THE JOURNAL OF ECONOMIC EDUCATION 3
2017, VOL. 48, NO. 3, 137-145 g ROUtIedge
https://doi.org/10.1080/00220485.2017.1320610 & Taylor & Francis Group
CONTENT ARTICLES IN ECONOMICS | ™) Check for updates |
Time series econometrics for the 21st century
Bruce E. Hansen
Department of Economics, University of Wisconsin, Madison, WI, USA
ABSTRACT KEYWORDS
What topics should be taught to undergraduate students in econometric time Econometrics; regression;
series? time series
JEL CODES
C10; 22

The field of econometrics largely started with time series analysis because many early datasets were time-
series macroeconomic data. As the field developed, more cross-sectional and longitudinal datasets were
collected, which today dominate the majority of academic empirical research. In nonacademic (private
sector, central bank, and governmental) applications, time-series data is still important. Consequently,
our undergraduate courses must still teach time-series econometric tools if we are to best serve our
students. In this article, I review the key models that I believe are most critical for our students.

The core econometrics textbooks are Wooldridge (2013) and Stock and Watson (2015), both of which
provide excellent treatments of econometric time series. My preference is the treatment in Stock and
Watson, as it runs closer to the way I teach the material.

Two excellent texts on time-series econometrics and forecasting are Diebold (2015) and Gonzaéles-
Rivera (2012), which are appropriate for dedicated courses on economic forecasting. An excellent
graduate-level forecasting textbook is Elliott and Timmermann (2016). The classic textbook for
graduate-level time-series remains Hamilton (1994).

The data and Stata code used for the empirical results reported in this article are posted on the author’s
Web site: http://www.ssc.wisc.edu/~bhansen/.

Overview

Most undergraduate economic majors do not pursue PhD’s in economics. Many go on to professional
schools, some to government jobs, and others to the private sector. In many of these positions, it is quite
common for our graduates to be exposed to economic data and analysis, including formal econometric
(e.g., regression) analysis. Many of these applications are time series in nature. What tools can we give
these students to help them succeed?

The core models that undergraduate students should learn are the Autoregressive (AR) model:

nw=a+to¢y—1+-+ oy te, (1)

the regression model:

Ve = o+ Sox: + e, (2)
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the Distributed Lag (DL) model:
yr = a+8x; +8ix_1 + -+ Sgxi_g + e, (3)
and the Autoregressive-Distributed Lag (ADL) model:
V= a+ Qi1+ +dpyipt Soxe +81x 1+ -+ 8gxi g + (4)

In these equations, p is the number of lags of the dependent variable y;, g is the number of lags of the
explanatory variable x;, and e, is a mean-zero shock. In the ADL model, the contemporaneous regressor
X is often omitted in contexts such as prediction.

With these core models, most concepts of single-equation time-series econometrics can be explained
and taught. All are special cases of the ADL model, but it is useful to study them separately. These models
allow us to teach the following core insights:

(1) The coefficients can be estimated by OLS just like a conventional regression.

(2) The appropriate standard error depends on whether or not the dynamics have been explicitly
modeled. In AR and ADL models, the “robust” standard errors (e.g., the “r” option in Stata)
are appropriate as long as the number of lags p is sufficiently large so that the errors are serially
uncorrelated. In the regression and DL models, the equation error e; will be serially correlated, so
we should use HAC (heteroskedasticity-and-autocorrelation) standard errors, e.g., the “Newey”
command in Stata.

(3) The AR model is useful to understand the serial correlation properties of the series y;.

(4) The coeflicients in the DL and ADL can be interpreted as multipliers. The coefficient §, is the
impact multiplier. The ratio (8o + - - - + 8,)/(1 — ¢ — - - - — ¢,) is the long-run multiplier.

(5) These multipliers have structural interpretations when the explanatory variable x; is strictly exo-
geneous. This is a rather special situation.

(6) When the structural interpretation is taken, the ADL model can be used for counter-factual and
policy analysis.

(7) The number oflags (p and q) in AR and ADL models may be selected by comparing models using
the Akaike Information Criterion (AIC). Test statistics (- and F-statistics) should not be used for
model selection.

(8) In the regression and DL models, we should be greatly concerned about the possibility of a spu-
rious regression: the setting where a regression with two unrelated time series has misleadingly
large conventional ¢-statistics and R? values. Understanding the potential for spurious regression
may be one of the greatest practical gifts we can teach our students.

(9) The parameters of time series models are likely to have changed over time. This requires care and
attention.

(10) The ADL model without the contemporaneous regressor x; is useful for prediction. The concept
of Granger causality is taught within this model, namely that x; does not Granger-cause y; if
bi=---=8, =0.

(11) The ADL model without the contemporaneous regressor x; may be used to produce one-step-
ahead point forecasts for y,1.

(12) Point forecasts should be combined with interval forecasts, as the latter convey the degree of
uncertainty about future outcomes. Teaching students to appreciate forecast uncertainty and
interval forecasts is the most important lesson of prediction.

(13) To produce multi-step (h step) forecasts using a ADL model, we can use the multi-step version

Virh = A+ @y + -+ Ppyrpr1 +8ixe + -+ 8gXe—g11 + e,

which can also be estimated by OLS.
(14) Multi-step point forecasts should also be accompanied by interval forecasts, and together can be
combined into fan charts.
Other time-series issues that can be usefully discussed in an undergraduate course include the
following:
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(1) Trends (deterministic and stochastic),

(2) Unit Roots,

(3) Seasonality,

(4) Cointegration,

(5) ARCH,

(6) Vector autoregressions, and

(7) Out-of-sample and split-sample analysis.

Some traditional topics that can be safely omitted include the following:
(1) Durbin Watson statistic,

(2) Statistical properties under classical assumptions,
(3) GLS estimation, and

(4) Cochrane-Orcutt estimation.

Standard errors and t-statistics

A critical issue in time series (and econometrics in general) is which standard error to use. There are
three popular standard error formulae for applied econometric time series: classical, heteroskedasticity-
robust, and HAC.

So-called classical (or homoskedastic) standard errors may be useful pedagogically due to their simple
form, but are not used in current applied econometric practice. Consequently, courses should quickly
move beyond classical standard errors.

Robust standard errors (the “r” option in Stata) are the most commonly used in current applied prac-
tice. They are appropriate for time-series models that are dynamically well-modeled, including autore-
gressive and ADL models.

HAC standard errors (Newey-West, the “Newey” command in Stata) are appropriate for simple (non-
dynamic) regressions and DL models. They should be used whenever the serial correlation in the error
has not been modeled.

The appropriate way to report regression estimates is coefficient estimates plus standard errors, as
the latter can be used to construct confidence intervals or test statistics. Inappropriate reporting meth-
ods include coefficient estimates plus ¢-ratios, as this emphasizes testing (which is not typically the goal
of estimation), and coeflicient estimates plus asterisks, as this emphasizes statistical significance rather
than magnitudes. It is always better for students to focus on parameter estimates, their magnitudes, and
interpretations, rather than simple statements about significance.

To illustrate some of these ideas, consider a simple regression of retail gasoline prices on crude oil
prices. Let gas; denote the weekly percentage change in U.S. retail gasoline prices, and let oil; denote the
weekly percentage change in the Brendt European spot price for crude oil, for 1991-2016. The estimates
are:

gas; = 0.029 + 0.269 oil, +¢
(0.046)  (0.011)
(0.046)  (0.015)
(0.073)  (0.021)

Here, we report the coefficient estimates plus three standard errors. The first set of standard errors are
classical (homoskedastic), the second are heteroskedasticity-robust, and the third are Newey-West esti-
mates with 12 lags. We can see that the choice of standard error formula matters greatly, with the Newey-
West roughly twice the magnitude of the classical. Because this is a static regression, the Newey-West are
the appropriate choice.

Furthermore, it is appropriate to report standard errors rather than ¢-statistics as the former convey
the most important information about the regression. In the above regression, we learn that a 1 percent
change in crude oil prices leads to a contemporaneous (within one week) 0.27 percent change in retail
gasoline prices. This is an immediate but partial pass-through. The Newey-West standard error shows
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that the degree of pass-through is relatively precisely estimated (a 95 percent confidence interval is 23
percent to 31 percent). In contrast, the ¢-statistic for the coeflicient is 13, which simply tells us that the
true coefficient is nonzero. This is somewhat informative, but much less so than the discussion about
magnitudes.

Autoregressive models

A good illustration of an autoregressive model is GDP growth. Let GDP; denote quarterly real U.S. GDP
percentage growth at annual rates, a series that is available for 1947Q2 through 2016Q3. An AR(3) is:

GDP; = 1.93 + 0.34 GDP, ; + 0.13 GDP; , — 0.09 GDP;_; +¢
(0.32)  (0.06) (0.06) (0.06)

Here, we report heteroskedasticity-robust standard errors because this is a dynamic model.

The estimates show that GDP growth is positively autocorrelated, but mildly. This means that higher-
than-average growth is followed in subsequent quarters by higher-than-average growth, but with quick
mean reversion.

Another interesting example is stock price returns. Let return; denote the weekly percentage change
in the S&P 500 index for 1950-2016. (For simplicity, we ignore dividends. Also, while daily observations
are available, they have extra complications so it is easier to focus on weekly observations.) The estimates
are:

return; = 0.16 — 0.032 return,_; + 0.037 return;_, + ¢
(0.04) (0.029) (0.025)

A simple form of the efficient market hypothesis suggests that stock returns are unpredictable, and
thus the AR coeflicients should be zero. Thus, the F-statistic for the AR coeflicients is a simple test of
efficient markets. In this example, the p value for the F-statistic is .12, so we fail to reject the efficient
market hypothesis.

To repeat our message about the importance of using robust standard errors, if instead we had used
the “old-fashioned” (homoskedastic) formula, the standard errors on the AR coefficients would be 0.17,
the second lag would have a t-statistic of 2.2, and the F-statistic for the two AR coeflicients would have a
p value of .01, which would incorrectly suggest rejection of the efficient market hypothesis. Indeed, using
the correct standard error formula makes a huge difference and alters inference.

Distributed lag models

Distributed lag models are useful when we want to estimate the impact of one variable upon another. As
an example, consider the effect of crude oil prices upon retail gasoline prices, using the data from the
earlier section on standard errors and ¢-statistics. A distributed lag model with a contemporaneous effect
and six lags takes the form:

gas, = —0.009 + 0.243 oil, + 0.112 oil,_; + 0.063 oil,_,
(0.057)  (0.016) (0.012) (0.011)

+ 0.064 oil,_;+ 0.030 oil,_s+ 0.032 oil,_s+ 0.018 oil,_¢+ &
(0.013) (0.010) (0.011) (0.012)

Here, the standard errors are computed using the Newey-West formula with 12 lags.
Under the assumption of strict exogeneity, the coeflicients of a DL model are the effects of the regressor
on the dependent variable. In this case, we see that a 1 percent change in crude oil prices leads to a
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contemporaneous (within one week) change in retail gasoline prices of 0.24 percent, followed by further
increases over the following six weeks.
The following equivalent regression can be used to estimate the cumulative multipliers:

gas, = —0.009 + 0.243 Aoil, + 0.355 Aoil,_; + 0.418 Aoil,_,
(0.057)  (0.016) (0.024) (0.028)

+ 0.482 Aoil,_;+ 0.512 Aoil,_s + 0.544 Aoil,_s+ 0.562 oil,_¢ + ¢
(0.037) (0.040) (0.045) (0.047)

These results show that a 1 percent change in crude oil prices lead to a 0.56 percent cumulative change
in retail gasoline prices after six weeks, with most of the change incorporated within the first four weeks.
These estimates show how quickly changes in crude oil prices translate into retail prices.

Autoregressive distributed lag models

By combining the autoregressive and distributed lag models, we obtain a dynamically sound model useful
for both policy analysis and forecasting. As an example, consider a short-run quarterly Phillips curve that
models the change in U.S. CPI inflation as a function of the U.S. unemployment rate:

Alnf, = 0.44 — 0.34 Alnf,_, — 0.39 Alnf,_, — 0.02 Alnf,_; — 0.17 Alnf,_,
(0.42)  (0.11) (0.09) (0.11) (0.07)

— 1.53 Unemp,_, + 1.58 Unemp,_, + 0.11 Unemp,_; — 0.23 Unempt74+/e\t
(0.56) (1.06) (1.03) (0.47)

We estimate this equation without the contemporaneous unemployment rate so that it can be used as
a forecasting equation.

The coefficients on lagged changes in inflation are large and negative, indicating that quarterly changes
in inflation tend to be followed by a reversal over the next 6 months. The impact effect of the unemploy-
ment rate is negative, indicating that when the unemployment rate is higher than normal, the inflation
rate tends to fall. Conversely, when the unemployment rate is lower than normal, the inflation rate tends
to rise. This is the classic Phillips curve relationship. The sum of all four coeflicients, however, is close
to zero, indicating that the long-run impact of the unemployment rate on inflation rate changes is zero.
This means that when the unemployment rate has been higher than normal and roughly constant for
multiple periods (or lower than normal and roughly constant), then there is no effect on the inflation
rate.

To assess if the overall effect is statistically significant, we can perform a joint statistical test on all four
lags of the unemployment rate. This F-statistic has a p value of .03, so it is marginally significant. This
is known as a Granger Causality test, and the evidence here suggests that the U.S. unemployment rate
“Granger causes” U.S. inflation rates. This means that the unemployment rate helps to forecast inflation,
not that it is causal in a strict sense.

Model selection

Economic theory does not provide guidance regarding the number of lags in an AR, DL, or ADL model.
Rather, it is a matter of statistical fit. The more that lags are included, the smaller the bias is, yet the larger
the estimation variance is. Lag selection is inherently a bias-variance tradeoft.

Consequently, statistical tests (Durbin-Watson, ¢- and F-tests) are not appropriate for lag selection.
There is no economic hypothesis to test. There is no null hypothesis. Testing is the incorrect lens through
which to view the model.
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Instead, information criteria are appropriate. For undergraduate courses, the AIC is a good criterion
as it is simple and readily available. AR and ADL models can be easily compared via the AIC. This is a
simple and effective method to select the number of lags in a dynamic model.

As one example, take the GDP autoregressive model presented previously. Comparing AR(0) through
AR(6) models, the AIC criterion selects the AR(3) model as presented.

As a second example, take the Phillips curve example from the section on autoregressive distributed
lag models. Comparing models with one through six lags of the change in the inflation rate and one
through four lags of the unemployment rate, the AIC selects the model with four lags of the change in
the inflation rate and two lags of the unemployment rate. We will use this selected model for a forecast
application in the final section.

Spurious regression

One of the dangers of estimating simple regressions or distributed lag models is that conventional stan-
dard errors can be off by several orders of magnitude. This danger is routinely ignored in nonacademic
(e.g., journalistic) writing, and also can be seen in some academic (e.g., macroeconomic) articles. This
is a serious practical issue facing economists working in industry.

To illustrate, figure 1 displays a plot of two annual time series, labeled y; and y,, for the period
1906-2015. The two appear to track each other fairly well. Their sample correlation is 0.73. Estimation
of a linear regression of y;, on y,, (with conventional “robust” standard errors) is reported below. The
coefficient for y,;, is highly significant (the ¢-statistic is about 13), and R? = 0.54. Clearly the relationship
seems strong.

yi = —2.95 + 0.95 yy + ¢
(0.52)  (0.07)

The truth is that relationship is completely spurious. The two time series were generated using a
random number generator, and are statistically independent. The two series are completely unrelated,

0
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Figure 1. Plot of y; and y,.
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Figure 2. Plot of U.S. exchange rate and labor force participation rate.

yet have a high sample correlation, R?, and t-statistics. The reason behind the deception is the strong
serial correlation in the variables. In this example, they were generated as random walks. The seemingly
large sample correlation, R?, and t-statistic are all artifacts of unmodeled serial correlation.

The secret to detecting spurious regressions of this form is to first examine the time-series plot. If
strong serial correlation is present in the series, then static regressions and distributed-lag models need
(at a minimum) HAC-type standard errors. If the serial correlation is sufficiently strong (as is the case
for a random walk process such as in this example), then HAC standard errors will not be a sufficient
correction either. Instead, a better check is to estimate an ADL model. Typically, it is sufficient to include
alagged dependent variable. We report such estimates here:

yi = —022 4+ 091 yy_; + 0.09 y, +7¢
(0.35)  (0.04) (0.06)

The point estimate of the long-run multiplier is similar to the static regression, but the effect
is no longer statistically significant. As a general rule, this is a simple method to break a spurious
regression.

As an example using actual data, in figure 2 we plot monthly observations on the U.S. trade-weighted
exchange rate, along with the U.S. labor force participation rate. The two seem to have a common rela-
tionship. The sample correlation is 0.59. The R* from a linear regression is 0.35, and the labor force
participation rate has a highly significant ¢-statistic of 18.

Exchange Rate, = —578 + 10.2 Labor Participation, + ¢
(37) (0.56)

The relationship appears to be spurious once we account for the serial correlation. We show this by
re-estimating the relationship to include four lags of the dependent variable. (Four lags were included
to ensure that the serial correlation in the exchange rate was fully modeled.) In this ADL regression, the
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Table 1. U.S. GDP growth rates.

Mean Standard Deviation AR(1) coefficient
1947-1956 4.0 53 0.44
1957-1976 36 42 0.30
1977-1996 32 35 0.31
1997-2016 23 2.5 0.41

labor force participation rate has a ¢-statistic of just 0.4, so it is statistically insignificant. This is a more
reasonable finding, as an economist would naturally be puzzled by a claim that the labor participation
rate effects the exchange rate.

Exchange Rate, = —0.58 + 1.43 Exchange Rate, ; — 0.59 Exchange Rate, ,
(1.94)  (0.05) (0.08)

-+ 0.18 Exchange Rate, , — 0.05 Exchange Rate, ,
(0.09) (0.05)

— 0.013 Labor Participation, + &
(0.032)

Structural change

Time-series relationships often change. In practical applications, this is important to monitor. As a simple
example, take U.S. GDP growth. There is considerable concern that growth rates may have slowed down
in recent decades. To illustrate, we compute the average growth rate, standard deviation, and OLS AR(1)
coeflicient estimate over four historical periods.

Table 1 shows that average growth rates have decreased from an average near 4 percent from 1947
through 1976, to 2.3 percent over the past decade. Simultaneously, the standard deviation has decreased
by half. This means that average growth has slowed and has become less volatile. The AR(1) coefficient
estimates are all quite similar (between 0.3 and 0.4) and show no pattern, suggesting that there is no
meaningful change in the serial correlation patterns.

These calculations, while simple, have important implications for economic analysis and forecast-
ing. If the mean growth rate has changed, then using the full sample to compute forecasts will lead to
systematic errors.

Forecasting

A common application for applied time series is forecasting. Given the ADL model (3) with the contem-
poraneous effect omitted, an estimated direct h-step forecasting equation is:

Yisn = G+ iy + -+ quyt—p-&-l + 8+ + qut—q-‘rl +é. (5)

The key is that all variables on the right-hand side are dated at time ¢ or before. Estimation is OLS
using the sample from t =1, ..., n. The point forecast for y, is:

Inth = & + qglyn +o 4+ quyn—p-ﬁ-l + Slxn +o qun—q-&-l‘
A simple 1—« forecast interval is based on the normal approximation:
}A}nJrh + 5An+hzlfa/2

where z, is the 1—a//2 normal quantile (e.g., z, = 1.645 for an 80% interval), and §,.y, is the standard
error of the forecast. The latter is generated in Stata by the command predict name, stdf.
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Figure 3. U.S. inflation rate forecasts for 2017-18.

Alternatively, a reasonable approximation is the standard deviation of the regression residual:

n
SAnJrh% }’1_1§ é?

t=1

172

For direct forecasts, a separate regression is estimated for each forecast horizon h. Thus, for multiple

forecasts, we must estimate multiple OLS regressions.

To illustrate, let us take quarterly U.S. inflation, and use the ADL Phillips curve model selected
by the AIC (four autoregressive lags and two lags of the unemployment rate) to make forecasts for
2017-18. This requires estimation of eight regressions of the form (5) for h =1, ..., 8. The point fore-
casts and 80 percent forecast intervals are plotted in figure 3. These are forecasts for quarterly inflation at
an annual rate. You can see that the Phillips curve equation predicts that the inflation rate will continue
atits current 2 percent rate. The 80 percent forecast intervals show that there is considerable uncertainty

in the inflation realizations.
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