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Regression Kink With an Unknown Threshold

Bruce E. HANSEN
Department of Economics, University of Wisconsin, Madison, WI 53706 (behansen@wisc.edu)

This article explores estimation and inference in a regression kink model with an unknown threshold.
A regression kink model (or continuous threshold model) is a threshold regression constrained to be
everywhere continuous with a kink at an unknown threshold. We present methods for estimation, to test
for the presence of the threshold, for inference on the regression parameters, and for inference on the
regression function. A novel finding is that inference on the regression function is nonstandard since the
regression function is a nondifferentiable function of the parameters. We apply recently developed methods
for inference on nondifferentiable functions. The theory is illustrated by an application to the growth and
debt problem introduced by Reinhart and Rogoff, using their long-span time-series for the United States.

KEY WORDS: Model selection/variable selection; Nonlinear; Nonparametric methods.

1. INTRODUCTION

The regression kink model was popularized by Card et al.
(2012) as a modification of the regression discontinuity model.
In the regression kink model, the regression function is continu-
ous but the slope has a discontinuity at a threshold point, hence
a “kink.” This model has gained much empirical attention, in-
cluding applications by Landais (2015) and Ganong and Jager
(2014). The traditional regression discontinuity model assumes
that the threshold is known, but in some cases (such as Card,
Mas, and Rothstein 2008) it is unknown and must be estimated.
Our article concerns this latter case of an unknown threshold.

Regression discontinuity models are similar to threshold re-
gression models. The latter were introduced by Tong (1983,
1990) in the context of nonlinear autoregression, but can be
applied to many nonlinear regression contexts. Most of the lit-
erature and methods focus on the discontinuous (unconstrained)
threshold model, where the regression model is split into two
(or more) groups based on a threshold indicator. A notable ex-
ception is the continuous threshold model introduced by Chan
and Tsay (1998), which is identical to a regression kink model
with piecewise linear regression segments. One economic ap-
plication of the continuous threshold model is Cox, Hansen, and
Jimenez (2004). The regression kink model may be appealing
for empirical applications where the threshold effect focuses on
one variable and there is no reason to expect a discontinuous
regression response at the threshold.

This article extends the theory of Chan and Tsay (1998),
considering the problems of testing for a threshold effect, in-
ference on the regression parameters, and inference on the re-
gression function. As in Chan and Tsay (1998), we confine
attention to the context where the regression segments are lin-
ear rather than nonparametric. This is appropriate in contexts of
moderate sample sizes where nonparametric methods may be
inappropriate.

There is a large literature on discontinuous threshold regres-
sion. For the problem of testing for a threshold effect, relevant
contributions include Chan (1990, 1991), Chan and Tong (1990),
Hansen (1996), and Lee, Seo, and Shin (2011). For inference on
the regression parameters, relevant articles include Chan (1993),
Hansen (2000), and Seo and Linton (2007). Panel data methods
have been developed by Hansen (1999) and Ramirez-Rondan

(2013). Instrumental variable methods have been developed by
Caner and Hansen (2004). An estimation and inference theory
for regression discontinuity with unknown thresholds has been
developed by Porter and Yu (2015).

In the statistics literature, related classes of models include
two-phase regression, segmented regression, the broken stick
model, and the bent cable model. Important contributions to
this literature include Hinkley (1969, 1971) and Feder (1975).
See also the references in Chiu, Lockhart, and Routledge (2006).

For illustration, we apply the regression kink model to the
growth and debt problem made famous by Reinhart and Rogoff
(2010). These authors argued that there is a nonlinear effect of
aggregate debt on economic growth, specifically that as the ra-
tio of debt to GDP increases above some threshold, aggregate
economic growth will tend to slow. This can be formalized as
a regression kink model, where GDP growth is the dependent
variable and the debt/GDP ratio is the key regressor and thresh-
old variable. Econometric analysis of their proposition using
threshold regression tools has been pursued by several authors,
including Caner, Grennes, and Koehler-Geib (2010), Cecchetti,
Mohanty, and Zampolli (2011), Lin (2014), and Lee et al. (2014).
These articles investigate the Reinhart–Rogoff proposition us-
ing a variety of cross-section, panel, and time-series regressions,
but all have focused on the discontinuous threshold regression
model. We add to this literature by a small investigation using
long-span U.S. time-series data.

During our investigation we encounter one novel technical is-
sue. While the parameter estimates in the regression kink model
are asymptotically normal (as shown by Chan and Tsay 1998),
the estimates of the regression function itself are not asymptoti-
cally normal, since the regression function is a nondifferentiable
function of the parameter estimates. Consequently, conventional
inference methods cannot be applied to the regression function.
To address this issue we use recently developed inference meth-
ods by Fang and Santos (2014) and Hong and Li (2015), and
present a new nonnormal distribution theory for the regression

© 2017 American Statistical Association
Journal of Business & Economic Statistics

April 2017, Vol. 35, No. 2
DOI: 10.1080/07350015.2015.1073595

Color versions of one or more of the figures in the article can be
found online at www.tandfonline.com/r/jbes.

228

mailto:behansen@wisc.edu
http://www.amstat.org
http://pubs.amstat.org/loi/jbes
http://dx.doi.org/10.1080/07350015.2015.1073595
http://www.tandfonline.com/r/jbes


Hansen: Regression Kink With an Unknown Threshold 229

Figure 1. Annual U.S. real GDP growth rate and GDP/debt ratio 1791–2009.

function estimates, and shown how to construct numerical delta
method bootstrap confidence intervals for the regression func-
tion.

Our organization is as follows. Section 2 introduces the
model. Section 3 describes least-square estimation of the model
parameters. Section 4 discusses testing for a threshold effect
in the context of the model. Section 5 presents an asymptotic
distribution theory for the parameter estimates and discusses
confidence interval construction. Section 6 discusses inference
on the regression function. A formal proof of Theorem 2 is
presented in the Appendix.

The data and R code for the empirical and simulation work
reported in the article is available on the author’s webpage
http://www.ssc.wisc.edu/˜bhansen/.

2. MODEL

Our regression kink model takes the form

yt = β1(xt − γ )− + β2(xt − γ )+ + β ′3zt + et , (1)

where yt , xt , and et are scalars, and zt is an �-vector that in-
cludes an intercept. The variables (yt , xt , zt ) are observed for
t = 1, . . . , n. The parameters are β1, β2, β3, and γ . We use
(a)− = min[a, 0] and (a)+ = max[a, 0] to denote the “negative
part” and “positive part” of a real number a. In model (1) the
slope with respect to the variable xt equals β1 for values of xt

less than γ , and equals β2 for values of xt greater than γ, yet
the regression function is continuous in all variables.

The model (1) is a regression kink model because the re-
gression function is continuous in the variables x and z, but the
slope with respect to x is discontinuous (has a kink) at x = γ .
The model (1) specifies the regression segments to be linear,
but this could be modified to any parametric form (such as a
polynomial). The conventional regression kink design assumes
that the threshold point γ is known. (This is suitable in many
policy-oriented applications where the threshold is known and
determined by policy.) Instead, we treat the parameter γ as an
unknown to be estimated. Thus, our methods are appropriate
when the threshold is either not determined by the policy, or
when the researcher wishes to investigate the robustness of this
assumption.

The model (1) has k = 3+ � parameters. β = (β1, β2, β3) are
the regression slopes and are generally unconstrained so that
β ∈ R

k−1. The parameter γ is called the “threshold,” “knot,” or
“kink point.” The model (1) only makes sense if the threshold
is in the interior of the support of the threshold variable xt . We
thus assume that γ ∈ � where � is compact and strictly in the
interior of the support of xt .

The regression kink model is nested within the discontinuous
threshold model. Therefore, one could imagine testing the as-
sumption of continuity within the threshold model class. This is
a difficult problem, one to which we are unaware of a solution,
and therefore is not pursued in this article. We simply assume
that regression function is continuous and do not explore the
issue of testing the assumption of continuity.

As an empirical example, consider the growth/debt regres-
sion problem of Reinhart and Rogoff (2010). They argued that
economic growth tends to slow when the level of government
debt relative to GDP exceeds a threshold. To write this as a re-
gression, we set yt to be the real GDP growth rate in year t and
xt to the debt to GDP percentage from the previous year (so that
it is plausibly predetermined). We set zt = (yt−1 1)′ so that the
regression contains a lagged dependent variable to ensure that
the error et is approximately serially uncorrelated.

We focus on the United States and use the long-span time-
series for the years 1792–2009 gathered by Reinhart and Rogoff
and posted on their website, so that there are n = 218 observa-
tions. We display time-series plots of the two series in Figure 1.
We follow Lin (2014) and focus on time-series estimates for a
single country rather than cross-country or panel estimation, so
to not impose parameter homogeneity assumptions.

In Figure 2, we display a scatterplot of (yt , xt ) along with the
fitted regression line and pointwise 90% confidence intervals.
(We will discuss estimation in the next section and confidence
intervals in Section 6.) We can see that the fitted regression
shows a small positive slope for low debt ratios, with a kink
(threshold) around 44% (displayed as the red square), switching
to a negative slope for debt ratios above that value.

We would like to consider inference in the context of this
model, specifically focusing on the following questions: (1) Is
the threshold regression statistically different from a linear re-
gression? (2) What is the asymptotic distribution of the param-
eter estimates, and can we construct confidence intervals for the

http://www.ssc.wisc.edu/~bhansen/
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Figure 2. Scatterplot of real GDP growth and debt/GDP, with esti-
mated regression kink model, and 90% confidence intervals.

parameters? (3) Can we construct confidence intervals for the
regression line?

3. ESTIMATION

If the model (1) is interpreted as a conditional mean then the
natural estimator of the parameters is least squares. It will be
convenient to write

xt (γ ) =
⎛
⎝ (xt − γ )−

(xt − γ )+
zt

⎞
⎠ (2)

so that (1) can be written as yt = β ′xt (γ )+ et . The least-square
criterion is

Sn (β, γ ) = 1

n

n∑
t=1

(
yt − β ′xt (γ )

)2
. (3)

The least-square estimator (β̂, γ̂ ) is the joint minimizer of
Sn (β, γ ):

(
β̂, γ̂

) = argmin
β∈Rk−1,γ∈�

Sn(β, γ ) (4)

The criterion function Sn (β, γ ) is quadratic in β but non-
convex in γ . Thus, it is computationally convenient to use a
combination of concentration and grid search, as is typical in
the threshold literature. Specifically, notice that by concentration
we can write

γ̂ = argmin
γ∈�

min
β∈Rk−1

Sn(β, γ )

= argmin
γ∈�

S∗n(γ ), (5)

Figure 3. Concentrated least-square criterion for threshold
parameter.

where β̂(γ ) are the least-square coefficients from a regression
of yt on the variables xt (γ ) for fixed γ , and

S∗n(γ ) = Sn

(
β̂(γ ), γ

) = 1

n

n∑
t=1

(
yt − β̂(γ )′xt (γ )

)2

is the concentrated sum-of-squared errors function. The solution
to (5) can be found numerically by a grid search over γ . After
γ̂ is found the coefficient estimates β̂ are obtained by standard
least squares of yt on xt (γ̂ ) . We write the fitted regression
function as

yt = β̂ ′xt (γ̂ )+ êt . (6)

In (6), êt are the (nonlinear) least-square residuals. An estimate
of error variance σ 2 = Ee2

i is

σ̂ 2 = 1

n

n∑
t=1

ê2
t = S∗n(γ̂ ).

To illustrate, consider the U.S. growth regression for 1792–
2009. First, we set the parameter space � for the threshold
parameter as � = [10, 70], so that at least 5% of the sample
and 10% of the support of the threshold variable are below
the lower bound and above the upper bound. We then approx-
imate the minimization (5) by computing S∗n(γ ) on a discrete
grid with increments 0.1 (which has 601 gridpoints). At each
gridpoint for γ , we estimated the least-square coefficients and
computed the least-square criterion S∗n(γ ). This criterion is plot-
ted as a function of γ in Figure 3. We observe that the function
is reasonably smooth and has a well-defined global minimum,
but the criterion is not well described as quadratic. The rela-
tive smoothness of the plot suggests that our choice for the grid
evaluation is sufficiently fine to obtain the global minimum. The
criterion is minimized at γ̂ = 43.8. Interestingly, this thresh-
old estimate is very close to that found by Lin (2014) for the
United States using a different data window and quite different
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empirical framework, and also very close to the estimate found
by Lee et al. (2014) using a median cross-country regression.

The parameter estimates from this fitted regression kink
model are as follows.

yt = 0.033
(0.026)

⎛
⎝xt−1 − 43.8

(12.1)

⎞
⎠
−

− 0.067
(0.048)

⎛
⎝xt−1 − 43.8

(12.1)

⎞
⎠
+

+ 0.28
(0.09)

yt−1

+ 3.78
(0.69)

+ êt

σ̂ 2 = 17.2.

The standard errors will be discussed in Section 5. The estimates
show a positive first-order autocorrelation coefficient of 0.28,
which is standard for time-series estimates for growth rates. The
estimates suggest that high debt ratios (those above 44) induce
a moderate slowdown in expected GDP growth rates, consistent
with the Reinhart–Rogoff hypothesis.

4. TESTING FOR A THRESHOLD EFFECT

A reasonable question is whether or not the threshold model
(1) is “significant” relative to the linear model

yt = β1xt + β ′3zt + et . (7)

The linear model (7) is nested in the threshold model (1), as (7)
holds under the restriction β1 = β2 (with a redefinition of the
intercept). Under this hypothesis the threshold γ disappears and
we see the familiar problem of an unidentified parameter under
the null hypothesis. This requires nonstandard testing methods;
fortunately such issues are well understood and easily applied.

An appropriate estimator of the linear model is least squares.
We can write these estimates as

yt = β̃1xt + β̃ ′3zt + ẽt . (8)

The error variance estimate is

σ̃ 2 = 1

n

n∑
t=1

ẽ2
t .

For example, the estimates of the linear model for our empir-
ical example are as follows:

yt = − 0.008
(0.013)

xt−1 + 0.30
(0.09)

yt−1 + 2.90
(0.62)

+ ẽt (9)

σ̃ 2 = 17.6.

The estimates show a positive first-order autocorrelation coeffi-
cient, and a near zero coefficient on the debt ratio.

A standard test for the null hypothesis of the linear model
(7) against the threshold model (1) is to reject H0 : β1 = β2 for
large values of the F-type statistic

Tn =
n

(
σ̃ 2 − σ̂ 2

)
σ̂ 2

.

For example, for our empirical example we can compute that
Tn = 5.66.

To describe the distribution theory for the test statistic, we
need to be precise about the stochastic assumptions on the
model. We require the following regularity conditions.

Assumption 1. For some r > 1,

1. (yt , zt , xt ) is strictly stationary, ergodic, and absolutely reg-
ular with mixing coefficients η(m) = O(m−A) for some
A > r/(r − 1)

2. E |yt |4r <∞, E |xt |4r <∞, and E ‖zt‖4r <∞
3. infγ∈� det Q(γ ) > 0, where Q (γ ) = E

(
xt (γ )xt (γ )′

)
4. xt has a density function f (x) satisfying f (x) ≤ f <∞
5. γ ∈ � where � is compact

Assumptions 1.1 and 1.2 are standard weak dependence con-
ditions that are sufficient for a central limit theorem. The choice
of r involves a trade-off between the allowable degree of serial
dependence and the number of finite moments. For independent
observations, we can set r arbitrarily close to one. Assumption
1.3 is an identification condition, requiring that the projection
coefficients be well defined for all values of γ in the parameter
space �. Assumption 1.4 requires that the threshold variable has
a bounded density function.

In particular, Assumption 1 allows the regressors xt and zt to
include lagged dependent variables.

The following is implied by Theorem 3 of Hansen (1996).
The only difference is that the latter theorem focused on a
heteroscedasticity-robust Wald statistic, while for simplicity we
consider the simpler homoscedastic form of the test statistic.

Theorem 1. Suppose that Assumption 1 holds and et is a
martingale difference sequence. Under H0 : β1 = β2,

Tn →d sup
γ∈�

G(γ )′Q(γ )−1G(γ )/σ 2, (10)

where G(γ ) is a zero-mean Gaussian process with covariance
kernel

E (G(γ1)G(γ2)) = E
(
xt (γ1)xt (γ2)′e2

t

)
. (11)

Theorem 1 shows that the asymptotic null distribution of
the threshold F statistic can be written as the supremum of a
stochastic process. In addition to Assumption 1, Theorem 1 adds
the regularity condition that the error et is a martingale differ-
ence sequence. This is a sufficient condition, and convenient,
but is not essential. What is important is that the best-fitting
approximation in the regression kink model is the linear model
so that the central limit theorem applies for all γ , and that the
regression scores are uncorrelated so that the covariance kernel
takes the simple form (11) rather than an Heteroskedasticity and
Autocorrelation Consistent (HAC) form.

The limiting distribution (10) is nonstandard and cannot be
tabulated. However, as shown by Hansen (1996), it is simple
to simulate approximations to (10) using a multiplier boot-
strap, and thus asymptotically valid p-values can be calcu-
lated. The following is his recommended algorithm. (Theorem
3 of Hansen (1996) shows that the algorithm produces asymp-
totically first-order correct p-values under the conditions of
Theorem 1.)
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Algorithm 1: Testing for a Regression Kink With an Unknown
Threshold.

1. Generate n iid draws ut from the N (0, 1) distribution.
2. Set y∗t = ẽtut where ẽt are the ordinary least-square (OLS)

residuals from the fitted linear regression (8).
3. Using the observations (y∗t , zt , xt ), estimate the linear model

(8) and the regression kink model (6) and compute the error
variance estimates σ̃ ∗2 and σ̂ ∗2 and the F-statistic

T ∗n =
n

(
σ̃ ∗2 − σ̂ ∗2

)
σ̂ ∗2

.

4. Repeat this B times, so as to obtain a sample
T ∗n (1), . . . , T ∗n (B) of simulated F statistics.

5. Compute the p-value as the percentage of simulated F statis-
tics, which exceed the actual value:

pn = 1

B

B∑
b=1

1
(
T ∗n (b) ≥ Tn

)
,

6. If desired, compute the level α critical value cα as the
empirical 1− α quantile of the simulated F statistics
T ∗n (1), . . . , T ∗n (B).

7. Reject H0 in favor of H1 at significance level α if pn < α, or
equivalently if Tn > cα.

The number of bootstrap replications B should be set fairly
large to ensure accuracy of the p-value pn. For example, if
B = 10,000 then pn is approximately within 0.006 of its limit-
ing (large B) value. Fortunately, the computational cost is mini-
mal. For example, my office computer computed all the empir-
ical calculations reported in this article in just 1 min, including
two separate bootstrap simulations using 10,000 replications
each. (The calculations were performed in R. The code im-
plements the multiplier bootstrap efficiently by executing all
10,000 regressions simultaneously, exploiting the fact that the
regressors are common across the bootstrap replications.)

Returning to the U.S. GDP example, as we said earlier the
empirical value of the F statistic is Tn = 5.66. The multiplier
bootstrap p-value is 0.15, and the bootstrap estimate of the
10% critical value is 7.1. Thus, the test does not reject the null
hypothesis of linearity in favor of the regression kink model at
the 10% level.

The multiplier bootstrap method does not account for the
time-series nature of the observations and thus can be expected
to exhibit some finite sample distortions. In particular, Assump-
tion 1 does not allow for nonstationary or near-nonstationary
regressors. As argued by Stambaugh (1999) and others, highly
persistent regressors will distort normal distribution theory. This
is particularly relevant for our example as can be seen in Fig-
ure 1, the debt/GDP level displays considerable serial depen-
dence.

To investigate this possibility, we present a simple simula-
tion experiment calibrated on the empirical example. Our data-
generating process is

yt = β1 (xt − γ )− + β2 (xt − γ )+ + β3yt−1 + β4 + et

et ∼ N (0, σ 2).

To evaluate size, we set β1 = β2 = 0, β3 = 0.3, β4 = 3, and
σ 2 = 16 to match the estimates (9). We fix xt to equal the
empirical values of debt/GDP for the United States, and set n =

Table 1. Power of threshold F test with multiplier bootstrap,
nominal size 10%

β2

−0.02 −0.04 −0.06 −0.08 −0.10 −0.12 −0.14 −0.16

Power 0.14 0.24 0.38 0.54 0.72 0.85 0.93 0.98

218 as in the empirical example. Setting xt to equal the sample
values is done precisely to force the simulation to evaluate the
performance in a setting with the serial correlation properties
of the observed debt/GDP series. We generated 10,000 samples
from this process. To speed computation, for all simulations in
the article we evaluate � = [10, 70] using a grid with increments
of 1, which reduces the number of gridpoints to 61. The number
of bootstrap replications for each simulated sample was set at
B = 1000.

We first evaluated the size of the threshold test. At the nom-
inal 10% significance level, we found the simulation size to be
10.6%. Thus, the test exhibits no meaningful size distortion.

Second, we evaluated the power of the test. We used the same
parameterization as above, but now set β1 = 0 and γ = 40, and
vary β2 from 0 to−0.16 in steps of 0.02. The power is presented
in Table 1. What we can see is that the test has increasing
power in β2, and had reasonable ability to detect changes as
small as 0.08. Examining the point estimates of the threshold
model, we see that the estimate of the difference in regression
slopes is β̂1 − β̂2 = 0.10, where the simulation suggests the
power should be about 70%, which is reasonable but modest. It
follows that our empirical p-value of 15% could be due to the
modest power of the test. We conclude that the threshold test is
inconclusive regarding the question of whether or not there is a
regression kink effect in GDP growth due to high debt.

5. INFERENCE ON THE REGRESSION
COEFFICIENTS

In this section, we consider the distribution theory for the
least-square estimates of the regression kink model with un-
known threshold under the assumption that the threshold is
identified.

In an ideal context we might consider (1) as the true regression
function, so that the error has conditional mean zero. To allow
extra generality, we will not impose this condition. Instead, we
will view (1) as the best approximation in the sense that it
minimizes squared error loss. We define the best approximation
as (pseudo)-true values (β0, γ0), which minimize the squared
loss

L (β, γ ) = E
(
yt − β ′xt (γ )

)2
. (12)

As in our analysis of estimation, we can define the minimizers
by concentration. Let β(γ ) be the minimizer of L(β, γ ) over β

for fixed γ , that is, β(γ ) = E(xt (γ )xt (γ )′)−1E(xt (γ )yt ). Under
Assumption 1.3, β (γ ) is uniquely defined for all γ ∈ �. The
concentrated squared loss is then

L∗ (γ ) = L (β(γ ), γ ) = E
(
yt − β(γ )′xt (γ )

)2
.

By concentration, γ0 is the minimizer of L∗(γ ) and β0 = β(γ0).



Hansen: Regression Kink With an Unknown Threshold 233

We will require that the minimizer γ0 is unique. This excludes
the case of a best-fitting linear model (in which case L∗(γ ) is a
constant function) and the case of multiple best-fitting threshold
parameters γ .

To simplify our proof of consistency, we also impose that the
parameter space for β is compact, though this assumption could
be relaxed by a more detailed argument.

Assumption 2.

1. γ0 = argminγ∈� L∗ (γ ) is unique.
2. β ∈ B ⊂ R

k−1 where B is compact.

Chan and Tsay (1998) showed that the least-square estimates
in the continuous threshold autoregressive model, including
both the slope and threshold coefficients, are jointly asymp-
totically normal. We extend their distribution theory to the re-
gression kink model with unknown threshold. Set θ = (β, γ ),
θ0 = (β0, γ0),

Ht (θ ) = − ∂

∂θ

(
yt − β ′xt (γ )

)
=

(
xt (γ )

−β11 (xt < γ )− β21 (xt > γ )

)
and Ht = Ht (θ0).

Theorem 2. Under Assumption 1
√

n
(
θ̂ − θ0

)→d N (0, V )

where V = Q−1SQ−1, S =∑∞
j=−∞ E(HtH

′
t+j et et+j ) and

Q = E
(
HtH

′
t

)

+E

⎛
⎜⎜⎝

0 0 0 et1 (xt < γ0)
0 0 0 et1 (xt > γ0)
0 0 0 0

et1 (xt < γ0) et1 (xt > γ0) 0 0

⎞
⎟⎟⎠ .

A formal proof of Theorem 2 is presented in the Appendix.
Notice that the slope and threshold estimates are jointly

asymptotically normal with
√

n convergence rate, and the slope
and threshold estimates have a nonzero asymptotic covariance.
In contrast, in the conventional noncontinuous threshold model
the threshold estimate γ̂ is rate n consistent with a nonstandard
asymptotic distribution, and the slope coefficient estimates are
asymptotically independent of the threshold estimate. The dif-
ference in the regression kink model is because the regression
function is continuous. Consequently, the least-square criterion
is continuous in the parameters (though not differentiable) and
asymptotically locally quadratic.

Since the threshold estimate γ̂ has only a
√

n convergence
rate, we should expect its precision to be less accurate than
threshold estimates in the noncontinuous case. Thus, it is im-
portant to take its sampling distribution into account when con-
structing confidence intervals.

The asymptotic distribution does not require the model to
be correctly specified, so the error et need not be a martingale
difference sequence. Thus (in general), the covariance matrix S
takes an HAC form. When the regression is dynamically well
specified (by appropriate inclusion of lagged variables) then
the matrix will simplify to S = E(HtH

′
t e

2
t ). As our application

includes a lagged dependent variable, we use this simplification
in practice.

The second term in the definition of Q is zero when the thresh-
old model is correctly specified so that E(et |xt ) = 0. However,
in the case of model misspecification (so that the regression is a
best approximation) then the second term can be nonzero.

We suggest the following estimate of the asymptotic covari-
ance matrix (assuming uncorrelatedness). Set

Ĥt =
(

xt (γ̂ )
−β̂11 (xt < γ̂ )− β̂21 (xt > γ̂ )

)
,

V̂ = Q̂−1ŜQ̂−1, Ŝ = 1
n−k

∑n
t=1 Ĥt Ĥ

′
t ê

2
t , and

Q̂ = 1

n

n∑
t=1

(
Ĥt Ĥ

′
t

+

⎛
⎜⎜⎝

⎡
⎢⎢⎣

0 0 0 êt1 (xt < γ̂ )
0 0 0 êt1 (xt > γ̂ )
0 0 0 0

êt1 (xt < γ̂ ) êt1 (xt > γ̂ ) 0 0

⎤
⎥⎥⎦

⎞
⎟⎟⎠

⎞
⎟⎟⎠ .

We divide by n− k rather than n for the definition of Ŝ as an ad
hoc degree-of-freedom adjustment. Given V̂ , standard errors for
the coefficient estimates are found by taking the square roots of
the diagonal elements of n−1V̂ . If the regression is dynamically
misspecified (e.g., if no lagged dependent variable is included)
then Ŝ could be formed using a standard HAC estimator.

Asymptotic confidence intervals for the coefficients could
then be formed using the conventional rule, for example, for a
95% interval for β1, β̂1 ± 1.96s(β̂1). Theorem 2 shows that such
confidence intervals have asymptotic correct coverage.

In small samples, however, the asymptotic confidence inter-
vals may have poor coverage. As shown in Figure 2, the least-
square criterion is nonquadratic with respect to the threshold
parameter γ , meaning that quadratic (e.g., normal) approxima-
tions may be poor unless sample sizes are quite large. In this
context better coverage can be obtained by test-inversion con-
fidence sets. This is particularly convenient for the threshold
parameter γ , as a test inversion confidence region is a natural
by-product of the computation of the least-square minimiza-
tion. Specifically, to test the hypothesis H0 : γ = γ0 against
H1 : γ 
= γ0, the criterion-based test is to reject for large values
of the F-type statistic Fn(γ0), where

Fn(γ ) = n
(
σ̂ 2(γ )− σ̂ 2

)
σ̂ 2

(13)

and σ̂ 2(γ ) = S∗n(γ ) is the estimator of the error variance when
γ is fixed. Given the asymptotic normality of Theorem 2, this
test has an asymptotic χ2

1 distribution under H0. Thus, for a
nominal level α test we can take the critical value c1−α from the
χ2

1 distribution. A nominal 1− α asymptotic confidence interval
for γ can then be formed by test inversion: the set of γ for which
Fn(γ ) is smaller than the χ2

1 critical value:

Cγ = {γ : Fn(γ ) ≤ c1−α} .
Given that σ̂ 2(γ ) has already been calculated on a grid (for
estimation), we have Fn(γ ) on the same grid as a by-product.
The interval Cγ is then obtained as the set of γ gridpoints for
which Fn(γ ) is smaller than c1−α .
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Figure 4. Confidence interval construction for threshold.

To illustrate, examine Figure 4. Here we have plotted the
statistic Fn(γ ) from (13) as a function of γ . By construction,
the statistic is nonnegative and hits 0 at γ = γ̂ . We have drawn
in the asymptotic 90% critical value c.9 = 2.7 using the blue
dashed line. The points of intersection indicate the ranges for
the asymptotic confidence interval, and shown on the graph by
the blue dashed arrows to the horizontal axes.

Further improvements in coverage accuracy can be obtained
via a bootstrap. Since the regressor xt displays considerable se-
rial dependence, we recommend a wild bootstrap that conditions
on the values of xt . This will preserve the time-series properties
better than alternative bootstrap methods such as a block boot-
strap that is more suited for cases of mild serial dependence. A
model-based bootstrap could also be used, but then an explicit
model would be required for the debt/GDP series. To avoid these
challenges we adopt a wild bootstrap. Here are the steps.

Algorithm 2: Wild Bootstrap Confidence Intervals for
Parameters.

1. Generate n iid draws ut from the N (0, 1) distribution.
2. Set e∗t = êtut where êt are the LS residuals from the fitted

regression kink model (6).
3. Set y∗t = β̂ ′xt (γ̂ )+ e∗t , where (zt , xt ) are the sample obser-

vations, and (β̂, γ̂ ) are the least-square estimates.
4. Using the observations (y∗t , zt , xt ), estimate the regression

kink model (6), parameter estimates (β̂∗, γ̂ ∗), and σ̂ ∗2 =
n−1 ∑n

t=1 ê∗2
t , where ê∗t = y∗t − β̂∗′xt (γ̂ ∗).

5. Calculate the F-statistic for γ

F ∗
n =

n
(
σ̂ ∗2(γ̂ )− σ̂ ∗2

)
σ̂ ∗2

,

where σ̂ ∗2(γ̂ ) = n−1 ∑n
t=1 ê∗t (γ̂ )2 and ê∗t (γ̂ ) = y∗t − β̂∗

(γ̂ )′xt (γ̂ ).
6. Repeat this B times, so as to obtain a sample of simulated

coefficient estimates (β̂∗, γ̂ ∗) and F statistics F ∗
n .

7. Create 1− α bootstrap confidence intervals for the coeffi-
cients β1, β2, and β3 by the symmetric percentile method:
the coefficient estimates plus and minus the (1− α) quantile

of the absolute centered bootstrap estimates. For example, for
β1 the interval is β̂1 ± q∗1 , where q∗1 is the (1− α) quantile
of |β̂∗1 − β̂1|.

8. Calculate the 1− α quantile c∗1−α of the simulated F statistics
F ∗

n .

9. Create a 1− α bootstrap confidence interval for γ as the
set of γ for which the empirical F statistics Fn(γ ) (13) are
smaller than the bootstrap critical value c∗1−α.

C∗γ =
{
γ : Fn(γ ) ≤ c∗1−α

}
.

This wild bootstrap algorithm can be computed concurrently
with the multiplier bootstrap used for the threshold test, resulting
in efficient computation. We do not have a formal distribution
theory that justifies the use of this (or any other) bootstrap
method for confidence interval construction. However, we see
no reason for the bootstrap to fail given the asymptotic normality
of Theorem 2.

Again for illustration the confidence interval construction
can be seen via Figure 4, where the statistic Fn(γ ) is plotted
against γ . The bootstrap 90% critical value 3.3 (calculated with
B=10,000 bootstrap replications) is plotted as the red dotted line.
The points of intersection indicate the ranges of the confidence
interval, and are indicated on the figure by the red dotted arrows
to the horizontal axis. Since the bootstrap critical value is larger
than the asymptotic critical value, the asymptotic interval is a
subset of the bootstrap confidence interval.

Before presenting the empirical results we report results from
our simulation experiment to assess the performance of the
methods. The data-generating process is identical to that used
in the previous section. As before, β2 is the key free parameter,
controlling the strength of the threshold effect, and the remain-
ing parameters and variables are set to match the empirical data.
In particular, we fixed the regressor xt to equal the empirical val-
ues of debt/GDP for the United States, so to precisely preserve
its strong serial dependence properties. As before, we gener-
ated 10,000 simulated samples and used B = 1000 bootstrap
replications for each sample. In Tables 2 and 3, we report the
coverage rates of nominal 90% intervals for the parameters β2

and γ .
The confidence intervals for β2 are reported in Table 2. The

first row reports the coverage rates for the asymptotic “plus
or minus” standard error confidence intervals. We see that the
confidence intervals undercover, with rates approximately 81%.
The second row reports the coverage rates of the percentile con-
fidence interval. These rates are better, especially for moderate
values of β2. In the third row, we report the coverage rates for
the “inverse percentile bootstrap, whose endpoints are twice the
coefficient estimates, less the 1− α/2 and α/2 quantiles of the
simulated coefficient estimates β̂∗2 . Its performance is not supe-
rior to the percentile interval. In the fourth row, we report the
coverage rates for the “symmetric percentile bootstrap” whose
endpoints equal the coefficient estimates, plus and minus the
1− α quantile of the simulated statistics |β̂∗2 − β̂2|. These inter-
vals only slightly uncover, with coverage rates about 86%–88%.
These are our recommended confidence intervals for the slope
coefficients.

In Table 3, we report coverage rates of nominal 90% intervals
for the parameter γ . The first row reports the coverage rates
for the asymptotic “plus or minus” standard error confidence



Hansen: Regression Kink With an Unknown Threshold 235

Table 2. Coverage rates of nominal 90% confidence intervals for β2

β2

−0.02 −0.04 −0.06 −0.08 −0.10 −0.12 −0.14 −0.16

β̂2 ± 1.645s(β̂2) 0.81 0.80 0.81 0.81 0.81 0.80 0.81 0.81
Percentile bootstrap 0.81 0.83 0.85 0.87 0.86 0.86 0.86 0.86
Inverse percentile bootstrap 0.84 0.84 0.85 0.83 0.82 0.82 0.82 0.83
Symmetric percentile bootstrap 0.86 0.86 0.87 0.88 0.87 0.86 0.86 0.86

intervals. These severely undercover, with coverage rates as low
as 67%. The second and third rows report coverage rates of the
conventional percentile interval and the inverse percentile inter-
val. Neither performs well, with the percentile interval substan-
tially overcovering and the inverse percentile interval severely
undercovering for small β2. The fourth row reports the cover-
age rates of the symmetric percentile interval. Its performance
is better than the other percentile intervals, but coverage rates
are sensitive to the value of β2. The fifth and sixth rows report
the coverage rates for the test-inversion confidence intervals Cγ

and C∗γ . These two have quite good coverage, especially C∗γ
that uses the bootstrap critical values. The interval only mildly
undercovers, and has roughly uniform coverage across β2. The
intervals C∗γ are our recommended confidence intervals for γ .

Our simulation results show that the recommended wild boot-
strap confidence intervals work reasonably well, but with some
moderate undercoverage. This is likely because our simulated
data are a time-series autoregression (and thus have time-series
dependence) while the wild bootstrap does not account for the
time-series dependence. The reason we recommend a wild boot-
strap (rather than a model-based bootstrap) is that the wild boot-
strap is able to condition on the observed regressor processes
and (most importantly) nonparametrically handle conditional
heteroscedasticity. These are important advantages and conve-
niences.

We now present in Table 4 the confidence intervals for the
coefficient estimates from the empirical regression, computed
with our recommended bootstrap methods with B=10,000 boot-
strap replications. In our assessment, the two most important
coefficients are β2 (the slope effect of debt on growth for high
debt ratios) and γ (the threshold level). The confidence interval
for β2 is [−0.18, −0.01]. This range is sufficiently wide that
we cannot infer with precision the magnitude of the impact of
debt on expected growth. The 90% confidence interval for the
threshold is 31% to 70%, also indicating substantial uncertainty.

The wide confidence interval for the threshold could be a
feature of the

√
n convergence rate for the threshold estimate,

or it could be due to the small sample size.

6. INFERENCE ON THE REGRESSION KINK
FUNCTION

In this section, we consider inference on the regression kink
function

g(θ ) = β ′x(γ ), (14)

where

x(γ ) =
⎛
⎝ (x − γ )−

(x − γ )+
z

⎞
⎠ .

Our theory will treat (x, z) as fixed, even though we will display
the estimates as a function of x. (Thus, we focus on pointwise
confidence intervals for the regression function.)

The plug-in estimate of g(θ ) is g(θ̂) = β̂ ′x(γ̂ ). In our empiri-
cal example, we display in Figure 2 g(θ̂) as a function of x, with
z fixed at the sample mean of zt .

Since Theorem 2 shows that θ̂ is asymptotically normal, it
might be conjectured that g(θ̂) will be as well. This conjecture
turns out to be incorrect. While g(θ ) is a continuous function
of θ , it is not differentiable at γ = x. As discussed in a recent
series of articles (Hirano and Porter 2012; Woutersen and Ham
2013; Fang and Santos 2014; Fang 2014; Hong and Li 2015), the
nondifferentiability means that g(θ̂) will not be asymptotically
normal at γ0 = x, and asymptotic normality is likely to be a
poor approximation for γ0 close to x.

While the regression kink function g(θ ) is not differentiable
at γ = x, it is directionally differentiable at all points, meaning
that both left and right derivatives are defined. The directional
derivative of a function φ(θ ) : R

k → R in the direction h ∈ R
k

is

φθ (h) = lim
ε↓0

φ(θ + hε)− φ(θ )

ε
(15)

(see Shapiro 1990). The primary difference with the conven-
tional notion of a derivative is that φθ (h) is allowed to depend on
the direction h in which the derivative is taken. For continuously
differentiable functions the directional derivative is linear in h.

Table 3. Coverage rates of nominal 90% confidence intervals for γ

β2

−0.02 −0.04 −0.06 −0.08 −0.10 −0.12 −0.14 −0.16

γ̂ ± 1.645s(γ̂ ) 0.67 0.68 0.69 0.70 0.71 0.73 0.74 0.75
Percentile bootstrap 0.99 0.99 0.97 0.96 0.94 0.93 0.92 0.91
Inverse percentile bootstrap 0.33 0.40 0.50 0.58 0.67 0.74 0.77 0.81
Symmetric percentile bootstrap 0.96 0.94 0.91 0.89 0.87 0.86 0.85 0.86
Cγ 0.90 0.88 0.87 0.86 0.84 0.85 0.84 0.85
C∗

γ 0.91 0.89 0.88 0.88 0.87 0.88 0.87 0.88
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Table 4. Coefficient estimates and bootstrap 90% confidence intervals

Estimate s.e. Interval

β1 0.033 0.035 [−0.002,0.136]
β2 −0.067 0.037 [−0.178,−0.006]
yt−1 0.28 0.088 [0.14,0.43]
Intercept 3.78 0.79 [2.58,4.94]
γ 43.8 12.3 [30.8,70.0]

For example, if φ(θ ) = x ′θ is linear, then φθ (h) = x ′h. If φ(θ ) is
continuously differentiable in θ then φθ (h) = (

∂
∂θ

φ(θ )
)′

h. How-
ever, if φ(θ ) is continuous but not continuously differentiable
the directional derivative will be nonlinear in h.

In the case of (14), we can calculate that the directional deriva-
tive of g(θ ) in the direction h = (hβ, hγ ) is

gθ (h) = x(γ )′hβ + gγ (hγ ), (16)

where

gγ (hγ )

=
⎧⎨
⎩

−β1hγ , if x < γ

−β1hγ 1
(
hγ < 0

)− β2hγ 1
(
hγ ≥ 0

)
, if x = γ

−β2hγ , if x > γ.

(17)

The directional derivative gγ (hγ ) is linear for x 
= γ but non-
linear for x = γ , with a slope to the left of −β1 and a slope to
the right of −β2.

Conventional asymptotic theory for functions of the form
φ(θ̂) requires that the function φ(θ ) be continuously differ-
entiable. Shapiro (1991, Theorem 2.1) and Fang and San-
tos (2014, Corollary 2.1) had generalized this to the case
of directional differentiability. They have established that if√

n(θ̂ − θ0) →d Z ∼ N (0, V ) and φθ (h) is continuous in h then√
n(φ(θ̂)− φ(θ0)) →d φθ (Z). In the classic case where φ(θ )

is continuously differentiable, the limiting distribution spe-
cializes to φθ (Z) = ( ∂

∂θ
φ(θ ))′Z ∼ N (0, ( ∂

∂θ
φ(θ ))′V ( ∂

∂θ
φ(θ ))), so

their result is a strict generalization of the Delta Method.
Since (16)–(17) is continuous in h, we can immedi-

ately deduce the asymptotic distribution of the regression
estimate.

Theorem 3.
√

n(g(θ̂)− g(θ0)) →d gθ (Z) where Z∼N ( 0,V)
and gθ (h) is defined in (16)–(17).

For x 
= γ0 the asymptotic distribution in Theorem 3 is nor-
mal, but for x = γ0 it is a nonlinear transformation of a normal
random vector. At x = γ0 the asymptotic distribution will be
biased, with the direction of bias depending on the relative mag-
nitudes of β1 and β2. For example, if β1 = 1 and β2 = −1 then
gγ (hγ ) = |hγ | so the asymptotic distribution in Theorem 3 will
have a positive mean while if the signs of the coefficients are
reversed then gγ (hγ ) = −|hγ | and the asymptotic distribution
in Theorem 3 will have a negative mean.

This nonnormality implies that classical confidence intervals
will have incorrect asymptotic coverage. We illustrate this in
Figure 5 by a continuation of our simulation experiment. Us-
ing the same simulation design as in the previous section, and
varying β2 from −0.04 to −0.16 in steps of 0.04, we plot the
coverage probability of classical (naive) nominal 90% point-
wise confidence intervals, plotting the coverage as a function of

Figure 5. Coverage probabilities of nominal 90% naive asymptotic
confidence intervals for regression kink function.

x. The asymptotic theory predicts that the confidence intervals
will have asymptotically correct 90% coverage for x 
= γ0 but
not for x = γ0, so we should expect coverage to be better for
x distinct from γ = 40 , but deteriorating for x near γ = 40.
Indeed, we see that the coverage rates vary from near 90%
for small x to approximately 77% at x = 40. The distortion
from the nominal coverage is sensitive to β2, with the distortion
steepening as β2 increases. We can also see that the cover-
age rates are less than the nominal 90% for large values of x,
which is not predicted from the asymptotic theory, and these
distortions are more severe for small values of β2. This ap-
pears to be a small-sample issue (a finite sample bias in the
regression estimate; there are only seven observations where
xt ≥ 80) and thus unrelated to the asymptotic nonnormality of
Theorem 3.

We might hope that bootstrap methods would improve the
coverage probabilities, but this is a false hope. As shown by Fang
and Santos (2014, Corollary 3.1), the nonnormality of Theorem
3 implies that the conventional bootstrap will be inconsistent.
Indeed, we investigated the coverage probabilities of confidence
intervals constructed using the percentile and inverse percentile
methods, and their coverage rates are similar to that shown in
Figure 5 (though less distortion for large x), so are not displayed
here.

Constructively, Fang and Santos (2014) suggested an alter-
native bootstrap method that is consistent for the asymptotic
distribution. Their suggestion is to approximate the distribution
of
√

n(g(θ̂)− g(θ0)) by that of ĝθ (
√

n(θ̂∗ − θ̂ )), where θ̂∗ is
the bootstrap distribution of θ̂ and ĝθ (h) is an estimate of gθ (h).
Confidence intervals can be constructed from this alternative
bootstrap distribution.

The Fang–Santos alternative bootstrap requires that the di-
rectional derivative gθ (h) be either known or consistently esti-
mated. Fortunately, the problem of estimating the directional
derivative has been solved in a recent article by Hong and
Li (2015). Their suggestion is to estimate (15) with a discrete
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Figure 6. Coverage probabilities of nominal 90% numerical delta method bootstrap intervals.

analog. Specifically, for some sequence εn > 0 satisfying εn →
0 and

√
nεn →∞, estimate the directional derivative φθ (h) of

φ(θ ) by

φ̂θ (h) = φ(θ̂ + hεn)− φ(θ̂ )

εn

.

Hong and Li (2015) showed that this produces a consistent
estimate of φθ (h) when φ(θ ) is Lipschitz continuous. They called
φ̂θ (h) “the numerical delta method.”

In our case, the regression function g(θ ) is Lipschitz continu-
ous in θ and the directional derivative gθ (h) takes the semilinear
form (16), so we only need to estimate the nonlinear component
(17). The Hong–Li estimate is

ĝγ (hγ ) = g(β̂, γ̂ + hγ εn)− g(β̂, γ̂ )

εn

,

where we have written g(β̂, γ̂ ) = g(θ̂ ). Thus, our estimate of
the full directional derivative is

ĝθ (h) = x(γ̂ )′hβ + g(β̂, γ̂ + hγ εn)− g(β̂, γ̂ )

εn

.

Evaluated at h = (hβ, hγ ) = (
√

n(β̂∗ − β̂),
√

n(γ̂ ∗ − γ̂ )), the
bootstrap estimate of the distribution of g(θ̂)− g(θ0) is

r∗ = x(γ̂ )′
(
β̂∗ − β̂

)+ g(β̂, γ̂ +√nεn (γ̂ ∗ − γ̂ ))− g(β̂, γ̂ )√
nεn

.

Hong and Li (2015) showed that if the function φ(θ ) is a
convex function of θ then upper one-sided confidence intervals
for θ constructed using r∗ uniformly control size, but lower
one-sided confidence intervals will not, and the converse holds
when φ(θ ) is a concave function. In our case, the function
g(θ ) is a convex function of γ if β1 ≤ β2 but is concave if
β1 ≥ β2. Thus, neither one-sided confidence intervals will uni-
formly control size. Their suggestion is to instead use two-sided
symmetric confidence intervals, as these will be asymptotically
conservative.

Let q∗1−α denote the (1− α)th quantile of the variable
|r∗|. The symmetric bootstrap confidence interval for g(θ0) is
g(θ̂ )± q∗1−α . We call this the numerical delta method bootstrap
interval.

An important issue is setting εn, the increment for the numer-
ical derivative. While the general theory of Hong and Li (2015)
requires

√
nεn →∞ , in the context of this model they reom-

mended εn = cn−1/2, though they provide no guidance for selec-
tion of c. We follow their advice and set εn = cn−1/2, and assess
the choice of the constant c via simulation. We implemented the
numerical delta method bootstrap, and calculated in the same
simulation as Figure 5 the pointwise coverage probabilities of
nominal 90% confidence intervals with c = 0.5, c = 1, c = 2,
and c = 4. The coverage probabilities are plotted in Figure 6,
where each panel corresponds to a value of β2.

Figure 6 shows that the coverage probabilities are mono-
tonically increasing in c, so a more conservative (and larger)
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confidence interval can be found by increasing c. The coverage
probabilities are also nonuniform in the regression argument
x, with overcoverage for small x and undercoverage for large
x. There is also a downward spike in coverage probabilities at
x = 40, which is the location of the true threshold and is con-
sistent with the nonnormal distribution theory. This downward
spike is lessened for larger c but is also increasing with β2.
The simulations indicate the appropriate choice of c depends
on β2 thus making a generic choice difficult. In our applica-
tion, our point estimate for β2 − β1 (which is the appropriate
analog) is −0.10, which is roughly intermediate between pan-
els (b) and (c). If we focus on obtaining correct coverage at
x = 40, the results suggest c = 1 is reasonable, with over cov-
erage for β2 = −0.08 and mild undercoverage for β2 = −0.12.
We thus set c = 1 and hence εn = n−1/2. For other applications,
we suggest evaluating the coverage via simulation.

The theoretical argument for the numerical delta method boot-
strap is that it has asymptotically conservative coverage for all
values of x, even at x = γ0. For values of x distant from γ0, how-
ever, it is possible that the classical bootstrap will have better
(e.g., less conservative) coverage. There is no clear way, how-
ever, to mix bootstrap methods, and the value of γ0 is unknown
in practice, so we recommend using the numerical delta method
bootstrap for confidence intervals for all values of x.

We now summarize the steps for the numerical delta method
bootstrap.

Algorithm 3: Numerical Delta Method Bootstrap Confidence
Intervals for Regression Kink Function at a Fixed Value of (x, z).

1. Follow Steps 1–3 of the wild bootstrap of Algorithm 2
2. Set x(γ̂ ) = ((x − γ̂ )−, (x − γ̂ )+, z′)′

3. Set εn = cn−1/2

4. Set r∗ = x(γ̂ )′(β̂∗ − β̂)+ (g(β̂, γ̂ +√nεn(γ̂ ∗ − γ̂ ))−
g(β̂, γ̂ ))/

√
nεn

5. Repeat B times, so as to obtain a sample of simulated esti-
mates r∗

6. Calculate q∗1−α , the (1− α)th quantile of the simulated |r∗|
7. Set the 1− α confidence interval for g(θ0) as [g(θ̂)− q∗1−α,

g(θ̂ )+ q∗1−α]

This is numerically quite simple to implement, although step
4 is unusual for a bootstrap procedure. For confidence interval
bands, steps 2 through 7 need to be repeated for each value of
(x, z) considered.

Formally, the merging of the Hong–Li numerical delta method
with this specific wild bootstrap for serially dependent data has
not been studied. More work would be welcome to understand
its properties.

We implemented the numerical delta method bootstrap using
the rule εn = cn−1/2 on the U.S. growth regression for c =
0.5, c = 1, c = 2, and c = 4, and plotted the pointwise 90%
confidence intervals in Figure 7. Numerically, this means that
Algorithm 3 was applied with z set at the sample mean of zt and
x evaluated on a grid from 1 to 120. The confidence intervals
widen as εn increases, except at x = γ̂ .

It is important to interpret these confidence intervals as point-
wise in x (not uniform). There have been recent advances in
developing uniform inference methods for nonparametric re-

Figure 7. Estimated regression kink function and 90% numerical
delta method confidence intervals.

gression by Belloni et al. (in press), but these methods do not
apply to the numerical delta method bootstrap.

Following the recommendation of our simulation study, we
take the second estimator (with εn = n−1/2) as our preferred
choice, and this is plotted in Figure 2 with the dashed blue lines.
The confidence intervals are sufficiently wide that it is unclear
if the true regression function is flat or downward sloping. The
confidence intervals reveal that by using the U.S. long-span
data alone, the estimates of the regression kink model are not
sufficiently precise to make a strong conclusion about whether
or not there is a negative effect of debt levels on GDP growth
rates.

7. CONCLUSION

This article developed a theory of estimation and inference
for the regression kink model with an unknown threshold and
applied it to study the growth and debt threshold problem of
Reinhart and Rogoff (2010). An interesting theoretical contri-
bution is the finding that the estimate of the regression function
is nonnormal due to nondifferentiability, and confidence inter-
vals can be formed using the recent inference methods of Fang
and Santos (2014) and Hong and Li (2015).

We apply the method to the long-span time-series U.S. data
developed by Reinhart and Rogoff (2010). Our point estimates
are consistent with the Reinhart–Rogoff hypothesis of a growth
slowdown when debt levels exceed a threshold. However, the
formal evidence for the presence of the threshold effect is incon-
clusive, and our confidence intervals for the regression function
are sufficiently wide that the effect of debt on growth is difficult
to detect.

An important caveat is that our empirical results are based
only on a single time-series (the United States), thus ignor-
ing the information in other nations’ experiences. This has the
advantage of not imposing homogeneity, but also may reduce
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precision and power. It would be useful to extend the results
here to panel data analysis.

APPENDIX: MATHEMATICAL PROOFS

Proof of Theorem 2: By the definition (4), θ̂ minimizes Sn(θ )
defined in (3), which we can write as Sn(θ ) = 1

n

∑n

t=1 et (θ )2 with
et (θ ) = yt − β ′xt (γ ). Thus, θ̂ approximately solves the first-order
condition 1

n

∑n

t=1 mt (θ̂) = 0 where mt (θ ) = Ht (θ )et (θ ). The pseudo-
true value θ0 minimizes L(θ ) = L(β, γ ) and thus solves m(θ0) where
m(θ ) = 1

2
∂

∂θ
L(θ ) = Emt (θ ). Define Q(θ ) = − ∂

∂θ ′m(θ ).
Andrews (1994), Section 3.2, showed that Theorem 2 will hold under

the following conditions.

Condition 1. θ̂ →p θ0

Condition 2. 1√
n

∑n

t=1 Htet →d N (0, S)

Condition 3. Q(θ ) is continuous in θ and Q(θ0) = Q

Condition 4. vn(θ ) = 1√
n

∑n

t=1 (mt (θ )−m(θ )) is stochastically
equicontinuous

We first establish Condition 1. Since xt (γ ) is continuous in γ , et (θ ),
and et (θ )2 are continuous in θ . Recalling definition (2) we have the
simple bound ‖xt (γ )‖2 = z′t zt + (xt − γ )2 ≤ ‖zt‖2 + x2

t + γ 2. Then
by the Cr and Cauchy–Schwarz inequalities,

et (θ )2≤2y2
t + 2

∣∣β ′xt (γ )
∣∣2 ≤ 2y2

t + 2β
2 (‖zt‖2 + x2

t + γ 2
)
,(A.1)

where β = sup {‖β‖ : β ∈ B} and γ = sup {|γ | : γ ∈ �} that are finite
under Assumption 2.2. The bound in (A.1) has finite expectation under
Assumption 1.2. Then by Lemma 2.4 of Newey and McFadden (1994)
(which is based on Lemma 1 of Tauchen (1985)), L (θ ) = Eet (θ )2 is
continuous and supθ∈B×� |Sn (θ )− L(θ )| →p 0 as n→∞. Lemma 2.4
of Newey and McFadden is stated for iid observations, but the result
only requires application of a weak law of large numbers, which holds
under Assumption 1 by the ergodic theorem.

Given the compactness of B × � and the uniqueness of the minimum
θ0 (by Assumptions 1.2 and 1.1, respectively), Theorem 2.1 of Newey
and McFadden (1994) establishes that θ̂ →p θ0 as n→∞, which is
Condition 1.

Condition 2 follows by the Herrndorf’s (1984) central limit theorem
for strong mixing processes, which holds under Assumption 1.1–1.2.

The following bound will be useful to establish Conditions 3 and
4. Let wt be any vector whose elements are pairwise products of the
variables (yt , xt , zt ), and set q = r/(r − 1). Note that Assumption 1.2
implies (E‖wt‖2r )1/r ≤ C for some C <∞. Let F (γ ) denote the dis-
tribution function of xt , which satisfies F (γ2)− F (γ1) ≤ f |γ2 − γ1|
under Assumption 1.4. By Hölder’s inequality, we find

E ‖wt1 (γ1 ≤ xt ≤ γ2)‖2 ≤ (
E ‖wt‖2r

)1/r (
E |1 (γ1 ≤ xt ≤ γ2)|q)1/q

≤ C (F (γ2)− F (γ1))1/q

≤ Cf
1/q |γ2 − γ1|1/q . (A.2)

One implication of this bound is that E (wt1 (xt ≤ γ )) is uniformly
continuous in γ .

We now establish Condition 3. Note that

Q(θ ) = − ∂

∂θ ′
E (Ht (θ )et (θ ))

= E
(
Ht (θ )Ht (θ )′

)

+E

⎛
⎜⎝

0 0 0 et (θ )1 (xt ≤ γ )
0 0 0 et (θ )1 (xt > γ )
0 0 0 0

et (θ )1 (xt ≤ γ ) et (θ )1 (xt > γ ) 0 0

⎞
⎟⎠ .

The elements of this matrix are quadratic functions of β, and functions
of γ through moments of the form E (wt1 (xt ≤ γ )) where wt is a
product of the variables (yt , xt , zt ). Since (A.2) holds we see that Q(θ )

is continuous in θ . Evaluated at θ0 we find Q(θ0) = Q. Thus Condition
3 holds.

We now establish Condition 4 by appealing to Theorem 1, Appli-
cation 4, case (2.15) of Doukhan, Massart, and Rio (1995). Notice
that mt (θ ) is a quadratic function of β, so the only issue is estab-
lishing stochastic equicontinuity with respect to γ . We thus so we
simplify notation by writing mt (θ ) as mt (γ ). Notice that we can write
mt (γ ) = wt1 (xt ≤ γ ) where wt is vector whose elements are products
of the variables (yt , xt , zt ). Under Assumption 1.2, mt (γ ) has a bounded
2rth moment and thus satisfies the needed envelope condition.

For any δ > 0 set N (δ) = δ−2/q and set γk , k = 1, . . . , N, to be an
equally spaced grid on �. Note that the distance between the grid-
points is O(N (δ)−1). Define m∗

tk = min[mt (γk−1), mt (γk)] and m∗∗
tk =

max[mt (γk−1),mt (γk)]. Then for each γ ∈ � there is a k ∈ [1, . . . , N ]
such that m∗

tk ≤ mt (γ ) ≤ m∗∗
tk . Thus [m∗

tk, m
∗∗
tk ] brackets mt (γ ). By

their construction, the fact that mt (γ ) = wt1 (xt ≤ γ ), and applying
(A.2),

E
∥∥m∗∗

tk −m∗
tk

∥∥2 = E ‖mt (γk)−mt (γk−1)‖2

≤ E ‖wt1 (γk−1 ≤ xt ≤ γk)‖2

≤ Cf
1/q |γk − γk−1|1/q

≤ O
(
N (δ)−q

) = O
(
δ2

)
.

This means that N (δ) = δ−2/q are the L2 bracketing numbers and
H2(δ) = ln N (δ) = |log δ| is the metric entropy with bracketing for
the class {mt (γ ) : γ ∈ �}. This and Assumption 1.1 imply eq.
(2.15) of Doukhan, Massart, and Rio (1995) and thus their The-
orem 1, establishing stochastic equicontinuity of vn(θ ) and hence
Condition 4.

We have established that Conditions 1–4 hold under Assumptions 1
and 2. As discussed above, this is sufficient to establish Theorem 2. �
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