1.6) ¢y(Y2)(U) = ¢(Um,m+1 + umfl,m+2) ueUp(A).

The following theorem, together with the known constant term, then
allows us to compute any Fourier coefficient with respect to the unipotent
radical of a maximal parabolic subgroups for automorphic forms attached
to minimal and next-to-minimal automorphic representations in terms of
Whittaker coefficients.

Theorem B. Let w be a minimal or next-to-minimal irreducible automorphic
representation of SLy(A), n > 5, and let rp be 1 or 2 respectively (which
denotes the mazimal rank of the character matriz Y, ). Let also, p € w, Py, be
the mazimal parabolic subgroup described above with its associated subgroups
U=U,, and L,,, and let vy be a non-trivial character on U with Fourier
coefficient

- q) = “L(u) du.
Fu (e, o g) N () @(ug)yy (u) du
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Then, there exists an element | € L,,(F') such that

Fu(o,vu;9) = Fu(w, Yy, (a)):19)
for some standard character 1y, (ay) described above and in the proof.
Additionally, all Fu (¢, ¥y v, (ay);lg) for r > rr vanish identically. The
remaining (non-constant) coefficients can be expressed in terms of Whittaker
coefficients on N as follows.

(1) Ifﬂ— = Tmin~
Fu(e, Yyvi); 9) = [ e(ng)yy! (n)dn.

N(F)\N(A)
(il) If ™ = Tpam:
Fu(o,¥y(v1); 9) = / o(ng),! (n)dn +
N(FI\N(A)

m—2
Y Y[ emiMmeila, (n)ydn+

j=1 fyeAj(ilJam)N(F)\N(A)

n-1
DD f P(n(1)9) Y a0, (1) dn .

=42 el (Yam) N (FY\N(4)
(iil) If ™ = Tppm:

Folpyoin = [ [ eluweg)sl o (n)dnde,
C(A) N(F)\N(A)

where w s the Weyl element mapping the torus elements

(tl,tg, RN tn) - (tm_l,tm+2,tm,tm+1,t1,t2, e tm=2,tm+3, tmtds - - - tn) ,

and the subgroup C' of Uy, will be detailed in the proof in section 4.

As described in detail in section 2, F-rational nilpotent orbits of SL,, are
characterized by (p,d) where p is a partition of n and d € F*/(F*)* with
k= ged(p). If k = 1 we will often suppress the extra d = 1 and only write out
the partition.

There we will also see that, for each orbit, there are natural choices of
unipotent subgroups and characters related by conjugations with elements
v € SL,(F') and the corresponding Fourier coefficients (2.2) are related by
~-translates of their arguments.

The orbits may be partially ordered and the minimal and next-to-minimal
orbits are described by the partitions [21"72] and [221"7%], respectively.
Besides the trivial partition, these are the only partitions whose associated
Fourier coefficients are non-vanishing for ¢ in a minimal or next-to-minimal
irreducible automorphic representation. In section 5 we choose standard
representatives for these orbits and specify the associated standard Fourier
coefficients which we denote by F2M-1 and FI1?21] For n > 5, we have that
the trivial, minimal and next-to-minimal orbit all have k = 1.

The following theorems express these standard Fourier coefficients
associated with the two partitions above in terms of Fourier coefficients
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on maximal parabolic subgroups that, in turn, were written in terms of
Whittaker coefficients in theorem B.

Theorem C. Let w be an irreducible automorphic representation of SL, (A),
pemand Y =117 3 X,, c,. Then,

j_-[211...](% g) = Z f @(uy_lg)lb;}(u) du,
veY (B, (m)\U1 (A)

where Uy is the unipotent radical of Py consisting of the first row of N.
The Fourier coefficient Fl] g for a particular standard choice of orbit
representative detailed in the proof; all other choices are related simply by
SL,(F) translation.

Theorem D. Let 7 be an irreducible automorphic representation of SL,(A),
pem, Y =TI s Xey—ey [1ins Xej—es and w be the Weyl element mapping the
torus elements

(t17t27 v 7tn) g (t17t37t47t27t57t67 s 7tn) .
Then,

}-[221...](%9) - Z f (p(uy—lwg)l/};(lyﬂ(u) du,
Y (F)y, (F)O\Ua(A)

where Us is the unipotent radical of Py consisting of the first two rows of N
and Yy (v, is defined in (1.6) with m =2. The Fourier coefficient FL2P1] 4
for a particular standard choice of orbit representative detailed in the proof;
all other choices are related simply by SLy, (F') translation.

1.3. Applications in string theory. String theory is a quantum theory
of gravity describing maps X : ¥ - M, where ¥ is a Riemann surface (the
string worldsheet) and M is a ten-dimensional pseudo-Riemannian manifold
(spacetime). Its low-energy limit is a supersymmetric extension of Einstein’s
theory of gravity in 10 dimensions coupled to additional matter in the form
of scalar fields ® : M — C and differential forms on spacetime M. Our main
focus here will be the scalar fields. The scalar fields parametrize the space of
string theory vacua, i.e. the moduli space M.

To make contact with a lower-dimensional world, one choice is to
decompose spacetime into

M=R"7" <1

where RY?7" is the flat Minkowski space in 10 — n dimensions and 7™ is an
n-dimensional torus. In the limit when the size of the torus is small, the
physics looks effectively (10 — n)-dimensional and one says that the theory
has been compactified. As the size of the torus is increased the moduli space
M gets larger and larger due to an increased number of scalar fields ®. The
moduli space for this toroidal compactification is always of the form

M =G(Z)\GR)/K,

where G(R) is a semi-simple Lie group in its split real form, K its maximal
compact subgroup and G(Z) an arithmetic subgroup. The group G(Z) is
known as the U-duality group and is a symmetry of the full quantum string
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theory. The extreme case when n = 0, i.e. for no compactification, the moduli
space is given by

M = SLy(Z)\SLa(R)/SOs..

Another extreme case is n = 6, corresponding to four spacetime dimensions,
for which the moduli space is given by [HT95]

M = Er(Z)\E7(R)/(SUs/Zs) .

Here E7(R) is the split real form and E7(Z) its Chevalley group of integer
points. The sequence of groups in between are obtained by successively
removing nodes from the E7 Dynkin diagram; see table 1 for the complete
list.

Constraints from U-duality and supersymmetry ensure that certain
quantum corrections to Einstein’s gravitational theory involve functions
f + M — C that must be eigenfunctions of the ring of G(R)-invariant
differential operators. In particular they are eigenfunctions of the Laplacian
on G(R)/K with specific eigenvalues. In addition, they must have well-
behaved growth properties in certain limits corresponding to ‘cusps’ of M.
Such quantum corrections are therefore controlled by automorphic forms on
M.

It turns out that the relevant automorphic forms are very special and
are precisely those attached to a minimal and next-to-minimal automorphic
representation of the groups G [GMRV10, Piol0, GMV15]. The Fourier
coefficients of such automorphic forms therefore have a direct physical
interpretation: the constant terms encode perturbative quantum corrections,
while the non-constant terms correspond to non-perturbative, instanton,
effects [FK12, FKP14, BV14, BV15a, BV15b, BCHP17b, BP17, BCHP17a).
For a recent book on automorphic representations and the connection with
string theory, see [FGKP18].

Fourier coefficients with respect to different choices of parabolic subgroups
P c G correspond to different limits in string theory, and reveal different types
of effects. The ones of main interest are certain maximal parabolic subgroups.
Let P, = L U, denote the maximal parabolic whose Levi subgroup is Ly =
M, xGL1, where M, is obtained by removing the node in the Dynkin diagram
of G corresponding to the simple root a. There are three types of maximal
parabolics of main interest in string theory (the numbering of nodes are
according to the Bourbaki convention of the exceptional Lie algebras):

o P,,: this is the perturbative, or string theory, limit where the Levi is
of orthogonal type M,, = Dy;

e P,,: this is the M-theory limit where the Levi is of type M,, = Ap;

o P, ., this is the decompactification limit where the Levi is of
exceptional type M, , = E, (for n < 6 these are strictly speaking

not exceptional, but given by table 1).

Theorem B, together with its counterpart in [GKP16], then provides
explicit results for the Fourier coefficients of automorphic forms in all these
parabolics for the cases n = 2 or n = 3 when the symmetry groups are
SLsy x SL3 or SLs, respectively. The case of SLs will be treated in detail in
section 6.
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TABLE 1. List of U-duality groups in compactifications of
(type IIB) string theory on 7.

n G(R) K(R) G(Z)

0 SL,(R) SO, SLo(Z)

1 GLs(R) SO, SLa(Z)

2 SL2 (R) X SLg(R) SOQ X SOQ SLg(Z) X SLQ(Z)
3 SL5(R) SOs SL5(Z)

4 Sping 5(R) (Sping x Sping)/Zs Sping 5(Z)

5 Eg(R) USpg/Zs Eq(Z)

6 E7(R) SUs/Zs E7(Z)

7 Es(R) Sping/Zs Es(Z)
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2. NILPOTENT ORBITS AND FOURIER COEFFICIENTS

In this section, first, we introduce Whittaker pairs and nilpotent orbits
with their associated Fourier coefficients following [GGS17], which is slightly
more general and easier to use than the one given in [Gin06]. Then we
recall the parametrization of F-rational nilpotent orbits of SL, in terms of
partitions of n from [Nevll] and a lemma for exchanging roots in Fourier
integrals from [GRS11].

As before, let F' be a number field, A be the adele ring of F' and fix a
non-trivial additive character ¥ on F\A. Let also G be a reductive group
defined over F, or a central extension of finite degree, and let g be the Lie
algebra of G(F'). For a semi-simple element s € g, let g5 be defined as the
eigenspace of s in g with eigenvalue ¢ under the adjoint action decomposing
g to a direct sum of eigenspaces over different eigenvalues. For any r € Q, we
further define g, = ®,75,9;, and similarly for other inequality relations. For
an element X € g, we will also denote the centralizer of X in g as

gx ={zxegl|[z,X]=0}.

Furthermore, a semi-simple element s is called rational semi-simple if all
of its eigenvalues under the adjoint action on g are in Q. For such a rational
semi-simple element s and a non-trivial nilpotent element u € g°, we call
the ordered pair (s,u) a Whittaker pair. If, for such a pair, s is also called
a neutral element for u or (s,u) a neutral pair if there exists a nilpotent
element v € g such that (v, s,u) is an slp-triple. Recall that an sly-triple is an
ordered triple (v, s,u) of elements in g that satisfy the standard commutation
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relations for slo,
[s,v] =2v [s,u] = -2u [v,u] =s,

where we say that v is a nil-positive element for s, u is a nil-negative element
for s.

By the Jacobson—Morozov theorem, there exists an sls triple for any
nilpotent element u € g. Moreover, the G-conjugacy classes of sls-triples are
one-to-one with the nilpotent orbits Ox = {gXg™!|ge G(F)} in g [CM93].

We will now construct the Fourier coefficient that is associated to a
Whittaker pair (s,u). The pair defines a unipotent subgroup Ny and a
character 1, on Ny as follows. Following [GGS17, Lemma 3.2.6], let

ns =93, @97 Ngu,

which is a nilpotent subalgebra of g, and define N; = exp(ng) as the
corresponding unipotent subgroup of G. Then 1, defined by

u(n) = ((u,log(n))) ne Ng(A),

is a character on Ng(A) where (-, -) is the Killing form.

Note that if the Whittaker pair (s,u) comes from an slo-triple (v, s, u),
then, by sls representation theory, ad(s) has integer eigenvalues with a
graded decomposition of the Lie algebra g = @;cz g5 and g, ¢ D<o g5 [CMI3],
and thus,

(2.1) ng = g3y (for neutral s).

Let 7 be an automorphic representation of G(A) and ¢ an automorphic
form attached to w. The Fourier coefficient associated with a Whittaker pair
(s,u) is

Fal@@= [ elngii!(nydn, geGa),
Ns(F)\Ns(A)

and let Fs (7)) = {Fsu(p) | ¢ € m}. For convenience, we introduce the
following notation for a unipotent subgroup U

[U]=UFNU(A).

Consider the Fourier coefficient associated with a neutral Whittaker pair
(s,u), and let (s’ ,u') = (ys7 %, yuy™!) which is also neutral for any ~ €
G(F). Because of the invariance of the Killing form we have that v,/ (n') =
Yy (Y 1n'y) where n’ € [ Ny], and because of (2.1) we have that Ny = yNyy™L.
Thus, with a variable substitution n’ = yny™!,

Fowl@@)= [ o' (7 ') dn
[(YNgv~!]

= / go(’ynﬁf_lg)i/};l(n) dn = fs,u(‘P)(’Y_lg) ’
[Ns]

(2.2)

using the automorphic invariance of . Note the resemblance with (1.5) where
we made a conjugation keeping Ny invariant. In particular, (2.2) means that
if Fs . vanishes identically then so do all Fourier coefficients associated to
neutral Whittaker pairs (s’,u’) where v’ € O,. For an F-rational nilpotent
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orbit O, we say that the coefficients F; , with neutral s and u € O are Fourier
coefficients attached to the nilpotent orbit O.

We define the (global) wave-front set WF(m) of an automorphic
representation 7 of G(A) as the set of nilpotent orbits O such that Fy , ()
is non-zero, for some (and therefore all) neutral Whittaker pairs (s,u) with
u € O. Note that nilpotent orbits can be partially ordered with respect to
the inclusion of Zariski closures O’ < O if O’ c O.

We recall [GGS17, Theorem C] as follows.

Theorem 2.1 (Theorem C, [GGS17]). Let w be an automorphic representa-
tion of G(A), let (s,u) be a Whittaker pair, and (h,u) a neutral Whittaker
pair such that Fy, () is zero. Then, Fs () is zero.

This means that if u € O where O ¢ WF(7) then, for any Whittaker
pair (s,u), not necessarily neutral, the associated Fourier coefficient F; ., ()
vanishes identically for ¢ € .

In this paper, we focus on the group SL,, where we parametrize a character
on N by u € g%, as
(2.3) Yu(n) = ¥(tr(ulog(n)))  ne Ny(A).

Then, for any [ in the normalizer of Ng(A) in G(A)
Wy () =y (1) = P(tr(ylog(l1™))) = w(tr(yllog(x)I ™))
= (tr (U yllog(2))) = Yp-1y(2).

The nilpotent orbits of SL;, can be described by partitions p of n. Let us
characterize the F-rational orbits of SL,, following [Nev11].

(2.4)

Proposition 2.2 (Proposition 4, [Nevll]). Let p = [pip2-pr] be an
ordered partition of n, with py > ps > ... > py and let m = ged(p) =
ged(p1,p2,.-.,pr). For d € F*, define D(d) = diag(1,1,...,1,d) and let
also Jy, be the standard (lower triangular) Jordan matriz corresponding to
p: Jp = diag(Jipi1s [pals - - - » Jpa]) s where Jppy is a px p matriz with non-zero
elements only on the subdiagonal which are one.

(1) For each d € F*, the matriz D(d)J, is a representative of an F-
rational nilpotent orbit of SL, parametrized by p, and conversely,
every orbit parametrized by p has a representative of this form. We
say that the F-rational orbit represented by D(d)J, is parametrized
by (p,d).

(2) The SL,(F')-orbits represented by D(d)J, and D(d")Jy coincide if
and only if p=p" and d=d’ in F*[(F*)™. B

Example 2.3. The F-rational orbit ([322],1) of SLy; is represented by
00 0O0O0TO0OO

Ji322] = diag(J3), J[2)5 JJ21) =

SO = OO O
_ o oo oo

OO OO O
OO OO~ O
OO OO OO
OO OO OO
OO OO OO
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Remark 2.4. Over I the F-rational orbits for different d become the same,
meaning that they are completely characterized by partitions of n. There
is partial ordering for partitions that agrees with the partial ordering of
the F-orbits, where [p1p2...pr] < [q1G2. .. ¢-] (possibly padded by zeroes) if
[CM93]

Z pj < Z qgj forl<n<r.

1<j<n 1<j<n

The Zarisky topology over F is induced from that of F' which means that
we can use this partial ordering of partitions for the F-rational orbits as well.
Thus, when discussing the partial ordering of orbits or the closure of orbits
we will sometimes not specify the F-rational orbit, but only the partition,
that is, the SL,,(F)-orbit.

An automorphic representation m of SL, (A) is called minimal if WF ()
is the set of orbits in the closure of the minimal (non-trivial) orbit which is
represented by the partition [21"72], and it is called next-to-minimal if it is
instead the set of orbits in the closure of the next-to-minimal orbit [221774].

We will now recall a general lemma for exchanging roots in Fourier
coefficients from [GRS11]. In [GRS11], the groups considered are quasi-
split classical groups, but the lemma holds for any connected reductive group
with exactly the same proof.

Let G be a connected reductive group defined over F' and let C be an
F-subgroup of a maximal unipotent subgroup of G. Let also ¥¢ be a non-
trivial character on [C] = C(F)\C(A), and X,Y two unipotent F-subgroups
satisfying the following conditions:

(1) X and Y normalize C,

(2) XnC and Y nC are normal in X and Y, respectively, (X nC)\X
and (Y nC)\Y are abelian;

) X(A) and Y (A) preserve ¢¢ under conjugation;

) ¢ is trivial on (X nC)(A) and (Y nC)(A);

) [X,¥]cC;

) there is a non-degenerate pairing

(XnC)(A)x (Y nCO)(A) > C*
(x,y) HwC([xvy])

which is multiplicative in each coordinate, and identifies
(Y nC)(F)\Y(F) with the dual of X(F)(X nC)(A)\X(A), and
(X nC)(F)\X(F) with the dual of Y(F)(Y nC)(A)\Y(A).
Let B = CY and D = CX, and extend ¢ trivially to characters of
[B] = B(F)\B(A) and [D] = D(F)\D(A), which will be denoted by 5 and
1 p respectively.

(3
(4
(5
(6

Lemma 2.5 (Lemma 7.1 of [GRS11]). Assume that (C,v¢c,X,Y") satisfies
all the above conditions. Let f be an automorphic form on G(A). Then for
any g € G(A),

-1 _ -1
Sy Fwit o= [ P ) dvdy.
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For simplicity, we will use )¢ to denote its extensions 15 and ¢p when
using the lemma.

3. PROOF OF THEOREM A

Before we prove Theorem A in this section, let us first introduce a few
definitions and useful lemmas.

Let V; be the unipotent radical of the parabolic subgroup of type (1%,n—1),
that is, the parabolic subgroup with Levi subgroup (GL1)* x GL,_; together
with a determinant one condition. Then, N =V,, = V,,_1 is the unipotent
radical of the Borel subgroup and V; can be seen as the first ¢ rows of V.
For 1<i<n -1, let o; = €; — ;41 be the i-th simple root of SL,,, and let 1,
be the character of N defined by

Ya;(n) =P (niie1), ¥ e N(A).

For a list of simple roots, we let ¢a¢1,-~~,aim = @Z’ail P,
tha; for j <i as a character of V; via restriction.

Also, let R;;1 be the subgroup of V;,1, consisting of the elements v with
conditions that v, 4 =0, for all 1 <p <7 and p < ¢ < n, that is ;11 consists of
the row i+ 1 in V1. It is clear that R;.1 2 V;\Vj41 is an abelian subgroup of
Vi+1-

For a character ¢ on N, we say that ¢ is trivial along a simple root «;
if the restriction of ¥ to R; is identically zero.

and we also regard

im

Example 3.1. For SLs we have that

1% % % % 1
A e

Thus, we have that [R;] = (F\A)"™ and the dual of [R;] is F"*, which
can be identified with the nilpotent subalgebra v;(F) = log(* R;(F')), where
'R;(F) is the transpose of R;(F). Given y € 'v;(F), the corresponding
character 1, on [R;] is given by (2.3) as

Yy(x) = ¢(tr(ylogz)), Vae[R].
Example 3.2. For SL5 with R3 above, let

0 1
0 1
y:( ?910 )Ettg(F) 1,‘:( 11‘11222)€|:R3].
y2 O 1

Then, ¢¥y(z) = ¢ (tr(ylogz)) = (Y121 + y222).
Define

1
trdiag(-) = diag(-) - —tr(diag(-))
n
and let s = sy,
(3.1) sy, = trdiag(2(i - 1),2(i - 2),...,0,-2,...,-2)

for which g = @ and n, = g3, with the corresponding N, = V;. In particular,
we have sy = sy, _, = trdiag(2(n -2),...,0,-2)
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Lemma 3.3. Let ¢ be an automorphic form on SL,(A). Then, for 1<i<
n-2,

> [ e @de= Y [ ela)g)al (@) de,

tei(F)rp. elir .
ve iR TR

where T; is defined in (1.2) and t(7y) in (1.4).

We note that the left-hand side of the equation in this lemma equals ¢(g)
up to constant terms corresponding to y = 0.

Proof. With Y € Mat,,_;)x1 (F), we parametrize y € ‘¢;(F') as

0,10 O
y(Y)_( 8 1907?4')'

Let Y =4(1,0,...,0) € Mat(,,—;)x1 (F'). Then the surjective map SL;,;(F') —
Mat(,,—i)x1 (F))* defined by v~ ~71Y gives that
Mat(y—i)x1 (F) 2 (SLy—i (F)) 3 \SLy—i (F) = T

from (1.2). (With Mat,_;)x1 (F')* we mean the set of all non-zero matrices.)
We then have that,

32 X [ e @de= Y [ o)y g @) da.
i]

y¢O[R_ ’yEFZ’[Ri]

We now rewrite the character using that for any Y € Mat ,,_;)«1 (F")
0ic1 0 0 Iii10 0 \f0;10 0 \(L_100

y(yfly):( 00 0 0 ):( 01 0 )( 0 0 0 )( 0110):l*1yl,
0 v 'Y 0, 0 0~t 0 Y Opy 0 0~

where we have introduced [ = () and denoted y(Y") simply as y, which
according to (2.4) gives, for any x € [R;], that

Uy 1) (2) = Y1y (@) = by (Il .

The element [ is in the Levi subgroup of the parabolic subgroup
corresponding to V;, meaning that it preserves V; under conjugation. In
particular; it also normalizes R; since for z € R; parametrized by X ¢
Matlxn—l

_ I 100\(Li-10 O Ii.10 0 ILii 00 _
lx(X)I 1:( 0 10)( 01 X )( 0010 )=( 0 1xy")=2(Xy b.
0 0~ 0 01, 0 0~ 0 0 I,—;

We can thus make the variable substitution (xl™! - z in (3.2) to obtain

> [ elalgyly, (@) de,
’yEFi[Ri]

where we have used the fact that ¢ is left-invariant under I=!. Noting that
T/Jy(f/) = 1), this proves the lemma. 0

We will now state a similar lemma, for the last row R,,_1, that needs to be
treated separately. The freedom in choosing a character g in this lemma
will be of importance later.
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Lemma 3.4. Let ¢ be an automorphic form on SL,(A). Then, for any
character 1y on N trivial on R,_1 and either on ay or along (at least) two
adjacent simple roots not including co,—1,

> eapyt@yde- ¥ [ P(au(Ng)aL , (@) da,
yehtn- I(F)[Rn 1] veln- 1(w0)
y=0

where T'y_1(tg) is defined in (1.2).

Proof. With Y € F, we parametrize y € ‘t,,_1(F) as
On—2 0 0
v = ("' 98).

We recall from page 3 that Ty, is the subgroup of diagonal elements
in SL, (F) stabilizing 19 under conjugation of its argument and that y €
b1 (F) 2 F. The map Ty, - 't,-1(F)* : h > h™'y(1)h is surjective, which
can be shown as follows. If the character 1 is trivial along at least two
adjacent simple roots not including «,—1. Pick such a pair oj_1 and «; where
2 < j<n-2 and for an arbitrary m € F* let h = diag(1,...,1,m,1,...1,1/m)
where the first non-trivial element is at the jth position. Then h € Ty,
since yg € 'n corresponding to v is zero at both rows and columns j and
n and h —» y(m) . If the character 1 is trivial along «a;, we can choose
h =diag(m,1,...,1,...1,1/m) to arrive at surjectivity.

Because of (2.4) we have that the centralizer of y(1) in T"is Ty, , and
thus,

"tp1(F) 2 (Tyo 0 Ty, N\Tyy = Tn1(t0) -
We then have that

> [ plag)y (@) de= Y [ P(29)6 1y, (2) da
ye tgﬂl}(F)[ el 1(1110)

= f exg)tyiy(var )= Y f e(x79)var , (2),
veln-1(¥o) (R, veln-1(¥0) (R, _1]

after making the variable change yz~y~' — x, which concludes the proof. O

Remark 3.5. For n > 5 any character 19 on N that is non-trivial along at
most a single simple root which is not a,,—; satisfies the character condition
in lemma 3.4.

The following lemma will be used to iteratively expand in rows. The lemma,
which is valid for any automorphic representation, will be followed by two
corollaries that specialize to a minimal and a next-to-minimal representation
respectively.

Lemma 3.6. Let ¢ be an automorphic form on SL,(A), 1<i<n -2, and
g be a character on N trivial on the complement of V; in N. Fori=n-2 we
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also require that vbg is trivial either along o or along (at least) two adjacent
simple roots not including ay,—1. Then,

fso(vg)wal(v)dv= f ©(vg)ho (v) dv +
(3.3) [Vi] [Vis1]
v Y[ ee)g)est (), ) dv.

’Yeri+1(¢0)[‘/i+1]

Proof. For x € Ri11(F') and v € V;(A) we have that p(zvg) = p(vg) and can
thus Fourier expand along the abelian unipotent R;.1 as

o= ¥ [ elevgy! (@) de.

yetrin (FY RY, 1

Then, using lemma 3.3 (for i+ 1 <n—-2) or lemma 3.4 (fori+1=n-1)

p(vg) = f p(avg)de+ Y f p(ze(y)vg)var,, (x) da.

[Risi] ’YGFi+1(1ZJ0)[R. ]

i+1

Let v € V; be parametrized as

(4 B
YZ\o L)

where A € Mat(;;1)x(i+1) is upper unitriangular and B € Mat(;,1)x(n-i-1) With
the elements in the last row being zero. Since B does not intersect the
abelianization [N, N]\N (that is, the Lie algebra of B does not contain any
generator of a simple root), we have, by assumption, that 1)y only depends
on A. Similarly, we parametrize x € R;;1 as

. Iinw B
0 Tnia)’

where B’ € Mat (i + 1) x (n -4 — 1) with non-zero elements only in the last
row. Then,

— B+ B’
0 Ini1)]’

which means that ¢ (v) = 1(zv), and since v,,,, only depends on the last
row in B’ which is the same as for B + B’, we also have that v, (x) =

¢ai+1 (.I’U)
e For 1 <i<n-3 withvy e, =1(y) is in the Levi subgroup corresponding
to V; and we will now show that (I~ *vl) = 1o(v) for v € [V;]. We have that

ol = L,y 0)\(A B lisn 0)_(A By
0 yY\o Liua)J\ o y)7\0 Liin

and ¢(v) only depends on A.
e For i =n -2 with v e ',,-1 (%), I = ¢(y) = v is in the stabilizer T}, which
normalizes V; and, by definition, means that 1g(v) = ¥o(lvl™1).
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Thus, for 1 <i<n -2,

st(vg)w&l(v)dv:f f p(zvg)ty" (v) do dv +
[Vi] [Vi][Ris1]

v Y[ etwg)enl, @) (o) dudo,
’YGFHI(UJO)[VZ_] [R

'L'+l]
where we have made the variable change lvl™! — v.
Using that R;.1V; = V41 the above expressions simplifies to

[ ewpugt@dve T [ eo)g)est (), ) dv.
[Vie1] velin1 (Vo) v ]
U

Corollary 3.7. Let m be an irreducible minimal automorphic representation
of SL,(A), p em, and 1y be a character on N trivial on the complement of
Viin N, 1<i<n-2. Then, Fy, = f[m ©(vg)hgt dv can be further expanded
as follows.

(i) Ifvo=1, then
Fu= [ elogydvs 3 [ wlung)il, (v)dv,

[Viet] 7€Fi+1[vi+1]
where D11 (o) with Tisq = Tiva (1) is defined in (1.2).
(ii) If Yo =va, (1<j<i), then

Fun= [ wlw)i'@)dv.
[Vis1]
Proof. We will use lemma 3.6 where all the considered g satisfy the character
condition for the last row according to remark 3.5.

For 1y = 1, the expression is already in the form of lemma 3.6. This proves
case (i).

For g = 9o, with 1 < j <i we have that o(v)Va,,, (V) = Ya;,a, (V) =
1y (v) for some u € g which is in the next-to-minimal orbit. Theorem 2.1
with the Whittaker pair (sv;,,,u) gives that Fs,. .(p) vanishes for ¢ in a
minimal representation which leaves only the constant (or trivial) mode in
lemma 3.6. This proves case (ii). O

Corollary 3.8. Let w be an irreducible next-to-minimal automorphic
representation of SL,(A), ¢ € m, and vy be a character on N trivial on
the complement of V; in N, 1<i<n—2. Then, Fy, = f[m o(vg)hgt dv can
be further expanded as follows.

(i) If =1, then
Fipo = f p(ug)dv+ ) f p(vi(1)9)ay,, (v) dv.

[Vis1] WGFiH[ViH]
(ii) If o = Vo, (1<j<1), then
Fipo = f @(vg)w;j(v)dv +>) f w(vé(y)g)%j’am(v) dv .

[Vii1] 7€Fi+1(¢ai)[‘/i+1]
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(iil) If Yo = v, then
-1
Fu= [ elogyil)do.

[Vis1]

(iv) If 1o = Yajap (1<j+1<k<i), then

Fipo = \/n P(09) Ve, 0p (V) dv.

[Vis1]

Where Ti11 (o) with Ti1q = Ti11(1) is defined in (1.2).

Proof. We will use lemma 3.6 where the considered g in cases (i)—(iii) satisfy
the character condition for the last row according to remark 3.5.

e For 1)g = 1, the expression is already in the form of lemma 3.6. This proves
case (i).

e For 1) = 1, with 1 <j <i we get that 1o(v)Ya,,, (V) = Vo, a.., (v). This
proves case (ii).

o For vy = 1o, we get that 1o(v)a,,, (V) = Ya;.a.,, (V) = PYyu(v) for some
u € g belonging to an orbit higher than the next-to-minimal. Theorem 2.1
with the Whittaker pair (sv;,,,u) gives that Fs, () vanishes both for
® in a minimal and next-to-minimal representation which leaves only the
constant mode in lemma 3.6. This proves case (iii).

e Lastly, for 1o = ¥a;,a, With 2<j+1 <k <7 we first consider 7 <n -3 with
lemma 3.6. We get that 1o(v)Ya,,, (V) = Yo, ap.0i, (V) = Pu(v) for some
u € g belonging to an orbit higher than the next-to-minimal. Theorem 2.1
with the Whittaker pair (sy,,,,u) gives that Fs, () vanishes for ¢ in
next-to-minimal representation which leaves only the first term in (3.3).

For ¢ =n -2, we expand along the last row and obtain a sum over characters
Yy = Yoty on N forall y € tt,,_1(F) where only y = 0 gives a u € g belonging to
an orbrit in the closure of the next-to-minimal orbit. Again, using theorem 2.1
only the constant mode remains. This proves case (iv) and completes the
proof. O

Proof of theorem A. Since p(x19) = ¢(g) for x1 € V1(F) we can make a
Fourier expansion on V; and then use lemma 3.3 to obtain

B4 e9)= [ ewpdr ¥ [ emgwal@)dv.
(V1] e

We will now make an iteration in the rows of the nilpotent, starting with
the row ¢ = 1 and continue until we reach the last row ¢ =n —1.

e For case (i), that is, with ¢ in a minimal representation, the first step,
using corollary 3.7, is

20)= [enas & [ ool
- " D R CTIeA A OY R

v1€l'y [V2]
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where we note that the extra second term comes from the constant term on
V1. We will, after the iteration end up with

n-1
o(9) = [ emayin+ Y, 3 [ ln()g)vs!(n)dn.
(V]

This completes the proof for a minimal representation.

e For case (ii), where ¢ is in a next-to-minimal-representation, we start
again from (3.4) and expand using corollary 3.8. We get, for the first step,
that

¢(9)=(f<p(vg)dv+ 2% fw(vb(*m)g)w&i(vg)dv)+
A T2€l2ry,
" ey ey,

71€F1[V2]

where the parenthesis comes from the expansion of the constant term in
(3.4). Expanding in the next row as well, this becomes

([ewpavry  [oim)geai@)doey,  [elon)g)l)dv)+
[Va] (V5]

v3€l's 726F2[V3]

3 (Jetmaat @+ ¥ [oon)umn)e)) o, v)dv).

1€l (V5] ’Y3eF3(¢a1)[V3]

For each expansion adding a row 7, the constant term gives an extra sum
over I'; of a Fourier integral with character v¢,,, and from all terms with
characters 1o, with j <i-1 we get an extra sum over Fi(i/zaj) together with
a character ¥, o,. Corollary 3.8 (iv) implies that these terms with characters
non-trivial along two simple roots do not receive any further contributions.
Thus, after repeatedly using corollary 3.8 to the last row, we get that

n-1
o) = [ emgydn+y, 3 [ o(m()g)sl(m)dn+

[N] =1 'yel“i [N]

n-3 n-1
e 0 Y [ etuu)es e () dn,
J=li=j+2yieli(va ) N
7€l

which completes the proof of Theorem A.

4. PROOF OF THEOREM B

In this section, we prove Theorem B which relates Fourier coefficients
on a maximal parabolic subgroup with Whittaker coefficients on the Borel
subgroup. Recalling that the constant terms are known from [MW95], we
only focus on non-trivial characters, but first we need to introduce some
notation and lemmas.

For 1 <m < n-1, let U, be the unipotent radical of the maximal
parabolic subgroup F,, with Levi subgroup L, isomorphic to the subgroup
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of GL,, x GLj,_y, defined by {(g,9") € GLy, x GLy,_y, : det(g) det(g’) = 1}.
U, is abelian and is isomorphic to the set of all m x (n —m) matrices. Write

U,, as
L, X
U,, = {( 0 In_m) X € Matmx(n—m)} .

Let U, = 'U,, be the unipotent radical of the opposite parabolic P,,. Then
the Lie algebra of U,, can be written as

R N AR

It is clear that the character group of U,, can be identified with ‘u,,. L,,
acts on u,, via conjugation and with (2.4) this becomes a conjugation of the
corresponding character’s argument. Because of (1.5), the Fourier coefficients
for characters in the same L,,(F')-orbit are related by translates of their
arguments, which means that we only need to compute one Fourier coefficient
for each orbit. We will therefore now describe the L,,(F')-orbits of elements
y(Y) € tu,, but leave the details to be proven in appendix D.

Starting first with F the number of L,,(F)-orbits is min(m,n —m) + 1
and the orbits are classified by the rank of the (n —m) x m matrix Y. A
representative of an L,,(F)-orbit corresponding to rank r can be chosen as
y(Y;) where Y, is an (n—m) xm matrix, zero everywhere except for the upper
right r x r submatrix which is anti-diagonal with all anti-diagonal elements
equal to one. For each rank r, 0 < r < min(m,n —m), the corresponding
G (F)-orbit is parametrized by the partition [271"72"].

As shown in appendix D, the L,,(F)-orbits are characterized by the
same data as the G(F)-orbits with ([271"72"],d), 0 < r < min(m,n - m),
de F*/(F*)F and k € ged([271"72"]) with representatives y(Y;(d)) where
Y, (d) is of the same form as Y, above, but with the lower left element in the
r x r matrix equal to d

1
o]
Yvr(d) = d € Mat(n_m)Xm(F) .
0 0

We will continue to write Y,.(1) = Y;. Note that for 0 <r <2 and n >5, k
is equal to 1. Each such L,,(F)-orbit is also part of the G(F")-orbit of the
same data.

From (2.3) the corresponding character on Uy, is

Uyvy (w) = (tr(y(Yy)log(w))), weUn(A).

Let s,, be the semisimple element trdiag(1,1,...,1,-1,-1,...,-1) with m
copies of 1’s and (n —m) copies of —1’s. Then, for any automorphic form ¢
on SL,(A), the following Fourier coefficient

/[Um] P(ug) Py v, (ayy (1) du

is exactly the degenerate Fourier coefficient F (v, (a))()-
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Note that in this paper, we focus on minimal and next-to-minimal
representations, hence we only need to consider the cases of 0 < r < 2.
Indeed, for 3 < r < min(m,n —m), by definition, the generalized Fourier
coefficient attached to the partition [271"72?"] is identically zero for minimal
and next-to-minimal representations. By Theorem 2.1 and since y(Y,(d)) is
in the G(F)-orbit [2"1"72"], all the Fourier coefficients Fy (v, )(¢) are also
identically zero.

This leaves r € {1,2} and with our assumption that n > 5, we thus
only need to consider the representatives y(Y7) and y(Y3) with d =1 since
ged([2717727]) = 1.

The above arguments proves the first part of theorem B, that there exists an
element [ € Ly, (F') such that Fy (v,vu;9) = Fu (e, ¥y(v,);lg) (note the slight
difference in notation 1, y, ) instead of 1y, ), and that all Fyy (¢, ¥y (v,);19)
for r > v, vanish identically where r, . =1 and rr  =2.

We will now determine the remaining Fourier coefficients F; (¢, vy (v,); 9)
in terms of Whittaker coefficients. For 1 <m <n-1,0<i<m -1, let U’, be
the unipotent radical of the parabolic of type (m —i,1%,n —m). Note that
U =U,,. Note that the character Yy(v;) can be extended to a character of
any subgroup of N containing Up,, still denoted by ¥, (y;). Let Cy,—; be the
subgroup of Ui consisting of elements with Upq = 0 except when g=m —1
and the diagonal elements. Note that C),_; is an abelian subgroup and its
character group can be identified with ‘c,,_;, the Lie algebra of !C,,,_;. Write

Cp_i as
Im-i1 X O
Cm_i={c(X)=( 0’1 o )}
0 0 Inf'mﬂri

and ‘¢,,_; as

e = {y(Y) - (Omx?‘l o o )} .

0 0 0n7m+i

For each y € ‘¢c,_;, the corresponding character 1, of Cp,_; is defined by
Py () = ¥(tr(ylog(c)).
Example 4.1. For SL5 we have that

11 * % 11*** 11>(-
1 1 1

Note that U™ = V,,, and U:t = C,,, ;UL We will sometimes use j = m—i
instead to denote column as follows U7+ = CiUp, .

We will now construct a semi-simple element s = sy for which gf = & and
such that ng = g3, corresponds to N, = U! . These conditions are satisfied by

(4.2) trdiag(2i,...,2i,2(i-1)...,2,0,-2,...,-2)

with m — i copies of 2¢ and n —m copies of -2.

Note that any character 1 on N trivial on the complement of U in N
is also a character on U}, by restriction and can be expressed as 1y with
y € g25 where s = sy such that (s,y) forms a Whittaker pair. Indeed, we
have that y € g*§ where sy = trdiag(2(n - 1),2(n -2),...,0,-2) from (3.1)
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and the complement of U?, is described by s— sy meaning that [y,s—sy] =0
for 1 to be trivial on the complement and thus [y, s] = [y,sn] = —2y.

Lemma 4.2. Let ¢ be an automorphic form on SL,(A) and 2 < j<n. Let
also g be a character on N which, if j =2, should be trivial along oy and
either along ay,—1 or along (at least) two adjacent other simple roots. Then,

Y[ eaout@di= % [ et (@) de.
yet;iE)F)[cf] vehj-1(Yo)
where Aj(1pg) is defined in (1.3) and only depends on o for j = 2. The
embedding i is defined in (1.4).

Proof. The proof is similar to those of lemmas 3.3 and 3.4.
e For 2 < j < n, we parametrize y € 'c;(F') by row vectors Y € Mat . (j-1)(F)
with representative X = (0,...,0,1) such that wy(f() = Yoy ;-
The surjective map SLj_1(F) — 'c;(F)* : v = X gives that ‘c;(F)*
(SL;j-1(F)) £ \SLj-1(F) = Aj-1. A
As in lemma 3.3, we can write the action as a conjugation y(X~)
() y(R)i(7) and, using (24), v, ¢ (2) = ¥, 5 ((7)ai() D). Since
(y) normalizes C; a variable change gives the wanted expression.
e For j =2, with y € “co(F) = F we instead consider the map Ty, — feo(F)* :
h+ h~'y(1)h which is surjective by similar arguments as in lemma 3.4 and
thus gives ‘co(F)* 2 (T, N Tyo, Ty = A1(tho). Writing the conjugation of
y as a conjugation of the character’s argument and then substituing variables
in the Fourier integral thus proves the lemma.

1R

O

Lemma 4.3. Let ¢ be an automorphic form on SL,(A), 1 <m <n-1,
2<j<m and g a character on N trivial on the complement of Uy, 7 in N.
For j =2, 1y should also be trivial either along auy,—1 or along (at least) two
adjacent simple roots other than aq.

[ elugyvi? (u) du -
[wm™

]
- [ty @dus Y [ euit)g)us (@l (u)du.

[U:nn—j+1] WEAj—1(¢O)[Um—j+1]

m

Proof. For 2 < j < m we have that ¢(zug) = ¢(ug) for x € C;(F) and
uwe Uy, (A) and since C; is abelian

(43) oug) = [ wlaugy, (@) dz.
ve'e; (B ey

Using lemma 4.2, we get that

o(ug) = [ paugyda+ ¥ [ e(itnugy, (@) dr.

(] ’YGAJ'—1(¢0)[CJ]
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Let u € UM be parametrized as

where A € Mat(,,_ji1)x(n—j+1) IS Upper unitriangular (with several upper
triangular elements being zero) and B € Mat(;_1)x(n—j+1) With elements in
the first column being zero. Since B does not intersect the abelianization
[N, N]\N (that is, the Lie algebra of B does not contain any generator of a
simple root), we have, by assumption, that ¢y only depends on A. We also
have that x € C; can be parametrized as

(I B
‘”‘( 0 In_j+1)

where B’ € Mat(j_1)x(n-j+1) With only the first column non-zero. Thus,

(I, B+B'A
ru = 0 A

which means that ¥g(u) = 1g(zu). The first column of B is zero and A is
upper unitriangular which means that the first column of B + B'A is the
same as the first column of B’ and since 1, , only depends on the first
column of B’ this implies that 1q; , (%) = Y, , (zu).

e For 3<j<m withyeA;_; and I =i(7y),

lul™} = y 0 Ij—l B ’)/71 0 _ Ij—l vB
0 Liju)\ 0 AJlo L) \o 4

and since 1y, by assumption, only depends on A we have that ¢g(u) =
Po(lul™).

e For j =2 with v € Ay and [ = i(y) = 7 is in the stabilizer Ty, which, by
definition, means that 1o (u) = 1o (lul™t).

Hence, for 2 < j <m, and after making a variable change lul™' — u, we get
that

[ [ etatugyi (il (o) dodu-

[Um=31[Cy]
- [ [ elautg)st @ik, (@) dedu
[om1065]

- / /Sﬁ(xulgWSl(in&;_l(xu)d;z:du

[Um=91[C5]

- f So(ulg)wﬁl(u)w&;ﬂ(u) du .
(U]
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After similar manipulations for the constant term we obtain

f e(ug)y' (u) du =
(U]

- [ eupig'@dur Y [ elulg)igt @il (w)du,

(U] ’YEAj—l(iﬁO)[Um—jﬂ]

m m

O

What the above lemma describes is the inclusion of column C in the
integration domain which is why an additional character along ;1 appears.

Remark 4.4. We note that if v is trivial along a; but not along at least
two adjacent other simple roots we cannot use lemma 4.2, but we could still
make an expansion over Cy and keep the sum over y € ‘co(F) 2 F in the
proof above. Since the character 1), has the same support as 1),, on N we
still have that 1, (x) = ¥y (2u) for € Cj(A) and w e Uy, 7 (A) and since g
is still a character on N trivial on the complement of Uy, it is still true
that ¥o(u) = 9o(zu). Thus, using (4.3)

fw(ug)%l(U)du: > f f«p(xug)wal(uw;l(a:)d:cdu

[Um-2] ve'e2(F)ym-21[Cy)

- Y [ [ eleugit euyy (eu) dodu
vere(Mug-2](C2)

= 2 /@(Ug)%l(v)w;l(v)dv.

yet c2 (F)[Vm]

Lemma 4.5. Assume that ® is an irreducible minimal automorphic
representation of SL,(A), p em. For1<m<n-1,0<i<m-2, and
g €SL,(A),

i £l du= [ gy () du

m

Proof. Using lemma 4.3 with ¥o = 1y(y,) = ¥a,, (cf. also remark 3.5) we get
that

(4.4)
fso(ug)%l(U)dw f e(ug)ty (w)ydu+ Y Fleym,i,y,g),
(U] [Ui+1] YeAm—i—1(%0)

where we have introduced

Fpsm,i,y,g) = f@(ui(v)g)wal(uwamfl(U)dU-
(Ui
Let s = syin from (4.2), and let u € sl, with two non-zero entries,
both being 1, at positions (m —i,m — ¢ —1) and (m + 1,m). Then,
F(o;m,i,7,9) = Fsul(p)(i(v)g) and since u is not in the closure of the

minimal orbit, theorem 2.1 gives that F () is identically zero leaving only
the constant mode in (4.4). O
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Proof of Theorem B.

e Minimal representation. Assume that 7 be an irreducible minimal
automorphic representation of SL,(A), and ¢ € 7. Applying Lemma 4.5
repeatedly, we get that for each 1 <m <n -1,

f[Um] P(ug)ty vy (u) du = [[Uml] P(ug)ty vy (u) du.

Note that U™t = V,,, and VYy(v1) = Yo, - Applying corollary 3.7 repeatedly,
we get that for each 1<m <n -1,

Sy £y du= [ o)yl () dn.

m

which is exactly
-1
ng)y, (n)dn.
Jy PO )

o Next-to-minimal representation - rank 1. Let 7 be an irreducible
next-to-minimal automorphic representation of SL,(A) and let ¢ € .
Recalling that U,, = U, and applying lemma 4.5 with v = Yyv1) = Yo, We
get

[ etugyby@du= [ olug)vs () du

[Unm] [UL]

since Yoo, ;1 = Yam,am-1 = Yu for some u that is not in the closure of the
next-to-minimal orbit and thus the non-constant modes in lemma 4.5 can be
expressed as Fourier coefficients F;,, with s = sy from (4.2) which vanish
according to theorem 2.1.

Let us make an iteration in 1 <7 <m —2. Using lemma 4.5 we have that

(45) [ w(ug)vi (w)du-

(U]
- [etwgit@dur ¥ [l o, (@) du.
[Ui+1] "/EAm—i—l("/Jocm)[U’rir-{l]

Since Ya,, a,,_,, is a character on N trivial on the complement of Ui
we can expand the second term further with lemma 4.3 (or remark 4.4
if m-1-1=2 and 9Ya,, a,_,., 15 not trivial along at least two adjacent
roots other than aq). This would lead to characters 1y, = Yo, am i 1,0m_i2
(oF Yy = Yam,am_i 1Yy With y € fea(F) respectively) where u is not in the
closure of the next-to-minimal orbit. Then, Fy, with s = sy from (4.2)
vanishes according to theorem 2.1 and the second term only receives the
constant mode contribution. Repeating these arguments for the second term
in (4.5), it becomes

> f Pui()G) Va1, cm (W) du.

YeAm-i-1(Yam,) [Vin]
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Iterating over 4, starting from i = 1 above, we get that

(46) [ plug)ydy,) () du =

[Um]
| etugyvzt (w)du+ Z X[ i) e, () du.
[Vin] ek Wamdy,)

For m =1, U; = V] and for m = 2 we only get the first term in (4.6).

We will now use the methods of section 3 to expand along rows. Using
corollary 3.8 case (iv), we see that the second term in (4.6) does not get any
further contributions when expanding to N. Starting with the first term in
(4.6) and using corollary 3.8 first with case (iii) to V;,+1 and then repeatedly
with cases (ii) and (iv) it becomes

f p(ug)iy, (u) du =

[Vm+1]

f cngyit (mydns SN [ enu)eal o, (nydn.

i=m+2yeli(Yam) [N

Lastly,

[ gty @ du= [ o(ng)izl (n)dn+
[Un] [N]
m—2

* 2 f P(ni(1)9) ¥y, (1) dr +
o

7=1 ~eA ( o )[N]

n—-1
vy Y [ eu)g)E o () dn.

i=m+2 7€l (Yam) [ N]

e Next-to-minimal representation - rank 2. Let 7w be an irreducible
next-to-minimal automorphic representation of SL,(A) and let ¢ € 7. We
start from the integral

o)y ()

For each root «, let X, be the corresponding one-dimensional root
subgroup in SL,,. Let

m—2

Cr = Xem*em+2 H X€i76m+2 )
=1

and
m-2

Ri=Xe,, 1-en H Xem—l_ei :
=1

Then C} is a subgroup of U,,. Let U], be the subgroup of U,, with C;-part
identically zero. Then one can see that the quadruple

( 7wy(Y2)aclaR1)
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satisfies all the conditions of Lemma 2.5. By this lemma,

f[Um] P(ug)ty () (W) du

= -1
) fCl(A) f[RlU;n] p(ucg)hy(vy)(u) dude.

Let
m-2
Cr= H Xei—emi1 s
i=1
and
m—2
Ry= 1] Xewe,.
=1

Then Cs is a subgroup of R1U,,. Let U]’ be the subgroup of R U], with
Cs-part identically zero. Then one can see that the quadruple

(U Co, Ro, Yy (vy))

satisfies all the conditions of Lemma 2.5. Applying this lemma and by
changing of variables,

S (W) dud
fCl(A) /[RlU;n] SO(ucg)%(yz)(u) uac
-1

du dcy d

fcl(A) /@(A) f[RzU,gg] <P(ucw1g)¢y(y2)(u) wdcs dey

-1
dudc.
f(C1C’2)(A) ‘/[RQU#L] SO(UCg)wy(YQ)(u) wdce

Let w be the Weyl element sending torus elements

(t1,t2, ... tp)

(4.7)

to torus elements

(tm—la tm+27tma tm+17t17t27 e atm—Qatm+3atm+4, R 7tn) .

Conjugating w cross from left, the integral in (4.7) becomes
(4.8) fC(A) f[ ” @(uwcg)zﬂ;(’;;)(u) dude,
where U® = wRyU"w™, C = C1Cy, for ue U, @ZJ‘;(Yz)(u) = @Z)y(YZ)(w_luw).
Ue =U“tyy,
where elements u € U2 have the following form
(& )
0 u')’

and Uﬁf;l normalizes'Vl. Recall that V; be unipotent radical of parabolic
subgroup of type (1',n —i). Note that ¢;(Y2)|V1 = Yays ¢ZJ(Y2)|U:;’1 = Yoy
Recall that ay = e — e, az = e3 — e4. Hence, the integral in (4.8) becomes

(4.9) fC(A) ][-Uw’l]f[VI]w(vuwcg)w;i(v)w;;(u)dvdudc.
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Since 7 is an irreducible next-to-minimal automorphic representation of
SL,(A), by corollary 3.8, case (iii), the integral in (4.9) becomes

(4.10) .[C(A) /[U”’l] f[v2] ap(vuwcg)¢;i(v)¢;;(u) dvdudc.

Ut still normalizes Vs, and
Uni'Va = U Vs,

where elements u € U~? have the following form

I, 0

0 ’LL” 9
u” is in the radical of the parabolic subgroup of type (m-2,n-m-2) in
SL,,—4, and U%? normalizes V3. Note that w;’(YQ)\VS = Ya, g and %’(m’m@

is the trivial character. By corollary 3.8, case (iv), the integral in (4.10)
becomes

-1
(4.11) /C(A) [[U%’Q] ~/[V4] p(vuweg) g, o (v) dvdude.
Applying corollary 3.8, case (iv), repeatedly, the integral in (4.11) becomes

-1
dndud
/;(A) f[U:;;?] /[N] p(nuweg) Py o, (n) dn dude,

which becomes

o dndud
»/C(A) »/[U;‘,)L’Q] —[[N] tp(nwcg)q/)al’a?)(n) n dudc,

by changing of variables. Since [[Uw,Q] du =1, we have obtained that

-1 -1
Sy 2wl du= [ onegyic) o, (n) dnde.
This completes the proof of Theorem B. U

5. PROOF OF THEOREMS C AND D

Proof of Theorem C. Let 7 be any irreducible automorphic represen-
tation of SL,(A) and let ¢ € m. The generalized Fourier coefficient of ¢
attached to the partition [21"72] has been defined in Section 2. We recall it
as follows.

Let s = (1,-1,0,...,0), and let u = Jygjn-2) which is a matrix zero
everywhere except the (2,1) entry being 1. Then the generalized Fourier
coefficient of ¢ attached to the partition [21"72] is as follows:

FEL-N (0 g) = Fou(pig) = _/[N | p(ng)y' (n)dn,

where elements in the one-dimensional unipotent N have the form
1 = 0
01 O
0 0 I,
Let X =1t Xe,—¢, and Y = []123 X¢,_c,. Then one can see that Y (F)
can be identified with the character space of [X] as follows: given y € Y(F),
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y(x) = u([z,y]), for any = € [X]. Note that both X and Y normalize N.
Taking the Fourier expansion of Fs,(¢)(g) along [X], we obtain that

Fulew)= ¥ [ [ elengit (m)e;! (@) dnds.

yeY (I)

Since y™! € Y(F) and ¢ is automorphic, the above integral becomes

f f p(ang)iy' (), () dndx

yeY (F)

= 3 S e e () ) dnda
yeY (F) ]

= n n ) dndx
yd;F)f f oy 'y gy, (), (x)

= xn’ Yn x)dndx,
yeg(:F)f f p(an'y ™ g), (n), (z)

where n’ =n + [z,y]. By changing variables, we obtain that

2 f / p(an'y " g)ey (n)yy ! (x)dndz

yeY (F)
= xn n) (=[x x)dndx.
oz Sy Sy ety ) ! (L) (@)
Note that
Yy, ( [x,y])w;(w
= 1.
Hence, we have that
Foulpig) = (xny~tg),  (n) dndzx.
©; g er(F)[ f Y g

Note that X Ng = U; and 1, = ¢4, . Therefore, we have that

Foulwig) = /[Ul] e(uy™ g)va! (u) du.

yeY (F)

This completes the proof of Theorem C. O

Proof of Theorem D. Let 7 be any irreducible automorphic represen-
tation of SL,(A) and let ¢ € m. The generalized Fourier coefficient of ¢
attached to the partition [221"7%] has also been defined in Section 2. We
recall it as follows.

Let s=(1,-1,1,-1,0,...,0), and let u = Jyp21n-4] which is a matrix zero
everywhere except the (2,1) and (4,3) entries being 1. Then the generalized
Fourier coefficient of ¢ attached to the partition [22177*] is as follows:

FOM(pig) = Fouloio) = [ olna)uy (m)an.
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where elements in N have the form

1 0 = 0
01 0 0 O
0 1 = 0
0001 O
0 0 0 0 Inq4

Let w be the Weyl element sending the torus element

(t1,t, ... tp)

to the torus element
(t17t37t47t27t57t67 sy tn) .
Conjugating w across from left, we obtain that

Falpio)= [ @lmogyss™ (nydn.,

where N¥ = wN,w™, and for n € N¥, ¥(n) = ¢, (w 'nw). Elements in
n € N2 have the following form

12 z 0
n=n(z)=|0 I 0 |,
0 0 1,4
and ¢ (n) = (21,2 + 221).
Let
n n
X'= H Xey-e; H Xey-e;
i=5 i=5
and

n n
!/ pa—
Y’ = [T Xeren [T Xeves -
=5 =5

Then one can see that Y'(F') can be identified with the character space
of [X'] as follows: given y € Y'(F), ¥y(z) = ¥ ([z,y]), for any = € [X'].
Note that both X’ and Y’ normalize N,. Taking the Fourier expansion of
Fsu(p)(g) along [X'], we obtain that

Fsulpr9) = Y, f , f p(anwg)yy ™ (n)yy () dnda .
yev7(F) 7 [XTJINY]
Since y~' € Y/(F) and ¢ is automorphic, the above integral becomes

2 /[ 1 f[NgJ] p(anwg)ey ™ (n)yy ! (z) dndz

yeY'(I)

S [ oy Sy P ) ()0 @) dn o

yeY'(F)

> [[X,]f[ n oy anyy wg)v T (n)y, (x) dnda

yeY'(F)

2. f[ . f[Nw] p(an'y " wg)vy ™ (), (2) dnda,

yeY'(F)
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where n’ =n + [z,y]. By changing variables, we obtain that

oo Sy @'y )5 ()5 (@) dnda

yeY'(I)

= 2 f . f o(zny twg) v (R (=[x, y])Y, (z) dnda.

yeY'(F)
Note that

G (L )y () = 0 L] (L)) = 1

Hence, we have that

Foulpig) = Z f : f o(xny” wg)wu (n)dndz.

yeY'(F)

Note that X'N¥ = Uy and v, = Yy(v»), using the notation from section 4.
Therefore, we have that

Foule;9)= D) f o(uy”™ wg)d}y(YQ)(u)dudx

yeY'(F')

This completes the proof of Theorem D. O

6. APPLICATIONS

As is evident from table 1, the case SL5 appears in the list of symmetry
and duality groups in string theory. It is related to compactification of
type II string theory on a three-torus 7% from ten to seven spacetime
dimensions. Fourier coefficients of automorphic forms on SLj are related
to non-perturbative effects as discussed in the introduction. Therefore we
analyse here in some detail the structure of Fourier coefficients of automorphic
forms, in particular Eisenstein series, attached to a minimal or next-to-
minimal automorphic representation of SLs that are relevant to the first two
higher-derivative corrections in four-graviton scattering amplitudes.

We will first give a detailed description of how the formalism developed
above can be used to calculate explicit expressions for Fourier coefficients on
maximal parabolic subgroups for automorphic forms attached to a minimal
or next-to-minimal automorphic representation of SL,, for n > 5. Following a
general discussion, we will treat two explicit examples for n = 5.

6.1. Generalities. With applications to string theory in mind, throughout
this section we are restricting to F' = Q and let A = Ag. Let G = SL,, for
n > 5 and P a parabolic subgroup of G with Levi decomposition P = LU.
The types of expressions that are of interest are of the form:

(6.1) FH (3 9) = f e(ug)v ™ (uv) du,
UZ\U(R)

where 1) is some rank-1 or rank-2 character on U(R) and ¢ is an automorphic
form attached to a minimal or next-to-minimal automorphic representations
of G(R). Recall that Fourier coefficients with higher rank characters vanish
for the representations of interest.

Similar to the adelic case, the real rank-1 and rank-2 Fourier coefficients
can be brought to standard forms using the action of the arithmetic Levi
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subgroup L(Z). For rank-1 this form is ¢ = b, (4y;) for some integer & # 0
and for rank-2 one has ¥(kitn, m+1 + kgum_LmJ,g) for non-zero integers kq
and kg, cf. (1.6). For simplicity, we will mainly discuss the case 9y, and
demonstrate how to apply theorem B, but the techniques demonstrated here
can be generalized for the remaining Fourier coefficients of automorphic
forms attached to a minimal and next-to-minimal representations on SL.,.

In order to apply theorem B, we first perform an adelic lift as described
in [FGKP18§]

fR(gO,I/);gOO) ZFA(¢7¢; (gomIn,In,"')) = fgo(u(goo,ln,ln,...))dfl(u) dua
(V]

where we abuse notation and denote the adelic lifts of the automorphic form
and character also as ¢ and 1. The theorem now gives F* in terms of adelic
Whittaker functions. For Eisenstein series of weight A, these Whittaker
functions will then be evaluated using the adelic reduction formula

(6.2) Wy(ha)= 3 alev®) X007 (w Ay W (w; ' A, 1)

wew(eCy,

of [FKP14]. The power of this formula lies in that it expresses a degenerate
Whittaker function evaluated on the Cartan torus of a group G(A) as a sum
of generic Whittaker functions on a subgroup G’(A) with w;') orthogonally
projected onto its weight space. This subgroup G’(A) is determined by
deleting all nodes in the Dynkin diagram of G(A) on which 1) is not supported.
Here, w(, denotes the longest Weyl word on G’, C,, denotes the set

Cy ={weW|wIl' <0}

where II' is the set of simple roots of G’ and w,. is hence the summation
variable and corresponds to a specific representative of the quotient Weyl
group W/W' described in [FKP14]. p denotes the Weyl vector, M denotes
the intertwiner

(M)
Me ) =11 oy

wa<0
as featured in the Langlands constant term formula, where ¢ is the completed
Riemann zeta function and 1® denotes the “twisted character”, both defined
in appendix A.
The evaluation of a real rank-1 Fourier coefficient schematically looks like

FH(0,105 go0) = FH (0,3 (goor Ins I ) Adelic lift
= Z Z Wd)(l(gooylnajnv)) Theorem B
1 leA or lel

= Z Z Wiy (Moo ookioo, n2a2ka, n3a3ks, ++)) Iwasawa-decomposition
1 leA or lel

= %(H wp(”p)) Y Wy((ace,a2,a3,-++))  Wy(nak) = (n)Wy(a)

p<oo leA or lel
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= Y Yoo(nee) Y, DoaM(-)Wya(--1) Reduction formula (6.2).
P leA or lel" w

The fourth line extracts the unipotent n,-dependence at each of the local
places p < co. In the fifth line we have used that only the archimedean
unipotent n. contributes. The reason that the p-adic unipotent matrices n,
of the p-adic Iwasawa-decomposition of [ € G(F') c G(Q,) above drop out is
as follows. In using theorem B, we will be faced with evaluating Whittaker
functions such as

Wajam(E(Aj)g) for j<m -2 where AjeA; and
Weopnai (L(7i)g) for i>m+2 where ~;el’;.

We have that v; and \; are embedded in SL,, as (cf. (1.4))

i(A) = ()\j In—j) and (7)) = (Ii %‘) :

It is clear from their block-diagonal form that the unipotent 7, in the p-adic
Iwasawa-decomposition of i();) (and ¢(;)) will feature the same block-
diagonal form. Since W, q,, (and W, «,) is only sensitive to the unipotent
on rows j and m >j+2> j (on rows i and m < i -2 <), the block diagonal
structure of n, implies Y app(np) =1 (and Yo, a;p(np) = 1).
For a real matrix g € SL,,(R), we will denote its Iwasawa-decomposition
1 2yg oo oo T1n y1

1 : y2/y1 )

(6.3) g =TNoolokoo = oo -

. 1. xn—.l,n yn—l/yn—2
1 1/yn—1

Similarly, for a p-adic matrix g € SL, (Q,) we denote it as

m,p
n2,p/Mp )

(6.4) g = npapky =ny ky .

. Nn-1,p/Mn-2,p
1/nn-1,p
Appendix B contains closed formulae for the x’s and the y’s, as well as a
closed formula for the p-adic norm |[n; |, of the n’s.
In what follows, we will make use of all formulae that are derived or stated
in appendices A, B and C along with the following notation

e A prime on a variable, eg. x’, generally denotes x’ # 0.
For sums we write = >_.

T zeQ
o We write Y f(z)= > f(z)and ) f(z)= > f(z). Note
o 2eQ{0} el 2eZ {0}

that the prime is used to indicate whether or not zero is included in

the sum but the prime is omitted in the summand.

For products we write H = H . Writing H denotes the product
p p prime p<oo

over all primes p (the non-archimedean places) as well as the element

p = oo (the archimedean place).

2mix

For 2 € R we denote e(z) = e
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We ‘ (wc_l)\+p|a4) ‘ M (w;,\) ‘ (wcwo) A+p

Id 0
w1 0
w12 0 e e
x wig | 2(s-32) 2| [0,0,0,5-25]

TABLE 2. Data for the reduction formula (6.2) to evaluate
Wa,(a) on SLs with A = 2sA; —p. The star in the first column
indicates the one and only row that contributes in the sum
over Weyl words. The second column is used to compute the
projected weight for the G” Whittaker coefficient, the third
column gives the intertwiner, and the last column gives the
weight for first factor of (6.2) as a vector with the fundamental
weights as basis.

6.2. Example: Rank-1 coefficient of my,;, on P,, c SLs. Here, we will
calculate the real rank-1 Fourier coefficient (6.1) for the Eisenstein series
E(X;g) with A = 2sA; — p attached to a minimal automorphic representation,
with respect to the unipotent radical of the maximal parabolic

P,, = GLy x GLy x Uy, c SLs subject to  det(GLy x GLp) =1,

obtained by removing the “last” node in the Dynkin diagram of SLs. The
unipotent radical is

1 *
U(R):Ua4(R):{( ' 1 )}
1

Theorem B gives for the unramified character ¥, (y;) that

fA(E(ZgAl - p)7¢y(Y1);g) = Wa4(g) :

The Whittaker function is found by the reduction formula with data
given in table 2. In this case, there is no diagonally embedded rational
matrix [, or equivalently [ =I5, in the general procedure and hence we have
I plp = ]n27p|p = [naplp = 1. Using (6.2) and (A.5) with s’ = s -3/2,
we get

Wa4(>\; (9007157157 )) =

2s 2
_e($45)( 7 285(6(2 ) H | 4,p|5 2 ) s— 3/2(%a1)

p<oo
, 1 = p2(s-3/2)+1 nip 2s=3/2)71
M,p L —2(s-3/2) e lp
1 252 2
_e(x45)y5 285(23)2 z—z Kol 2w Z—i

1
= 2e (245)03 “Ya—ro— £ ) (277 % )=fR(E(28A1—p),tby(yl);goo)-

o0
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The 2’s and y’s are the Iwasawa coordinates for the matrix g as in (6.3).
The function I that appears is a more compact way of writing the SLo
Whittaker vector defined explicitly in (A.3).

Parameterizing g, as

Joo = UE = (161 ?)(T_l(/)4e4 2) where e4 € SLy(R),

we get in particular that

ys =1 4| Ney| and yy=r7",
where N = (0001) so that Ney is equal to the last row in e4. This is
obtained using the formula (B.1). We get in particular that

s—2
vy s =20 (12 Ney|))

2
and 2 = ;Y Ny
Y3
One can show that the more general (real) Fourier coefficient with a
character ¢ on U,, parametrized by integers N = (m1 ma mz m} ), where m/y
is non-zero, has the expression

(6.5)

1 Ul

1 u2
/ E|2sAq - p; 1 w3 |goo | € (m1u1 + Mol + M3usg + mZLU4)d4u =
1 ug
1

o 2 B 5-2 _
=e(NQ)r? 55 (25)04_25(k) (r M INeall) Ko (20754 Neal )
e (NQ)r -3 2 T2ma(B) 5 2 g (oS
e (NQ)r ¥ 73 os S INeal Ks (2lblr ™| e )

and that, for non-integer rational m’s, it vanishes. Here g. has been
parametrized as above, N = kN and k = ged(N). This expression can
be found by starting from v (4y,) for the standard Fourier coefficient,
which corresponds to N = (000 &), and compute its L(Z) orbit using (1.5).
Formula (6.5) agrees with [GMV 15, Eq. (H.37)] where the Fourier coefficients
were computed by Poisson resummation techniques, after a translation of
conventions.

6.3. Example: Rank-1 coefficient of mym on P,, c SLs. Here, we
will calculate the real rank-1! Fourier coefficient (6.1) for the Eisenstein
series F(\;g) with A = 2sAg — p attached to a next-to-minimal automorphic
representation, with respect to the unipotent radical of the maximal parabolic

P,, = GL4 x GLy x U,, c SLs subject to  det(GL4 x GLp) =1

obtained by removing the “last” node in the Dynkin diagram of SLs. The
unipotent radical is

1
U(R) = Uy, (R) = {( ' 1

LR

IThere is no rank-2 character for this parabolic.
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we (we' X+ plas) | M (w;', ) (wewp) ™ A+ p
Id 0 1
w9 0
w21 0
+ wa 2(s-1) e [25 - 1,0,0,4 - 25]
2s5-2)2
* wag 2(s-1) | ol | [3-25,25-2,0,4- 2]
25-3)¢(25-2
* W2132 2(s-1) % [0,4 - 25,25 — 3,4 - 2s]
W213243 0

TABLE 3. Data for the reduction formula (6.2) to evaluate
Wa,(a) on SLs with A = 2sAy — p. The stars indicate which
rows contribute in the sum over Weyl words.

Theorem B gives

FHE(25M2 = ), Yy(vi)i9) =
=Wa(@)+ Y Wara((A)9) + 3 Wayas(i(A2)g)

A1eM1(ay) A2eAo
=Woy (9)
z 1
+ Z Was as 1/z K
Z 1
| S
(6.6) L
"
+ > Wa27a4(( y @ )g)
$/7y 13
—_——
lzy
1
+ Wagm((g 0 )g),
x! I3
—_——

la

using the representatives derived in appendix C.

The first Whittaker function is found by the reduction formula with the
data of table 3. In this case, there is no diagonally embedded rational matrix
[, or equivalently [ = I5, and hence we have |01 plp = [n2,plp = [13.plp = [M4plp = 1.
We get

(6.7)
WO&4(>‘; (9007 I, I, )) =

2
Yi 95-1 4-256 (28 -2) 2s-1 4-2s
=e(145)Ks1 —,1)y Yo e m, M4,
(e 2 ( S Tl ool sl

+y3725y2372y472s 5(23‘2)2 H |771 |3728|772 ’2872|774 4-2s
SERCERNTCOTTCEE DI St e
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we (wz' A+ ploa) | wg' A+ plaa) | M (wi',A) | (wewg) ™ A+ p
Id 0 0 1
wWo 2(3—%) 0

% Wog 2(s-13) 2(s-1) 5&2(;;)2) v
w2132 0 2(8—1) .
W213243 0 0

TABLE 4. Data for the reduction formula (6.2) to evaluate
Wa,a4(a) on SLs with A = 2sAg — p. The stars indicate which
Weyl words contribute to the reduction formula. We wrote
v=[3-2s,25-2,0,4 - 2s] here to conserve space.

1-2s 25-3 4-25§(25=3)E(25 -2
£(2s)¢(2s-1)

(774%_47) (1 _p72(371))

+ Y Y3 Yy

[T

p<oo

713,p

14— 1
(-l

1-p

~2(s5-1)+1

) 4-2 25-3 4-2
[T meply s ply™ Inaply

p<oo

2 12(s-1)-1
n2, (s-1)

n3,p

p

1 - p2(s-1)+1

3-95 2s-2 4-2s §(25-2)

= e (245) £2s) M tane(2s-1)
N yg2Sy§S3y3285(2£s()2;(;s33 1))2 ?;_43 :3/2 K,y s (27r ‘Z—f m)
- 20 (o) (1 g g + o2 e s
gy 294%) K32 (27T z—g Oo) ‘

The z’s and y’s are the Iwasawa coordinates for the matrix go, as in (6.3).
The second Whittaker function is found by the reduction formula with
the data given in table 4. The p-adic Iwasawa-decomposition of [, has

We get
(6.8)

|771,p|p = |772,p|p = |Z|p and |773,p|p = |774,p|p =1.

ZWal,OuL ()\;lz(goo,ln,_fm )) _

:Ze(

3 95 -95-2-4-255(25 — 2)

T12+ Tas)Py 0" U

§(2s)

~2 ~2
Y Y - - -
Ko (D) (20) Tl 2

X

p<oo

i2

m2,p

p72(371/2))

H’vp(nf—’p)(l—

p<oo

1-p

2 12(s-1/2)-1
M,p
n2,p

~2(s-1/2)+1

p

1-— p—2(s—1/2)+1
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We (WA + plaa) | (wZ'A+ plo) | M (w, \) (wcw('))_1 A+p
Id 2s 0 1
w1 0 0
w3 0 2(s-1)
2
*  W213 2(3—1) 2(8—1) % (%
w9o13243 0 0 e

TABLE 5. Data for the reduction formula (6.2) to evaluate
Wag,au(a) on SLs with A = 2sAy — p. The star indicates the
Weyl word that contributes to the reduction formula. We
wrote v = [0,4 — 2s,2s — 3,4 — 2s] to save space.

1_ p-2(s-1)+1 e 2As=D-1
< T ~ 773_47 (1 _p—2<s—1>) " e lp
peoo p n3.p 1_p—2(s—1)+1

1
Z (1'12 +x45)y3 2s 28 QyZl 2s

2'eZ (2 )6(25 p1<—o[o‘ ’p
~9\s—1 / .9 3—3/2
A5 () o) o)
Y2 Y3
X 0—2(5—1/2)+1(|Z|oo)

3/2- s~ -1
- Xt G 2 o gy

i Ji
x K1 (2n~—1) Ky 37 (2w74) 09-95(|2]00 ) -
Y2 Y3

The Z’s and y’s are the Iwasawa coordinates for the matrix [, goo. Writing geo
in the coordinates (6.3) we find explicitly for the archimedean components

Tip= 2212, T45=Ta5, U1 =[2leot, G2 =[2leoy2, T3=¥3,  Us=va
The third and fourth Whittaker functions are found by the reduction

formula with the data from table 5. The p-adic Iwasawa-decomposition of
lzy has

-1
|771,p|p =max{|ylp, [z} and |n2plp = [03plp = Maplp =1

We get

(6.9)
Z Wag,a4 ()\§l:13y(goo7[naln7”‘)) =
x'y
s~ s— s 6(23 - 2)2
_ (x23+x45)y4 2 2 3y4 25 Glas—2)"

z;, tog(2s)€(2s-1)

yz —2s 25-3 4-2s
x K 1( ) ( ) N2l |3 N4,

y1y3 y3 p1<—t£| P ’ pl ‘ P
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2 2(s-1)-1
—2(s=1)+1|_"2,p (s=1)

(22 (1-p726) - el
>< fy ). 1 _p_ —
p<oo P M,p73,p 1- p—2(s—1)+1

2(s-1)-1
1= p—2(3—1)+1 N4,p
< T 77447 ( p72(571)) By
peoo 73.p 1 _p—2(s—1)+1
o 15-3/2| -9 5-3/2
~ 1 y% ’ Yy
— e(x23+x45)y4 25y25 3~4-2s 4 2 Z4
x%:ez ST (28)€(25-1) |indsl. |73 ]e
72 9
x Ky 3 (277 )Ks—3/2 (27T = )0—2(5—1)+1(k‘)
U193 oo
= > de (T3 +5645)??1 _8?32?94;
) £(25)€(2s-1)
72 9

X KS 3/2 (27T
U193

) Ko 39 (27T ) o3-25(k),

where k = ged(|y|, |z|). Here, the 2’s and ¢’s are the Iwasawa coordinates for
the matrix l;yge. Explicitly, we have for the archimedean components

oo

To3 = TTo3 +YT13, T45 = T45,
- Y1 - - -
Y1 = Y2=Y2, Y3=Y3, Y4=Y4.
V@ +yz)?+ (yyiy; )2

Turning to the last piece in (6.6), the p-adic Iwasawa-decomposition of [
has

|7717p|;1 = Inax{|0|p, |$|p} = |5U|p and |772,p|p = |773,p|p = |774,p|p =1.

We get therefore

Z Wag,a4 (>\§ lx(gocn Iy, 1, )) =

g2 e A2 £(2s - 2)?
- Z (T23 + T45) 7o Y es)E2s— 1)

Y2 4-2s s-3
x Ks_1 1 1 (— 1) 72, 3, ,
5— (y1y3 ) S— H | p|p |77 p|p |77 p

4-2s
p<oo
) 1 - p2(s-D)+1 ng, [He7D
"B2,p ~2(s-1) TR
X PR - 1-
pgo'yp nl,p773,p)( p ) 1_p—2(s—l)+l
2(s-1)-1
2 ] = 2=+ Zf_p (s=1)
"l4,p o —2(s-1) *Flp
ngo,yp n&p)(l g ) 1-p2ls=D)+l
9 [5-3/2 | ~9 |5-3/2
~ ~ 1 y% ° Ya
(I23+£C45)y4 2s 25 3 Zl 2s 4 2 J4
xze:Z §(28)6(25-1) |03 |¥3]eo
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7 i1

x Ky 32 (27T — )Ks—3/2 (27r = )0—2(5—1)+1(|33|oo)
Y193 | oo Y3 |

_3/2-s 1

= x’ze:Z de (Zog + 5545)y1 gQ?hm

7 v
(610) XK5_3/2 (27'(' - )Ks_3/2 (27[' - )0'325(|l'|00).
Y1Y3 | o Y3 | oo

The Z’s and §’s are the Iwasawa coordinates for the matrix [;g.. For the
archimedean part we find explicitly

T93 =TT13, T45=T45,
~ Y1

Y1 = )
V(zz12)? + (zyiyy')?

Y2=Y2, Y3=Y3, Yi=Ys.

The complete Fourier coefficient FX(E(2sAz - p), VYy(v1); 9oo) is then given
by the combination of (6.7), (6.8), (6.9) and (6.10). We note that our final
result differs formally from the one given in [GMV15, Eq. (H.52)] where the
result is given as a convoluted integral over two Bessel functions whereas we
do not have any remaining integral. The two results need not be in actual
disagreement as there are many non-trivial relations involving infinite sums
or integrals of Bessel functions.

The automorphic form

2C(3)&(2s -3

i ZEOEED g3, - i) - 203 EGM - )
lies in a minimal automorphic representation and controls the first non-
trivial corrections that string theory predicts to the four-graviton scattering
amplitude beyond standard general relativity [GMRV 10, Piol0]. The Fourier
coefficients that we computed above can then be used to extract so-called
1/2 BPS instanton contributions in the string perturbation limit of the
amplitude. More precisely, they represent non-perturbative corrections to
the scattering amplitude that, albeit smooth, are not analytic in the string
coupling constant around vanishing coupling. They are therefore not visible
in standard perturbation theory for small coupling but represent important
corrections nonetheless. Their interpretation is in terms of specific Dp-branes
(p < 2) that are extended (p+1)-dimensional objects that can wrap non-trivial
cycles of the torus 72 that is present when SLj is the duality group. The
detailed structure of the Fourier coefficient, in particular the arithmetic
divisor sums appearing, can shed some light on the combinatorics of these
D-branes similar to what is happening in the SLy case [Yi97, SS98, MNS00].

For the next non-trivial correction to the four-graviton scattering amplitude
one requires an automorphic form in a next-to-minimal automorphic
representation [GMRV10, Piol0, GMV15]. This function is not a single
Eisenstein series of the type we have analysed above but a very special
combination of two formally divergent Eisenstein series with some Fourier
coefficients computed using the Mellin transform of a theta lift in [GMV15].
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APPENDIX A. EULER PRODUCTS AND TWISTED CHARACTERS

This appendix contains details and explanations for section 6, which is
why we restrict to the field F' = Q with the corresponding ring of adeles
A=Aq.

An Euler product is a product over the primes. The p-adic norm is denoted
||p and is defined for the p-adic numbers Q,. The absolute value norm or
“Infinity norm” is denoted |- | and is defined for real numbers R = Q. The
p-adic numbers as well as the real numbers (being completions of the rational
numbers) all contain the rational numbers: Q c Q,, for all p prime. The norm
of an adele = = (Zoo,x2,23,%5,...) € A is denoted |- | (without ornaments)
and is the product of norms at the local places

2| = n |xp|p‘

p<oo
The rational numbers QQ are diagonally embedded into the adeles A
Qc A in the sense that (q¢,q,q,q,...) €A for ¢eQ.

Product of norms. For a rational number z € Q with a decomposition into
primes as

T=4+ Hpm(P) ’
J2
we get a particularly simple result for the adelic norm of z, namely
—m(P) -
[T lelp = leleo [To™" = |2lool2les = 1.

p<oo p
This is most often used as

zeQ = []lafp=lelx-
p

Greatest common divisor. For a set of natural numbers {x;} where each
x; has a decomposition into primes as
()

Z;= Hpmz )
p

one can express the greatest common divisor k as
()

k=ged({z;}) = Hpmini{mi }

Together with

.
|xi|p=p i ;

we are led to the expression

(p) (»)

in: {m . m . _ -1
. Hpmlnz{ i } = Hmiln {p i } = Hn1i1n{|xi|p1} - H (m?x{|a:i|p}) .
P P P P
We also have the formula

|kl, = max {|xz|p} .
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Note that
ng(l’l, s Ty 0) = ng(mla ) .I‘n) ;
since every (nonzero) integer divides 0. Additionally, we define
ged(z) =2 VxeZ,

including z = 0.

Divisor sum. We have the identity

I1

p

1-p % |m|?
L=p=iml, _ S d o =0 4(m),

dlm

1-ps
for s € C and m € Z.
The completed Riemann zeta function. The Riemann zeta function
C(s)=>.n"% Re(s)>1
n=1
can be written as an Euler product as

¢s) =TT —

1-ps
and can be analytically continued to the whole complex plane except at s =0
and s = 1 where it has simple poles. This is done by defining the completed
Riemann zeta function

, Re(s)>1

€() =T ()7 2()
which obeys the functional relation

§(s) =€(1-5)

as shown by Riemann.

p-adic gaussian. The p-adic gaussian v, : Q, - {0,1} is defined as
1, |zlp<1 |1, z€eZ
() = P = Y
0, |z[p>1 |0, z¢Z,.
For a rational number z we then get

1, :ceZpr_{l, rel

I;['Yp(f) = {0’

Notice also that for rational numbers x1,...,z, € Q and picking an z € Q
such that for all primes p

else 0, else.

(A1) |37|p = max{|x1|p, ! |33n|p} )

we have

() = ﬁvp(m
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A consequence of this is that for an eulerian function depending only on the
p-adic norms of its argument

F(@) =TT Fo(llp)

then with x as in (A.1), we have
F@ [Tw@) = [T H(el)w(@) = T A1) () = £(&) [T w(),

where
k= ged(|z1]oo, s [Tnloo) -

This equation makes sense as [],7,(z) ensures that the left- and right hand
sides are nonzero only when each z; is integer for which k is well defined.
We now see how a sum over rationals with = as in (A.1) can collapse to a
sum over integers due to the p-adic gaussian

> f@IIw) = > fE)Iw@) = > fk).

n Tn T1,...,Tn€L

SLy Whittaker function. The ramified (meaning m not necessarily unity
but rational) SLo(A) Whittaker function evaluated at

g=(goo,I,I,...):(( (1) 1 )( 0 )kII)

written as an Euler product reads

Q= O

Wy (2sA = p,m;g) = W, (23A—p,m;((1 "f)(y i)k,I,I,...)) =
(A.2) 1= p 25+ | 251
- (ma)y ) [T ) (1-72) = L

where « is the simple root and A is the fundamental weight. Here
27®

my
should be seen as the archimedean SLo-Whittaker function and each factor

in the Euler product in (A.2) as the non-archimedean Whittaker functions.
The product

(A.3) Ks(m,y) = SRl K g (27m]soy)

H Yp(m)

restricts to m € Z as explained above. The expression can then be written as

2 _
Wa (258 = pymig) = e (me) o5 yImlS o1 a5 (Imlee) K12 (27m]ooy®) -
Notice how the factors of the Eulerian expression for the Riemann zeta
function in the non-archimedean part combines with 7°/T'(s) in the
archimedean part to form a completed Riemann zeta function.
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Twisted character. Let m € Q and v, be an additive character on Q,
defined as

Voo m(x) = ™M m,z € R for real numbers
Ypm(z) = e~ 2milmal,, ; m,zeQ, for p-adic numbers.

A unitary multiplicative character on the unipotent radical N(A) of the
Borel subgroup of SL,,(A) can then be parametrized by mq,...,m,-1 € Q as

n
V) = (eFeeae o) =geteente ) = T TTupm, ((ue)y)
where A, is the set of positive roots and II = {a1,...,a,-1} ¢ A, is the set
of simple roots. The second equality is due to the fact that the additive
character is only sensitive to the abelianization of N(A). In the final equality,
(%a,), denotes the p-adic (or real) component of the adelic coordinate zq,.
For an element a € A(A), we would like to evaluate the twisted character

¥*(n) = P(ana™).
We can interpret the transformation ¢ — 1® as that the parameters m;
transform according to

v;
Yi-1Yi+1
where we have defined yg = y, = 1. Note that starting with rational
parameters m;, the transformed parameters m; are no longer necessarily
rational, depending on what the y; are. The Whittaker coefficients
W{ba(wgl)\,l) of (6.2) should in this case be interpreted as the Jacquet
integral over N'(A) as detailed in [FGKP18].

The Whittaker coefficients Wz’ﬁ“ (w;1A 1) from the examples in section 6 all
have G’ = SLy or G’ = SLy x SLs, and since the Whittaker coefficients for the
latter can be reduced to a product of two Whittaker coefficients for the former,
we only need to consider G’ = SLy corresponding to some root «; of G. In the
examples, the character 1, which is supported only on «;, is parametrized by
m; =1 which, by the twist, is transformed to m; = (m; ,,,m; 4, m;3,...) € A

Z,OO’

(A4) mi—>m;=( )mi, i=1,....,n-1,

according to (A.4). Let us denote the projection of w;'\ onto the G’ weight
space as \' = 2s"A"—p' = (25’ =1)A" where A" and p' are the SLy fundamental
weight and Weyl vector respectively. Parametrizing the real and p-adic parts
of a as in (6.3) and (6.4) using ¢; € R and n; € Q, with Jo =g, =n9=np =1
one can show that

(A.5)
/ / _ 1312
Wlba(A,l)—Ksl(m’ ) .
-2s'+1 i, 2s'-1
x H (—U?,p )(1 _ —23’) L-p=" |77'L71,p77?;+1,p |p8
p<oo Tp Mi-1,pMi+1,p p 1 _p—23’+1

by arguing that each local factor (p < o) of the Jacquet integral only depends
on the norm |m] |, € Q of m;,, which means that it can be identified with the
same local factor of an SLy Whittaker coefficient with character parametrized
by this rational number.
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APPENDIX B. IWASAWA-DECOMPOSITION

Proof of the following results can be found in [Ahl16]. For a real matrix
g € SL,,(R) written in Iwasawa form
Lags oo @i 1

y2/y1

g:nooaookoo = koo;

. 1 xn—.l,n yn—l/yn—2
1/yn—1

we have

x/u/:yg—le(vu7vl/+lu-"aVn;Vl/aVI/+1>'"7Vn)7 ,u<V7 and
B.1) y.2=e(Vists- - Vi Viwto -, Vo)

where V, is the ' row of g (regarded as an n-vector). Furthermore, €
denotes the totally antisymmetric product

i

€(A1,...,Ap;B1,...,Bp) =00 (A)™ .. (Ap)*™ (B1);, --- (Bm)

a1—0am im

where the A’s and B’s are n-vectors and

P

€ 11— lm Qm+1—Qn,
A1 0mOm+1—Cn
am] " (n —m)!

11—lm  _ | 11
Oy —ar = m.d[al

€
denotes the generalized Kronecker delta. Put in words, € takes two sets of
vectors and returns the sum of every possible product of scalar products
between the two sets weighted by the signs of the given permutations. For
example

E(Al,AQ;Bl,BQ) = (Al Bl)(AQ Bg) - (Al BQ)(AQ Bl)

For a p-adic matrix g € SL,(Q,), the Iwasawa-decomposition

m,p
n2,p/M,p

g = npapky = np Ky

Mn—1,p/Mn-2,p
1/nn—1,p

is no longer unique. The p-adic norms of the n’s however are constant across
the family of decompositions and are given by

|77n—k|p = (gg}é{‘g(nc:(kl-sl lek) )|p}) ,  where ke {17 s 1} ’

and ©F detones the set of all ordered subsets of {1,...,n} of order k. Here,
g (el k) denotes a minor of order k, given as the determinant of the
submatrix of g obtained by only picking the k rows {r;} and k columns {¢;}.
For example, the matrix

‘»—A\w—twh—

[un
=

‘H
C’;‘HE‘»—AOO\HNH

S‘HQDM—‘UW—H—'M—‘
;‘HE‘H@\)—‘N\»—‘

[un
ot
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has
11 11 11 11 11 11
il = mase{|| £ %\ L[| 2] ] ] )
13 14 |13 13 15 |13 13 16 |13 14 15 |13 14 16 113 15 16 113
{ 1 8 1 1 1 }
:max b b 9 b b b
409513 11930513 1187213 1577513 1336013 1792013

max {3%,3°,3%,3",3!,3%} =3% = 9.

APPENDIX C. PARAMETRIZING I'; AND A;

Recall the definitions

Li(vo) = {(SLn_i(F))?\SL"‘i(F) 1<i<n-2

(Two ﬂTwan_l )\TwO 1=n-— 1,
where
(SLni(F))g = {(15 ) : heSLaia (), €€ FP71

and

SLi(F))¢\SL;(F) 2<j7<n-1

Ay < { LRSI (F) 22 <n

(TdJO n Twal )\Two j = 1 )

where

(SL;(F)) ¢ ={(}'§) :heSLj1(F), £ FIT1}

T denotes the diagonal matrices in SL, (F') and Ty denotes the stabilizer of
a character ¥ in T'. In this appendix, we will find convenient representatives
for these coset spaces. We begin with a lemma.

Lemma C.1. Let Si(F') denote the set of all kxk matrices m over the field
F satisfying dimkerm = 1. GLg(F") acts on Sk(F') by left multiplication and
the quotient this the action GLi(F)\Sk(F) can then be parametrized as

k=l cro0 o
GLy(F)\Sk = U {(Ia 0 0 ) TV € Fkal} :
a=0 0 v Iy g1

Proof. We will use induction to prove the lemma. Assume that the result
holds up to and including matrices of size k x k and consider the quotient
GLj11 (F)\Sks1(F). Start with a matrix my.q € Sgy1(F). Left action of the
group GLg11(F) 3 hyyq taking myy1 = hge1myer is equivalent to performing
Gauss elimination among the rows of my,1. Since we have dimkermy,; =1
we can bring my,1 to the form

M+ %(81%))

where v € F¥ and m is a k x k matrix satisfying dimkerm < 1. We cannot
have dimkerm > 2 as we could then perform additional row manipulations
to produce two zero rows in m and hence another zero row in myg,; which
violates myy1 € Sgi1(F).
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Case 1: dimkerm = 0. Here m is invertible and we can bring mg,1 to the
form

CEORICIN

having relabelled v. This is the contribution

00 0
{(Ia 9o 9 ) Cve Fk+1—a—1}
0 v Igi1-a1

Case 2: dimkerm = 1. We now have m = my, for some my, € S; and we can
apply the induction assumption which leads us to consider matrices of the
form

a=0

(0)00 0
Doo o
(z(z)lao 0 ), where a€[0,k-2]nZ.
03 0w Ti—a-1

We see that we must have v!) # 0 and with further row manipulations we
can thus bring this to the form

0 00 O 000 0
o0 o0 100 O
@0 0 2>10,0 O .
v® 0w Iy 00 wlgyq-1

We get the contributions
(200 8 ST
U{(O]ao 0 ):veFk—a—l}:U{(Iao 0 ):veFk”‘“‘l}_
a=0 00 v Ip_q1 a=1 0 v Ips1-a-1
This combines with the contribution from case 1 to give the form stated in
the lemma.

That the base case k£ =1 has the correct form is trivial. Peano’s axiom of
induction now establishes the lemma. O

Lemma C.2. The coset space
(SLp—i(F))p\SLpi(F) 1<i<n-2
can be parametrized as
(SLin-i(F))y\SLy-i(F) =

-1 0 0 )
={(xy 0 ):x’eFx,yeF,veF”_1_2}
n

v 0 Ih_i9
—i-2 0 0 (-1)atig! 0
v U {(%’g 0 0 ):w’eFX,veF"iGQ}.
a=0 00 v Incica—2

Proof. Denote k =n —i. Consider a matrix

G=(35T")eSLy(F),

where s is a scalar, m is a (k- 1) x (k — 1)-matrix and 7" and B (for “top”
and “bottom”) are (k — 1)-column vectors. The action of an element

M=(35) € SLa(F))y

on G is
G > MG = (s+h§;B TT+§Tm) .

hm
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Parametrizing the coset space (SLy(F'))y \SLi(F) amounts to choosing
¢ e F*1 and h € SLy_1(F) such that the product MG takes a particularly
nice form, manifestly with at most k degrees of freedom which is the dimension
of this coset space.

Even though h € SLi_1(F') we will proceed with h € GLg_1(F") and restore
the unit determinant of h at the end by left multiplication of the matrix
(é :g’ Ik8_2) where 0 # 2’ = (det h)™!. By having h € GL;_(F) we are free to
perform Gauss elimination among the bottom k£ —1 rows in G.

We consider the two cases dimkerm =0 and dimkerm = 1. Note that the
cases dimkerm > 2 do not arise as with row elimination it would then be
possible to produce two zero-rows in m and hence a zero-row in G which
violates G € SL(F).

Case 1: dimkerm = 0. We choose h =m™" and ¢¥ = -TTm™!. Since h has
full rank, we can redefine hB — B without loss of generality and redefine
s+¢TB — 5. This leads to the representative

0
G~ (g Tj—1 ) :
We now restore the unit determinant to h
10 0 50 0
G (0’0)5O :(yx’ﬂ),
- 0 % Ik,g (B Ik*l) v 0 Ik_g
where we have split the (k — 1)-vector into a scalar y and a (k — 2)-vector v.
The condition det G' = 1 now sets s = z’~! leading to
710 0
G = ( y ' 0 ) .
v 0 Ik_g

This is a nice form of the representative G which manifestly has k degrees of
freedom.

Case 2: dimkerm = 1. We can no longer choose h =m~!. Having promoted
h to be an element of GLg_1(F"), we can make use of lemma C.1 which leads
us to consider representatives of the form

s TOT 72 ()T

1

G- géi I(l g 8 for a€[0,k-2]nN and wveF"2,
B(S) 0 v Ik7a72

We see that BM) # 0 in order for G to remain non-singular. With further
row elimination we can therefore bring this to the form

s TWT 7(2) 73T s T(LT 7(2) 7(3)T
B® o o0 0 S[170 "0 "o

B® I, 0 0 0 Lo 0 0 J
B® 0 v I, 00 v Tk

Next, using the £-freedom we can bring this to the form

s T(OT p(2) 7(3)T 16D AT AT s T(OT p(2) (3T
1 0 0 0 S]l0 1 o0 0 1 0 0 0
0 I, 0 0 00 I 0 0 I, 0 0
0 0 v Jgea-2 00 0 Ingas/\0 O v Ty

s+€M) TMT LT 7(2) 1 £(B)Ty, P(3)T (3T
oL S Y B ) Y

0 0
0 0 v Ik—a—Q
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with a suitable choice of ¢ and having redefined T(?). We now restore the
unit determinant to h

00T® o 00T® o

10°0 0 |20 0o o0

0l, 0 0 “lozm o o0 :

00 v Igxq-2o 00 v Ipqa2

The condition detG = 1 now sets T(?) = (-1)**12/~1 leading to the

representative
00 (_1)a+1$/—1 0
z' 0 0 0
0 I, 0 0 :
00 v Ik7a72

Lemma C.3. The coset space

(SL;(F))¢\SL;(F) 2<j<n-1
can be parametrized as
(SL;(F)) \SL;(F) =

Ij_QO 0 / X i—2
= 02 0 |:xeF ,yeFveF’
ia (Lo 0 0 0
0 0 Ii_q—2 0 i—a—
uu{(o o J(‘;Zx,):x’eFx,veF]a2}.
0 v

Proof. Denote k = j. Consider a matrix
G:( %Z)ESL]{(F),

where s is a scalar, m is a (k- 1) x (k — 1)-matrix and 7" and B (for “top”
and “bottom”) are (k — 1)-column vectors. The action of an element

M= (R") e (SLy(F))¢
on GG is

G > MG = (h(mgéBT) h(T;s{) ) .

Parametrizing the coset space (SLi(F))¢\SLi(F) amounts to choosing
¢ e F*! and h € SL;_1(F) such that the product MG takes a particularly
nice form, manifestly with at most k degrees of freedom which is the dimension
of this coset space.

Even though h € SLi_1(F) we will proceed with h € GLg_1(F') and restore

the unit determinant of h at the end by left multiplication of the matrix

Ir5 00
( k82 @ (1)), where 0 # 2’ = (det h)~!. By having h € GLy_(F) we are free to

perform Gauss elimination among the top k-1 rows in G.
We consider the two cases s # 0 and s = 0.
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Case 1: s=5s"+0. We choose £ = ;—}T. This leads to the representative
m—-%TBT 0
G- ( T ) .

From the condition
1
1 =detG =det (m— —,TBT) s’
s
we get that
|
det|{m-—-TB" |0,
s

and hence the matrix m — ﬁTBT can be inverted using our h-freedom which
leads to the representative

(m—i,TBT 0 ) (Ik_l 0 )
s - T 7 .
BT s’ B* s

We now restore the unit determinant to h
Ii 2 00\/7. . 0 Iy—2 00
G—>( ’ )(k‘l ,):(Oz’O ,
8 % (1) BT s Ty s
where we have split B into a scalar y and a (k —2)-vector v. The condition
det G = 1 now sets s’ = 2’71 leading to
Iy2 0 0
G = ( 0 2 0 ) .
vT y wl—l
This is a nice form of the representative G which manifestly has k degrees of
freedom.

Case 2: s =0. We can no longer eliminate T" with our &-freedom. The group
element G takes the form
— T

G= (Bn'lT 0 )’
where the vectors 77 and B’ must be non-zero (as indicated by the primes)
in order for G to be non-singular. A {-transformation takes the form

T’ BIT T’

(5 0)%(m§'T 0 )

We now consider the k —1 distinct cases labelled by a € [0,k — 2] NN defined
by that B'T takes the form BT = (014, ¥ v), where v is a k —a - 2-vector and
0%V e F. The ¢-transformation then lets us eliminate the (a +1)™ column
of m. This works since the (a + 1) column of the matrix ¢ B'T is b'¢ where
b" #0 by assumption. We are led to the representative

(5 5) = (0 %)
where my is a (k- 1) x a-matrix and mg is a (k- 1) x (k — a — 2)-matrix.
The (k—-1) x (k-1) matrix (m1 0m2) clearly has column-rank at most
k — 2. Since column-rank and row-rank for matrices are equal, we know that
the row-rank is also at most k — 2 and with row manipulations we can thus
produce a zero row

’ 0 0 o ¢
(7781l?lm%7(;)—>(m210m22T7)7
v 0 b o 0
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where 0 # t' € F in order for G to be non-singular. With further row
manipulations we can then eliminate the vector T~ and bring this to the

form
00 0 ¢ 0 0 0 1
(m21 0 ma2 T") — (m21 0 ma2 0)_
0 v Wt 0 0 v vt o
The (k —2) x (k —2)-matrix (m21 m22 ) must have full rank in order for G to
be non-singular and can thus be inverted, leading to the representative

00 0 1
0 0 01 Io0 0 0
m210m%20 — 00 Ihoao0]-

g o
0 b v" 0 0y of 0

We permute the first £ — 1 rows to get
AN T
o 00 1Ipqo20
(0 Olkazo)_’(oo 0 1)‘
0y T 0 0 T
Lastly, we restore the unit determinant to A
I,o 0 0 5oooyfla0 0 0 I,0 0 0
00 Itqa 0| , ["27 00 Iyg20)_[ 00 I4qo0
00 0 1 g @9floo 0 1] oo o o
0y T 0 0y T 0 0y T o0
The condition detG = 1 now sets b’ = (=1)k*2*1z/~1 leading to the

representative
Io 0 0 0
0 0 Iiaa O
0 0 0 |-
0 (_1)k+a+1xl—1 T 0

Remark C.4. Another way of parametrizing the coset (SLy(F")) ¢\SLz(F')
is to parametrize the coset SLy(F')/(SLi(F))¢ which works completely
analogously to the how the coset (SLy(F'))y \SLy(F') was parametrized in
lemma C.2 and then invert the resulting matrices.

O

We lastly provide parametrizations of I'y,_1(t)q,) for the cases 1<i<n -3
and of A1(9q,) for the cases 3<j<n-1.

Lemma C.5. The coset space I'n-1(ta,) = (Ty,, N Ty, N\, can be
parametrized as
1
1 4
(Tpo, NTpo, N, = = Lo e B

1
Zl—l

for i =1 while for 2 <i<n -3 it can be parametrized as

Z,
(Twai N Twark1 )\T¢ai = {( L ) ) - FX}.
Zl—l

Further possible parametrizations are discussed in the proof below.

Proof. For any ay, the stabilizer Ty, is given by

t1
Ty, :{( ykykt )“mwk :ykeFX,(tltz)eT'(yk2)}, 1<k<n-1
2
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where T”(y;?) are the diagonal matrices in GL,_o(F) with determinant y; 2.
This is seen by the group action of a diagonal element h € T,,, on an upper
triangular element n € NV,

% * * * o * * *
o - Yk ..
hnh_l — Yk 1 Tii+1 * Yk o — 1 Vier1 Tj,i+1 « .
Yk+1 1 y
* * k+1 . 1 "

Since the expression 9,, (n) only depends on z; ;.1 We require yi = yg4+1 in
order to have 1(n) = 1(hnh™'). We get that the intersection Ty, N Ty, _,
can be written

Ty, Ty, | = v ta i Yn-1 € F (tl to ) € T”(yi_2y;%1)
Yn-1
where T" (y;%y,,%,) are the diagonal matrices in GL,_4(F) with determinant

y; QyﬁI. Looking at the left action of an element of this intersection on an
element of the stabilizer T, gives

Yn-1CQn-1
Yn—-1CQn

For finding representatives, the task is to choose t1,y;,t2 and ¥,-1 to simplify
the form of the matrix. We pick y; = aj ! and with y,_; we can eliminate
either a1 or a,, but not both. After fixing ¢; and t2 as well we can arrive

at a particular class of convenient final forms

(AB) where A:(IGZ,In,g,a) and Bz(zl_ll) or B=(1Z,_1)

where the allowed choices for @ are a =0,...,i-2,i+1,...,n-3.
For ¢ =1 we can choose
1

(Typo, Ty, Ny, = 1 P

while for 2 <7 <n -3 we can choose

Z,
(TwaiﬂTwan_l)\Twai :{( 1".1 )ZZ’GFX}, 2<i<n-3.
L1

O

Lemma C.6. The coset space Ai(vo;) = (Ty., 0 Ty, Ny, can be
parametrized as

Z/

1
Ty, , N Ty, Ny, | = 1 2 e F¥
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fori=n—-1 while for 3<i<n—-2 it can be parametrized as

Z’
(Td)ai mT%l)\T%i - {( 1 , ) s e FX} .
Z/—l

Further possible parametrizations can be deduced from the proof of lemma

C.5.
Proof. Analogous to the proof of lemma C.5. (]

Remark C.7. The lemmas can be extended to include the cosets I'y,—1 (¢q,, ,)
and the trivial I';,_1(¢q,_,) (as well as the corresponding A-cosets). They
are, however, never needed in theorem A or B.

APPENDIX D. LEVI ORBITS

Let P, for 1 < m < n -1 be the maximal parabolic subgroup of SL,
associated to the simple root «,, with Levi decomposition LU,, (where we
drop the subscript for L for convenience) and let y € ‘u,, (F) be parametrised
by a matrix Y € Mat(y,_p)xm (F)) as in (4.1)

0, O

We will now study the L(F')-orbits of elements y(Y). We parametrise
an element [ € L(F) by the two matrices A € Mat,,x(F) and B €
Mat (1, ) (n-m) (F) with det(A) = det(B) # 0 as | = diag(A™", B). This
element acts by conjugation on y(Y) as ly(Y)I™! = y(BY A). Using unit
determinant matrices A and B we may perform standard row and column
additions to put Y on a form which has zero elements everywhere except for
an anti-diagonal r x r matrix with non-vanishing determinant in the upper
right corner of Y where 0 <7 <min(m,n —m) is the rank of Y. This can be
seen as follows.

The case rankY = 0 is trivial so we may assume that Y has non-zero
elements. If the top right element of Y is zero, pick any non-zero element
whose row-column position we denote (7,j) and add multiples of row i to
the first row, and column j to the last column to make the upper right
element non-zero. Then, use the non-zero upper right element to cancel all
remaining non-zero elements on the first row and last column by further
row and column additions. Repeat the procedure for the matrix obtained
by removing the first row and last column. The iteration terminates when
we run out of rows or columns, or when the remaining elements are all zero.
This proves the above statement.

We will now rescale the anti-diagonal elements by conjugating y with
diagonal matrices [, meaning that the ith diagonal element in [ rescales
both row i and column 4 (inversely). Each rescaling of an element in the
anti-diagonal of the r x r matrix then leaves two less diagonal elements in [
for further rescalings. Since the non-zero elements of Y at this stage do not
share any rows or columns (because of the anti-diagonal r x r submatrix),
we may then perform any and all rescalings until we run out of free diagonal
elements in [. The number of free diagonal elements in [ is n — 1 because of
the determinant condition which means that we can make [%J independent
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rescalings. We have that 1 <m <n -1 and r <min(m,n -m) <[5]. Thus,
it is possible to rescale all anti-diagonal elements to one unless n = 2r = 2m,
for which there will be one remaining anti-diagonal element d that we may
assume is in the lower left corner of Y and therefore also of y(Y'). Using
conjugations with [ = diag(a, 1,...,1,1/a), a € F* this d can be shown to be
in F*/(F*)2.

We have now shown that the L(F)-orbits of elements y(Y) € ‘u,,(F)
are characterized by matrices Y = Y;.(d) € Mat(,,_)xm (F), where Y,.(d) is
non-zero only for an anti-diagonal 7 x r matrix in its upper right corner. The
anti-diagonal elements of this 7 x » matrix are all one except the for the
element in the lower left corner which is d:

. 1
0 :
Y, (d) = Ll ]
0 0

For n =2r = 2m, d € F*/(F*)? and otherwise d = 1. For convenience we will
denote Y,(1) as Y,. Thus, the L, (F)-orbits on ‘u,,(F) are characterized
by the same data as the SL,,(F)-orbits ([271772"],d) with d € F*/(F*)*,
k =ged([271"%']) and 0 < < min(m,n —m).

By conjugating with a Weyl element w € SL,(F) that maps torus
elements (t1,t2,...,t,) — (Itmvtm+17tm—17tm+2a---atm—T+1atm+Tla|t17---tm—rla

tm+r+1, - - - tn), where we have underlined different groups for readability, we

see that y(Y,.(d)) is put on the form of the standard representative for the
SL, (F)-orbit ([271"72"],d) shown in proposition 2.2.

In this paper we will always be able to find a representative on the form
Y, (1), that is, to rescale all elements, since we consider n > 5 and r < 2 where
the latter restriction comes from the fact that higher rank elements have
vanishing associated Fourier coefficients in a next-to-minimal or minimal
automorphic representation according to theorem 2.1.

Lastly, we note that if we instead consider L(F)-orbits, the last remaining
rescaling in the maximal rank n = 2r case would be possible by conjugation
with [ = diag(V/d, 1,...,1,1/3/d).



FOURIER COEFFICIENTS OF SMALL AUTOMORPHIC REPRESENTATIONS 55

[Ah116]
[BCHP17a)

[BCHP17b)

[BJ7Y]

[BP17]
[BV14]
[BV15a]
[BV15b]

[CMO3]

[CS80]

[FGKP18]

[FK12]

[FKP14]

[GGS17]

[Gin06]

[GKP16]

[GMRV10]

[GMV15]

[GRS97]

[GRS11]

[HT95]

REFERENCES

O. Ahlén, “Global Iwasawa-decomposition of SL(n, Ag),” arXiv:1609.06621
[math.NT].

G. Bossard, C. Cosnier-Horeau, and B. Pioline, “Four-derivative couplings
and BPS dyons in heterotic CHL orbifolds,” arXiv:1702.01926 [hep-th].
G. Bossard, C. Cosnier-Horeau, and B. Pioline, “Protected couplings and
BPS dyons in half-maximal supersymmetric string vacua,” Phys. Lett. B765
(2017) 377-381, arXiv:1608.01660 [hep-th].

A. Borel and H. Jacquet, “Automorphic forms and automorphic
representations,” 1979.

https://doi.org/10.1090%2Fpspum%2F033. 1%2F546598.

G. Bossard and B. Pioline, “Exact V*R* couplings and helicity supertraces,”
JHEP 01 (2017) 050, arXiv:1610.06693 [hep-th].

G. Bossard and V. Verschinin, Minimal unitary representations from
supersymmetry, vol. 1410. 2014. arXiv:1406.5527 [hep-th].

G. Bossard and V. Verschinin, EV*R? type invariants and their gradient
expansion, vol. 03. 2015. arXiv:1411.3373 [hep-th].

G. Bossard and V. Verschinin, The two ¢ R* type invariants and their higher
order generalisation, vol. 07. 2015. arXiv:1503.04230 [hep-th].

D. H. Collingwood and W. M. McGovern, Nilpotent orbits in semisimple Lie
algebras. Van Nostrand Reinhold Mathematics Series. Van Nostrand Reinhold
Co., New York, 1993.

W. Casselman and J. Shalika, “The unramified principal series of p-adic
groups. II. The Whittaker function,” Compositio Mathematica 41 no. 2,
(1980) 207-231. http://eudml.org/doc/89456.

P. Fleig, H. P. A. Gustafsson, A. Kleinschmidt, and D. Persson, Fisenstein
series and automorphic representations - with applications in string theory.
Cambridge Studies in Advanced Mathematics. Cambridge University Press,
2018. arXiv:1511.04265 [math.NT].

P. Fleig and A. Kleinschmidt, “Eisenstein series for infinite-dimensional
U-duality groups,” JHEP 1206 (2012) 054, arXiv:1204.3043 [hep-th].

P. Fleig, A. Kleinschmidt, and D. Persson, “Fourier expansions of Kac-Moody
Eisenstein series and degenerate Whittaker vectors,”

Commun.Num. TheorPhys. 08 (2014) 41-100, arXiv:1312.3643 [hep-th].
R. Gomez, D. Gourevitch, and S. Sahi, “Generalized and degenerate
whittaker models,” Compositio Mathematica 153 no. 02, (Feb, 2017) 223-256,
arXiv:1502.06483.

D. Ginzburg, “Certain conjectures relating unipotent orbits to automorphic
representations,” Israel J. Math. 151 (2006) 323-355.

H. P. A. Gustafsson, A. Kleinschmidt, and D. Persson, “Small automorphic
representations and degenerate Whittaker vectors,” Journal of Number
Theory 166 (Sep, 2016) 344-399, arXiv:1412.5625 [math.NT].

M. B. Green, S. D. Miller, J. G. Russo, and P. Vanhove, “Eisenstein series for
higher-rank groups and string theory amplitudes,” Commun. Num. Theor.
Phys. 4 (2010) 551-596, arXiv:1004.0163 [hep-th].

M. B. Green, S. D. Miller, and P. Vanhove, “Small representations, string
instantons, and Fourier modes of Eisenstein series (with an appendix by D.
Ciubotaru and P. Trapa),” J. Number Theory 146 (2015) 187-309,
arXiv:1111.2983 [hep-th].

D. Ginzburg, S. Rallis, and D. Soudry, “On the automorphic theta
representation for simply laced groups,” Israel J. Math. 100 (1997) 61-116.
D. Ginzburg, S. Rallis, and D. Soudry, The Descent Map from Automorphic
Representations of GL(N) to Classical Groups. World Scientific Publishing Co.
Pte. Ltd., 2011.

C. Hull and P. Townsend, “Unity of superstring dualities,” Nucl. Phys. B438
(1995) 109-137, arXiv:hep-th/9410167 [hep-th].


http://arxiv.org/abs/1609.06621
http://arxiv.org/abs/1609.06621
http://arxiv.org/abs/1702.01926
http://dx.doi.org/10.1016/j.physletb.2016.12.035
http://dx.doi.org/10.1016/j.physletb.2016.12.035
http://arxiv.org/abs/1608.01660
https://doi.org/10.1090%2Fpspum%2F033.1%2F546598
http://dx.doi.org/10.1007/JHEP01(2017)050
http://arxiv.org/abs/1610.06693
http://dx.doi.org/10.1007/JHEP10(2014)008
http://dx.doi.org/10.1007/JHEP10(2014)008
http://arxiv.org/abs/1406.5527
http://dx.doi.org/10.1007/JHEP03(2015)089
http://dx.doi.org/10.1007/JHEP03(2015)089
http://arxiv.org/abs/1411.3373
http://dx.doi.org/10.1007/JHEP07(2015)154
http://dx.doi.org/10.1007/JHEP07(2015)154
http://arxiv.org/abs/1503.04230
http://eudml.org/doc/89456
http://arxiv.org/abs/1511.04265
http://dx.doi.org/10.1007/JHEP06(2012)054
http://arxiv.org/abs/1204.3043
http://dx.doi.org/10.4310/CNTP.2014.v8.n1.a2
http://arxiv.org/abs/1312.3643
http://dx.doi.org/10.1112/s0010437x16007788
http://arxiv.org/abs/1502.06483
http://dx.doi.org/10.1007/BF02777366
http://dx.doi.org/10.1016/j.jnt.2016.02.002
http://dx.doi.org/10.1016/j.jnt.2016.02.002
http://arxiv.org/abs/1412.5625
http://dx.doi.org/10.4310/CNTP.2010.v4.n3.a2
http://dx.doi.org/10.4310/CNTP.2010.v4.n3.a2
http://arxiv.org/abs/1004.0163
http://arxiv.org/abs/1111.2983
http://dx.doi.org/10.1142/9789814304993
http://dx.doi.org/10.1142/9789814304993
http://dx.doi.org/10.1016/0550-3213(94)00559-W
http://dx.doi.org/10.1016/0550-3213(94)00559-W
http://arxiv.org/abs/hep-th/9410167

56 0. AHLEN, H. GUSTAFSSON, A. KLEINSCHMIDT, B. LIU, AND D. PERSSON

[JL13] D. Jiang and B. Liu, “On Fourier coefficients of automorphic forms of
GL(n),” Int. Math. Res. Not. IMRN no. 17, (2013) 4029-4071.
[JLS16] D. Jiang, B. Liu, and G. Savin, “Raising nilpotent orbits in wave-front sets,”

Representation Theory of the American Mathematical Society 20 no. 15, (Oct,
2016) 419-450, arXiv:1412.8742 [math.NT].
https://doi.org/10.1090%2Fert’2F490.

[Jos76] A. Joseph, “The minimal orbit in a simple Lie algebra and its associated
maximal ideal,” Ann. Sci. Ecole Norm. Sup. (4) 9 no. 1, (1976) 1-29.

[Kna02] A. W. Knapp, Lie groups beyond an introduction, vol. 140 of Progress in
Mathematics. Birkhduser Boston, Inc., Boston, MA, second ed., 2002.

[KS90] D. Kazhdan and G. Savin, “The smallest representation of simply laced
groups,” in Festschrift in honor of II Piatetski-Shapiro on the occasion of his
sixtieth birthday, Part I (Ramat Aviv, 1989), vol. 2, pp. 209-223. 1990.

[Lan67] R. Langlands, “Euler products,”. Available online at
http://sunsite.ubc.ca/DigitalMathArchive /Langlands/pdf/ep-ps.pdf
[Accessed on 2. August 2013].

[Mat87] H. Matumoto, “Whittaker vectors and associated varieties,” Invent. Math. 89
no. 1, (1987) 219-224.

[MNS00]  G. W. Moore, N. Nekrasov, and S. Shatashvili, “D particle bound states and
generalized instantons,” Commun. Math. Phys. 209 (2000) 77-95,
arXiv:hep-th/9803265 [hep-th].

[MS12] S. D. Miller and S. Sahi, “Fourier coefficients of automorphic forms, character
variety orbits, and small representations,” J. Number Theory 132 no. 12,
(2012) 3070-3108.

[MW8T7] C. Meeglin and J.-L. Waldspurger, “Modeles de Whittaker dégénérés pour des
groupes p-adiques,” Math. Z. 196 no. 3, (1987) 427-452.

[MW95] C. Moeglin and J.-L. Waldspurger, Spectral Decomposition and Eisenstein
Series. Cambridge University Press, 1995.

[Nevl1] M. Nevins, “On nilpotent orbits of SL,, and Sp,,, over a local
non-Archimedean field,” Algebr. Represent. Theory 14 no. 1, (2011) 161-190.

[Piol0] B. Pioline, “R**4 couplings and automorphic unipotent representations,”
Journal of High Energy Physics 3 (Mar., 2010) 116, arXiv:1001.3647
[hep-th].

[PST79] I. I. Piatetski-Shapiro, “Multiplicity one theorems,” in Automorphic forms,

representations and L-functions (Proc. Sympos. Pure Math., Oregon State
Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII,
pp- 209-212. Amer. Math. Soc., Providence, R.I., 1979.

[ShaT4] J. A. Shalika, “The multiplicity one theorem for GL,,” Ann. of Math. (2)
100 (1974) 171-193.

[Sha7s§] F. Shahidi, “Functional equation satisfied by certain L-functions,”
Compositio Math. 37 no. 2, (1978) 171-207.

[Sha81] F. Shahidi, “On certain L-functions,” Amer. J. Math. 103 no. 2, (1981)

297-355.

[Shi76] T. Shintani, “On an explicit formula for class-1 ”whittaker functions” on
gl(n) over p-adic fields,” Proc. Japan. Acad. 52 (1976) 180-182.

[SS98] S. Sethi and M. Stern, “D-brane bound states redux,” Commun. Math. Phys.
194 (1998) 675-705, arXiv:hep-th/9705046 [hep-th].

[Yi97] P. Yi, “Witten index and threshold bound states of D-branes,” Nucl. Phys.

B505 (1997) 307-318, arXiv:hep-th/9704098 [hep-th].
[Yuk93] A. Yukie, Shintani zeta functions, vol. 183 of London Mathematical Society
Lecture Note Series. Cambridge University Press, Cambridge, 1993.


http://arxiv.org/abs/1412.8742
https://doi.org/10.1090%2Fert%2F490
http://sunsite.ubc.ca/DigitalMathArchive/Langlands/pdf/ep-ps.pdf
http://dx.doi.org/10.1007/BF01404678
http://dx.doi.org/10.1007/BF01404678
http://dx.doi.org/10.1007/s002200050016
http://arxiv.org/abs/hep-th/9803265
http://dx.doi.org/10.1016/j.jnt.2012.05.032
http://dx.doi.org/10.1016/j.jnt.2012.05.032
http://dx.doi.org/10.1007/BF01200363
http://dx.doi.org/10.1017/cbo9780511470905
http://dx.doi.org/10.1017/cbo9780511470905
http://dx.doi.org/10.1007/s10468-009-9182-1
http://dx.doi.org/10.1007/JHEP03(2010)116
http://arxiv.org/abs/1001.3647
http://arxiv.org/abs/1001.3647
http://dx.doi.org/10.2307/2374219
http://dx.doi.org/10.2307/2374219
http://dx.doi.org/10.1007/s002200050374
http://dx.doi.org/10.1007/s002200050374
http://arxiv.org/abs/hep-th/9705046
http://dx.doi.org/10.1016/S0550-3213(97)00486-0
http://dx.doi.org/10.1016/S0550-3213(97)00486-0
http://arxiv.org/abs/hep-th/9704098

FOURIER COEFFICIENTS OF SMALL AUTOMORPHIC REPRESENTATIONS 57

MAX PLANCK INSTITUTE FOR GRAVITATIONAL PHYSICS (ALBERT EINSTEIN INSTITUTE),
AM MUHLENBERG 1, 14476 PoTSDAM, GERMANY
E-mail address: olof.ahlen®@aei.mpg.de

DEPARTMENT OF PHYSICS, CHALMERS UNIVERSITY OF TECHNOLOGY, SE-412 96
GOTHENBURG, SWEDEN
FE-mail address: henrik.gustafsson@chalmers.se

MAX PLANCK INSTITUTE FOR GRAVITATIONAL PHYSICS (ALBERT EINSTEIN INSTITUTE),
AM MUHLENBERG 1, 14476 PoTSDAM, GERMANY

SoLVAY INsTITUTES, ULB-CAMPUS PLAINE CP231, BE-1050 BRUSSELS, BELGIUM

E-mail address: axel.kleinschmidt@aei.mpg.de

DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, 150 N. UNIVERSITY ST, WEST
LAFAYETTE, IN, 47907
E-mail address: 11u2053@purdue. edu

DEPARTMENT OF MATHEMATICAL SCIENCES, CHALMERS UNIVERSITY OF TECHNOLOGY,
SE-412 96 GOTHENBURG, SWEDEN
E-mail address: daniel.persson@chalmers.se



	1. Introduction
	1.1. Background and motivation
	1.2. Summary of results
	1.3. Applications in string theory
	Acknowledgements

	2. Nilpotent orbits and Fourier coefficients
	3. Proof of theorem A
	4. Proof of theorem B
	5. Proof of theorems C and D
	6. Applications
	6.1. Generalities
	6.2. Example: Rank-1 coefficient of pimin on Palpha4 in SL5
	6.3. Example: Rank-1 coefficient of pintm on Palpha4 in SL5

	Appendix A. Euler products and twisted characters
	Appendix B. Iwasawa-decomposition
	Appendix C. Parametrizing Gamma_i and Lambda_j
	Appendix D. Levi orbits
	References

