Experimental Mathematics

ISSN: 1058-6458 (Print) 1944-950X (Online) Journal homepage: http://www.tandfonline.com/loi/uexm20

Taylor & Francis

Taylor &Francis Gro

Derived Hecke Algebra for Weight One Forms

Michael Harris & Akshay Venkatesh

To cite this article: Michael Harris & Akshay Venkatesh (2018): Derived Hecke Algebra for Weight
One Forms, Experimental Mathematics, DOI: 10.1080/10586458.2017.1409144

To link to this article: https://doi.org/10.1080/10586458.2017.1409144

@ Published online: 03 Jan 2018.

\J
[:J/ Submit your article to this journal &

||I| Article views: 28

A
& View related articles (&'

K!) View Crossmark data &'

CrossMark

Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalinformation?journalCode=uexm20



EXPERIMENTAL MATHEMATICS
2017, VOL. 0, NO. 0, 1-20
https://doi.org/10.1080/10586458.2017.1409144

Taylor & Francis
Taylor &Francis Group

‘M) Check for updates

Derived Hecke Algebra for Weight One Forms

Michael Harris® and Akshay Venkatesh®

aDepartment of Mathematics, Columbia University, New York, NY, USA; ®Department of Mathematics, Stanford University, Stanford, CA, USA

ABSTRACT

We study the action of the derived Hecke algebra on the space of weight one forms. By analogy with
the topological case, we formulate a conjecture relating this to a certain Stark unit. We verify the truth

KEYWORDS
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theory

of the conjecture numerically, for the weight one forms of level 23 and 31, and many derived Hecke
operators at primes less than 200. Our computation depends in an essential way on Merel’s evaluation
of the pairing between the Shimura and cuspidal subgroups of J,(q).

1. Introduction

Let G be an algebraic group over Q. In [Venkatesh nd],
the second-named author studied the action of a derived
version of the Hecke algebra on the singular cohomol-
ogy of the locally symmetric space attached to G. One
expects that this action transports Hecke eigenclasses
between cohomological degrees and moreover (see again
[Venkatesh nd]) is related to a “hidden” action of a motivic
cohomology group.

It is also possible for a Hecke eigensystem on coher-
ent cohomology to occur in multiple degrees. The sim-
plest situation is weight one forms for the modular curve.
We study this case, explicating the action of the derived
Hecke algebra and formulating a conjectural relationship
with motivic cohomology.

The motivic cohomology is particularly concrete: a
weight one eigenform f is attached to a two-dimensional
Artin representation ps of Gal(Q/Q) and the motivic
cohomology group in question is generated by a certain
unit in the splitting field of the adjoint of ps. This makes
the conjecture particularly amenable to numerical testing.
We carry this out for the forms of conductor 23 and 31,
and the first few derived Hecke operators; the numerics
all support the conjecture.

We note that this story is also related to the
Taylor-Wiles method for coherent cohomology and its
obstructed version due to Calegari-Geraghty (see [Harris
13], and the detailed discussion of weight one forms in
[Calegari and Geraghty nd]). This is used implicitly in the
discussion in Section 4 of the current paper.

Now we outline the contents of the paper. After giv-
ing notation in Section 2, we describe the derived Hecke
algebra and the main conjecture in Section 3. Although

the discussion to this point is self-contained, we post-
pone the comparison with the results of [Venkatesh nd]
until the final section. We translate the Conjecture to an
explicitly computable form in Section 5; see in particular
Proposition 5.1. Finally, in Section 5.4, we make the con-
jecture even more explicit in the case of a form associated
to a cubic field K, and check it numerically in the case of
K with discriminant —23 and —31.

It would be most desirable to extend our computations
to the case of an “exotic” weight one form, that is to say, a
weight one form whose associated projective Galois rep-
resentation has non-dihedral image. The case of a form
whose Galois representation is induced from a mixed sig-
nature character of a real quadratic field is also of inter-
est. The minimal level of such a form is 124, but our code
becomes very slow once the product gN of the level N and
the prime g indexing the derived Hecke operator becomes
large: it seems unlikely we could, with our current code,
compute enough Hecke operators to shed any real light on
the conjecture.

Our numerical computation depends, in a crucial way,
on the evaluation of a certain pairing in coherent coho-
mology on the mod p fiber of a modular curve; this eval-
uation is postponed to Section 6, where we do it by relat-
ing it to Merel’s remarkable computation [Merel 96]. It is
worth emphasizing how important Merel’s computation
is for us: it seemed almost impossible to carry through
our computation until we learned about Merel’s results.
Indeed, the role that Merel’s computation plays here sug-
gests that it would be worthwhile to understand how it
might generalize to Hilbert modular surfaces.

The expression of the derived Hecke algebra action
as a cohomological cup product (see 5-2) strongly sug-
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gests a relation with special values of the triple product L-
function. In the forthcoming work with Henri Darmon,
Michael Harris, and Victor Rotger, we will study this fur-
ther; in particular we are able to prove some special cases
of the Conjecture.

2. Notation

2.1. Modular curves

Fix an integer N. We will generically use the letter R for
a Z[1/N]-algebra. For R — R’ a morphism of Z[1/N]-
algebras and Y an R-scheme, we denote by Yp the base
extension of Y to R'.

Let X = X;(N) be the compactification [Deligne and
Rapoport 73] of the modular curve parametrizing elliptic
curves with with an N-torsion point. We may construct X
as a smooth proper relative curve over Spec Z[#], and the
cusps give rise to a relative divisor D C X. In particular,
we obtain an R-scheme X for each Z[1/N]-algebra R. We
denote the universal generalized elliptic curve over X by
A— X.

We will denote by

Xo1(qN), Xi(gN),
the modular curves that correspond to adding X, (¢q) and
Xi(q) level structure to X.

Let @ be the line bundle over X whose sections are
given by weight one forms. More precisely, when X is
the modular curve, let 4,x denote the relative cotan-
gent bundle of A/X, pulled back to X via the identity sec-
tion. We define w as the pullback of €2 4/x via the zero
section X — A. Therefore, the sections of w correspond
to weight one forms, whereas sections of w(—D) corre-
sponds to weight one cusp forms. Moreover, there is an
isomorphism of line bundles [Katz 73, (1.5), A (1.3.17)]:

®®w(=D) > Qy_ ;).

2-1)
which says that “the product of a weight one form and a
cuspidal weight one form is a cusp form of weight two””

Let = : Xg — SpecR be the structure morphism and
consider the space of weight one forms over R, in coho-
mological degree i — formally:

I'(Spec(R), R'm,w).

We will denote this space, for short, by H {(Xg, w), and
use similar notation for w(—D). Therefore, H° (X, »)
(respectively H*(Xg, @(—D))) is the usual space of weight
one modular forms (respectively cusp forms) with coeffi-
cients in R.

2.2. Theresidue pairing

The pairing 2-1 induces
0 @ Rlm,w(—D) —> Rln*Q}(R/R.

Since Xy is a projective smooth curve over R, there is a
canonical identification of the last factor with the trivial
line bundle; thus we get a pairing

H°(Xz, ®) x H'(Xg, o(=D)) — R,

which we denote as [—, —];es.r. (Here, res stands for
“residue’”) This pairing is compatible with change of ring,
and if R is a field, it is a perfect pairing.

2.3. The fixed weight one form g

We want to localize our story throughout at a single
weight one form g. Therefore, fix g =) a,q" a Hecke
newform oflevel N and Nebentypus x, normalized so that
a; = 1. Here, yx is a Dirichlet character of level N.

We regard the a, as lying in some number field E, and
indeed in the integer ring O of E. Thus, g extends to a
section:

g€ HO(XO[%], w(=D)).

We shall denote by H* (XO[%]’w)[g], the part of the
cohomology that transforms under the Hecke operators
in the same way as g, i.e. the common kernel of all
(Ty — ag) over all primes £ not dividing N.

Extending E if necessary, we may suppose that one can
attach to g a Galois representation, unramified away from
N [Deligne and Serre 74]:

o : Gal(L/Q) — GL,(0), (2-2)

where L is a Galois extension of Q. Here, the Frobenius

trace of p at £ coincides with a,, and the image of complex

conjugation ¢ under p is conjugate to (; ). (In the body

of the text, we will primarily use the field cut out by the

adjoint of p, and we could replace L by this smaller field).
We emphasize the distinction between E and L:

E is a coefficient field for the weight one form g, and L is
the splitting field for the Galois representation of g.

In our numerical examples, we will have E = Q and L
the Galois closure of a cubic field.

It will be convenient to denote by Ad°p the trace-free
adjoint of p, i.e. the associated action of Gal(L/Q) on 2 x
2 matrices of trace zero and entries in O. We denote by
Ad*p the O-linear dual to Ad’p, i.e.

Ad*p = Hom(Adp, O),



a locally free O-module endowed with an action of
Gal(L/Q).!

For later use, it is convenient to choose a dual form
¢ that will be paired with g eventually. In order that a
Hecke equivariant pairing between g and ¢ be non-zero,
we should take ¢’ to be the form corresponding to the con-
tragredient automorphic representation, i.e.

g=) a.q" € H’(Xo(1), @(=D)),

where o > @ is the complex conjugation in the CM field
E. (In our examples, E = Q, and therefore ¢ = g).

2.4. Theprimejp

Letp be a prime of E, above the rational prime p. We make
the following assumptions:
¢ All weight one forms in characteristic p lift to char-
acteristic zero, i.e. the natural map

H(Xz,, ) > H'(Xg,, ©)

is surjective.

e p=>5.

® pis unramified inside E.

¢ There are no pth-roots of unity inside L.

® p does not divide the order [L : Q].

The representation p may be reduced modulo p,
obtaining p : Go —> GL,(F,), where F, = O/p is the
residue field at p. As before, we may define the trace-free
adjoint Ad*p and its dual Ad*p.

2.5. Taylor-Wiles primes

A Taylor-Wiles prime q of level n > 1 for g, or more pre-
cisely relative to the pair (g, p), will be, by definition:
® a rational prime ¢ = 1 modulo p”, relatively prime
to N;
e the data of («, ) € F, with « # B, such that

p (Frob,) is conjugate to (‘; g).

Thus, whenever we refer to Taylor-Wiles primes, we
always regard the ordered pair («, B) as part of the data:
this amounts to an ordering of the eigenvalues of Frobe-
nius.

If p, n, q have been fixed, where g is a Taylor-Wiles
prime of level n and p is a prime of O as above, it is con-
venient to use the following shorthand notation:

e Write k = O/p".

! We apologize for the perhaps pedantic distinction between Ad* p and Ad° .
Since we will shortly be localizing at a prime larger than 2, one could iden-
tify them by means of the pairing trace(AB). However, when working in a
general setting, one really needs to use Ad*, and following this convention
makes it easier to compare with [Venkatesh nd].
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* Write (Z/q)7, for the quotient of (Z/q)* of size p", so
that there is a noncanonical isomorphism (Z/ q); =
Z/p".

e Write

k(1) =k® (Z/q),, k(—1)=Hom((Z/q)y, k).

These are isomorphic as abelian groups to k, but not
canonically so.
e Similarly for a Z-module M we shall write

M(n) = M ®z k(n).

Thus, for example, IF,(1) is canonically identified
with the quotient of (Z/q)* of size p.
These notations clearly depends on p, 1, g; however ,
we do not explicitly indicate this dependence.

2.6. The Stark unit group

Let Uy be the group of units of the integer ring of L.
The key group of “Stark units” that we shall consider is
the following O-module:

U, = (U; ®2 Ad*p) @ = (U, ®;, Homo (Ad’p, 0))
(2-3)

:) Hom@[GL/Q] (Adop, UL ® O), (2_4)

where Ad’ is the conjugation action of the Galois group
on trace-free matrices in M, (O).

For instance, in the examples of modular forms
attached to cubic fields, the group Uy will amount to
(essentially) the unit group of that cubic field.

Lemma 2.1. U, ®z Q is an E-vector space of rank 1 and
U, ®z Zy is a free O ®z ZLp-module of rank 1.

Proof. Fixany embedding: : E < C;the E-dimension of
U, ®z Q then coincides with the complex dimension of
Galois invariants on Up ®q (Ad*p)".

In general, for any number field L, Galois over Q, and
any 1 : Gr/q — GL,,(C) without a trivial subrepresenta-
tion, the dimension of (U; ® n)°2 is known to be the
dimension of invariants for complex conjugation in 7.
(In fact, this is a straightforward consequence of the unit
theorem). It follows, therefore, that the E-dimension of
U, ®z Qis 1 as claimed.

The final claim now follows since our assumption on p
means that Uy, is free of p-torsion. O

Fix a non-zero element u € U, in such a way that
[Ug : O.u] is relatively prime to p (e.g. a generator, if U,
is a free @-module). Later, we will also work with the O-
dual

U. := Homo (Uy, O),

; (2-5)
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and denoteby u* € U anon-zero element, chosen so that
(u, u*) € O is not divisible by any prime above p.

2.7. Aside: comparison of U, with the motivic
cohomology group from [Venkatesh nd]

This section is not used in the remainder of this paper. It
serves to connect the previous construction with the dis-
cussion in [Venkatesh nd]:

We may construct a three-dimensional Chow motive
AdOMg, with coefficients in E, attached to the trace-free
adjoint Ad”p,—in other words, the étale cohomology of
AdOMg is concentrated in degree zero and identified, as a
Galois representation, with Ad* Pg-

Now consider the cohomology H_
(Q. Mg(1)), or more precisely the subspace of integral
classes (—)int described by [Scholl 00].

The general conjectures of [Venkatesh nd, Prasanna
and Venkatesh nd], transposed to the current (coher-
ent) situation, predict that the dual of H} _ (Q, M, (1))int
should act on H* (Xg, w)[g].

There is a natural map

motivic

it (Q. Mg(1))ine —> Hy (L. Mg(1)) (2-6)

= U, ®Adp®Q=U,8Q  (2-7)
Although we did not check it, this map is presum-
ably an isomorphism. In the present paper, we will never
directly refer to the motivic cohomology group. Rather,
we work with the right-hand side (or its integral form
U,) as a concrete substitute for the motivic cohomology

group.

2.8. Reduction of a Stark unit at a Taylor-Wiles
prime q

Let g be a Taylor-Wiles prime (as in Section 2.5); we shall
define a canonical reduction map

0y : Uy —> k(1).

For example, in the examples of modular forms attached
to cubic fields, this will amount to the reduction of a unit
in the cubic field at a degree one prime above q. Although
explicit, the general definition is unfortunately opaque
(the motivation comes from computations in [Venkatesh
nd]).

For any prime q of L above g, with associated Frobe-
nius element Frobg, let D4 = (Frob,) C Gal(L/Q) be the
associated decomposition group, the stabilizer of q. We
may construct a Dy-invariant element

e =2p (Frobq) — trace p (Frobq) e Ad’, (2-8)

where we regard the middle quantity as a 2 x 2 matrix
with coefficients in O and trace zero, thus belonging to
Ad’p. Pairing with e, and reduction mod p" induces

eq:Ad*p — O — k,

equivariantly for the Galois group of Q,. Also, for
g € Gal(L/Q) we have

€gq = Ad(p(g))eq- (2-9)

Write L; = (L ® Q) andlet O, be the integer subring
thereof. Thus, Oy, /q >~ nqlq F,. Fixa prime q of L above
g The inclusion of units for the number field L into local
units O induces

Gr/q

Uy — [[[Feado| S (F, ®adp)"™

alq

(B @ k)P — k(1), (2-10)

where the second mayp is projection onto the factor corre-
sponding to qp.

The resulting composite is independent of the choice
of qo because of (2-9). We call it 8, or 6, when we want to
emphasize the dependence on the Taylor-Wiles prime g:

6 or0,: U, — k(1).

3. Derived Hecke operators and the main
conjecture

We follow the notation of Section 2; in particular,

- g is a modular form with coeflicients in the integer
ring O; we have associated to it a @-module U, of
“Stark units” of rank 1.

- Fixing a prime p of O, we will work with the coefhi-
cient ring k = O/p" with residue field I, of charac-
teristic p.

In this section, we define derived Hecke operators and
formulate the main conjecture concerning their relation-
ship to Ug. This discussion is obtained by transcribing the
theory of [Venkatesh nd] to the present context; in this
section, we just describe the conclusions of this process.

For each g = 1 modulo p" and each z € k{—1), we will
produce an operator

Tpe t H(Xe, @) > H' (X, o).

Note that g need not be a Taylor-Wiles prime (in the
sense of Section 2.4) for the definition of T, ,—in other
words, we do not use the assumption on the Frobenius
element. However, our conjecture pins down the action
of T, ; only at Taylor-Wiles primes.



3.1. The Shimura class

Start with the Shimura covering X; () — Xo(q), and pass
to the unique subcovering with Galois group (Z/q)}; call
this X;(q)® — Xo(q). By Corollary 2.3 of [Mazur 77,
Chapter 2], it extends to an étale covering of schemes over
Z[q%v], and in particular induces an étale cover X; (¢) kA —
Xo(q)k- It, therefore, gives rise to a class in the etale H',
ie.

Ge Helt(Xo(Q)k’ k<1>)

In the category of étale sheaves over Xy(q)x, there is a
natural map k — G,. Then a class in H. (Xo(q)k, k(1))
defines a class in

Hy(Xo(@r»  Ga(l)) ~ Hy, (Xo(@k, O(1))

because of the coincidence of the étale and Zariski coho-
mologies with coefficients in a quasi-coherent sheaf. This
construction has thus given a class, associated to the
Shimura cover, but now in Zariski cohomology:

S € Hy, (Xo(q)r O(1)),

which we shall sometimes call the Shimura class.

It is reassuring to note that & is in fact non-zero, even
modulo the maximal ideal p, as one sees by computing
with the Artin-Schreier sequence

0->Fy,—-G,—>G,—0

over k/(p).

3.2. Construction of the derived Hecke operator

The class & just defined can be pulled back to
H} (X01(gN)k, O(1)). We denote this class by Sy,
to distinguish it from & at level g.

Thus, cup product with Sy gives a mapping

H (Xo1 (qN) @) 23 H' (Xo1 (N )i o(1)).

Finally, to obtain the derived Hecke operator we add a
push-pull as in the usual Hecke operator definition:

HO (X, ) > HO (X1 (qN)g ) 223 H! (X1 (N )i 0)(1)

5 H' (X, w)(1), (3-1)

where 7y, 7, : Xp1(gN) — X are the two natural degen-
eracy maps (at the level of the upper half-plane, we under-
stand 7; to be z > z, and 7, to be z > gz). Observe that
without the middle USx this would be the usual Hecke
operator at q. In other words, we have constructed a map

HO(Xk’ C()) - Hl(Xk,Cl))<1), (3_2)
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and correspondingly for z € k(—1), we will denote by T, .
the corresponding “derived Hecke operator”

Tpz: H (X, 0) > H' Xk, o) (3-3)

obtained by multiplying (3-2) by z.

Although by presenting the bare definition the con-
struction may seem a little ad hoc, this definition is really
a specialization of the general theory of [Venkatesh nd],
and is indeed very natural. We explain this in more detail
in Section 7.

3.3. The conjecture

We now formulate the main conjecture. It asserts that the
various operators T, . all fit together into a single action
of U/ on the g-part of cohomology. As formulated in
[Venkatesh nd], the conjecture is ambiguous up to a ratio-
nal factor, and we will not attempt to remove this ambi-
guity here (although our computations suggest that this
factor might have a simple description).

Terminology:

e Suppose that « € E and V is a k-module. For

x,y € V, we will write

X =ay, (3-4)

if we may write « = A/B, where A, B € O are not
both divisible by p, in such a way that Bx = Ay. (Here
A, B are the reductions of A, B under © — k).

In particular, if V is a k-line, this has the following

meaning:
- ifx = y = 0, then 3-4 is understood to always be
true.

— Otherwise, we can make sense of [x : y] € P!(k),
and 3-4 means that the reduction ofa € P'(E) —
P! (k) equals [x : y]. )

e For h € H* (XO[% }» @), we write h for the reduction
of h to H* (X, w).

* Recall that we defined a reduction map 6, : U, —
k(1). Also, the pairing between U, and Uy, which is
perfect after localization at p, descends to a perfect
pairing on U, ® k and Ug ® k. With respect to this
pairing, the map 6, has an adjoint:

6, k(-1) — U, ®k.
Explicitly for z € k{—1),

(z, 04 (u))
(w,u)

where u € Ug, u* € U‘;’ are as defined around (2-5).

qu ) =u"® (3-5)

Conjecture 3.1. There is an action » of U; on
H*(XO[%],w)[g], and o € E such that for every
(p, n, g, z), with
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- p, a prime of E satisfying the conditions of
Section 2.4;

- n > 1 an integer;

- q a Taylor—Wiles prime of level n, in particular g =
1(p™).

-z € (O/p")(-1),

we have the following equality:

T, =0 (@) *g). (3-6)

On the right-hand side, qu (z)~ means that we choose
an arbitrary lift of qu (z) € Ugv ® k to Ugv, and the bar
refers to reduction mod p”.

In what follows, we will write (3-6) in the abridged
form

T;,.8 QqV (z) x g (3-7)

The meaning here is that equality holds, in the sense
described above, for some fixed coefficient of proportion-
ality « € E. (Note that we have suppressed explicit men-
tion of the lift 9‘;/ ()~ from the notation; in any case the
right-hand side is independent of this choice of lift).

4. Relationship to Galois deformation theory

In this section—which is not used in the rest of the paper—
we shall sketch a proof that, in the case n = 1,

vanishing of T, .¢ = vanishing of 6, : U, — k(1),
(4-1)
assuming an “R = T” theorem for weight one forms at
the level of g, as well as further technical conditions. Such
a theorem is known in some generality by the work of
[Calegari 17].

This result (and its proof) is in line with results and
proofs from [Venkatesh nd]. Indeed, our methods would
show that (4-1) is an equivalence, if we knewan “R = T~
theorem for weight one forms with (Taylor-Wiles) auxil-
iary level.

4.1. Setup

Let g be a prime such that the eigenvalues of p on the
Frobenius at g are distinct elements of Fy, say o and B.
Let m be the ideal of the Hecke algebra associated to the
Galois representation p.

In addition to the conditions from Section 2.4, we
assume that :

(i) n=1sothatk = O/pisafield.

(ii) Foreach prime v dividing N, the residual represen-
tation p is of the form x; @ x,, where x; is rami-
fied and y; is unramified.

(iii) p does not divide v — 1, for each v as above.

(iv) p does not divide [L : Q], and does not divide the
order of the class group of L.
(v) The m-completion of the space of modular forms
at level I'y (N), with coefficients in O, is free rank
1 over O,. (In particular, there are no congruences
modulo p between g and other weight one forms,
either in characteristic zero or characteristic p).
Let m, be the maximal ideal of the Hecke algebra for
Xo1(gN) obtained by adjoining U; — o to the ideal m; sim-
ilarly, we define mg. These ideals also have evident ana-
logues where we add I';(q) level to X, rather than just
"o (g) level, and we denote these analogues by the same
letters.
Our assumption (v), and the assumption of torsion-
freeness from Section 2.4, means that

dimH®(Xx, 0)m = dimH® (X1 (qN)k, @)m,
= dimHO(X01 (qN)k’ a))mﬁ = ]-a
(4-2)

i.e. all three spaces above are k-lines; the same statement
is true for H!(—).

Let g, and gg, respectively, span the second and third
spaces in the line above. Therefore, U,g, = g, and
U,8s = Bgp; we normalize these so that 7'¢g = g, + gs.

Since the pushforward m, via the
ral  projection m:Xp(gN) - X  induces an
isomorphism on each of the Uj-eigenspaces,
%o UOGx vanishes if and only if m.(g UGSx)
vanishes. Observe Uy = B)nig= (a — B)
Zo- We are assuming « # B and therefore,

natu-

& UGx =0 < m.((U; — B)m{guSx) =0.
(4-3)
Now, 71, (fgU Gx) = gU (m1,6x) = 0 and 7, Bx is
trivial.

Lemma 4.1. The pushforward of &x by the natural projec-
tion 7w : Xo1(qN) — X is trivial.

Proof. The existence of the trace map [Artin et al. 72,
Expose 17, Section 6.2] gives a map m,.(Z/p) — Z/p of
étale sheaves, compatible with the usual trace .G, —
G,. For this reason, it is sufficient to show that the (trace-
induced) map

H}\ (Xo1 (N (Z/q)}) — HL (X, (Z/q)})

pushes the Shimura class forward to the trivial class.

If ¢ is the inclusion of an open curve into a complete
curve induces then * is an injection on H 1 Therefore, it
suffices to show a similar statement for the open modular
curves; restricted to these, the map  is étale.

Define finite groups

k ok
G =GLy(Z/qZ) D B = <0*>



Then Xp; (qN) and X;, are quotients of a suitable modular
curve by B and G, respectively. This allows to reduce to
verifying the triviality of the transfer in group cohomol-
ogy, from Bto G, of o € H' (B, (Z/9)}), defined via

ac *
o <0 d) — (a/d) € (Z/q)p.
This is a straightforward computation. O

Continuing from (4-3), we find

& UBx =0 <= m.(Umr/guUBx)=0. (4-4)

The final expression can be verified to be an invertible
multiple of T, .g for some non-vanishing z € O/p(—1).
Therefore,

UGB =0 & T,.g=0. (4-5)

Write A = (Z/q)}; since we are assuming that n = 1,
the group A is cyclic of order p and we have an isomor-
phism k[A] >~ k[T]/T?, whose inverse sends T to § — 1,
for any generator § of A. Let X; (Ng)* be the subcovering
of X;(Nq) — Xo1(gN) that corresponds to the quotient
(Z/q)* — (Z/q)} of deck transformation groups.

Lemma 4.2. The cup product USx is non-zero as a map
on H*(Xo1 (qN)k, @), if and only if

dimH (X, (Nq)£, ®)m, = 1. (4-6)

The usual Taylor-Wiles method, for classical modular
forms on GL,, relies crucially on producing “more” mod-
ular forms when adding “T"; (q)* level” at auxiliary primes
q. Thus, the Lemma says: the derived Hecke operator is
non-trivial precisely when this fails, a failure that is rec-
tified in the Calegari-Geraghty approach [Calegari and
Geraghty nd].

Proof. By the methods of [Calegari and Geraghty nd],
we may obtain a complex C of free k[A]-modules
(with degree-decreasing differential) together with iso-
morphisms:

H'Homya) (C, k) 2~ H'(Xo1 (N )k, ©)m, - (4-7)

With reference to the latter isomorphism, cup product
with &x on the right is represented by the natural action
of a non-trivial class in Ext,i[ N (k, k) on the left-hand side.
(Note that H'Homya] (C, k) is identified with homomor-
phisms from C to k[i] in the derived category).

Replacing C by a minimal free resolution, we may
assume that C is the complex given by

k[A] & K[A]

where A € k[A]belongs to the augmentation ideal. Under
the identification of k[A] with k[T]/T?, the element A
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corresponds to an invertible multiple of T", for some 0 <
i < p—1, and then (4-7) implies

dimH (X, (Nq)%, ®)m, = i.

We shall show that cup product with Sy is non-trivial
ifand onlyifi = 1. To compute the action of Exty;, (k, k),
we may consider the following diagram:

c 0 <~ k[A] ~— K[A] ~——0

k £<Hﬁhwkklélk£yﬁwkm%:u.
T

k(1] 0 < 0 ~—— K[A] < K[A] = kA <— ...

(4-8)
The horizontal complexes are, respectively, C, a pro-
jective resolution of k, and a projective resolution of
k[1]. Continuing to take Hom in the derived category of
k[A]-modules, the top vertical map of complexes rep-
resents a generator for Hom(C, k) and the bottom ver-
tical map of complexes represents a non-trivial class in
Ext}([A] (k, k) = Hom(k, k[1]). Therefore, the composite
map in Hom(C, k[1]) is represented by the diagram

0 <— k[A] =<—— K[A] 0
TZ
T
0 0 K[A] <—— HA]
(4-9)
This is nullhomotopic exactly when T'~ is divisible by
T,ie i>2. O

Taking (4-5) together with the Lemma, we see
T,.8 #0 <= dimH’(X;(NqQ)¢', ©)m, = 1.
Consider the map
fR®k—> RQKk,

where R (resp. R’) are the weight one, determinant y,
deformation rings for p at level I'y (N) and with level
"1 (Ng), respectively. The local conditions £ for R and £’
for R’ are as follows:
e At p, we require that deformation remains unrami-
fied.
® At g, we impose unramified for R and no condition
for R'.
¢ For primes v dividing N, we do not need to impose
any condition: We have assumed that p is a direct
sum x; @ x, of two characters, with x; ramified
and x, unramified. In particular, H!(Q,, Ad°p)
is one-dimensional, corresponding to deforming
X1 < X1V, x2 < xo2 ! for a character ¥ with
trivial reduction. In [Calegari 17], the assumption is
imposed that in fact x,% ~! remains unramified, but
we do not need to explicitly impose this because we
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assumed that p is relatively prime to v — 1—thus, the
character v is automatically unramified at v. In par-
ticular, we have automatically

H'(Q,, Ad’p) = H.(Q,, Ad"D),

where we recall that for a module M under the Galois
group of Qy, the “unramified” classes H! C H' are
defined to be those that arise from inflation from the
Galois cohomology of F, acting on inertial invari-
ants on M.

Assuming an R = T theorem for g, we have R® k = k.
The map on tangent spaces induced by f, call it f*, fits
into the following diagram, with reference to the usual
identification of tangent spaces with Galois cohomology:

H'(Q,. Adp)
— 0 —
HY(Z,, Ad*D)
H2(Q, Ad"p) — HZ(Q, Ad"p),

HL(Q, Ad') & HL(Q, Adp) —

f* is surjective exactly when j is injective. Since the
middle group in the exact sequence is one-dimensional,
injectivity of j is the same as non-vanishing of j. Under
Tate global duality, the map j is dual to

HL,(Q. AdB(1) 5> H'(E, Ad5(1),  (4-10)

where £V is the dual condition to £': it refers to classes
that are unramified at primes not dividing pN, unrami-
fied (equivalently: trivial) at primes dividing N, and at p
belong to the Bloch-Kato f-cohomology (a more concrete
description is given below).

We will show in the next subsection that:

the map j" vanishes exactly when 6, : U, — k(1) does.
(4-11)
Therefore, the non-vanishing of 6, implies the injectivity
of j, which implies the surjectivity of f*, which implies
R' ® k = k, which implies (4-6) by a multiplicity one
argument. Then (4-5) and Lemma 4.2 show that T, .g # 0
as desired.
That concludes our proof for 4-1; note finally that if
we had a theorem R’ = T’ all this reasoning would be
reversible and we get an equivalence in (4-1).

4.2. Relation of U, to Galois cohomology

To conclude we must relate j* and 6, and thereby prove
(4-11).

As in (2-2), p is a representation into GL,(O); let p,
be the same representation, but now considered as valued
in GL,(Oy); thus,

We write (Uy), for U, ® Oy.

Consider

H, (Q. Ad"pp (1)),

where the subscript ur means that we consider classes that
are unramified at primes away from p, and, at p, belong
to the Bloch-Kato f-space. (What this means is made
explicit in the computation of H&r (L, Oy (1)) in the dia-
gram below).

Restriction to L gives horizontal maps in the following
diagram:

0 0

l

> [Ad"pp ®0, Hi (L, 0p(1))]41@ = (Uy)y

|

~ [Ad*pp @, HY(L, 0p(1))]%21@

|

k e HY (Lo, Ad"py(1)) 160/
w HY (Lo, Ad pall}) !

H1(Q, Ad* py(1)) =

H'(Q. Ad*py(1))

@ HY (Qu,Ad”" pp(1))
v HI(Qu,Ad" pp(1])

The vertical columns are exact at top and middle, and,
in the bottom row, the sum is taken over all places v of Q,
and then over all places w of L.

Lemma 43.i induces an isomorphism
H! (Q, Ad"p,(1)) =~ (Ug)p. Also, as long as the class
group of L is prime to p, the reduction modulo p map
H! (Q, Ad"p,(1)) — HL(Q, Ad*p(1)) is surjective.

Proof. The map j is an isomorphism by considering the
inflation-restriction sequence: the group Gy/q has order
prime to p.

This means i is injective. i will be surjective if k is injec-
tive. In fact, for a place q of L above v, the map

H'(Q,, Ad"p,p (1)) N |:H1(an Ad*py (1))

4-12
Hy(Qu, Ad*pp (1) H&r(Lq’Ad*pp(l)):| 1)

is split, up to multiplication by [Lq : Q, ], by corestriction,
and [Lq : Q,] is invertible on O,,.

This proves the first assertion about i. For the sec-
ond assertion, note that the assumption about class
groups means that H} (L, F,(1)) coincides with U; ®
F,. The same analysis as above means that the rank
of H! (Q, Ad*p(1)) over Fy is bounded above by the
dimension of

(Ad'D ® U) ™,

and (again because Gy /q has no Galois cohomology in
characteristic p) this dimension coincides with the O,-
rank of U, ® O, (which is exactly 1). The surjectivity now
follows. O



Now, under the identification i : H. (Q, Ad*p, (1)) ~
(Ug)p, the composite

H,, (Q, Ad"p, (1)) — H,, (Q, Ad"5(1)) L H'(F;, Ad"p(1))
— H'(F;, Fy (1)) ~ F; @ (O/p)

is identified with the map 6, described in (2-10). Here we
have made use of a map Ad*p — IFy, which comes from
pairing with the element defined in (2-8). In particular,
6, vanishes if and only if j* does, as required.

5. Explication

Our main Conjecture 3.1, as formulated, involves a cup
product in coherent cohomology on the special fiber
of a modular curve. We want to translate it to a readily
computable form, i.e. one that can be carried out just
by using manipulations with g-series. We will achieve
this in this section, at least in the case n = 1 and under
modest assumptions on g, and then test the conjecture
numerically.

5.1. Pairing with g

Recall (Section 2.3) that we have fixed another weight one
modular form g that is contragredient to g. To extract
numbers from the Conjecture, we pair both sides of
(3-6) with ¢, using the residue pairing (Section 2.2). Pair-

ing 3-6 with ¢/, and using qu ) =u*"® <Z(’ff,(;>)> from (3-
5), we arrive at:
a[@v(u) * g, g]res (@]
- - q ’
[Tq,zga g]res,k = (z, Qq(”)) : |: (, u) ] )

(5-1)
where both sides lie in k; and we recall again that we have
written g for the reduction of g to a modular form with k
coeflicients.

Now the square-bracketed quantity on the right-hand
side is an element of E, integral at p, and independent of
choice of (p, n, q, z). We abridge (5-1) to

[Tq,zga g/]res,k X <z7 0q(”)>

This should hold true for any (p, 1, ¢, ).
Unwinding the definition of the derived Hecke opera-
tor,

[Tq,zg? gj]res,k = [7T1*§U ZG)(, nz*g]res,ka (5_2)

where the residue pairing is now taken on Xy (gN)y,
71, T, are the two projections Xy; (gN) — X, and

28y € H' (Xp1 (qN), O).
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(Recall that Gy € H'(Xy; (gN)x, O(—1)), so its product
with z € k(1) lies in the right-hand group above). To sim-
plify notation, define the weight two form

G=rng-n}g € H (Xo1(gN)i, QY. (5-3)

In terms of classical modular forms, G would be the form
“z > g(z)g'(gz)” Then the right-hand side of 5-2 is sim-
ply the (Serre duality) pairing of G € H(Q!) and z&x €
H'(O) in the coherent cohomology of Xy; (gN). There-
fore, the conjecture implies that (z&x, G) o (6,(u), z);
and here we may as well cancel the zs from both sides:

(Gx, G) o O4(u). (5-4)

Here, both sides lie in k(1), that is to say, in (Z/q)* ® k.

Now the class &y is pulled back from a class & on
Xo(q), and correspondingly the pairing on the left-hand
side can be pushed down to Xy (gq). Writing

GP™ = projection of G to level g € H*(Xy(q)x, 1),

we have (Sx, G) = (&, GP™).
Thus, our conjecture implies that

(6, G o 6,(u), equalityin (Z/q)* ®k,  (5-5)

where we recall that:

e S e H' (Xo(9r O R (Z/q)*) is constructed from
the covering X () — Xo(q);

e G ¢ H(Xy(q)x, Q') is the pushforward of the
form “z — g(2)¢ (gz)” from level Xy, (gN) to level
Xo(q); it is a weight two cusp form.

e (—, —) is the pairing of Serre duality.

e The symbol  is interpreted as in (3-7).

5.2. Localization at the Eisenstein ideal

To translate (5-5) to a computable form, we will use com-
putations of Merel and Mazur. Let

E € H'(Xo(q)r Q1)

be the “Eisenstein” cusp form with k coefficients, in other
words, the unique element whose g-expansion coincides
with the reduction modulo p" of the weight two Eisen-
stein series; the condition that g = 1 modulo p" means
that this weight two Eisenstein series indeed has cuspidal
reduction in k. The pairing

(6,E) € (Z/q),

was considered by ([Mazur 77, p. 103], discussion of the
element u) and was computed in a remarkable paper of
[Merel 96]. We will carefully translate Merel’s computa-
tion into our setting in the next section; unfortunately,
in doing so, we will have to impose the restriction n = 1,
i.e. we can only compute things modulo p and not higher
powers of p.
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Lemma 5.1. (Merel; see Section 6 for details of the transla-
tion from Merel’s framework to this one).

(6, E) = OMerel mod b (5-6)

where mod p means that the two sides have the same pro-
jection to F(1).?
Here, the Merel unit wyierel € (Z/q)* is the element

(g—1)/2 ) {qu 2(3),

w'Merelzg2 l_[ i_SIa = 2(q—1)/3’ else (5_7)
i=1

In the remainder of this section, we will compute
(&, GP™) (the left-hand side of (5-5)) using Lemma 5.1.

Let T be the Hecke algebra for cusp froms on
Xo(q)z,, i.e. the algebra of endomorphisms of S,(g) :=
H’(Xo(q)z,, ') generated by T; forall £ # q. Let T < T
be the Eisenstein ideal, i.e. the kernel of the character

T— Z/pZ, Ti— (£+1),

by which T acts on the modulo p reduction of E. In par-
ticular it's a maximal ideal.

Let my, ..., m, be all other maximal ideals of T. Then
the natural map

T—>T3XIL[Tm5

s=1

is an isomorphism (here, T3 means the completion, and
similarly for my). Let ey be the idempotent of T corre-
sponding to the first factor; the splitting

l=e;+ (1—e3)
——
:e'3
gives rise to a splitting
5:(9) = $2(9)3 ® S2(9)5,

where S,(q)7 is the image of the idempotent e, and the
complementary subspace is the image of 1 — e3. There-
fore, if T € J is chosen so that T ¢ | Ji_, m;, then T acts
invertibly on the second factor.

Decompose GP™ as

Gl = Gy + (GPly

(5-8)

according to the splitting above. The Shimura class & is
annihilated by J (see for example [Mazur 77], Lemma
18.7). Choose as above T € J that acts invertibly on the
second factor of (5-8). We may write

(6, (G™) = (&, TT(GP)) = (TS, T"H(GP)) =0,
and so

(&, Gy = (&, G2,

2 |t seems likely that the two sides are actually equal in (Z/q)‘f7 but we do not
prove this.

where as before the pairings come from Serre duality.
Next, Mazur proves [Mazur 77, Proposition 19.2] that

WhMerel 18 NON-zZeromodulo p <= S,(q)7

is of rank 1 over Z,. (5-9)

We will complete our computation only in this case.?

Since E is annihilated by J, we have in fact E € S,(q)7,
and since the first Fourier coeflicient of E is 1, we have
(under the assumption of (5-9)) S,(q)5 = Z,.E. Thus,
after extending scalars to O, we find

Ggroj = a (Ggroj) . E,

where a; (Ggmj ) € O ® Z, denotes the first coefficient in
the g-expansion. Putting this together with our prior dis-
cussion, we have shown the following proposition.

Proposition 5.1. Conjecture 3.1 implies that there exists
a € E such that

a (G*;‘“J) ® (Duerel)p = o - () modulo p- (O ® (Z/9)};)
(5-10)
for any (p,n,q) as in Section 2.4 with the additional
property that (nerel) € (Z/ q); is non-trivial modulo p.*
Other conventions are as follows:
® WiMerel € (Z/q); is the Merel unit, see (5-6).
. al(Ggmj) € O ® Z, is the first Fourier coefficient of
G = (7]g)(m5g), after taking projection GP™ to level
Xo(q) and then projection G5 to the localization at
the Eisenstein ideal.
e O(u) ek(l) =0® (Z/q); is the reduction of the
Stark unit.

5.3. Some philosophical worries

Let us take to examine some consequences of an inade-
quacy of our conjecture, namely, it is only formulated “up
to E*.”

For each (p, n, q) as in Section 2.4, we can compute
both a; (Gng) ® (@Merel)p and G, (1) and compare them.
Let us also restrict to (p, n, q) for which 6,(u) # 0; there
are infinitely many such p. Therefore, (5-10) specifies the
reduction « € E to P! (F;), for an infinite collection of p.
This uniquely specifies « if it exists.

The conjecture is numerically falsifiable to some
extent. For example, if we find two different pairs (p, n, q)

3 Recently, Lecouturier has proposed a very interesting generalization of the
conjectural equality (5-10) to the case when @] is zero modulo p and has
verified it numerically in some cases.

4 To be absolutely clear, we write out the meaning of this statement. We under-
stand

Li=a1(G5”) ® (@nerel)ps R = 0 (1)

as elements of O ® (Z/q);; and the statement above means that if we
reduce L, Rto O/p ® (Z/q)}, then L = aR, in the sense of (3-4).



and (p,n’,q’) for which the predicted reductions of
o mod p differ, this clearly contradicts the conjecture.
Indeed, the fact that this did not occur in our numerical
computations was very encouraging to us.

However, if this type of clash does not occur, no
amount of computation can falsify the conjecture: we can,
of course, produce an « € E with any specified reduction
at any number of places. Nonetheless, this proves to be
largely a theoretical worry. In our examples, we shall find
an « of very low height for which (5-10) holds for many
(p, n, g, z). Our sense is that this should be taken as a
satisfactory indication that the Conjecture, or something
very close to it at least, is valid.

As a final excuse, we may note that the conjectures
about special values of L-functions were initially phrased
with a Q* ambiguity that is similarly unfalsifiable.

Eventually, we hope that these issues will be solved by
formulating an integral form of the conjecture; this could
perhaps be done using the theory of derived deformation
rings.

5.4. Forms associated to cubic fields

We now make the foregoing discussion even more explicit
for the form g associated to a cubic field K; write L for the
Galois closure of K. (This will coincide with our previ-
ously defined L in a moment).

Such a field K defines a representation Gal(L/Q) —
S3; if we regard S; as acting on M = {(x;, x, x3) € Z* :
> x; = 0} by permuting the coordinate axes, we may
regard p as a rank 2 Galois representation:

p: Galg - S5 = GL(M). (5-11)

Under the representation (5-11), there is a basis for
M such that the transposition 0 = (12) € S; is sent to

S :=((1) é), whereas a 3-cycle T = (123) € §; is sent to

T ::(:1 (1)). We may set things up so that the fixed field

of (12) € S5 is equal to K.

In our previous notation, take

e L as above, namely, the Galois closure of the cubic
field K.
E=Qand O =7Z.
® p = p > 5to be arational prime of Q.
n = 1 (thus we work only modulo p rather than p").
q=1(p) to be a prime such that the gth Hecke
eigenvalue a,(g) = 0. In this case, the Frobenius is a
transposition® in S;. Thus g is a Taylor-Wiles prime
with eigenvalues (1, —1).

5 The primes g for which p(Froby) is a3-cycle also are Taylor-Wiles primes, but
itis then easy to see that T, .g = 0 for such g. To verify this, one can use the
fact—notation as in (5-3—that the Atkin—Lehner involution at g for Xo; (gN)
actsby —1 on &y, butitacts by x (9) on G, where x is the quadratic Neben-
typus character for g.
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* Therefore, in this case, k(1) =IF,(1) is just the
unique quotient of (Z/q)* of order p.

e We also fix a prime o of L over g such that the image
of the Frobenius for qq is equal to S. In particular, this
fixes K, so the prime g of K below qy is of degree 1
over q.

Lemma  5.2. Consider  the isomorphism Uz~
Homg, (Ad°p, Up) of (2-4). (Recall that Uy is the
unit group of L). Then computing the image of S € Ad’p
gives rise to an isomorphism

1 H 1
Ug®Z|:gj| ~ O ®Z[g]

where O is the group of norm one units of K.
Moreover, for p > 5 the reduction map 0, : U, — F (1)
described in (2-10) becomes identified with the composite

Ok = (Ox/9)" = (Z/q)" — Fy(1),

(5-12)

where q is the unique degree one prime of K above p.

Proof. Indeed we may split

Ad p®Z [é] = Hom®(M, M) ® Z [é] =7 E] edW,
where e is the projection of T € Hom (M, M) to the trace
zero subspace Hom’, and W is the Z[é]-submodule
of Hom(M, M) ® Z[é] spanned by the images of
(12), (13), (23) under p.

Therefore S; acts on e by the sign character, whereas
for any S;-module V, the space of homomorphisms
Homyg, (W, V) is identified with the subspace of

v € V12 = (12)-fixed vectors in V

such that o + (123)v + (132)v = 0.
Using the definition of U, and the splitting above, we
find that evaluation at S induces an isomorphism

1 ~ (sign) (1) 1
Ug®Z|:6:|_<UL ®00) ez -

The first factor corresponds to units in the imaginary
quadratic field Q(4/disc(L)), and is thus trivial upon
inverting 6. This proves (5-12).

Now let u be a norm one unit in K; we may now identify
it with an element of U, ® Z[1/6]. We will compute its
image under the reduction map. Letu € Hom (Ad°p, Up)
be the element associated to u. By definition u(S) = u. Let
qo be the prime of L above g, as before; to compute 6, (1)
we must, by definition, compute the image of u under the
sequence (2-10):

Homg, ,, (Adoﬁ, Hpq) — Hom(Ad"p, F; )P N Fy(1),
alq

where we phrased the previous definition dually. The ele-
ment e, from (2-8) is identified here with S, so that the
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Table 1. Data for the weight one form associated to the cubic field
with discriminant —23; in all cases the ratio is —1/72 modulo p. All
allowable p < 100 and g < 150 shown.

Table 2. Data for the weight one form associated to the cubic field
with discriminant —31; in all cases the ratio is 1/72 modulo p. All
allowable p < 100 and g < 150 shown — means undefined.

p q log(0)/ log(@yere) € Z/P nez/p Ratio p q log(U/@ o)) € Z/P nez/p Ratio
5 n 3(5) 4(5) 2(5) 5 n 2(5) 4(5) 3(5)
5 61 1(5) 3(5) 2(5) 5 61 2(5) 4(5 3(5)
7 43 3(7) 1(7) 3(7) 7 29 1(7) 2(7) 4@7)
7 13 17) 5(7) 3(7) 7 43 4(7) 17) 4(7)
n 67 6(11) 8(1) —2(11) 7 127 00 — —

n 89 (M) 5(11) —2(1) n 23 3(11) 7(M) 2(1)
13 53 6(13) 10(13) —2(13) n 89 7(11) 9(1) 2(11)
13 79 5(13) 4(13) —2(13) 13 53 2(13) 1013) 2(13)
17 137 5(17) 14(17) 4(17) 13 79 3(13) 8(13) 2(13)
37 149 20(37) 3(37) 19(37) 17 137 4(17) 16(17) 13(17)
41 83 12(47) 38(41) —4(41) 23 139 4(3) 12(23) 8(23)
53 107 30(53) 13(53) 39(53) 4 83 28(41) 7(47) 4(47)

last map is evaluation at S. It follows that this map is sim-
ply the reduction of u at g. O

It follows from this discussion and Proposition 5.1 that
we can rephrase our conjecture in the following way:

Conjecture 5.1. Let K be a cubic extension with negative
discriminant —D, with sextic Galois closure L. Let g be
the associated weight one form of level D. Let u € Of
be a unit. Let ¢ = 1 modulo p be as above; suppose that
%’) = —1, and p > 5, and finally @ere € (Z/9)* (see
(5-7) for definition) is non-zero modulo p, i.e. upon pro-
jection to the quotient IF(1).
Then there exist A, B € Z such that, for all such g we
have

A

oy =" inFy(1), (5-13)

where:

® 1 € Z is the first Fourier coefficient of the Eisen-
stein component of G5, the projection of g(z)g(qz)
to the Eisenstein component at level q. (This is well
defined modulo the numerator of %, which is suf-
ficient to make sense of the above definition).

® u € (Z/q)* is the reduction of u modulo the unique
degree one prime of K, above gq.

We have tested this conjecture numerically (see data
tables) for the fields K of discriminant —23 and —31. In
all the cases for discriminant —23, we find % ;—21; in all
. The fact

=l

the cases for discriminant —31, we find % =
that 72 is divisible only by 2 and 3 is striking.

7

S}

Remark 5.1. Although we are not able to do any compu-
tations with exotic weight one forms at present, we com-
ment on how some of the previous identifications change.

First of all, one can consider the case of a weight one
form g whose Galois representation is induced from a
character of a real quadratic field Ly of mixed signature at
00, i.e. taking the value 41 on one complex conjugation
and —1 on the other complex conjugation. In this case, the

unit group Uy is simply the unit group Of ® Q. Itis pos-
sible that this case would be more amenable to theoretical
analysis.

The remaining cases correspond to adjoint Galois rep-
resentation with image A4, S4, or As. In the A4 case the
description of the unit group is quite straightforward:
let Ly be the fixed field of A; < A4. Then (up to possi-
bly extending coeflicients to a larger extension of Q) the
unit group Uy is simply Of ® Q. In the other cases, the
description becomes a little more complicated since the
unit group must be “cut out” from units in the Galois clo-
sure of Ly. In these A4, Sy, orAs cases, the adjoint repre-
sentation is irreducible, which should mean that the triv-
ial vanishing described in footnote 5 does not occur.

6. Flat cohomology and Merel’s computation

We now explain why Merel’s computation implies Lemma
5.1. The issue is that Merel’s computation is in character-
istic zero. To relate it to (E, &), which is defined in char-
acteristic p, we will need to do a little setup in flat coho-
mology.

Let X = Xy(g) regarded now as a proper smooth curve
over Zp; here g = 1 modulo p. Let J, be the p-torsion of
the Jacobian of XQ7' We shall define several incarnations
of both the Shimura class and the Eisenstein class.

6.1. The (Shimura) class o

The Shimura cover X; (q)® — Xo(g) (from Section 3.1) is
a (Z/q)}, torsor for the etale topology. As before it defines
aclass S € H) (X, [F,(1)), which can be pulled back to flat
cohomology:

o € Hy(X,Fy(1)).

Restricting & to the geometric generic fiber Xq,» we geta
class in étale cohomology

oot € Hy (X, Fp(1).



The inclusion p, <> G,, induces Helt(XQ—P, Wp) = Jps
and thus o, gives

PO( € Hom(Mp(_1>a]p)a (6_1)

we use the notation P, to suggest that this is a point on the
Jacobian.

Finally, we also obtain a Zariski class on the geometric
special fiber, using the inclusion IF, < O and the identi-
fication of Zariski and etale cohomology for O:

Ozar € H%ar(XE’ O(U)

6.2. The (Eisenstein) class f8

Let A be the weight twelve cusp form g [](1 — g")*, and
consider the function f := A(gz)/A(z) on X. Extracting
its pth root gives a 1 ,-torsor (in the flat topology) on X.
Indeed, f is invertible except for the divisors correspond-
ing to 0 and oo, and along those divisors its valuation is
divisible by p. Thus, we get a class

B € HY(X. uyp).

The pp-torsor is étale over the geometric generic fiber
Xq, and we get a corresponding class in étale cohomol-

ogy
Bet € Hy (X Fp(1).
There is a corresponding class in the p-torsion of the

Jacobian, namely, writing 0 and oo for the two cusps of X
we may form

(g—1)

Qp = ((00) = (0)) €],

—this is related to our prior discussion because p.Qpg is
the divisor of f.

Finally, there is also a Zariski class “corresponding” to
B on the special fiber. Namely, the logarithmic derivative
% in fact extends to a global section of Q! i.e. a class

0/yv__ Ol
,BZar €H (X]FP’ Q )

Observe that %/ is the differential form associated to the
“Eisenstein cusp form” G of weight two.

With these preliminaries, the main point is to check the
following:

Proposition 6.1. We have an equality in F,(1):
<Pou Qﬂ)Weil = (aet, ﬁet)et = <aZara ﬂZar)Zar-

Here, (—, —)weil is the Weil pairing, (—, —) is the
pairing given by Poincaré duality in étale cohomology on
the geometric fiber, and (—, —)z,, is the pairing given by
Serre duality in coherent cohomology on the special fiber.
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Keeping track of twists, we see that all these take values in
F,(1).

Now (E, G) is given by (ozar, Bzar)zar; the Proposi-
tion shows this coincides (in IF, (1)) with (P, Qg)weil. The
Weil pairing on the right is computed by Merel; we pin
down the relation to Merel’s computation in Section 6.3.
Taken together, the Proposition and this computation
prove Lemma 5.1.

Proof. The first equality is straightforward: an explicit
representative for Qg € J, ~ H L(x, Wp) is given by the
up-torsor associated to f := A(qz)/A(z), because the
divisor of f is pQg.

We now discuss the second equality. We will compare
everything to the cup product in flat cohomology; i.e.

a U B € Hi (X, 11p(1)).

There is a degree map HJ (X, u,) — F; let us expli-
cate it. On any scheme, the sequence u, — G,, — G,
induces an exact sequence of represented sheaves for the
flat topology. This identifies the flat cohomology of 1,

with the hypercohomology of [G,, x'_)—i: Gul.
Let X7 be the base change of X to Z, (the Witt vectors

of IET,). We obtain an exact sequence

Pic(Xz)/p — Hi Xz 14p) — Hi Xz Gw)[p].

(6-2)
Flat and étale cohomology of G, coincide (see [Milne 80,
III, Theorem 3.9]), and the right-hand side is a subgroup
of the Brauer group of X7, which vanishes [Grothendieck
68, Theorem 3.1]. Accordingly, any class in H7 (X7, 1p)
is the coboundary of a line bundle, and computing degree
gives the desired homomorphism

deg : Hﬂz(XZ—P, ©p) —> F.

We see that deg(or U ) = (et Bet)et and so it remains to
see

deg(a U ,3) = (aZarv ﬂZar)Zar

Let = be the morphism from the flat site on XE to the
étale site. As a reference for what follows, we refer to the
paper of [Artin and Milne 76]. We have isomorphisms:

R (Z/pZ) ~ [0 = O,
R, ~ (@155 Q1]

where F and C are, respectively, the Frobenius and Cartier
maps. and Artin-Milne show that the pairing Z/pZ x
Mp —> pinduces, after push-forward, the “obvious” pair-
ing on the complexes on the right, which can be computed
in the Zariski topology, because flat and Zariski cohomol-
ogy coincide for quasi-coherent sheaves.
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For the same reason, the second identification induces
an isomorphism

Hi (Xg) =~ H' (Xz,, Q)¢ = Fy,

where the map H' (') — F, comes from Serre duality.
Moreover, the resulting identification is simply the degree
map, alluded to above; this comes down to the fact that
the map
H' (X5 . Gn) T8 H'(X5 . Q") - F,

again computes the degree of a line bundle modulo p.

With respect to the resulting identification of
Hy(X, pp) ~ HO(Q! e Q'), and the Cech repre-
sentation of this last hypercohomology, the class 8 is
represented by % € C°(Q'), which has zero boundary
and is annihilated on the nose by 1 — C. Similarly the
class o in étale cohomology is represented by a Cech
cocycle ' € CL(0) together with a class ¢ € C(0)
satisfying (1 — F)c' = dc®. The image of the pairing
a UB € Hi(up), under the map H} (u,) — H'(Q"HS,
is represented by ¢! - &L € C!(Q); its image by the trace
pairing is the usual Serre duality pairing between the
cohomology classes of ¢! and d—f. This concludes the
proof. O

6.3. Merel’s computation

Although routine, we write out the details involving
(Py, Qp) to be sure of factors involving ged(q — 1, 12). In
what follows, we understand our modular curves to be
considered over an algebraically closed field of character-
istic zero.

Recall that P, is an element of Hom (14,(—1), J,). Thus,
the Weil pairing (P, Qg) € (1) has the property that

Weil pairing of P, (u) and Qg = u -
(P, Qp)weil (1 € up(—1)),

where, on the left-hand side we have the “usual” Weil pair-
ing of two torsion points in .

Following Merel, let v be the gcd of ¢ — 1 and 12; let
n= ?. LetU C (Z/q)* be the subgroup of vth powers;
the map (Z/q)* — IF,(1) factors through the vth power
map, and we get a sequence

(6-3)

(Z)9)* =5 U — F,(1).

The Galois group of the covering X;(q) — Xo(g) can
be identified with U (as in Section 3.3 [Merel 96]). This
gives rise to a map

o Hom(U, w,) — J,.

Also Q' = (00) — (0) is n-torsion in the divisor class
group, thus defining another class in J,,. Then Merel shows
that

(Ot/(t), Q/)n = t(wMerel)a te Hom(U, /’Ln)’

where the equality is in i1, and the subscript # means we
are using the Weil pairing at the n-torsion level.

We want to compare « to P,. Note that if
t € Hom(U, u,), the power t"/P defines an element
of Hom(U, up) that, considered as an element of
Hom((Z/q)*, 1), factors through IF,(1). We refer to the
resulting element as t € Hom(IF (1), up). Explicitly, if
w € (Z/q)*, we have

P (V) = ().

Now consider the commutative diagram (where we
write X = Xy (q) for short)

HY(X,U) x Hom(U, )

(6-4)

(6-5)

JIn
idxt—t

xn/p

Hl(Xv U) X Hom(Fp<1>nup) - JP

—H(XFp(1))

~pp(—1)

When we evaluate at the element of H! (X, U) corre-
sponding to the cover X; (q) — Xo(q), the top horizontal
map becomes o’ and the bottom map becomes P, from
(6-1). Thus, we have

o ()P = P,(), t € Hom(U, p,) > t € Hom(F,(1), 1,).

Pairing with Qg = q%Q’ €J, and comparing with
(6-3):
<Pa7 Qﬂ) = <Pa({)7

t
—— N
Hp(*l) ]FP“)

—1
Qs)p = (o' ()", %Q’»

qg—1

(o' (1), Q) € 1y

and so

= 6.4
t (P()l7 Qﬂ) -

q—1
Tt(ZD—Merel)
Hp(=1) Fp(l)

6.5 -
= tn/p(wl\];[erel) = t(wMerel),

where the equality is once again in ,. We conclude that
(P, Qg) is indeed the image of @ ere inside F,(1).

7. Comparison with the theory of [Venkatesh nd]

Derived Hecke operators at Taylor-Wiles primes have
been defined abstractly for general g-adic groups in
[Venkatesh nd]. The purpose of the present section is
to identify the operators introduced in (3-1) with those



defined in [Venkatesh nd]. (The results of this section are,
strictly speaking, not used elsewhere in the paper; how-
ever they show that all the constructions we have made
are inevitable).

Write G = GL,(Q,), whereg =1 (mod p),and K =
GL;(Zy). Fix a base ring S that is a Z-algebra.

What we will need to do, in order to study the derived
Hecke operator at g, is to identify the cohomology of the
modular curve with the cohomology of the K-invariants
of a complex of G-representations. Unsurprisingly, this is
done by adding infinite level at g; we just pin down the
details. We need to take a little care because the tower of
coverings that one gets by adding infinite g-level is not
étale; however, its ramification is prime to p, which will
be enough for our purposes.

In particular, we will use® Lemma A.10 of Appendix
A of [Venkatesh nd], which explicates the action of the
abstract derived Hecke algebra in terms of restrictions,
corestrictions, and cup products.

7.1. Construction of complexes with an action of
GL,(Q,)

Let us fix a level structure away from g for the usual
modular curve, i.e. an open compact subgroup K@ C
GL,(A®9), We require that K@ = [1,4, Ko» where K,
is hyperspecial maximal for almost all 0.

For U C GL;(Qq), an open compact subgroup, let
X (U) be the Deligne-Rapoport compactification of the
modular curve with level structure K@ x U. This again
has (Deligne-Rapoport) a smooth proper model over
Spec S, denoted X (U )s. We denote again by wy — X (U)
the relative cotangent bundle of the universal elliptic
curve; this defines a locally free sheaf over X (U)s.

Let us consider the pro-system of schemes

Xoo : U > X(U),

indexed by the collection of all open compact subgroups
of GL,(Qq); the maps are inclusions V' C U of open com-
pact subgroups.

The isomorphisms X (g~'Ug) — X(U) induce an
action of G = GL,(Q,) on X, (considered as a pro-object
in the category of schemes). Let ws be the “vector bun-
dle” over X, defined by w: by this we mean that wy is a
pro-scheme over X, which is level-wise a vector bundle.

We will need the following properties:

(i) The action of G on X, lifts to an action on wy.

(ii) Suppose that V' is a normal subgroup of U. Then

the natural map

fov : X(V)s = X(U)s

6 with an apology to 21st century readers, see below...
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is finite, and identifies X (U )g with the quotient of
X(V)s by U/V in the category of schemes. (See
[Deligne and Rapoport 73, 3.10]).
Moreover, there is a natural (in S) identification
fL*,Va)U ~ wy.

(iii) With notation as in (ii), if the order of U/V is a
power of p, then the map X (V)s — X (U)gis étale.

Proof. (of (iii) only:) We may suppose that S = Z,. The
map is étale over the interior of the modular curve, so,
by purity of the branch locus, it is enough to check that
it is étale at the cusps in characteristic zero. The cusps of
a modular curve are parameterized by an adelic quotient,
but replacing the role of an upper half-plane by P! (Q); so
we must verify that the map

GL(Q\(GLa(Af) x PH(Q))/V —> GL2(Q\(GLy(Af)
xP'(Q))/U,

considered as a morphism of groupoids, induces isomor-
phisms on each isotropy group.

Let B be a Borel subgroup in GL, /q and N its unipotent
radical. We can identify P! (Q) with GL,(Q)/B(Q). The
desired result follows, then, if for each g € GL,(Ay) we
have

B(Q) NgUg ' cgvg .

However, the projection of B(Q) N gUg ™! to the toral Q*
is a finite subgroup of Q*, thus contained in {£1}. It fol-
lows that an index 2 subgroup of the left-hand side is con-
tained in N(Q) N gUg™!, which is certainly contained in
gV g ! because any open compact of N(Qy) is pro-g. [

Lemma 7.1. Suppose that, as above, V is a normal sub-
group of U. Let f = fyy be as in (ii) above. Let F be any
sheaf of Ox (vy-modules on X (V'), equipped with a compat-
ible action of U/ V.
Then
(i) For each x € X(V), the higher cohomology of the
stabilizer (U/ V'), on Fy is trivial.
(ii) For each y € X(U), the higher cohomology of
(U/V) acting on (7,.F), is trivial.

Proof. Note that we can reduce (i) to the case when
(U/V)x = (U/V) by shrinking U. Both (i) and (ii) will
follow, then, if we prove that for any U/V -stable affine set
Spec(A) C X(V),

higher cohomology of U/Von I'(Spec(4), F) = 0,
(7-1)
since the stalks appearing in (i) and (ii) are direct limits of
such spaces.
Let A = U;/V be a Sylow p-subgroup of U/V; it is
sufficient to make the same verification for the higher
cohomology of A. Write B = A®. The map Spec(A) —
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Spec(B) is finite étale with Galois group A, by (iii) above.
It is now sufficient to show:

If M is an A-module, equipped with a A-action compat-
ible with its module structure, then H7(A, M) = 0 for
q > 0.

Let M' = M ®g A; define a A-action on M’ using
gm®a) = gm @ afor g € A.Since A isa flat B-module,
the natural map H1(A, M) ®3 A — HI(A, M’) isaniso-
morphism. We shall show H1(A, M’) = 0; the vanishing
of H1(A, M) follows from faithful flatness.

Now M’ is a module over A ®p A =~ [[;., A, and
this module structure is compatible with the A-action
on [[;. A, which permutes the factors. Therefore, M’
is induced (as a A-module) from a representation of
the trivial group, and thus has vanishing higher A-
cohomology by Shapiro’s lemma. O

7.2. Godement resolution

Let T be the “Godement functor,” which assigns to a
sheaf 7 the sheaf U — [] ., Fx of discontinuous sec-
tions. It carries a sheaf of O-modules to another sheaf of
O-modules.

We will need to discuss the behavior under images.
Suppose given a map f : X’ — X of schemes. There is a
map of functors

T — f,Tf

For a sheaf F on X and an open set V' C X, this is given
by the natural pullback of discontinuous sections

[17~ [T ¢'Hn.

xeV Xef1v

If we are working with sheaves of @-modules, then, com-
posing with the natural f~! — f*, we get T — f,.T f*,
or, what is the same by adjointness, a natural transforma-
tion

f*T —> T f* and (by iterating) f*T* — T* f*.
In particular, for a sheaf 7 on X, there is a map

f* (Godement resolution of F)
—> Godement resolution of f*F.  (7-2)

This gives rise to the pullback map in cohomology
H*(X, F) - H*(X', f*F).

7.3.

It follows from Lemma 7.1 that (with notations as in that
Lemma and) for any sheaf F of Oxy)-modules,

HP(U/V,T(X(V), TF)) =0, p=>0. (7-3)

Indeed, group cohomology commutes with products
(even infinite ones).

Now let G*(U) be the Godement resolution of wy. It
is a complex of sheaves of Ox)-modules on X (U)s. Let
M?*(U) be the global sections of G*(U): this is a complex
of S-modules. If V' C U, there is a natural action of U/V
on M* (V). It follows from (7-3) that

Lemma 7.2. For each degree i, the U/V -cohomology of
M (V') vanishes, i.e. H*(U/V, M'(V)) = 0 for p > 0.

The following result is the crucial one for us.
Lemma 7.3. The map arising from (7-2)

G () — (f.g° ()"

(where U/V denotes invariants) induces on global sections
a quasi-isomorphism

(7-4)

M*(U) — M*(V)V/V, (7-5)

Proof. It is enough to verify that (7-4) is a quasi-
isomorphism: the sheaves G*(U) and £,G*(V)U/V are
flasque—the latter follows just by examining the defini-
tion of the Godement functor T—and so taking global
sections will preserve the quasi-isomorphism.

Consider the following diagram:

wy G*(U)

(Fuu VIV — (f.G° (V)Y

The left vertical arrow is a quasi-isomorphism:
we have an isomorphism f.oy ~ wy ® f,Oy, and
(feOv)U"V = Oy. The top horizontal arrow is also a
quasi-isomorphism. It then suffices to show that the arrow
j is also a quasi-isomorphism.

The complex f,.G*(V) is a resolution of f.wy because
f« has no higher cohomology on the quasi-coherent sheaf
wy. Next the stalks of f,wy and f,G*(V) have vanish-
ing U/V-cohomology by Lemma 7.1. Given an acyclic
complex of U/V -modules supported in degrees > 0, each
of which have no higher U/V-cohomology, the U/V-
invariants remain acyclic. This implies that £,G*(V)V/V
is a resolution of ( f,wy )V’ as desired. O

~

7.4. Compatibility with traces

We must also mention the compatibility with trace
maps. Suppose, we are given a subgroup U’ intermediate



between U and V:
VcuU cU.

We do not require that U’ be normal.
There is a natural trace map

H* (XU, ov) - H*(X(U), wy).
Explicitly the trace f,Oxw) = Ox ) induces
H*(X(U"), wy) = H'(X(U), frwv)
= H'XU), 0y ® f.Oxw))

= H'(X(U), wu).
With reference to the identifications of the previous
lemma, this trace map is induced at the level of cohomol-

ogy by
MUY — M* V)Y 5 M)V Z M),

where T € S[U/V] is the sum of a set of coset representa-
tives for U/U’.

7.5. Derived invariants and the derived Hecke
algebra

As in Section 7.3, M*(U) is a Godement complex com-
puting the complex of wy Now set

M, = lim M*(U),
—_

which is now a complex of S-modules equipped with an
action of G = GL,(Qy).

We will argue that the “derived invariants” of U on M3,
give a complex that computes the cohomology of X (U)s.
We first recall the notion of derived invariants, and its
relationship with the derived Hecke algebra.

Let U be an open compact subgroup of G. Let U; C U
be a normal subgroup with the property that the pro-
order of Uy is relatively prime to p. Let Q be a projective
resolution of S in the category of S[U/U;]-modules; we
regard this as a complex with degree-increasing differen-
tial concentrated in degrees < 0:

"'—>Q72_)Q71_)Q0:S'

We may of course regard Q as a complex of S[U]-modules.

Let P = indQ. This is a projective resolution of the
smooth S[G] module S[G/U] (in the category of smooth
S[G] modules). For any complex R* of G-modules, we
define the derived U-invariants to be the complex

Homyg(g) (P, R*) = Homyy)(Q, (R*)™).

Explicitly, this is a complex whose cohomology computes
the hypercohomology H* (U, R®).

In the case above, the derived invariants of U on M3,
compute the cohomology of X (U), in the following sense:
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Lemma 7.4. The natural inclusion of M*(U) — M2, and
the augmentation Q — S induce a quasi-isomorphism:

M*(U) = Homgy)(Q, M%) = Homgg) (P, M2,).
(7-6)

Proof. Using the remarks after (7-5), we see that

M*(Uy) = lim M*(U)"Y" 5 Uy-invariants on M,
U'ch;
(7-7)
(for the second arrow: since Uj is prime to p the functor of
taking U; invariants commutes with taking a direct limit
of smooth S[U; ]-modules).
The inclusion M*(U) < M*(U;) and the homomor-
phism Q — Sinduce

M U) - Homy,y, S M (Uy)) — Homy,y, (Q, M*(Uy))

and it remains to show that this composite is a quasi-
isomorphism.

The first map is a quasi-isomorphism by Lemma 7.3.
To show that the second map is a quasi-isomorphism,
it is enough (by a devissage) to show that for each fixed
degree j

Hom(S, M/ (U;)) — Hom(Q, M’(Uy))

induces a quasi-isomorphism. But the right hand side
computes the U/U; cohomology of M/ (U;), and we have
seen (Lemma 7.2) that this is concentrated in degree zero,
where it is just the U/Uj invariants, as needed. O

Now we may imitate all the reasoning above, with the
role of w replaced by O. Let N* be the corresponding
complex. Reasoning as in Lemma 7.4, we get a quasi-
isomorphism

N*(U) ~ Homgy)(Q, N3,). (7-8)

The identification of S with global sections of Ox )
induce compatible maps S — N* (V') for eachlevel V,and
so by passage to the limit a map § < NZ2,. This induces

H*(U,S) — H*(X(U), O). (7-9)

For o € H/(U,S), write (@) € H (X(U), Q) for its
image under this map. Then we have:

Lemma 7.5. Under the identification H*(X(U), wy)
with the hypercohomology H* (U, M%), (as in the prior
Lemma), cup product with («) in Zariski cohomology is
carried to cup product with a in hypercohomology.

Proof. The product O @ wy — wy extends to a map
N*(U) @ M*(U) - M*(U) (see [Godement 58, Chap-
ter 6]), which computes on cohomology the cup product.
This exists compatibly at every level, and by passage to the
direct limit, we arrive at a map N3, ® M3, — M2, (the
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tensor product can be passed through the direct limit, by
[Bourbaki 98, Chapter 2, Prop. 7, Section 6.3]).
Fix a quasi-isomorphism of S[U]-modules:

q:Q—>Q®sQ.

Consider the following diagram, with commutative
squares:

m' @ a' e HiM*(U)) @ HINL) H MUY
|
<X tl-.;;;-rq..‘.'Ji: % Hom' (@, V%) —= Hom' Y (Q &2 Q, M2 @ N2 ) 2
m®a e Hom'(Q .!u: ) & Hom(Q, §) —% = Homi'**(Q -!Q\ AL & §) ——e Hom**9(Q, M%)
where:

e Hom means in every case homomorphisms of chain
complexes of S[U] modules, taken modulo chain
homotopy.

* ® comes from the tensor product, which induces
a bifunctor on the homotopy category of chain
complexes.

e We fix m € Hom'(Q, M%), and m’ is the coho-
mology class corresponding to m under the
quasi-isomorphism (7-6).

* We identify o with a class in Hom/(Q, S) and o’ is
the image of this class, under S — N3,. Also a” is a
cohomology class in H/(N*(U)) that matches with
o’ under the quasi-isomorphism (7-8).

The image of m @ o, under the bottom horizontal
arrows, computes the cup product of m and « in U-
hypercohomology. This corresponds to the image of m @
o in the middle horizontal row. Finally, this corresponds
to the image of m’' ® «” in the top row, which gives the
Zariski product. O

7.6. Derived Hecke algebra

Let notation be as above, but specialized to the case U =
K, a maximal compact of GL,(Q,). We may form the dif-
ferential graded algebra Endg;g)(P) whose cohomology
we understand to be the (graded) derived Hecke algebra
for the pair (G, K). There is an isomorphism ([Venkatesh
nd], (148))

Endgig) (P, P) >~ @yer\c/xHomg, (Q, Qy),

where Q, is the complex Q but with the twisted action
of K, = KN Ad(g,)K defined by « * g = (Ad(g; " )x)g;
here, we have implicitly chosen coset representatives g, K
for each x € K\ G/K. Taking cohomology, one finds that,
for any i there is an isomorphism ([Venkatesh nd], (149))

(7-10)

H'(Endyg) (P, P))—> @rerrg/x H'(Ky, S).  (7-11)

Now the differential graded algebra Endgg) (P, P) acts
on Homygg) (P, M3,). Passing to cohomology and apply-
ing Lemma 7.4, we get a graded action of the derived

Hecke algebra for (G, K) on H*(Xk, wg). This action is
specified by specifying, for each x = Kg,K € K\G/K as
above, the corresponding action of H*(K,, S) on coher-

ent cohomology. We can now restate Lemma A.10 of
[Venkatesh nd]:

Lemma 7.6. The action of h, € H*(K,, S) on H*(K, M2,)
is given explicitly by the following composite:

H* (K, M%)~ B (K, MS) 2550 A (K, ML) 2205 B (K, M2,)

Cores

H* (K, M2.)

We obtain the derived Hecke operator T, described
in Section 3, with the coefficient ring S = O/p", by tak-
ing x = (§9) and by taking the cohomology class h, €
H'(K,, S) as the composite:

ab
<c d) € K, +— (a/d mod q, z),

where z € k(—1) is regarded as a homomorphism
(Z/q)* — O/p". Indeed, to verify this, it only remains to
show that the induced map

H* (K, M) — H" (K, M%) (7-12)

given by cupping with the class A, is identified with

H*(X(K,), 0) £S5 H*(X(K,), o)

that is to say the cup product with z&, i.e. the Shimura
class multiplied by z, regarding as a class in the cohomol-
ogy of X (K,) with coefficients in O/p". This follows easily
from Lemma 7.5.

The following remark is due entirely to the first-named
author (M.H.); the second-named author disclaims both
credit and responsibility for it.

Remark 7.1. For the benefit of those millenials who
believe that the Godement resolution is one of the found-
ing documents of the United Nations, here is a translation
of the above construction into contemporary language.
We thank Nick Rozenblyum for his patient guidance.
We work in the DG category (or stable co-category) C
of complexes of quasicoherent sheaves on the scheme
Xoo» and consider the object wo, all over Spec(S). This
object carries an action by G = GL(Qq). Therefore, the
object RI'(ws) in the DG category Mods of complexes of
S-modules carries an action of G. Everything up through
Lemma 7.5 is automatic in this setting. The remaining
observations are not strictly necessary to formulate the
conjecture; however, they do provide the explicit com-
putation of the derived Hecke operator, as in Lemma
7.6, needed in order to test the conjecture in specific
applications.



8. Magma Code

What follows is a sample of Magma code that we used
to compute the derived Hecke operator for the modular
form of level 31, with g = 139 and p = 23.
N := 31;
:= 139;
= 23;
:= FiniteField (L) ;
:= ModularForms (N*Q) ;
:= CuspidalSubspace (M) ;
SQ := BaseExtend (S, Rational-
Field()) ;
SF := BaseExtend (S, F);
V, h := VectorSpace (SF) ;
time Tq := HeckeOperator (SF,N) ;
time Wqg := AtkinLehnerOpera-
tor (SF,N) ;

Ig := IdentityMatrix(F, Dimen-
sion(S)) ;
Qg := Ig +Wg*Tqg; /* Qg projects

from level QN back down to level
Q */
Pro := Dimension(S) ;
Z<g> := PowerSeries-
Ring (IntegerRing()) ;
QQ<g> := PowerSeries-
Ring(RationalField()) ;
CUTOFF := Dimension(S)+3;
eps := KroneckerCharacter (-N) ;
WeightOneSpace := Modular-
Forms (eps, 1);
etatemp := WeightOneSpace.2;
etaprodA := gExpansion (etatemp,
CUTOFF) ;
etaprodB := Composi-
tion (etaprodad, g*Q+0 (g"CUTOFF)) ;
g := etaprodA * etaprodB
+ O(g"CUTOFF) ;
g0 := SF ! g;
W := Vector(F,
Wiin := W * Qq;
/*denom := Denominator (Wfin) ;
print (Factorization (denom)); */
M2 := ModularForms (Q) ;
S2 := CuspidalSubspace (M2) ;

S20 BaseExtend (S2, Rational-
Field ()
S2F BaseExtend (S2, F);
V2,h2 := VectorSpace (S2F) ;
CUTOFF2 := Dimension(S2)+3;
projform := S2F ! h(Wfin) ;

projformcoeff := Vec-
tor (F, Inverse (h2) (projform)) ;

n 29" B O

Inverse (h) (g0)) ;

7
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normcoeffF := projformcoeff;

randprime := 41;

randT := HeckeOperator (S2F, rand-
prime) ;

charpoly := CharacteristicPolyno-
mial (randT) ;

P<u>,h3 := ChangeR-
ing (PolynomialRing (IntegerRing()), F);

Factorization (P! charpoly) ;

unnormalizedredpoly := charpoly/ (u-
randprime-1) ;

redpoly := unnormalizedred-
poly/Evaluate (unnormalizedredpoly,

randprime+1l) ;

print (Evaluate (redpoly, rand-
prime+l)) ;

projmatrix := Evaluate (P! red-
poly, randT);

finalanswerinbasis := normco-

effF * projmatrix;
print (finalanswerinbasis) ;
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