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ABSTRACT

Maasoumi (1978) proposed a Stein-like estimator for simultaneous equations
and showed that his Stein shrinkage estimator has bounded finite sample
risk, unlike the three-stage least square estimator. We revisit his proposal by
investigating Stein-like shrinkage in the context of two-stage least square
(2SLS) estimation of a structural parameter. Our estimator follows Maasoumi
(1978) in taking a weighted average of the 2SLS and ordinary least square
estimators, with theweight depending inversely on theHausman (1978) statis-
tic for exogeneity. Using a local-to-exogenous asymptotic theory, we derive
the asymptotic distribution of the Stein estimator and calculate its asymptotic
risk. We find that if the number of endogenous variables exceeds 2, then the
shrinkage estimator has strictly smaller risk than the 2SLS estimator, extending
the classic result of James and Stein (1961). In a simple simulation experiment,
we show that the shrinkage estimator has substantially reduced finite sample
median squared error relative to the standard 2SLS estimator.
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1. Introduction

In a particularly insightful paper, Maasoumi (1978) derives a Stein-like estimator for the reduced form
coefficients of simultaneous equations. He shows that while the standard three-stage least square and
two-stage least square (2SLS) estimators possess no finite moments, his modified Stein-like estimator
has thinner tails, finite moments, and thus bounded risk. His is the first paper to apply the idea of Stein
shrinkage to simultaneous equations estimation, and the first to be motivated by the goal of producing
an estimator with finite moments.

In the more recent literature, the focus has shifted to the structural coefficients in single equation
instrumental variable models.While an enormous literature has been written on improvements on 2SLS
estimates, to my knowledge there has been no meaningful follow-up to Maasoumi’s insight that Stein-
like shrinkage could improve the performance of 2SLS estimator. This paper returns to Massoumi’s idea
and investigates the performance of a Stein-like shrinkage estimator using modern asymptotic tools.

Just as in Maasoumi (1978), we consider a shrinkage estimator which is a weighted average of the
ordinary least square (OLS) and 2SLS estimators, with the weight inversely proportional to theHausman
(1978) statistic for exogeneity. We derive the asymptotic distribution of the shrinkage estimator using a
local-to-exogeneity condition so that the distribution is continuous in the parameters. We calculate the
asymptotic risk of the estimator and find that the risk is strictly less than the risk of the 2SLS estimator,
so long as the number of right-hand side endogenous variables exceeds 2. This condition is analogous
to the classic condition of Stein (1956) and James and Stein (1961) who found that shrinkage strictly
reduces the risk of estimators of the mean in normal sampling when the dimension exceeds 2.
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The asymptotic theory used in this paper is similar to the local asymptotic theory used by Hansen
(2015) who considers shrinkage estimators which combine unrestricted and resticted maximum likeli-
hood estimators.

There are several limitations in the paper which can be investigated in future research. First, the
analysis is confined to homoskedastic errors. This is not essential to the idea of shrinkage but greatly
simplifies the calculations. A generalization to allow for heteroskedasticity and/or serial correlation
would be valuable but more involved. Second, the analysis is confined to the 2SLS estimator. It would be
useful to generalize to incorporate other estimators including Limited informationmaximum likelihood
(LIML) and Generalized method of moments (GMM). Third, the risk analysis imposes the assumption
that risk is measured by weighted squared error where the weight matrix is set equal to the inverse of
the difference of the asymptotic variances of the 2SLS and OLS estimators. This might seem like an odd
choice for weighted risk, but greatly simplifies the analysis. It would be useful to generalize the analysis to
allow for a user-specific weight matrix, but again this would greatly complicate the derivations. Fourth,
we do not derive nor explore minimax bounds on the estimation risk. These generalizations would be
quite useful and valuable but cannot be accomplished within the page limits of this contribution.

There are several related ideas in the previous literature. The idea of combining OLS and 2SLS
estimators to reduce bias may have first been proposed by Sawa (1973). Phillips (1980) derived the
exact distribution of the 2SLS estimator. Phillips (1984) derived the exact distribution of the Stein-rule
estimator in linear regression. See Phillips (1983) for a review. Ullah and Srivastava (1988) proposed
a Stein-type estimator of the coefficients of structural simultaneous equations system and analyzed
the distribution using small-sigma asymptotic methods. Kim and White (2001) studied asymptotic
approximations to James-Stein-type estimators and gave conditions under which the Stein estimators
preserve superiority when the sample size goes to infinity. Guggenberger (2010) examimes the asymp-
totic properties of a pretest estimator which conditions on the result of a first-stage Hausman (1978)
statistic. Our Stein-type estimator can be viewed as a smoothed version of the hard threshold Hausman
pretest estimator. Chakravarty (2012) proposes a Stein-rule estimator similar to that studied in this paper
and discusses its properties using the theory of Kim and White (2001). Finally, Ditraglia (2014) has
proposed combining OLS and 2SLS based on a plug-in estimate of the focused information criterion
(as in Claeskens and Hjort (2003)).

The organization of the paper is as follows. In Section 2, we present themodel and the Stein shrinkage
estimator. In Section 3, we present the asymptotic distribution of the estimator under a local-to-
exogeneity asymptotic assumption. In Section 4, we derive the asymptotic risk of the estimator. Section 5
presents a simulation experiment. Section 6 is a brief conclusion. Proofs of the theoretical results are
presented in the appendix. The computer code used to generate the simulations, and a supplemental
appendix, are available on the author’s website.

2. Stein 2SLS estimator

Suppose we have a random sample {yi, xi, zi : i = 1, . . . , n} with zi = (z′1i, z
′
2i)

′, where yi is scalar, xi
is m × 1, z1i is � × 1, and z2i is k × 1, with k ≥ m. The variables are assumed to satisfy a standard
instrumental variables equation

yi = x′
iβ + z′1iγ + ei

E (ziei) = 0.
(1)

The vector xi is treated as endogenous, zi as exogenous, and the variables z2i are valid excluded
instruments. The parameter of interest is the coefficient β on the endogenous variables.

Two conventional estimators of Eq. (1) areOLS and 2SLS. Let β̂OLS denotes theOLS estimator of β , let
β̂2SLS denotes the 2SLS estimator using zi as instruments, and let V̂OLS and V̂2SLS denote the conventional
covariance matrix estimators for β̂OLS and β̂2SLS.

In large samples, 2SLS is typically preferred to OLS as it is consistent for β under endogeneity while
OLS is inconsistent. However, in small samples, the 2SLS estimator can have a much larger variance so
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the OLS estimator can have better precision. Motivated by this observation, Maasoumi (1978) proposed
a Stein-like weighted-average estimator with the weight depending on a specification test similar to the
Hausman–Wu statistic

Hn = (
β̂2SLS − β̂OLS

)′ (
V̂2SLS − V̂OLS

)−1 (
β̂2SLS − β̂OLS

)
.

We adopt his idea here to see if the combination of OLS and 2SLS can result in improved estimation
precision.

Specifically, we consider the following Stein-like estimator of β

β̂∗ = wβ̂OLS + (1 − w) β̂2SLS (2)

where

w =

⎧⎪⎨⎪⎩
τ

Hn
if Hn ≥ τ

1 if Hn < τ

(3)

and τ is a shrinkage parameter. We recommend setting τ = m − 2 when m > 2. This choice will be
justified later. For now we leave τ as a free parameter so we can assess its impact on the performance
of β̂∗. For m ≤ 2, there is no strong theoretical guidance for choice of τ , but in the simulations which
follow we set τ = 1 form = 2 and τ = 1/4 form = 1.

The restriction w ∈ [0, 1] implicit in the definition (3) is identical to the “positive-part” restriction of
the classic James–Stein estimator due to Baranchick (1970). As shown by Lemma 2 of Hansen (2014),
positive-part trimming generically reduces estimation risk.

Notice that the weight (3) is inversely proportional to the Hausman statistic Hn and recall that large
values ofHn indicate the presence of endogeneity, and small values ofHn indicate exogeneity. Thus when
there is evidence of endogeneity, the estimator (2) puts more weight on 2SLS. Conversely, when there is
no evidence of endogeneity, the estimator (2) puts more weight on OLS. If Hn is sufficiently small (less
than τ ) then w = 1 and the Stein estimator (2) reduces to the OLS estimator.

3. Asymptotic distribution

Our distribution theory is developed under a local asymptotic framework which is designed so that the
Stein estimator has a nondegenerate asymptotic distribution. This can be achieved by specifying the
model to be local to exogeneity. Specifically, first write the reduced form equation for the endogenous
variable xi as:

xi = �′
1z1i + �′

2z2i + vi

E
(
ziv

′
i

) = 0.
(4)

Second, write the structural equation error ei as a linear function of the reduced form error vi and an
orthogonal error εi

ei = v′
iρ + εi

E (viεi) = 0.
(5)

The Eqs. (4) and (5) are without loss of generality as they can be defined by projection.
The variables xi are exogenous if ei and vi are uncorrelated, or equivalently that the coefficient ρ is

zero. We thus assume that this coefficient is local to zero, specifically

ρ = n−1/2δ, (6)
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where them× 1 parameter δ indexes the degree of endogeneity. The variables xi are exogenous if δ = 0
and are (locally) endogenous when δ �= 0.

We now state our regularity conditions. Set 
 = E
(
viv

′
i

)
, Q = E

(
ziz

′
i

)
and σ 2 = E

(
ε2i

)
.

Assumption 1. E ‖zi‖4 < ∞, E ‖vi‖4 < ∞, Eε4i < ∞, E
(
ε2i | zi, xi

) = σ 2 , rank(�2) = m ,
 > 0,
and Q > 0.

Assumption 1 specifies that the variables have finite fourth moments (so that conventional central
limit theory applies) and that the error εi is conditionally homoskedastic given the instruments and
regressors. The latter assumption is used to simplify the asymptotic covariance expressions and is thus
important for our analysis but is not critical to the shrinkage technique. The rank condition on �2

ensures that the coefficient β is identified. The full rank condition on 
 is equivalent to assuming that
xi and zi have no common elements.

Theorem 1. Under Assumption 1,

√
n

(
β̂OLS − β

β̂2SLS − β

)
→d h + ξ , (7)

where

h =
(

σ−2V1
δ

0

)
and ξ ∼ N(0,V) where

V =
[

V1 V1

V1 V2

]
with

V1 = σ 2
(
E

(
xix

′
i

) − E
(
xiz

′
1i

) (
E

(
z1iz

′
1i

))−1
E

(
z1ix

′
i

))−1

V2 = σ 2
(
E

(
xiz

′
i

) (
E

(
ziz

′
i

))−1
E

(
zix

′
i

) − E
(
xiz

′
1i

) (
E

(
z1iz

′
1i

))−1
E

(
z1ix

′
i

))−1
.

Furthermore, jointly with (7),

Hn →d (h + ξ)′ P (h + ξ) (8)

and

√
n

(
β̂∗ − β

) →d G′
2ξ −

(
τ

(h + ξ)′ P (h + ξ)

)
1

G′ (h + ξ) , (9)

where P = G (V2 − V1)
−1 G′, G = (−I I)′, G2 = (0 I)′, and (a)1 = min [1, a] .

Theorem 1 presents the joint asymptotic distribution of the OLS and 2SLS estimators, the Hausman
statistic, and the Stein estimator under the local exogeneity assumption. The joint asymptotic distribu-
tion of the OLS and 2SLS estimators is normal with a classic covariance matrix. The OLS estimator has
an asymptotic bias when δ �= 0 but not the 2SLS estimator. The Hausman statistic has an asymptotic
noncentral chi-square distribution, with noncentrality parameter h depending on the local endogeneity
parameter δ. The asymptotic distribution of the Stein estimator is a nonlinear function of the normal
random vector in (7), and in particular is a function of the noncentrality parameter h.
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4. Asymptotic risk

We measure the efficiency of the estimators by asymptotic weighted mean squared error. For any
sequence of estimators Tn of β , and for some weight matrixW, we define the asymptotic risk as

R (T) = lim
ζ→∞

lim inf
n→∞ E min

[
n (Tn − β)′ W (Tn − β) , ζ

]
.

This is the expected scaled loss, trimmed at ζ , but in large samples (n → ∞) and with arbitrarily
negligible trimming (ζ → ∞). This definition of asymptotic risk is convenient as it is well defined
and easy to calculate whenever the estimator has an asymptotic distribution, e.g.,

√
n (Tn − β) →d ψ (10)

for some random variable ψ . For then [as shown by Lemma 6.1.14 of Lehmann and Casella (1998)], we
have

R (T) = E
(
ψ ′Wψ

) = tr(WE
(
ψψ ′)). (11)

Thus the asymptotic risk of any estimator Tn satisfying (10) can be calculated using (11).
It turns out to be convenient to set the weight matrix to equal W = (V2 − V1)

−1 and all our
calculations will use this choice.

Theorem 2. Under Assumption 1, if m > 2 and 0 < τ ≤ 2 (m − 2) then

R(β̂2SLS) = tr (WV2)

R(β̂∗) < tr (WV2) − τ (2 (m − 2) − τ)

σ−4δ′
V1 (V2 − V1)
−1 V1
δ + m

(12)

and thus the asymptotic risk of the Stein estimator is globally smaller than the asymptotic risk of the 2SLS
estimator.

Theorem 2 shows that the asymptotic risk of the Stein estimator is strictly less than that of 2SLS for
all parameter values, so long asm (the dimension of the endogenous variables xi) exceeds 2. Theorem 2
holds under the mild regularity conditions of Assumption 1 and the local endogeneity framework (5)–
(6). Since the inequality (12) is strict and holds for all values of localizing parameter δ, even very large
values, this inequality shows that in a very real sense, the Stein estimator strictly dominates 2SLS.

The assumptionm > 2 is similar to Stein’s (1956) classic condition for shrinkage. As shown by Stein
(1956), the shrinkage dimension must exceed 2 in order for shrinkage to achieve global reductions in
risk relative to unrestricted estimation.

The bound on the right-hand side of (12) is minimized when τ = m − 2, motiviating our
recommendation for the shrinkage parameter, and with this choice, the inequality 0 < τ ≤ 2 (m − 2) is
trivially satisfied whenm > 2.

To understand the magnitude of the risk improvement, define

am = tr
(
(V2 − V1)

−1 V2

)
m

and

cm = σ−4δ′
V1 (V2 − V1)
−1 V1
δ

m
.

The parameter am is a nonlinear function of the correlations between the regressors xi and the
instruments z2i and satisfies am ≥ 1. When the correlation between the regressors and instruments is
high then am can be arbitrarily large.On the other hand,when the correlation isweak (weak instruments)
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then am approaches one. The parameter cm is a scalar measure of the strength of endogeneity δ. cm is
increasing as the magnitude of δ increases.

From (12), we can calculate

R(β̂∗)
R(β̂2SLS)

≤ 1 − m − 2

tr
(
(V2 − V1)

−1 V2

) m − 2

σ−4δ′
V1 (V2 − V1)
−1 V1
δ + m


 1 − 1

am(cm + 1)

with the approximation approaching equality as m increases. This shows that the percentage reduction
in asymptotic risk achieved by the Stein estimator relative to the 2SLS estimator is approximately
100/(am(cm + 1). This gain is highest when am is small (weak instruments), cm is small (mild
endogeneity), orm is large (as both am and cm decrease withm). Thus, we expect the Stein estimator to
achieve particularly large reductions in risk when the instruments are weak, the degree of endogeneity is
small, and/or the number of endogenous variables is large. On the other hand, the bound also suggests
that the efficiency difference to be modest when instruments are strong or the degree of endogeneity is
high.

One intuition for the risk reduction of Theorem 2 and the requirement m > 2 is that the OLS
estimator can be viewed as a restricted GMM estimator which imposes m restrictions. Specifically,
augment the model (1) with the additional equation

E (xiei) = α (13)

with α a freem× 1 parameter. The GMM estimator of the system (1)–(13) under the homoskedasticity
assumption is β̂2SLS as (13) adds no information. Now consider GMM estimation under the restriction
α = 0. This is equivalent to adding E (xiei) = 0 to (1). Under the homoskedasticity assumption,
this GMM estimator is β̂OLS. This shows that the shrinkage estimator β̂∗ is equivalent to shrinking an
unrestricted GMM estimator to a restricted GMM estimator. Since the number of restrictions exceeds
2 when m > 2, this satisfies the classic shrinkage result that Stein estimation reduces risk when the
number of restrictions exceeds 2.

5. Simulation

Our simulation experiment uses a design similar to that used byDonald andNewey (2001), Donald et al.
(2009), and Kuersteiner and Okui (2010).

The observations (yi, xi, zi) are generated by the process

yi = x′
iβ + γ + ei

xi = �zi + μ + vi

(
ei

vi

)
∼ N

⎛⎜⎜⎜⎜⎜⎜⎜⎝
0,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 ρ/
√
m · · · ρ/

√
m

ρ/
√
m 1 0 0

... 0 1 0

ρ/
√
m 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎠
zi ∼ N(0, Im).

(14)

Thus the instruments zi, equation error ei, and reduced form errors vi are all N(0, 1), with the error ei
and elements of vi having correlation ρ/

√
m, but all other correlations zero. The reason for setting the

correlation equal to ρ/
√
m is because then we can allow ρ to vary in (−1, 1). To see this, observe that
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the determinant of the covariance matrix in (14) is 1− ρ2, which is positive if and only if |ρ| < 1. Thus
specifying the correlation as ρ/

√
m with ρ ∈ (−1, 1) is a natural parameterization.

The distributions are invariant to β and γ so we set these parameters to zero. We also set μ = 0 and

set them × m reduced form matrix as � = Imd and the scale d set as d =
√
R2/

(
1 − R2

)
so that R2 is

the reduced form population R2 for each xji.
We varyn = {100, 800},m = {1, 2, 3, 4},R2 = {0.01, 0.10, 0.40} andρ on a 40-point grid on [0, 0.975].

The parameter R2 controls the strength of the instruments (small R2 is the case of weak instruments)
and the parameter ρ controls the degree of endogeneity (ρ = 0 is the case of exogenous regressors; large
ρ is the case of strong endogeneity).

Note that our experiment sets the dimension of zi equal to that of xi, so the 2SLS estimates are just-
identified. Generalizing the simulation to add overidentification reduces the benefit of shrinkage but
otherwise does not change the nature of the results.

We generated 50,000 samples for each configuration, and on each calculated β̂OLS, β̂2SLS, and β̂∗

where for the latter, we set τ = 1/4 for m = 1, τ = 1 for m = 2, and τ = m − 2 otherwise. We also
calculated the Hausman pretest estimator

β̂PT = β̂OLS1 (Hn < c) + β̂2SLS1 (Hn ≥ c) ,

where c is the 5% critical value from theχ2
m distribution. This is the estimator examined byGuggenberger

(2010) in the context of testing hypotheses on β . We also calculated the bias-corrected Sawa (1973)
estimator, but its median squared error (MSE) was nearly identical to that of 2SLS (most likely because
our model is just-identified) so the results are not reported here.

To compare the estimators, we calculated the MSE of each estimator, that is, for an estimator β̂ ,

R(β̂) = median
((

β̂ − β
)′ (

β̂ − β
))

. (15)

We report the MSE rather than the mean squared error because 2SLS estimators may not have finite
variances in finite samples. This is common in the literature on the evaluation of estimation under
simultaneity. While the asymptotic theory focused on mean squared error, we expect that the insights
will carry over to the finite sample MSE. Notice also that we evaluate based on an equally weighted
squared error loss, while Theorem 2 concerns a specific weighted squared error loss. We do this because
while the weighted squared error is convenient for the theory, in practice, we are more concerned with
unweighted squared error.

To simplify the presentation, we present the relative MSE, which is (15) divided by the MSE of 2SLS.
Thus, values less than 1 indicate improved precision relative to 2SLS, and values greater than 1 indicate
worse performance.

We present the results graphically, plotting the relative MSE (15) as a function of the degree of
endogeneity ρ. Each figure corresponds to a fixed set of {n,R2,m}, with three lines representing the
relative MSE of the estimators. Values less than one correspond to lower MSE than 2SLS.

All together, we generated 24 figures. To summarize the results, five representative figures are included
here, with the full set of 24 figures posted as a supplemental appendix on author’s webpage. Figure 1 is
the case n = 100, R2 = 0.01, and m = 1. Figure 2 is the case n = 100, R2 = 0.40, and m = 1. Figure 3
is the case n = 100, R2 = 0.01, and m = 2. Figure 4 is the case n = 100, R2 = 0.10, and m = 2.
Figure 5 is the case n = 800, R2 = 0.40, andm = 4. We select these cases as they are the most extreme,
yet are quite representative of all cases examined. In particular, the case R2 = 0.01 is quite important as
it corresponds to an extreme weak instrument parameterization (and is a commonly used benchmark
case in the simulation literature).

First, consider the case of one endogenous regressor,m = 1. The eight plots for this case look similar
to either Fig. 1 or Fig. 2. OLS and the pretest estimator havemuch smallerMSE than 2SLS for small values
of ρ, but the ranking is reversed for large values of ρ. TheMSE of the pretest estimator is generally similar
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Figure 1. Relative median squared error of OLS, Stein, and pretest estimators, n = 100, R2 = 0.01, m = 1. Note: OLS, ordinary least
squares.

Figure 2. Relative median squared error of OLS, Stein, and pretest estimators, n = 100, R2 = 0.40, m = 1. Note: OLS, ordinary least
squares.
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Figure 3. Relative median squared error of OLS, Stein, and pretest estimators, n = 100, R2 = 0.01, m = 2. Note: OLS, ordinary least
squares.

Figure 4. Relative median squared error of OLS, Stein, and pretest estimators, n = 100, R2 = 0.10, m = 2. Note: OLS, ordinary least
squares.
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Figure 5. Relative median squared error of OLS, Stein, and pretest estimators, n = 800, R2 = 0.40, m = 4. Note: OLS, ordinary least
squares.

to OLS for small ρ, and is similar to 2SLS for small ρ in many cases. For intermediate values of ρ, the
MSE of the pretest estimator is typically much higher than 2SLS.

For small ρ, the Stein estimator has lower MSE than 2SLS and can be quite close to that of OLS. For
larger values of ρ, however, the Stein estimator has higherMSE than OLS, but its MSE is bounded unlike
OLS. The region of dominance for OLS and the Stein estimator over 2SLS is greater for small values of
R2 and n. This can be seen by contrasting Figs. 1 and 2. The plots for the n = 800 cases all look similar
to Fig. 2, where the Stein estimator achieves some reduction in MSE relative to 2SLS for small values of
ρ but has higher MSE for moderate values of ρ.

Next, consider the case of two endogenous regressors,m = 2. The eight plots for this case look similar
to Figs. 2–4. For large values of n and R2, the plots are similar to Fig. 2, where the Stein estimator has
lower MSE than 2SLS for small ρ but the reverse holds for large ρ. For very small values of R2, the plots
are similar to Fig. 3, where OLS and the Stein estimator are near equivalents and both have dramatically
smaller MSE than 2SLS. What is happening here is that for very weak instruments, 2SLS has very high
dispersion so OLS has smaller MSE, and the Stein estimator puts nearly all weight on the OLS estimator.
For most cases, the plots are similar to Fig. 4, where the Stein estimator uniformly dominates 2SLS, and
has similar MSE to OLS for the small values of ρ where OLS has small MSE. Overall, the improvements
in the Stein estimator over 2SLS are greatest in the cases of small sample sizes and weak instruments.

Finally, consider the cases of three and four endogenous regressors m = 3 and m = 4. These are
cases where Theorem 2 shows that the weighted asymptotic MSE of the Stein estimator is uniformly
smaller than that of the 2SLS estimator. The eight plots for this case look similar to Figs. 4 and 5, and
that the asymptotic uniform ranking holds in finite samples. In general, the Stein estimator has much
smaller MSE than 2SLS for small values of the endogeneity parameter ρ, and the estimators perform
similarly for large values of ρ. The improvements of Stein estimator are also greatest for the case of small
samples (small n) and weak instruments (small R2).

It is also instructive to examine the performance of the pretest estimator. As is commonly found, the
risk of the pretest estimator is highly variable, with low MSE for small and very large ρ but very high
MSE for intermediate values.

In summary, the simulation evidence provides strong finite sample confirmation of the predictions
from the large sample approximations of Theorem 2.When the number of endogenous variables is three
or larger, the Stein estimator uniformly dominates 2SLS. When the number of endogenous variables is
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less than 3, the Stein estimator has MSE which is either less than that of 2SLS or is not too much greater.
The improvements achieved by the Stein estimator are particularly large in the empirically relevant
context of small samples and weak instruments. The reductions in MSE due to Stein shrinkage are
numerically large, perhaps surprisingly so.

6. Conclusion

Maasoumi (1978) has made many important contributions to the field of econometrics. One of his
most important theoretical contributions is his 1978 investigation of Stein shrinkage in simultaneous
equations models. It is our pleasure to reinvestigate this suggestion in the context of 2SLS estimation.

Our theory shows that a Stein-like shrinkage of 2SLS toward OLS using a weight inversely propor-
tional to the classic Hausman statistic produces an estimator with reduced risk, specifically a reduction
in asymptoticmean squared error, and reflected in finite samples as a reduction inmedian squared error.

7. Appendix

Proof of Theorem 1. Under the homoskedasticity assumption, the joint convergence (7) is a straightfor-
ward and standard calculation. The convergence in (8) follows immediately given the consistency of the
covariance matrix estimates. (9) follows by the continuous mapping theorem.

Proof of Theorem 2. For convenience and without loss of generality assume σ 2 = 1.
Observe that

√
n

(
β̂2SLS − β

) →d G′
2ξ ∼ N (0,V2) under Theorem 1. Then (11) shows that

R(β̂2SLS) = E
(
ξ ′G′

2WG′
2ξ

) = tr (WV2) . (16)

Next,
√
n

(
β̂∗ − β

) →d ψ , where ψ is the limiting random variable in (9). Define an analogous
random variable without positive part trimming

ψ∗ = G′
2ξ −

(
τ

(ξ + h)′ P (ξ + h)

)
G′ (ξ + h) . (17)

Then using (11) and the fact that the pointwise quadratic risk of ψ is strictly smaller than that of ψ∗ [as
shown, for example, by Lemma 2 of Hansen (2014)],

R(β̂∗) = E
(
ψ ′Wψ

)
< E

(
ψ∗′Wψ∗) . (18)

Using (17), we calculate that

E
(
ψ∗′Wψ∗) = R(β̂2SLS) + τ 2E

(
1

(ξ + h)′ P (ξ + h)

)
− 2τE

(
η(ξ + h)′GWG′

2ξ
)
, (19)

where η(x) = x/(x′Px). Since

∂

∂x
η(x)′ =

(
1

x′Px

)
I − 2

(x′Px)2
Pxx′,

G′VG = G′
2VG = V2 − V1 = W−1,

and

GWG′
2VP = GWG′

2VGWG′ = GWG′ = P,
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then by Stein’s lemma [Lemma 1 of Hansen (2015) which is a matrix notation version of Stein (1981)]

E
(
η(ξ + h)′GWG′

2ξ
) = E tr

(
∂

∂x
η (ξ + h)′ GWG′

2V

)

= E

(
tr

(
GWG′

2V
)

(ξ + h)′ P (ξ + h)

)

− 2E tr

(
P (ξ + h) (ξ + h)′ GWG′

2V(
(ξ + h)′ P (ξ + h)

)2
)

= E

(
m − 2

(ξ + h)′ P (ξ + h)

)
. (20)

Thus (19) equals

R(β̂2SLS) − E

(
τ (2 (m − 2) − τ)

(ξ + h)′ P (ξ + h)

)
≤ R(β̂2SLS) − τ (2 (m − 2) − τ)

E (ξ + h)′ P (ξ + h)
, (21)

where use has been made of Jensen’s inequality and the assumption that τ ≤ 2 (m − 2) .
We calculate that since tr (VP) = tr

(
WG′VG

) = m,

E (ξ + h)′ P (ξ + h) = h′Ph + tr (VP)

= σ−4δ′
V1 (V2 − V1)
−1 V1
δ + m.

Substituted into (21), we have established

R(β̂∗) ≤ R(β̂2SLS) − τ (2 (m − 2) − τ)

σ−4δ′
V1 (V2 − V1)
−1 V1
δ + m

as claimed.
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