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Abstract.We study the first year of the eBOSS quasar sample in the redshift range 0.9 < z <
2.2 which includes 68,772 homogeneously selected quasars. We show that the main source
of systematics in the evaluation of the correlation function arises from inhomogeneities in
the quasar target selection, particularly related to the extinction and depth of the imaging
data used for targeting. We propose a weighting scheme that mitigates these systematics.
We measure the quasar correlation function and provide the most accurate measurement to
date of the quasar bias in this redshift range, bQ = 2.45± 0.05 at z̄ = 1.55, together with its
evolution with redshift. We use this information to determine the minimum mass of the halo
hosting the quasars and the characteristic halo mass, which we find to be both independent
of redshift within statistical error. Using a recently-measured quasar-luminosity-function we
also determine the quasar duty cycle. The size of this first year sample is insufficient to detect
any luminosity dependence to quasar clustering and this issue should be further studied with
the final ∼500,000 eBOSS quasar sample.
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1 Introduction

The best current constraints on the cosmological parameters are from the power spectrum
of temperature fluctuations [1–5] in the Cosmic Microwave Background (henceforth CMB).
In this regard, the latest Planck satellite results provide overwhelming evidence for non-zero
cosmic acceleration or “dark energy” with ΩDE = 0.692 ± 0.012 [6]. The CMB, however,
can only provide a measurement at one redshift (the epoch of the surface of last scattering
at z ∼ 1100), and, so, measurements across many redshifts are required to constrain the
equation of state of dark energy [7–9]. As galaxies and quasars occupy a three-dimensional
web that traces a range of redshifts, they offer a unique probe of the evolution of dark
energy over more than 10 billion years of cosmic history. Cosmological experiments are thus,
increasingly, turning in part to vast redshift surveys in an attempt to map the Universe in
order to specifically study dark energy through the growth of structure [10–14].

The first significant galaxy redshift surveys [15–17], were improved upon by surveys
such as the 2dF Galaxy Redshift survey [18], the DEEP2 survey [19] and the Sloan Digital
Sky Survey (henceforth SDSS; [20]) “main” galaxy sample [21] and Luminous Red Galaxy
(henceforth LRG) sample [22]. The use of galaxies from such surveys as tracers at significantly
lower redshifts than the CMB have helped to precisely pin down our cosmological world
model [23–28]. In particular, such surveys have been used to measure the influence of baryons
on galaxy clustering [29] and to confirm the potential use of baryon-driven fluctuations (so-
called Baryon Acoustic Oscillations, or BAOs) in the galaxy power spectrum as a standard
ruler with which to set the cosmological distance scale [30].
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The realization that essentially every galaxy hosts a supermassive black hole [31–34],
and that a quasar is therefore just a phase in the normal cycle of a galaxy, prompted the
more general use of quasars as cosmological tracers. Recent major redshift surveys have
also, therefore, used quasars to probe large-scale structure, with the 2dF QSO Redshift
Survey [35] and the Sloan Digital Sky Survey (SDSS) quasar surveys [36, 37] being notable
examples. Quasar redshift surveys have often operated in tandem with galaxy surveys, and
have highlighted the possibility of using quasars to constrain cosmology at higher redshifts
than would be possible for galaxy samples to similar magnitude limits [38–40].

In addition to probing cosmology, quasar clustering can be used as a tool to constrain
the interplay of supermassive black holes, galaxies, and dark matter halos, and how that
interplay evolves with cosmic time. Measuring the bias of quasars constrains the mass of
the dark matter halos that quasars occupy. In turn, measuring the abundance of such halos
compared to the number density of the quasars they host can begin to constrain the duration
of the quasar phase. In general, this has led to a consistent picture where UV/optically
luminous quasars are biased by a factor of bQ ∼ 2 at redshift z ∼ 1 rising to bQ ∼ 3 at
z ∼ 2 and bQ > 4 at z > 3 [41–49]. This implies that UV/optically luminous quasars at
z < 2.5 are hosted by halos with an average mass of a few times 1012 h−1M� and are “on”
for a few per cent of the Hubble time. Precise bias and mass measurements for UV/optically
luminous quasars at multiple redshifts are crucial in helping to tie down the role of quasars
in galaxy evolution (see, e.g., [50] for an overview). In particular, the ties between quasars
and star-formation signatures are increasingly being analyzed by measuring the clustering of
quasars selected across the electromagnetic spectrum [51–60].

As clustering measurements have become increasingly precise, they have become domi-
nated by systematics. Some systematics arise from per-cent-level imperfections in calibrating
the target imaging or survey spectroscopy that are critical to assembling large redshift cata-
logs. Other common systematics include contamination by non-cosmological sources such as
stars, or general foregrounds such as Galactic dust. Such systematics can be scale-dependent,
affecting not just the amplitude of clustering measurements, but also the overall shape of the
power spectrum of tracers. Obviously, this can be a concern for both cosmological constraints
and for characterizing the dark matter halos occupied by tracer populations. To counter this,
procedures have been developed to calculate weighting maps and exclusion masks to amelio-
rate clustering systematics both for galaxies [61–63] and for quasars [64–69].

The Baryon Oscillation Spectroscopic Survey (BOSS; [12]) conducted as part of the third
iteration of the SDSS [70] focused on using quasars and galaxies as complementary probes
of a BAO feature at ∼ 100h−1Mpc in order to calibrate the redshift-distance relation. At
redshifts of z < 0.7, galaxies were used as direct tracers of the matter power spectrum [71–
73] and at z > 2.1 clouds of neutral hydrogen in the Lyman-α Forest, as illuminated by
background quasar-light, were similarly used [74–78]. Beyond its cosmological impact, BOSS
provided by far the most precise constraints on the bias and host-halo-masses of quasars at
z ∼ 2.5 [48, 49]. The success of BOSS led to the development of an extended spectroscopic
redshift survey using the SDSS telescope (extended-BOSS or eBOSS; [14]). The cosmological
goal of eBOSS [79] is to detect the ∼ 100h−1Mpc BAO scale in redshift ranges not yet
probed by spectroscopic surveys; LRGs at 0.7 < z < 0.9 [80]; Emission Line Galaxies at
z ∼ 0.9 [81, 82] and quasars at 0.9 < z < 3.5 [83]. In addition eBOSS will attempt to
improve BAO constraints by identifying new quasars to trace the Lyman-α Forest [84].

Ultimately, eBOSS will provide over half-a-million spectroscopically confirmed quasars
at redshifts of z > 0.9 [83]. This sample will provide an unparallelled opportunity to study
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galaxy evolution and the BAO scale through quasar clustering, particularly with careful
control of the systematics that can contaminate clustering measurements. In this paper, we
present measurements of quasar clustering using the first year of eBOSS observations. The
sample that we analyze approaches 70,000 optically luminous quasars in the redshift range
0.9 < z < 2.2. Even after only its first year, eBOSS has spectroscopically confirmed ∼2–3
times as many 0.9 < z < 2.2 quasars as used in the main clustering analyses of the 2dF QSO
Redshift Survey and the SDSS-I/II [41, 46, 47]. In this paper, we focus on correcting for
the systematics and inhomogeneities that can contaminate eBOSS clustering measurements.
We measure the evolution of quasar bias with unprecedented precision. We then interpret
our bias measurements in terms of the characteristic masses of quasar-hosting halos, and
estimate the duty cycle of quasars at 0.9 < z < 2.2. A companion paper [85] reexamines our
analyses in the context of sophisticated N-body simulations.

2 Data sample

2.1 eBOSS survey

The six years of observations of eBOSS [14] started in July 2014. At the end of the survey a
sample of more than 500,000 spectroscopically confirmed quasars will be available over 7500
deg2 in the redshift range 0.9 < z < 2.2. This will allow for a measurement of the BAO scale
and provide measurements of the angular diameter distance, dA(z), and of H(z) to a 2.8%
and a 4.2% accuracy, respectively [79]. The program also includes 250,000 new luminous red
galaxies (LRG) at 〈z〉 = 0.72, to be combined with BOSS LRGs and 195,000 emission-line
galaxies at 〈z〉 = 0.87. Finally the spectra of 60,000 new quasars at z > 2.1 will be measured
and the spectra of 60,000 known quasars at z > 2.1 will be remeasured to improve their
signal-to-noise ratio. This will improve BOSS Lyman-α BAO measurement.

The program makes use of upgraded versions of the SDSS spectrographs [86] mounted on
the Sloan 2.5-meter telescope [87] at Apache Point Observatory, New Mexico. An aluminum
plate is set at the focal plane of the telescope with a 3◦ diameter field-of-view. Holes are
drilled in the plate, corresponding to 1000 targets, i.e., objects to be observed with one of the
two spectrographs. An optical fiber is plugged to each hole and links to the spectrographs.
The minimum distance between two fibers on the same plate corresponds to 62” on the sky,
which results in some “collisions” between targets. It may, however, be possible to observe
both colliding targets if they are in the overlap region between two or more plates.

2.2 Quasar selection

The eBOSS quasar selection [83] involves a homogeneous CORE selection that combines
an optical selection in (u,g,r,i,z ) bands, using a likelihood-based routine called XDQSOz,
with a mid-IR-optical color cut. The extreme deconvolution (XD) algorithm1 was applied in
BOSS to model the distributions of quasars and stars in flux space, and hence to separate
quasar targets from stellar contaminants (XDQSO; [89]). In eBOSS we use the XDQSOz
extension [90], which selects quasars in any specified redshift range. We start from the SDSS
photometric images in 5 bands (u,g,r,i,z ) [91] with updated calibration of SDSS imaging
relative to BOSS [92]. We select point sources with deextincted PSF magnitudes g < 22 or

1XD [88] is a method to describe the underlying distribution function of a series of points in parameter
space (e.g., quasars in color space) by modeling that distribution as a sum of Gaussians convolved with
measurement errors.
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r < 22 that have an XDQSOz probability P (z > 0.9) > 0.2. This selection includes quasars
at z > 2.2, which are not used for direct quasar clustering but for Lyman-α forest studies.
There is another quasar selection in eBOSS dedicated to z > 2.2 Lyman-α quasars, with an
average 20 targets per deg2. We do not discuss it here.

In contrast to quasars, stars tends to be dim in the mid-IR wavelengths. We make
a weighted average of the WISE [93] w1 and w2 mid-IR fluxes to optimize the S/N ratio
and similarly a weighted average of SDSS g, r and i PSF fluxes. Selecting targets with a
resulting average optical magnitude significantly larger than the IR magnitude such that
mopt −mIR ≥ (g− i) + 3, reduces the star contamination in our sample without significantly
removing quasars.

This selection results in an average 115 targets per deg2, out of which 25 have already
been observed by SDSS I, II or III, so there remain 90 targets per deg2 to be measured by
eBOSS. These 25 and 90 targets per deg2 result, respectively, in 13 quasars per deg2 that we
call “known quasars” and 58 new quasars per deg2 that we call “eBOSS quasars”, in both
case in the range 0.9 < z < 2.2. This makes a total of about 70 quasars per deg2 and matches
the requirement to reach a 2% accuracy on the BAO scale [14].

Part of the eBOSS footprint was observed by SEQUELS [14, 83], a pilot survey at the
end of SDSS III. SEQUELS differs from the rest of eBOSS survey in two ways: the apatial
placement of the plates was denser, one plate per ≈ 4 deg2 instead of one plate per ≈ 5
deg2, and all quasar-target spectra were visually inspected. The first difference is taken
into account by the completeness (see section 3.1) and, in order to treat them as all eBOSS
quasars, we use only the pipeline information for SEQUELS quasars.

The data used in this paper include all spectra taken during the first year of eBOSS
data taking, up to July 2015. They cover a surface of 1200 deg2.

3 Analysis

3.1 Computing ξ(r)

There are a limited number of fibers available so all targets cannot be ascribed a fiber and
observed. Since the density of eBOSS targets is not homogeneous, their probability to be
observed is not homogeneous either. In addition targets are more likely to be observed when
located on areas where plates overlap. In order to take those effects into account we define
polygons as the intersections of the plates projected on the celestial sphere, and in each
polygon we define a completeness

C =
Nobs +Ncol

Ntargets −Nknown

. (3.1)

Here Nobs is the number of observed targets, Ntargets the total number of targets, Nknown

the number of targets that have already been observed by the SDSS I, II and BOSS surveys,
and Ncol is the number of targets that were not observed because they are colliding with a
quasar. Known targets are not re-observed by eBOSS in order to save fibers, and are thus
removed from the denominator of equation (3.1). Besides, known target completeness is by
definition equal to 1, which would bias our measurement. In order to force the known-target
completeness to be the same as for other targets, we remove some known targets from the
sample with a survival probability equal to the value of the completeness in their polygon.
We account for collisions as in Anderson et al. [94]: when a target is not observed due to
collision, we upweight by one unit the closest observed quasar within 62”. Therefore we
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analysis, we decide to keep the simpler upweighting scheme to handle collisions. Figure 1
shows the completeness of the eBOSS survey in the North Galactic Cap (NGC) and South
Galactic Cap (SGC), as computed with the Mangle software [96].

To correct for completeness, we generate a catalog of 107 objects with “random” angular
positions over the eBOSS footprint, with the number of random objects in each polygon
proportional to its area times its completeness. We then assign to each random object a
redshift that is drawn from the measured redshift distribution n(z), see figure 2. Finally, we
compute ξ(r) with the Landy-Szalay estimator [97]:

ξ̂LS(r) =
dd(r)− 2dr(r) + rr(r)

rr(r)
, (3.2)

where dd(r) is the number of pairs of quasars separated by a distance r, dr(r) is the number
of pairs between a quasar and an object from the random catalog, and rr(r) the number of
pairs of random objects. These three quantities are normalized to the total number of pairs.

As mentioned in section 2, the measure of the correlation function ξ(r) is very sensitive
to inhomogeneities in the quasar target selection. We apply veto masks to remove from our
sample all quasars and random objects that are located in areas where the target selection is
too contaminated to be modelled and easily corrected. These areas include regions around
bright objects (stars or galaxies) and where the SDSS photometry is unreliable. These veto
masks correspond to the masks used for BOSS DR12 [98]. We also remove areas covered by
the centerpost of the eBOSS plates, since we cannot observe those areas.

3.2 Estimation of statistical uncertainties

We compare two methods to compute covariance matrices. The first method, developed
by Laurent et al. [69], uses bootstrap realizations. For each galactic cap, we define 201
rectangular bootstrap cells with identical effective volume. We obtain a bootstrap realization
by drawing 201 cells with replacement from the 201 bootstrap cells, and compute ξ(r) for
this realization. We repeat this operation 10,000 times, and estimate the covariance matrix
of ξ(r) from the covariance of ξ(r) for these 10,000 realizations. Bootstrap resampling ignores
cosmic variance, but this is not an issue here since our sample is shot-noise limited. Finally,
we note that computing the covariance matrix from data resampling means that it includes
variations caused by systematic effects present in the data.

We also compute covariance matrices using 100 QPM mocks [99] for each galactic cap.
These mocks take into account cosmic variance, but they struggle to model the correlation
function on small scales. However, this is not problematic because these scales are not
relevant for this study.

Figure 3 displays the correlation matrices of ξ(r) for the full eBOSS survey obtained
with the mocks and the bootstrap realizations. We note that systematic weighting slightly
reduces the amplitude of the off-diagonal elements of the bootstrap correlation matrices on
large scales (center compared to left). The mock correlation matrix is noisier because we
only have 100 mock catalogues. Figure 4 shows the ratio of bootstrap and mock errors to
Poisson errors. We see that bootstrap errors are systematically larger than mock errors,
but provide a more accurate determination of uncertainties. The discrepancy between the
amplitudes of bootstrap and mock errors arises from the fact that some systematic effects
remain in the data after the weighting scheme presented in section 4, and that these effects
are not accounted for in the QPM mocks. In the following, we will always display statistical
uncertainties obtained from bootstrap realizations.
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Weighting scheme χ2
NS(24 d.o.f.)

No weights 161

Collision 154

Collision + Unidentification 128

Collision + Unidentification + Depth 58

Collision + Unidentification + Depth + Galactic extinction 47

Table 1. Values of χ2
NS (see eq. (4.2)) for different weighting schemes.

provides a non-linear matter power spectrum Pmat(k) for 10−5 < k < 102 (Mpc/h)−1. We
account for linear redshift-space-distortions using the Kaiser formula [102]:

PQ(k, µ) = b2Q (1 + βµ2
k)

2 Pmat(k) , (5.1)

where µk is the cosine of the angle between k and the line of sight, β = f/bQ, and f ' Ω0.55
m (z)

is the growth rate of structures. The last step consists in converting PQ(k) into ξQ(r) using
a Fast Fourier Transform (FFT).

All fits of bQ are performed using the MINUIT libraries [103] over the range 10 < r < 85
h−1Mpc. MINUIT is a convenient tool used to perform χ2 minimization for multi-parameters
function, and compute the correlation matrices of the fitted function parameters. The fit,
shown on figure 8, exhibits a fair agreement with the ΛCDM model (χ2 = 4.0 for 7 d.o.f.).
For the full eBOSS survey, we measure bQ = 2.45 ± 0.05, for z̄ = 1.55. This result is
in agreement with the results obtained by Croom et al. [41] using the 2dF QSO Redshift
Survey: their empirical parametrization yields a value bQ(z = 1.55) = 2.41. Croom et al. [41]
give the error on the two parameters of their fit but not the correlation. If we neglect the
correlation, the error on bQ(z = 1.55) is 0.30. In any case our measurement is compatible
with their parametrization. If we fit their data, we confirm their values of a and b, and find
a correlation coefficient ρa,b = −0.90. Taking into account this anticorrelation, yields a much
lower error on bQ(z = 1.55) of 0.10. In any case our measurement is compatible with their
parametrization.

These results are also compatible with the measurement obtained with the SDSS II
quasar sample. The right panel of figure 8 shows that the ratio ξQSO/ξmat = b2Q(1+

2
3
β+ 1

5
β2),

where ξmat is the matter correlation function, remains nearly constant with r. This means
that our measurement of bQ is not sensitive to the range of the fit.

We cut our sample in 4 redshift slices, and measure bQ in each subsample: the results
are displayed on figure 9, alongside results from the BOSS quasar sample from Laurent
et al. [69]. The numerical values are presented in table 2. We combine the measurements
of bQ from the eBOSS and BOSS samples, and fit bQ(z) using MINUIT. In order to avoid a
large anti-correlation between the fit parameters obtained with Croom parametrization, we
use an equivalent parametrization defined such as to yield non correlated parameters:

bQ(z) = α[(1 + z)2 − 6.565)] + β (5.2)

with
α = 0.278± 0.018, β = 2.393± 0.042, ρα,β = 0 , (5.3)

where ρα,β is the correlation coefficient between the parameters α and β. This is equivalent
to a = 0.278± 0.018, b = 0.57± 0.13 and ρa,b = −0.94, consistent with Croom et al.
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zmin zmax zeff NQSO bQ χ2 (7 d.o.f.)

0.9 1.2 1.06 13,594 1.75± 0.08 9.9

1.2 1.5 1.35 17,696 2.06± 0.08 1.7

1.5 1.8 1.65 17,907 2.57± 0.09 2.1

1.8 2.2 1.99 19,575 3.03± 0.11 8.5

0.9 2.2 1.55 68,772 2.43± 0.05 4.5

Table 2. Fit of bias over 10 < r < 85 h−1Mpc in various redshift bins.

activity of eBOSS quasars by calculating their duty cycle, through which the halo mass of a
population of quasars can be linked to their luminosity.

6.1 Characteristic Halo Mass

Quasars are biased tracers of underlying dark matter [104] and the fact that more massive
haloes have higher clustering bias [105, 106], has been used as the basis for constraining the
mass of the dark matter haloes that host quasars [49, 104, 107–109]. Here, we follow a similar
approach to Eftekharzadeh et al. [49], who constrained the dark matter halo mass and duty
cycle of ∼ 75,000 quasars at z ∼ 2.5 in the final release of the BOSS survey.

We adopt parameters such as to get a ∆ = 200 matter overdensity in the formalism
of Tinker et al. [106] in order to calculate the minimum halo mass, Mh,min, and the character-
istic halo mass, M̄h, of our quasars. We apply this approach to quasars in our main sample,
and in each of our four redshift subsamples (detailed in table 3). In this formalism, M̄h is the
characteristic halo mass that corresponds to our measured clustering bias, i.e. b(M̄h) = bQ,
and Mh,min is the minimum halo mass that bounds the range of haloes that correspond to
the observed clustering bias, i.e. b(M > Mh,min) = bQ, with

b(M > Mh,min) ≡

∫∞

Mh,min

dn
dM

b(M)dM
∫∞

Mh,min

dn
dM

dM
, (6.1)

where the halo masses above Mh,min are weighted by the halo abundance dn/dM in the
halo mass function as determined by Tinker et al. [110]. To calculate Mh,min, using a Monte
Carlo approach, we run a large range of possible models through the fitting procedure and
determine the best fit and 68% range of errors to derive the confidence limits.

The assumption of a lower limit Mh,min in eq. 6.1, suggests that haloes with M < Mh,min

can only host quasars that are less luminous than the least luminous quasar in our sample.
This interpretation can be tested for consistency by checking whether quasar clustering is
luminosity-dependent. For example, Eftekharzadeh et al. [49] found that the assumption of
a scatter-less monotonic relation between halo mass and quasar luminosity failed to describe
the observed lack of luminosity dependence for the clustering of BOSS quasars at z ∼ 2.4.
How quasar clustering varies with luminosity appears to be a subtle effect. Categorically
detecting whether different luminosity quasars are hosted by different mass haloes will there-
fore require very precise measurements of quasar clustering. Constraining any luminosity
dependence to quasar clustering is a topic where eBOSS could make gains, given its expected
unprecedentedly large sample of homogeneously selected quasars.

Prior to eBOSS, the most extensive wide-area spectroscopic quasar surveys at z ∼ 1.5
that were used for clustering analyses, were the 2dFQSO redshift survey (2QZ; [111, 112]) and
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the SDSS-DR5 quasar survey (DRQ5; [113, 114]). Restricting to uniformly selected quasars
over the redshift range 0.9 < z < 2.2, these surveys provided catalogs of ∼ 20,000–25,000
quasars with which to conduct clustering analyses. Projecting from SEQUELS, eBOSS is
expected to spectroscopically confirm ∼ 70 quasars per deg2 down to a limiting magnitude of
g < 22 over ∼ 7,500 deg2, for a total sample of more than 500,000 uniformly selected quasars
in the redshift range 0.9 < z < 2.2 [83]. The average magnitude of eBOSS quasars is ∼2.5
times fainter than that of previous SDSS clustering samples, while covering a similar redshift
range. Essentially, therefore, eBOSS will extend quasar clustering measurements by about a
factor of 10 in luminosity. This unprecedented expansion of the dynamical range and number
density of quasar samples will allow eBOSS to provide the highest statistical power yet to
disentangle the luminosity and redshift dependences of quasar clustering.

Figure 10 shows Mh,min and M̄h for our full (NGC+SGC) sample of 68,772 quasars at
z ∼ 1.5, as well as for our four redshift subsamples at z = 1.06, 1.35, 1.65, and 1.99. In
addition, the 4th and 5th columns of table 4 list the M̄h and Mh,min we derive for our four
redshift subsamples as well as for our main sample. The errors on M̄h and Mh,min are calcu-
lated from the confidence intervals for the quasar biases that we derive from our clustering
measurements. These confidence intervals are projected through eq. 6.1 at the mean redshift
of each sample, using the Tinker et al. [110] halo mass function and the appropriate values
of Mh,min, in order to derive a corresponding confidence interval in halo mass.

To illustrate how Mh,min and M̄h change over the redshift range that is covered by
both BOSS (z > 2.2) and eBOSS (z < 2.2), figure 10 displays the measurements made
by Eftekharzadeh et al. [49] for BOSS quasars using the same formalism that we use here for
eBOSS quasars. Figure 10 also includes the same quantities estimated using the quasar clus-
tering measurements from Shen et al. [45] at z ∼ 3.1 and z ∼ 4.0 and Font-Ribera et al. [115]
at z ∼ 2.4. Note that the agreement between Font-Ribera et al. [115] and Eftekharzadeh
et al. [49] is not particularly surprising, as both measurements are made using BOSS quasars.
However, the reason for the extreme differences in halo mass measured by Shen et al. [45], as
compared to lower-redshift studies, remains debatable. Shen et al. [45] studied the clustering
of a sample of ∼ 4000 highly luminous quasars with a density of ∼ 1 deg−2 and measured
quasar biases approaching bQ ∼ 16 at z > 4. It is possible that there is a sharp change in
the host halo mass of quasars that lie beyond the luminosity and redshift range of BOSS —
models in which quasars are triggered by major mergers of gas-rich galaxies [116] do allow for
evolutionary scenarios in which the clustering of luminous quasars simply tracks the growth
of the most massive haloes at z > 3. Indeed, the duty cycle of fduty ∼ 1 measured by Shen
et al. [45] for quasars at z > 3 implies that all rare supermassive haloes (> 1013M�) host
active black holes.

Previous authors [112] found convincing evidence that the bias of z < 2.5 quasars, at
magnitudes of about g < 21, increases with redshift from z ∼ 0.5 to z ∼ 2.5. This implies
that the mass of the haloes hosting quasars remains fairly constant at z < 2.5, because a
higher bias can offset the fact that the characteristic mass of the average halo must dwindle
at higher redshift (as structure has had less time to grow). By extension, if the bias of
quasars were to remain constant at higher and higher redshift, this would imply that the
characteristic mass of the haloes hosting quasars was decreasing with redshift. Essentially
this dwindling host halo mass was what was found by Eftekharzadeh et al. [49] for BOSS
quasars at z > 2.5, as is shown in figure 10. Contrary to the flat bQ(z), or dwindling host
halo mass, measured for BOSS quasars at z > 2.5, the biases we measure for eBOSS quasars
increase with redshift, implying that the characteristic host halo mass of eBOSS quasars is
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roughly constant (again as shown in figure 10). This is in excellent agreement with the results
of Croom et al. [112], who found a non-evolving halo mass of M = (3.0± 1.6)× 1012 h−1M�

over 0.5 < z < 2.5 for a smaller sample of quasars that were slightly more luminous than
those in our sample.

6.2 Duty cycle

The length of duration of the quasar phase (the so-called “duty cycle”) has been defined in
multiple slightly different ways in the literature. Here, we take the definition of the duty cycle
as the ratio of the number density of haloes that host black holes that are “on” (and thus
observed as luminous quasars) to the full number of haloes that could host quasars within the
luminosity range of our sample. As in Eftekharzadeh et al. [49], we compare the cumulative
luminosity function of quasars over a range of luminosities to the cumulative space density
of haloes over the corresponding range of host halo masses [104, 108]

fduty =

∫ Lmax

Lmin
Φ(L)dL

∫∞

Mh,min

dn
dM

dM
, (6.2)

where the value of Mh,min is set by the measured quasar bias (as in eq. 6.1), dn/dM is, again,
taken from Tinker et al. [110], and Φ(L) is the quasar luminosity function. Note that we
integrate our halo masses over the entire mass range from Mh,min to infinity.2 Effectively, this
reflects the extremely weak relationship between quasar clustering and quasar luminosity, by
allowing the quasars in our samples to be hosted by a limitless range of halo masses above
Mh,min. We adopt a recent quasar luminosity function from Palanque-Delabrouille et al. [84]
that was derived using quasars in our redshift and luminosity ranges of interest. We use
this luminosity function to calculate the space density of quasars in our samples (see the
3rd column in table 4). Quasars targeted as part of eBOSS do not all receive a fiber for
follow-up spectroscopy. Further, eBOSS is not complete to all quasars in the Universe.
Hence, the observed number density of quasars listed in table 3 should be lower than the
expected total space density of 0.9 < z < 2.2 quasars at the flux limit of eBOSS, even if
the Palanque-Delabrouille et al. [84] luminosity function is perfectly accurate.

We display our calculated fduty values as a function of redshift in figure 11 and list
the corresponding measurements in table 4. Motivating by the fact that the error on the
bias dominates any errors on the luminosity function, we estimate errors on fduty by draw-
ing sample values of the quasar bias from a Gaussian corresponding to the 68% confidence
interval around our measured ±1σ errors on bQ. It is however worth emphasising that the
resulting errors were not forced to follow a Gaussian distribution but a 68% Gaussian range
on the variables were chosen to go into the fitting analysis and take any form after passing
naturally through the model in a Monte-Carlo fashion. We then calculate fduty for each
sampled bQ using eq. 6.1 and eq. 6.2, and hence derive the implied ±1σ errors on fduty. Fig-
ure 11 compares our results to the similarly calculated fduty(z) of BOSS quasars at z > 2.2
from Eftekharzadeh et al. [49].

Under the assumption that there is effectively no link between the luminosity and clus-
tering of quasars (i.e. the assumption that we used to derive fduty), we can ignore the different
luminosity ranges probed by BOSS and eBOSS and directly compare the host halo masses
and duty cycles of BOSS and eBOSS quasars. The almost flat M̄h(z) up until z ∼ 1.8 de-
picted in figure 10, implies that quasars reside in haloes of similar mass at z . 2. Above

2The infinity in this equation has a numerical equivalent of ∼ 1015 h−1
M�.

– 15 –



J
C
A
P
0
7
(
2
0
1
7
)
0
1
7

z ∼ 2, the characteristic mass of the haloes that host quasars appears to plummet, by almost
a dex by z ∼ 3. Further, as listed in table 4, the measured duty cycle for eBOSS quasars at
z̄ ∼ 1.5 is more than four times longer than for BOSS quasars at z̄ ∼ 2.5. It has long been
known that the quasar population peaks in space density around redshift 2–3 [117]. We can
interpret this peak as a physical manifestation

of a combination of the quasar duty cycle and the characteristic masses of quasar-hosting
haloes. As more massive haloes are rarer, z ∼ 2–3 is a sweet-spot where duty cycles are large
compared to host halo rarity. Below z ∼ 2 quasar-hosting haloes are equally as rare as
they are at z ∼ 2 (because the characteristic halo mass is unchanging) but the increasingly
small duty cycle at lower redshifts implies that fewer of these haloes host active quasars. in
contrast, at z ∼ 2–3, the characteristic mass of quasar-hosting haloes drops, which implies
that quasar-hosting haloes are more common. This, however, is offset somewhat by a rapid
reduction in the duty cycle, which implies that at higher redshifts in the range z ∼ 2–3 fewer
and fewer quasars are “on” in these increasingly more numerous haloes.

On the other hand, our assumption that there is absolutely no correlation between
quasar luminosity and host halo mass may break down under further scrutiny. More so-
phisticated models that add scatter to the halo mass-luminosity relation [118] would then
be needed to fully understand the interplay between quasars and large-scale structure. The
characteristic mass of the haloes that host quasars is an average across the halo mass function
(dn/dM), so the fact that the characteristic mass stays relatively constant between z ∼ 2
and z ∼ 1 could simply mean that the most massive haloes dominate this average. A plau-
sible scenario might be that less luminous quasars inhabit a wide range of halo masses but
more luminous quasars only reside in the most massive haloes. At z ∼ 1, where we sample
far down the quasar luminosity function, we might then expect to see a wide range of halo
masses, but the clustering signal would still be dominated by the most massive haloes. At
z ∼ 2, where our magnitude-limited sample would shift to more luminous quasars, we would
increasingly sample just higher-mass haloes. In either case, at z ∼ 1 or at z ∼ 2 our clus-
tering signal would only reflect the clustering of high mass haloes. It is straightforward to
interpret our measurements under this alternative scenario. For example, table 4 shows that
quasars in our first redshift subsample at 0.9 < z < 1.2 are the least luminous population, on
average, among our four redshift subsamples, and that there are also fewer of them. These
0.9 < z < 1.2 quasars have an Mh,min that is somewhat smaller than the 2–3× more luminous
population at 1.5 < z < 1.8, but have an M̄h that is consistent. This could be interpreted to
be indicative of the less-luminous-than average 0.9 < z < 1.2 quasars occupying the widest
range of halo masses in eBOSS but, also being less numerous, still having a clustering signal
that is dominated by the most massive haloes.

Our sample of quasars is of insufficient size to detect any luminosity dependence to
quasar clustering. But, as was mentioned earlier in this section, a detailed study of the
luminosity dependence of quasar clustering using the final eBOSS sample of∼ 500,000 quasars
remains an important and highly anticipated objective of the eBOSS survey. In addition,
the quasars sampled by eBOSS overlap the Luminous Red Galaxy and Emission Line Galaxy
populations sampled by eBOSS around 0.7 . z . 1.0. This will provide a chance to cross
correlate quasars with more-numerous galaxies (as in, e.g., [119, 120]) to try to study the
luminosity dependence of quasar clustering in narrow redshift bins near z ∼ 0.8.
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Figure 10. The evolution of the minimum and characteristic halo mass (see also eq. 6.1 and table 4)
for our full sample (green stars) and four redshift subsamples (pink inverted triangles). Other points
indicate the results for BOSS from Eftekharzadeh et al. [49] for their main sample (orange circle) and
three redshift subsamples (blue triangles), from Shen et al [45] (the “good fields” points have been
offset slightly for visual clarity), and from Font-Ribera et al. [115]. Results from previous works are
based on their reported values of quasar bias, recalibrated to our chosen cosmology.

∆z ∆Mi Nqso n

(10−6 h−1Mpc)−3

0.9 ≤ z < 1.2 −22.05 ≤ Mi ≤ −26.77 13594 13.94± 0.27

1.2 ≤ z < 1.5 −22.62 ≤ Mi ≤ −27.33 17696 15.20± 0.26

1.5 ≤ z < 1.8 −22.97 ≤ Mi ≤ −27.81 17907 13.98± 0.27

1.8 ≤ z < 2.2 −23.49 ≤ Mi ≤ −28.22 19575 10.87± 0.30

0.9 ≤ z ≤ 2.2 −22.82 ≤ Mi ≤ −27.67 68772 13.17± 0.28

Table 3. The redshift limits, absolute i-magnitude range, total number of quasars (NGC+SGC)
and space density in comoving coordinates for quasars in our main sample (final row) and redshift
subsamples.

7 Conclusion

The first year of observation of the eBOSS survey provides 68,772 homogeneously selected
quasars in the redshift range 0.9 < z < 2.2, which represents the largest quasar sample ever
obtained in this redshift range. We use this quasar sample to measure the quasar correlation
function ξ(r). We investigate various sources of systematic effects that might impact the
measurement of ξ(r), and find that the main contribution arises from inhomogeneities in
the quasar target selection. We provide a weighting scheme that mitigates the important
systematic effects, and we show that the resulting correlation function is much closer to zero
on large scales

The measured correlation function is in agreement with a linear Λ-CDM model in the
range 10 < r < 85 h−1Mpc. We measure the quasar bias of our sample to be bQ = 2.45±0.05,
at z̄ = 1.55. Splitting our sample into four redshift slices provides the evolution of bQ with
redshift, and confirms that bQ increases with z in the studied redshift range. These results
are compatible with previous findings by the 2dF and SDSS-II surveys. It is also remarkable
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∆z ∆L Φ(Lmin < L < Lmax) Mh,min Mh fduty

(1046 erg s−1) (10−6 h−1Mpc)−3 (1012 h−1M�) (1012 h−1M�)

0.9 ≤ z < 1.2 0.04 ≤ L ≤ 2.96 16.96+1.54
−1.78 1.99+0.52

−0.41 6.10+1.20
−1.00 0.0091± 0.0027

1.2 ≤ z < 1.5 0.06 ≤ L ≤ 4.94 23.69+2.46
−2.19 2.24+0.27

−0.24 5.91+0.56
−0.51 0.0183± 0.0028

1.5 ≤ z < 1.8 0.09 ≤ L ≤ 7.68 29.37+2.91
−2.99 2.51+0.65

−0.27 5.80+1.20
−0.51 0.0355± 0.0133

1.8 ≤ z ≤ 2.2 0.14 ≤ L ≤ 11.23 32.89+3.10
−3.56 1.99+0.24

−0.41 4.33+0.42
−0.74 0.0422± 0.0077

0.9 ≤ z ≤ 2.2 0.04 ≤ L ≤ 11.23 26.82+2.11
−2.42 2.51+0.31

−0.27 6.01+0.58
−0.58 0.0292± 0.0048

Table 4. The first two columns display the redshift limits and luminosity range for our main sam-
ple (final row) and redshift subsamples. The 3rd column lists the space density of quasars in the
given redshift and luminosity ranges, calculated using the combination of the Pure Luminosity Evo-
lution (PLE) and the Luminosity and Density Evolution (LEDE) models for the luminosity function
(PLE+LEDE) from Palanque-Delabrouille et al. [84]. The 4th and 5th columns display the minimum
and the characteristic halo mass calculated at the average redshift of the sample (see eq. 6.1). The
6th column lists the duty cycle, which is derived from Mh,min and Φ (see eq. 6.2). fduty is expressed
as a fraction of the Hubble time (9.785 h−1 Gyr in our adopted cosmology).

Figure 11. The evolution of the duty cycle for our main sample (green star) and four redshift
subsamples (red inverted triangles) calculated using eq. 6.2. See table 4 for the fduty values and
table 3 for a summary of each sample’s physical properties. Triangles depict values of fduty for BOSS
quasars from Eftekharzadeh et al. [49] for their main sample (orange circle) and their three redshift
subsamples (blue triangles).

that, with only one fifth of the final sample, the eBOSS survey already provides the most
accurate measurement of bQ(z) in the range 0.9 < z < 2.2.

Adopting Tinker et al. [106]’s formalism for the dark matter distribution and halo mass
function, we calculate the minimum halo mass, Mh,min, and the characteristic halo mass, M̄h,
of our quasar sample. We use a recent luminosity function that was derived using quasars in
our redshift and luminosity ranges of interest [84] to measure the duty cycle of eBOSS quasars
at z ∼ 1.5 and for subsamples of these quasars in four slices of redshift over 0.9 < z < 2.2
to investigate the redshift evolution of Mh,min, M̄h, and fduty. We conduct our Mh,min, M̄h,
and fduty calculations under the assumption that there is weak to no connection between
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quasar clustering and quasar luminosity. This assumption allowed us to compare the same
calculations for BOSS quasars at z > 2.2 to our measurements for much fainter quasars
at z < 2.2.

We find that the characteristic mass of haloes hosting quasars remains relatively con-
stant at z < 2.2. This finding is in agreement with the non-evolving halo mass of quasars over
0.5 < z < 2.2 found by Croom et al. [112]. Our result is also in accord with the dwindling
halo mass found for BOSS quasars at z > 2.2 by Eftekharzadeh et al. [49] as the structures
have more time to grow at higher redshifts than at z < 2 (see figure 10). We find the duty
cycle of eBOSS quasars at z̄ ∼ 1.5 to be more than four times longer than that of BOSS
quasars at z̄ ∼ 2.5. Combining the duty cycles of BOSS and eBOSS quasars in figure 11, we
interpret the observed peak at the quasar duty cycle around z ∼ 2 as a physical manifestation
of having fewer quasars that are “on” at z ∼ 2−3. The average luminosity of eBOSS quasars
at 0.9 < z < 1.2 in our sample is 2-3 times less than quasars at 1.5 < z < 1.8 and they
appear to occupy a wider range of halo masses with smaller Mh,min compared to quasars at
1.5 < z < 1.8 (see table 4). Nevertheless, the clustering signal for both sets of quasars is
dominated by the rare most massive halos in their occupied range of halo masses. The size
of our current sample of quasars in the first year of eBOSS is insufficient to detect any lumi-
nosity dependence to quasar clustering. Whether quasar clustering is luminosity-dependent
will be further investigated with the final sample of ∼500,000 eBOSS quasars.
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