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ABSTRACT

We study the action of the derived Hecke algebra on the space of weight one forms. By analogy with
the topological case, we formulate a conjecture relating this to a certain Stark unit. We verify the truth
of the conjecture numerically, for the weight one forms of level 23 and 31, and many derived Hecke
operators at primes less than 200. Our computation depends in an essential way onMerel’s evaluation
of the pairing between the Shimura and cuspidal subgroups of J0(q).

1. Introduction

Let G be an algebraic group over Q. In [Venkatesh nd],

the second-named author studied the action of a derived

version of the Hecke algebra on the singular cohomol-

ogy of the locally symmetric space attached to G. One
expects that this action transports Hecke eigenclasses

between cohomological degrees and moreover (see again

[Venkatesh nd]) is related to a “hidden” action of amotivic

cohomology group.

It is also possible for a Hecke eigensystem on coher-
ent cohomology to occur in multiple degrees. The sim-

plest situation is weight one forms for the modular curve.

We study this case, explicating the action of the derived

Hecke algebra and formulating a conjectural relationship

with motivic cohomology.

The motivic cohomology is particularly concrete: a

weight one eigenform f is attached to a two-dimensional

Artin representation ρ f of Gal(Q̄/Q) and the motivic

cohomology group in question is generated by a certain

unit in the splitting ield of the adjoint of ρ f . This makes

the conjecture particularly amenable to numerical testing.

We carry this out for the forms of conductor 23 and 31,

and the irst few derived Hecke operators; the numerics

all support the conjecture.

We note that this story is also related to the

Taylor–Wiles method for coherent cohomology and its

obstructed version due to Calegari–Geraghty (see [Harris

13], and the detailed discussion of weight one forms in

[Calegari and Geraghty nd]). This is used implicitly in the

discussion in Section 4 of the current paper.

Now we outline the contents of the paper. After giv-

ing notation in Section 2, we describe the derived Hecke

algebra and the main conjecture in Section 3. Although
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the discussion to this point is self-contained, we post-

pone the comparison with the results of [Venkatesh nd]

until the inal section. We translate the Conjecture to an

explicitly computable form in Section 5; see in particular

Proposition 5.1. Finally, in Section 5.4, we make the con-

jecture even more explicit in the case of a form associated

to a cubic ield K, and check it numerically in the case of

K with discriminant −23 and −31.

It would be most desirable to extend our computations

to the case of an “exotic” weight one form, that is to say, a

weight one form whose associated projective Galois rep-

resentation has non-dihedral image. The case of a form

whose Galois representation is induced from amixed sig-

nature character of a real quadratic ield is also of inter-

est. The minimal level of such a form is 124, but our code

becomes very slow once the product qN of the levelN and

the prime q indexing the derivedHecke operator becomes

large: it seems unlikely we could, with our current code,

compute enoughHecke operators to shed any real light on

the conjecture.

Our numerical computation depends, in a crucial way,

on the evaluation of a certain pairing in coherent coho-

mology on the mod p iber of a modular curve; this eval-

uation is postponed to Section 6, where we do it by relat-

ing it to Merel’s remarkable computation [Merel 96]. It is

worth emphasizing how important Merel’s computation

is for us: it seemed almost impossible to carry through

our computation until we learned about Merel’s results.

Indeed, the role that Merel’s computation plays here sug-

gests that it would be worthwhile to understand how it

might generalize to Hilbert modular surfaces.

The expression of the derived Hecke algebra action

as a cohomological cup product (see 5–2) strongly sug-
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gests a relation with special values of the triple product L-
function. In the forthcoming work with Henri Darmon,

Michael Harris, and Victor Rotger, we will study this fur-

ther; in particular we are able to prove some special cases

of the Conjecture.

2. Notation

2.1. Modular curves

Fix an integer N. We will generically use the letter R for

a Z[1/N]-algebra. For R → R′ a morphism of Z[1/N]-

algebras and Y an R-scheme, we denote by YR′ the base

extension ofY to R′.
Let X = X1(N) be the compactiication [Deligne and

Rapoport 73] of the modular curve parametrizing elliptic

curves with with anN-torsion point.Wemay constructX
as a smooth proper relative curve over SpecZ[ 1N ], and the

cusps give rise to a relative divisor D ⊂ X . In particular,

we obtain an R-schemeXR for eachZ[1/N]-algebra R. We

denote the universal generalized elliptic curve over X by

A −→ X .
We will denote by

X01(qN), X1(qN),

the modular curves that correspond to adding X0(q) and
X1(q) level structure to X .

Let ω be the line bundle over X whose sections are

given by weight one forms. More precisely, when X is

the modular curve, let �A/X denote the relative cotan-

gent bundle ofA/X , pulled back to X via the identity sec-

tion. We deine ω as the pullback of �A/X via the zero

section X → A. Therefore, the sections of ω correspond

to weight one forms, whereas sections of ω(−D) corre-

sponds to weight one cusp forms. Moreover, there is an

isomorphism of line bundles [Katz 73, (1.5), A (1.3.17)]:

ω ⊗ ω(−D) � �1
X→Z[ 1

N ]
, (2–1)

which says that “the product of a weight one form and a

cuspidal weight one form is a cusp form of weight two.”

Let π : XR → SpecR be the structure morphism and

consider the space of weight one forms over R, in coho-

mological degree i – formally:

�(Spec(R), Riπ∗ω).

We will denote this space, for short, by H i(XR, ω), and

use similar notation for ω(−D). Therefore, H0(XR, ω)

(respectivelyH0(XR, ω(−D))) is the usual space ofweight

one modular forms (respectively cusp forms) with coei-

cients in R.

2.2. The residue pairing

The pairing 2–1 induces

π∗ω ⊗ R1π∗ω(−D) −→ R1π∗�
1
XR/R

.

Since XR is a projective smooth curve over R, there is a
canonical identiication of the last factor with the trivial

line bundle; thus we get a pairing

H0(XR, ω) × H1(XR, ω(−D)) → R,

which we denote as [−, −]res,R. (Here, res stands for

“residue.”) This pairing is compatible with change of ring,

and if R is a ield, it is a perfect pairing.

2.3. The ixedweight one form g

We want to localize our story throughout at a single

weight one form g. Therefore, ix g =
∑

anqn a Hecke

newformof levelN andNebentypusχ , normalized so that

a1 = 1. Here, χ is a Dirichlet character of level N.

We regard the an as lying in some number ield E, and
indeed in the integer ring O of E. Thus, g extends to a

section:

g ∈ H0(XO[ 1
N ]

, ω(−D)).

We shall denote by H∗(XO[ 1
N ],

ω)[g], the part of the

cohomology that transforms under the Hecke operators

in the same way as g, i.e. the common kernel of all

(T� − a�) over all primes � not dividing N.

Extending E if necessary, we may suppose that one can

attach to g a Galois representation, unramiied away from

N [Deligne and Serre 74]:

ρ : Gal(L/Q) −→ GL2(O), (2–2)

where L is a Galois extension of Q. Here, the Frobenius

trace of ρ at � coincides with a�, and the image of complex

conjugation c under ρ is conjugate to (
1 0
0 −1 ). (In the body

of the text, we will primarily use the ield cut out by the

adjoint of ρ, and we could replace L by this smaller ield).

We emphasize the distinction between E and L:

E is a coeicient ield for the weight one form g, and L is
the splitting ield for the Galois representation of g.

In our numerical examples, we will have E = Q and L
the Galois closure of a cubic ield.

It will be convenient to denote by Ad0ρ the trace-free

adjoint of ρ, i.e. the associated action of Gal(L/Q) on 2 ×
2 matrices of trace zero and entries in O. We denote by

Ad∗ρ theO-linear dual to Ad0ρ, i.e.

Ad∗ρ = Hom(Ad0ρ,O),
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a locally free O-module endowed with an action of

Gal(L/Q).1

For later use, it is convenient to choose a dual form

g′ that will be paired with g eventually. In order that a

Hecke equivariant pairing between g and g′ be non-zero,
we should take g′ to be the form corresponding to the con-

tragredient automorphic representation, i.e.

g′ :=
∑

anq
n ∈ H0(XO[ 1

N ]
, ω(−D)),

where α 	→ α is the complex conjugation in the CM ield

E. (In our examples, E = Q, and therefore g′ = g).

2.4. The prime p

Let p be a prime of E, above the rational prime p.Wemake

the following assumptions:
� All weight one forms in characteristic p lift to char-

acteristic zero, i.e. the natural map

H0(XZp, ω) → H0(XFp, ω)

is surjective.
� p � 5.
� p is unramiied inside E.
� There are no pth-roots of unity inside L.
� p does not divide the order [L : Q].

The representation ρ may be reduced modulo p,

obtaining ρ : GQ −→ GL2(Fp), where Fp = O/p is the

residue ield at p. As before, we may deine the trace-free

adjoint Ad0ρ and its dual Ad∗ρ.

2.5. Taylor–Wiles primes

A Taylor–Wiles prime q of level n ≥ 1 for g, or more pre-

cisely relative to the pair (g, p), will be, by deinition:
� a rational prime q ≡ 1 modulo pn, relatively prime

to N;
� the data of (α, β) ∈ Fp with α �= β , such that

ρ(Frobq) is conjugate to (
α 0

0 β
).

Thus, whenever we refer to Taylor–Wiles primes, we

always regard the ordered pair (α, β) as part of the data:

this amounts to an ordering of the eigenvalues of Frobe-

nius.

If p, n, q have been ixed, where q is a Taylor–Wiles

prime of level n and p is a prime of O as above, it is con-

venient to use the following shorthand notation:
� Write k = O/pn.

 Weapologize for the perhaps pedantic distinction betweenAd∗ρ andAd0ρ.
Since we will shortly be localizing at a prime larger than , one could iden-
tify them by means of the pairing trace(AB). However, when working in a
general setting, one really needs to use Ad∗ , and following this convention
makes it easier to compare with [Venkatesh nd].

� Write (Z/q)∗p for the quotient of (Z/q)∗ of size pn, so
that there is a noncanonical isomorphism (Z/q)∗p

∼=
Z/pn.

� Write

k〈1〉 = k ⊗ (Z/q)∗p, k〈−1〉 = Hom((Z/q)∗p, k).

These are isomorphic as abelian groups to k, but not
canonically so.

� Similarly for a Z-moduleM we shall write

M〈n〉 = M ⊗Z k〈n〉.

Thus, for example, Fp〈1〉 is canonically identiied

with the quotient of (Z/q)∗ of size p.
These notations clearly depends on p, n, q; however ,

we do not explicitly indicate this dependence.

2.6. The Stark unit group

Let UL be the group of units of the integer ring of L.
The key group of “Stark units” that we shall consider is

the followingO-module:

Ug :=
(

UL ⊗Z Ad∗
ρ
)GL/Q =

(

UL ⊗Z HomO(Ad0ρ,O)
)GL/Q

(2–3)
∼→ HomO[GL/Q](Ad

0
ρ,UL ⊗ O), (2–4)

where Ad0 is the conjugation action of the Galois group

on trace-free matrices inM2(O).

For instance, in the examples of modular forms

attached to cubic ields, the group UL will amount to

(essentially) the unit group of that cubic ield.

Lemma 2.1. Ug ⊗Z Q is an E-vector space of rank 1 and
Ug ⊗Z Zp is a freeO ⊗Z Zp-module of rank 1.

Proof. Fix any embedding ι : E ↪→ C; theE-dimension of

Ug ⊗Z Q then coincides with the complex dimension of

Galois invariants on UL ⊗Q (Ad∗ρ)ι.

In general, for any number ield L, Galois over Q, and

any η : GL/Q → GLm(C) without a trivial subrepresenta-

tion, the dimension of (UL ⊗ η)GL/Q is known to be the

dimension of invariants for complex conjugation in η.

(In fact, this is a straightforward consequence of the unit

theorem). It follows, therefore, that the E-dimension of

Ug ⊗Z Q is 1 as claimed.

The inal claim now follows since our assumption on p
means that UL is free of p-torsion. �

Fix a non-zero element u ∈ Ug in such a way that

[Ug : O.u] is relatively prime to p (e.g. a generator, if Ug

is a free O-module). Later, we will also work with theO-

dual

U∨
g := HomO(Ug,O), (2–5)
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anddenote byu∗ ∈ U∨
g a non-zero element, chosen so that

〈u, u∗〉 ∈ O is not divisible by any prime above p.

2.7. Aside: comparison ofUgwith themotivic

cohomology group from [Venkatesh nd]

This section is not used in the remainder of this paper. It

serves to connect the previous construction with the dis-

cussion in [Venkatesh nd]:

We may construct a three-dimensional Chow motive

Ad0Mg, with coeicients in E, attached to the trace-free

adjoint Ad∗ρg—in other words, the étale cohomology of

Ad0Mg is concentrated in degree zero and identiied, as a

Galois representation, with Ad∗ρg.

Now consider the motivic cohomology H1
mot

(Q,Mg(1)), or more precisely the subspace of integral

classes (−)int described by [Scholl 00].

The general conjectures of [Venkatesh nd, Prasanna

and Venkatesh nd], transposed to the current (coher-

ent) situation, predict that the dual of H1
mot(Q,Mg(1))int

should act on H∗(XE, ω)[g].
There is a natural map

H1
mot(Q,Mg(1))int −→ H1

mot(L,Mg(1))
GL/Q

int (2–6)

= (UL ⊗ Ad∗ρ ⊗ Q)GL/Q = Ug ⊗ Q. (2–7)

Although we did not check it, this map is presum-

ably an isomorphism. In the present paper, we will never

directly refer to the motivic cohomology group. Rather,

we work with the right-hand side (or its integral form

Ug) as a concrete substitute for the motivic cohomology

group.

2.8. Reduction of a Stark unit at a Taylor–Wiles

prime q

Let q be a Taylor–Wiles prime (as in Section 2.5); we shall

deine a canonical reduction map

θq : Ug −→ k〈1〉.

For example, in the examples of modular forms attached

to cubic ields, this will amount to the reduction of a unit

in the cubic ield at a degree one prime above q. Although
explicit, the general deinition is unfortunately opaque

(the motivation comes from computations in [Venkatesh

nd]).

For any prime q of L above q, with associated Frobe-

nius element Frobq, letDq = 〈Frobq〉 ⊂ Gal(L/Q) be the

associated decomposition group, the stabilizer of q. We

may construct a Dq-invariant element

eq = 2ρ
(

Frobq
)

− trace ρ
(

Frobq
)

∈ Ad0ρ, (2–8)

where we regard the middle quantity as a 2 × 2 matrix

with coeicients in O and trace zero, thus belonging to

Ad0ρ. Pairing with eq and reduction mod pn induces

eq : Ad∗ρ −→ O → k,

equivariantly for the Galois group of Qq. Also, for

g ∈ Gal(L/Q) we have

egq = Ad(ρ(g))eq. (2–9)

Write Lq = (L ⊗ Qq) and letOLq be the integer subring

thereof. Thus,OLq/q �
∏

q|q Fq. Fix a prime q0 of L above
q. The inclusion of units for the number ield L into local

unitsO∗
Lq
induces

(Ug) →

⎛

⎝

∏

q|q
F∗
q ⊗ Ad∗ρ

⎞

⎠

GL/Q

∼→
(

F∗
q0

⊗ Ad∗ρ
)Dq0

eq0−→ (F∗
q0

⊗ k)Dq0 → k〈1〉, (2–10)

where the second map is projection onto the factor corre-

sponding to q0.

The resulting composite is independent of the choice

of q0 because of (2–9). We call it θ , or θq when we want to

emphasize the dependence on the Taylor–Wiles prime q:

θ or θq : Ug → k〈1〉.

3. Derived Hecke operators and themain

conjecture

We follow the notation of Section 2; in particular,

– g is a modular form with coeicients in the integer

ring O; we have associated to it a O-module Ug of

“Stark units” of rank 1.

– Fixing a prime p of O, we will work with the coei-

cient ring k = O/pn with residue ield Fp of charac-

teristic p.
In this section, we deine derived Hecke operators and

formulate the main conjecture concerning their relation-

ship to Ug. This discussion is obtained by transcribing the

theory of [Venkatesh nd] to the present context; in this

section, we just describe the conclusions of this process.

For each q ≡ 1modulo pn and each z ∈ k〈−1〉, we will
produce an operator

Tq,z : H
0(Xk, ω) → H1(Xk, ω).

Note that q need not be a Taylor–Wiles prime (in the

sense of Section 2.4) for the deinition of Tq,z—in other

words, we do not use the assumption on the Frobenius

element. However, our conjecture pins down the action

of Tq,z only at Taylor–Wiles primes.
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3.1. The Shimura class

Start with the Shimura coveringX1(q) → X0(q), and pass
to the unique subcovering with Galois group (Z/q)∗p; call

this X1(q)� → X0(q). By Corollary 2.3 of [Mazur 77,

Chapter 2], it extends to an étale covering of schemes over

Z[ 1
qN ], and in particular induces an étale coverX1(q)�k →

X0(q)k. It, therefore, gives rise to a class in the etale H1,

i.e.

S ∈ H1
et(X0(q)k, k〈1〉).

In the category of étale sheaves over X0(q)k, there is a

natural map k → Ga. Then a class in H1
et(X0(q)k, k〈1〉)

deines a class in

H1
et(X0(q)k, Ga〈1〉) � H1

Zar(X0(q)k, O〈1〉)

because of the coincidence of the étale and Zariski coho-

mologies with coeicients in a quasi-coherent sheaf. This

construction has thus given a class, associated to the

Shimura cover, but now in Zariski cohomology:

S ∈ H1
Zar(X0(q)k,O〈1〉),

which we shall sometimes call the Shimura class.

It is reassuring to note thatS is in fact non-zero, even

modulo the maximal ideal p, as one sees by computing

with the Artin–Schreier sequence

0 → Fp → Ga → Ga → 0

over k/(p).

3.2. Construction of the derived Hecke operator

The class S just deined can be pulled back to

H1
Zar(X01(qN)k,O〈1〉). We denote this class by SX ,

to distinguish it fromS at level q.
Thus, cup product withSX gives a mapping

H0(X01(qN)k, ω)
∪SX−→ H1(X01(qN)k, ω〈1〉).

Finally, to obtain the derived Hecke operator we add a

push–pull as in the usual Hecke operator deinition:

H0(Xk, ω)
π∗
1−→ H0(X01(qN)k, ω)

∪SX−→ H1(X01(qN)k, ω)〈1〉
π2∗−→ H1(Xk, ω)〈1〉, (3–1)

where π1, π2 : X01(qN) → X are the two natural degen-

eracymaps (at the level of the upper half-plane, we under-

stand π1 to be z 	→ z, and π2 to be z 	→ qz). Observe that
without the middle ∪SX this would be the usual Hecke

operator at q. In other words, we have constructed amap

H0(Xk, ω) → H1(Xk, ω)〈1〉, (3–2)

and correspondingly for z ∈ k〈−1〉,wewill denote byTq,z
the corresponding “derived Hecke operator”

Tq,z : H
0(Xk, ω) → H1(Xk, ω) (3–3)

obtained by multiplying (3–2) by z.
Although by presenting the bare deinition the con-

struction may seem a little ad hoc, this deinition is really

a specialization of the general theory of [Venkatesh nd],

and is indeed very natural. We explain this in more detail

in Section 7.

3.3. The conjecture

We now formulate the main conjecture. It asserts that the

various operators Tq,z all it together into a single action

of U∨
g on the g-part of cohomology. As formulated in

[Venkatesh nd], the conjecture is ambiguous up to a ratio-

nal factor, and we will not attempt to remove this ambi-

guity here (although our computations suggest that this

factor might have a simple description).

Terminology:
� Suppose that α ∈ E and V is a k-module. For

x, y ∈ V , we will write

x = αy, (3–4)

if we may write α = A/B, where A,B ∈ O are not

both divisible by p, in such away that B̄x = Āy. (Here
Ā, B̄ are the reductions of A,B underO → k).
In particular, if V is a k-line, this has the following
meaning:

– if x = y = 0, then 3–4 is understood to always be

true.

– Otherwise, we can make sense of [x : y] ∈ P1(k),
and 3–4means that the reduction ofα ∈ P1(E) →
P1(k) equals [x : y].

� For h ∈ H∗(XO[ 1
N ]

, ω), we write h̄ for the reduction

of h to H∗(Xk, ω).
� Recall that we deined a reduction map θq : Ug →
k〈1〉. Also, the pairing between Ug and U∨

g , which is

perfect after localization at p, descends to a perfect

pairing on Ug ⊗ k and U∨
g ⊗ k. With respect to this

pairing, the map θq has an adjoint:

θ∨
q : k〈−1〉 → U∨

g ⊗ k.

Explicitly for z ∈ k〈−1〉,

θ∨
q (z) = u∗ ⊗

〈z, θq(u)〉
〈u∗, u〉 , (3–5)

where u ∈ Ug, u∗ ∈ U∨
g are as deined around (2–5).

Conjecture 3.1. There is an action � of U∨
g on

H∗(XO[ 1
N ],

ω)[g], and α ∈ E such that for every

(p, n, q, z), with
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– p, a prime of E satisfying the conditions of

Section 2.4;

– n � 1 an integer;

– q a Taylor–Wiles prime of level n, in particular q ≡
1(pn).

– z ∈ (O/pn)〈−1〉,
we have the following equality:

Tq,z ḡ = α(θ∨
q (z)∼ � g). (3–6)

On the right-hand side, θ∨
q (z)∼ means that we choose

an arbitrary lift of θ∨
q (z) ∈ U∨

g ⊗ k to U∨
g , and the bar

refers to reduction mod pn.

In what follows, we will write (3–6) in the abridged

form

Tq,zg ∝ θ∨
q (z) � g. (3–7)

The meaning here is that equality holds, in the sense

described above, for some ixed coeicient of proportion-

ality α ∈ E. (Note that we have suppressed explicit men-

tion of the lift θ∨
q (z)∼ from the notation; in any case the

right-hand side is independent of this choice of lift).

4. Relationship to Galois deformation theory

In this section—which is not used in the rest of the paper—
we shall sketch a proof that, in the case n = 1,

vanishing of Tq,zḡ =⇒ vanishing of θq : Ug → k〈1〉,
(4–1)

assuming an “R = T” theorem for weight one forms at

the level of g, as well as further technical conditions. Such
a theorem is known in some generality by the work of

[Calegari 17].

This result (and its proof) is in line with results and

proofs from [Venkatesh nd]. Indeed, our methods would

show that (4–1) is an equivalence, if we knew an “R = T”
theorem for weight one forms with (Taylor–Wiles) auxil-

iary level.

4.1. Setup

Let q be a prime such that the eigenvalues of ρ on the

Frobenius at q are distinct elements of Fp, say α and β .

Let m be the ideal of the Hecke algebra associated to the

Galois representation ρ.

In addition to the conditions from Section 2.4, we

assume that :

(i) n = 1 so that k = O/p is a ield.

(ii) For each prime ν dividingN, the residual represen-

tation ρ is of the form χ1 ⊕ χ2, where χ1 is rami-

ied and χ2 is unramiied.

(iii) p does not divide ν − 1, for each ν as above.

(iv) p does not divide [L : Q], and does not divide the

order of the class group of L.
(v) The m-completion of the space of modular forms

at level �1(N), with coeicients in O, is free rank

1 overOp. (In particular, there are no congruences

modulo p between g and other weight one forms,

either in characteristic zero or characteristic p).
Let mα be the maximal ideal of the Hecke algebra for

X01(qN)obtained by adjoiningUq − α to the idealm; sim-

ilarly, we deine mβ . These ideals also have evident ana-

logues where we add �1(q) level to X , rather than just

�0(q) level, and we denote these analogues by the same

letters.

Our assumption (v), and the assumption of torsion-

freeness from Section 2.4, means that

dimH0(Xk, ω)m = dimH0(X01(qN)k, ω)mα

= dimH0(X01(qN)k, ω)mβ
= 1,

(4–2)

i.e. all three spaces above are k-lines; the same statement

is true for H1(−).

Let gα and gβ , respectively, span the second and third

spaces in the line above. Therefore, Uqgα = αgα and

Uqgβ = βgβ ; we normalize these so that π∗
1 g = gα + gβ .

Since the pushforward π1∗ via the natu-

ral projection π1 : X01(qN) → X induces an

isomorphism on each of the Uq-eigenspaces,

gα ∪ SX vanishes if and only if π1∗(gα ∪ SX )

vanishes. Observe (Uq − β)π∗
1 g = (α − β)

gα . We are assuming α �= β and therefore,

gα ∪ SX = 0 ⇐⇒ π1∗((Uq − β)π∗
1 g ∪ SX ) = 0.

(4–3)

Now, π1∗(π∗
1 g ∪ SX ) = g ∪ (π1∗SX ) = 0 and π1∗SX is

trivial.

Lemma 4.1. The pushforward ofSX by the natural projec-
tion π : X01(qN) → X is trivial.

Proof. The existence of the trace map [Artin et al. 72,

Expose 17, Section 6.2] gives a map π∗(Z/p) → Z/p of

étale sheaves, compatible with the usual trace π∗Ga →
Ga. For this reason, it is suicient to show that the (trace-

induced) map

H1
et(X01(qN)k, (Z/q)∗p) → H1

et(Xk, (Z/q)∗p)

pushes the Shimura class forward to the trivial class.

If ι is the inclusion of an open curve into a complete

curve induces then ι∗ is an injection on H1. Therefore, it

suices to show a similar statement for the open modular

curves; restricted to these, the map π is étale.

Deine inite groups

G = GL2(Z/qZ) ⊃ B =
(

∗ ∗
0 ∗

)

.
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Then X01(qN) and Xk are quotients of a suitable modular

curve by B and G, respectively. This allows to reduce to

verifying the triviality of the transfer in group cohomol-

ogy, from B to G, of α ∈ H1(B, (Z/q)∗p), deined via

α :

(

a c
0 d

)

	→ (a/d) ∈ (Z/q)∗p.

This is a straightforward computation. �

Continuing from (4–3), we ind

gα ∪ SX = 0 ⇐⇒ π1∗(Uqπ
∗
1 g ∪ SX ) = 0. (4–4)

The inal expression can be veriied to be an invertible

multiple of Tq,zg for some non-vanishing z ∈ O/p〈−1〉.
Therefore,

gα ∪ SX = 0 ⇐⇒ Tq,zḡ = 0. (4–5)

Write � = (Z/q)∗p; since we are assuming that n = 1,

the group � is cyclic of order p and we have an isomor-

phism k[�] � k[T ]/T p, whose inverse sends T to δ − 1,

for any generator δ of�. Let X1(Nq)� be the subcovering

of X1(Nq) → X01(qN) that corresponds to the quotient

(Z/q)∗ → (Z/q)∗p of deck transformation groups.

Lemma 4.2. The cup product ∪SX is non-zero as a map
on H∗(X01(qN)k, ω)mα

if and only if

dimH0(X1(Nq)
�
k , ω)mα

= 1. (4–6)

The usual Taylor–Wiles method, for classical modular

forms on GL2, relies crucially on producing “more” mod-

ular formswhen adding “�1(q)� level” at auxiliary primes

q. Thus, the Lemma says: the derived Hecke operator is

non-trivial precisely when this fails, a failure that is rec-
tiied in the Calegari–Geraghty approach [Calegari and

Geraghty nd].

Proof. By the methods of [Calegari and Geraghty nd],

we may obtain a complex C of free k[�]-modules

(with degree-decreasing diferential) together with iso-

morphisms:

H iHomk[�](C, k) � H i(X01(qN)k, ω)mα
. (4–7)

With reference to the latter isomorphism, cup product

withSX on the right is represented by the natural action

of a non-trivial class in Ext1k[�](k, k) on the left-hand side.
(Note that H iHomk[�](C, k) is identiied with homomor-

phisms fromC to k[i] in the derived category).

Replacing C by a minimal free resolution, we may

assume thatC is the complex given by

k[�]
A← k[�],

whereA ∈ k[�] belongs to the augmentation ideal.Under

the identiication of k[�] with k[T ]/T p, the element A

corresponds to an invertible multiple of T i, for some 0 ≤
i ≤ p− 1, and then (4–7) implies

dimH0(X1(Nq)
�
k , ω)mα

= i.

We shall show that cup product withSX is non-trivial

if and only if i = 1. To compute the action of Ext1k[�](k, k),
we may consider the following diagram:

(4-8)

The horizontal complexes are, respectively, C, a pro-

jective resolution of k, and a projective resolution of

k[1]. Continuing to take Hom in the derived category of

k[�]-modules, the top vertical map of complexes rep-

resents a generator for Hom(C, k) and the bottom ver-

tical map of complexes represents a non-trivial class in

Ext1k[�](k, k) = Hom(k, k[1]). Therefore, the composite

map in Hom(C, k[1]) is represented by the diagram

(4-9)

This is nullhomotopic exactly when T i−1 is divisible by

T , i.e. i ≥ 2. �

Taking (4–5) together with the Lemma, we see

Tq,z ḡ �= 0 ⇐⇒ dimH0(X1(Nq)
�
k , ω)mα

= 1.

Consider the map

f : R′ ⊗ k → R ⊗ k,

where R (resp. R′) are the weight one, determinant χ ,

deformation rings for ρ at level �1(N) and with level

�1(Nq), respectively. The local conditions L for R and L′

for R′ are as follows:
� At p, we require that deformation remains unrami-

ied.
� At q, we impose unramiied for R and no condition

for R′.
� For primes ν dividing N, we do not need to impose

any condition: We have assumed that ρ is a direct

sum χ1 ⊕ χ2 of two characters, with χ1 ramiied

and χ2 unramiied. In particular, H1(Qν,Ad
0ρ)

is one-dimensional, corresponding to deforming

χ1 ← χ1ψ, χ2 ← χ2ψ
−1 for a character ψ with

trivial reduction. In [Calegari 17], the assumption is

imposed that in fact χ2ψ
−1 remains unramiied, but

we do not need to explicitly impose this because we
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assumed that p is relatively prime to ν − 1—thus, the

characterψ is automatically unramiied at ν. In par-

ticular, we have automatically

H1(Qν,Ad
0ρ) = H1

ur(Qν,Ad
0ρ),

wherewe recall that for amoduleM under theGalois

group of Q�, the “unramiied” classes H1
ur ⊂ H1 are

deined to be those that arise from inlation from the

Galois cohomology of F� acting on inertial invari-

ants onM.

Assuming an R = T theorem for g, we have R ⊗ k = k.
The map on tangent spaces induced by f , call it f ∗, its
into the following diagram, with reference to the usual

identiication of tangent spaces with Galois cohomology:

H1
L(Q,Ad0ρ)

f ∗

↪→ H1
L′ (Q,Ad0ρ) →

H1(Qq,Ad
0ρ)

H1(Zq,Ad
0ρ)

j→

H2
L(Q,Ad0ρ) → H2

L′ (Q,Ad0ρ),

f ∗ is surjective exactly when j is injective. Since the

middle group in the exact sequence is one-dimensional,

injectivity of j is the same as non-vanishing of j. Under
Tate global duality, the map j is dual to

H1
L′∨ (Q,Ad∗ρ(1))

j∨→ H1(Fq,Ad
∗ρ(1)), (4–10)

where L′∨ is the dual condition to L′: it refers to classes

that are unramiied at primes not dividing pN, unrami-

ied (equivalently: trivial) at primes dividing N, and at p
belong to the Bloch-Kato f -cohomology (amore concrete

description is given below).

We will show in the next subsection that:

the map j∨ vanishes exactly when θq : Ug → k〈1〉 does.
(4–11)

Therefore, the non-vanishing of θq implies the injectivity

of j, which implies the surjectivity of f ∗, which implies

R′ ⊗ k = k, which implies (4–6) by a multiplicity one

argument. Then (4–5) and Lemma4.2 show thatTq,zḡ �= 0

as desired.

That concludes our proof for 4–1; note inally that if

we had a theorem R′ = T ′ all this reasoning would be

reversible and we get an equivalence in (4–1).

4.2. Relation ofUg to Galois cohomology

To conclude we must relate j∨ and θq, and thereby prove

(4–11).

As in (2–2), ρ is a representation into GL2(O); let ρp

be the same representation, but now considered as valued

in GL2(Op); thus,

Ad∗ρp = Ad∗ρ ⊗O Op.

We write (Ug)p for Ug ⊗O Op.

Consider

H1
ur(Q,Ad∗ρp(1)),

where the subscript urmeans that we consider classes that

are unramiied at primes away from p, and, at p, belong
to the Bloch-Kato f -space. (What this means is made

explicit in the computation of H1
ur(L,Op(1)) in the dia-

gram below).

Restriction to L gives horizontal maps in the following

diagram:

The vertical columns are exact at top and middle, and,

in the bottom row, the sum is taken over all places v ofQ,

and then over all places w of L.

Lemma 4.3. i induces an isomorphism
H1

ur(Q,Ad∗ρp(1)) � (Ug)p. Also, as long as the class
group of L is prime to p, the reduction modulo p map
H1

ur(Q,Ad∗ρp(1)) → H1
ur(Q,Ad∗ρ(1)) is surjective.

Proof. The map j is an isomorphism by considering the

inlation-restriction sequence: the group GL/Q has order

prime to p.
This means i is injective. iwill be surjective if k is injec-

tive. In fact, for a place q of L above v , the map

H1(Qv ,Ad
∗ρp(1))

H1
ur(Qv ,Ad

∗ρp(1))
→

[
H1(Lq,Ad

∗ρp(1))

H1
ur(Lq,Ad

∗ρp(1))

]

(4–12)

is split, up to multiplication by [Lq : Qv ], by corestriction,

and [Lq : Qv ] is invertible onOp.

This proves the irst assertion about i. For the sec-

ond assertion, note that the assumption about class

groups means that H1
ur(L,Fp(1)) coincides with UL ⊗

Fp. The same analysis as above means that the rank

of H1
ur(Q,Ad∗ρ(1)) over Fp is bounded above by the

dimension of

(

Ad∗ρ ⊗ UL

)GL/Q
,

and (again because GL/Q has no Galois cohomology in

characteristic p) this dimension coincides with the Op-

rank ofUg ⊗ Op (which is exactly 1). The surjectivity now

follows. �
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Now, under the identiication i : H1
ur(Q,Ad∗ρp(1)) �

(Ug)p, the composite

H1
ur(Q,Ad∗ρp(1)) → H1

ur(Q,Ad∗ρ(1))
j∨→ H1(Fq,Ad

∗ρ(1))
∼→ H1(Fq,Fp(1)) � F∗

q ⊗ (O/p)

is identiied with the map θq described in (2–10). Here we

have made use of a map Ad∗ρ → Fp, which comes from

pairing with the element deined in (2–8). In particular,

θq vanishes if and only if j∨ does, as required.

5. Explication

Our main Conjecture 3.1, as formulated, involves a cup

product in coherent cohomology on the special iber

of a modular curve. We want to translate it to a readily

computable form, i.e. one that can be carried out just

by using manipulations with q-series. We will achieve

this in this section, at least in the case n = 1 and under

modest assumptions on q, and then test the conjecture

numerically.

5.1. Pairingwith g′

Recall (Section 2.3) that we have ixed another weight one

modular form g′ that is contragredient to g. To extract

numbers from the Conjecture, we pair both sides of

(3–6) with g′, using the residue pairing (Section 2.2). Pair-

ing 3–6 with g′, and using θ∨
q (z) = u∗ ⊗ 〈z,θq(u)〉

〈u∗,u〉 from (3–

5), we arrive at:

[Tq,z ḡ, ḡ
′]res,k = 〈z, θq(u)〉 ·

[
α[θ∨

q (u) � g, g′]res,O

〈u, u∗〉

]

,

(5–1)

where both sides lie in k; and we recall again that we have

written ḡ for the reduction of g to a modular form with k
coeicients.

Now the square-bracketed quantity on the right-hand

side is an element of E, integral at p, and independent of

choice of (p, n, q, z). We abridge (5–1) to

[Tq,zḡ, ḡ
′]res,k ∝ 〈z, θq(u)〉.

This should hold true for any (p, n, q, z).
Unwinding the deinition of the derived Hecke opera-

tor,

[Tq,zḡ, ḡ
′]res,k = [π∗

1 ḡ ∪ zSX , π∗
2 g

′]res,k, (5–2)

where the residue pairing is now taken on X01(qN)k,

π1, π2 are the two projections X01(qN) → X , and

zSX ∈ H1(X01(qN)k,O).

(Recall that SX ∈ H1(X01(qN)k,O〈−1〉), so its product

with z ∈ k〈1〉 lies in the right-hand group above). To sim-

plify notation, deine the weight two form

G = π∗
1 g · π∗

2 g
′ ∈ H0(X01(qN)k, �

1). (5–3)

In terms of classical modular forms, G would be the form

“z 	→ g(z)g′(qz).” Then the right-hand side of 5–2 is sim-

ply the (Serre duality) pairing of G ∈ H0(�1) and zSX ∈
H1(O) in the coherent cohomology of X01(qN). There-

fore, the conjecture implies that 〈zSX ,G〉 ∝ 〈θq(u), z〉;
and here we may as well cancel the zs from both sides:

〈SX ,G〉 ∝ θq(u). (5–4)

Here, both sides lie in k〈1〉, that is to say, in (Z/q)∗ ⊗ k.
Now the class SX is pulled back from a class S on

X0(q), and correspondingly the pairing on the left-hand

side can be pushed down to X0(q). Writing

Gproj = projection of G to level q ∈ H0(X0(q)k, �1),

we have 〈SX ,G〉 = 〈S,Gproj〉.
Thus, our conjecture implies that

〈S,Gproj〉 ∝ θq(u), equality in (Z/q)∗ ⊗ k, (5–5)

where we recall that:
� S ∈ H1(X0(q)k,O ⊗ (Z/q)∗) is constructed from

the covering X1(q) → X0(q);
� Gproj ∈ H0(X0(q)k, �1) is the pushforward of the

form “z 	→ g(z)g′(qz)” from level X01(qN) to level

X0(q); it is a weight two cusp form.
� 〈−, −〉 is the pairing of Serre duality.
� The symbol ∝ is interpreted as in (3–7).

5.2. Localization at the Eisenstein ideal

To translate (5–5) to a computable form, we will use com-

putations of Merel and Mazur. Let

E ∈ H0(X0(q)k, �
1)

be the “Eisenstein” cusp form with k coeicients, in other

words, the unique element whose q-expansion coincides

with the reduction modulo pn of the weight two Eisen-

stein series; the condition that q ≡ 1 modulo pn means

that this weight two Eisenstein series indeed has cuspidal

reduction in k. The pairing

〈S,E〉 ∈ (Z/q)∗p

was considered by ([Mazur 77, p. 103], discussion of the

element u) and was computed in a remarkable paper of

[Merel 96]. We will carefully translate Merel’s computa-

tion into our setting in the next section; unfortunately,

in doing so, we will have to impose the restriction n = 1,

i.e. we can only compute things modulo p and not higher
powers of p.
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Lemma 5.1. (Merel; see Section 6 for details of the transla-
tion from Merel’s framework to this one).

〈S,E〉 = �Merel mod p, (5–6)

where mod p means that the two sides have the same pro-
jection to Fp〈1〉.2

Here, the Merel unit �Merel ∈ (Z/q)∗ is the element

�Merel = ζ 2

(q−1)/2
∏

i=1

i−8i, ζ =
{

1, q ≡ 2(3),

2(q−1)/3, else
. (5–7)

In the remainder of this section, we will compute

〈S,Gproj〉 (the left-hand side of (5–5)) using Lemma 5.1.

Let T be the Hecke algebra for cusp froms on

X0(q)Zp , i.e. the algebra of endomorphisms of S2(q) :=
H0(X0(q)Zp, �

1) generated by T� for all � �= q. Let I � T

be the Eisenstein ideal, i.e. the kernel of the character

T → Z/pZ, T� 	→ (� + 1),

by which T acts on the modulo p reduction of E. In par-

ticular it’s a maximal ideal.

Let m1, . . . ,mr be all other maximal ideals of T. Then

the natural map

T −→ TI ×
r

∏

s=1

Tms

is an isomorphism (here, TI means the completion, and

similarly for ms). Let eI be the idempotent of T corre-

sponding to the irst factor; the splitting

1 = eI + (1 − eI)
︸ ︷︷ ︸

=e′
I

gives rise to a splitting

S2(q) = S2(q)I ⊕ S2(q)
′
I, (5–8)

where S2(q)I is the image of the idempotent eI, and the

complementary subspace is the image of 1 − eI. There-
fore, if T ∈ I is chosen so that T /∈

⋃s
i=1 mi, then T acts

invertibly on the second factor.

Decompose Gproj as

Gproj = Gproj
I

+ (Gproj)′

according to the splitting above. The Shimura class S is

annihilated by I (see for example [Mazur 77], Lemma

18.7). Choose as above T ∈ I that acts invertibly on the

second factor of (5–8). We may write

〈S, (Gproj)′〉 = 〈S,TT−1(Gproj)′〉 = 〈TS,T−1(Gproj)′〉 = 0,

and so

〈S,Gproj〉 = 〈S,Gproj
I

〉,
 It seems likely that the two sides are actually equal in (Z/q)∗p but we do not
prove this.

where as before the pairings come from Serre duality.

Next,Mazur proves [Mazur 77, Proposition 19.2] that

�Merel is non-zeromodulo p ⇐⇒ S2(q)I

is of rank 1 over Zp. (5–9)

We will complete our computation only in this case.3

Since E is annihilated by I, we have in fact E ∈ S2(q)I,
and since the irst Fourier coeicient of E is 1, we have

(under the assumption of (5–9)) S2(q)I = Zp.E. Thus,

after extending scalars toO, we ind

Gproj
I

= a1(G
proj
I

) · E,

where a1(G
proj
I

) ∈ O ⊗ Zp denotes the irst coeicient in

the q-expansion. Putting this together with our prior dis-

cussion, we have shown the following proposition.

Proposition 5.1. Conjecture 3.1 implies that there exists
α ∈ E such that

a1
(

Gproj
I

)

⊗ (�Merel)p ≡ α · θq(u) modulo p · (O ⊗ (Z/q)∗p)

(5–10)

for any (p, n, q) as in Section 2.4 with the additional
property that (�Merel) ∈ (Z/q)∗p is non-trivial modulo p.4

Other conventions are as follows:
� �Merel ∈ (Z/q)∗p is the Merel unit, see (5–6).
� a1(G

proj
I

) ∈ O ⊗ Zp is the irst Fourier coeicient of
G = (π∗

1 g)(π
∗
2 g

′), after taking projectionGproj to level
X0(q) and then projection Gproj

I
to the localization at

the Eisenstein ideal.
� θq(u) ∈ k〈1〉 = O ⊗ (Z/q)∗p is the reduction of the
Stark unit.

5.3. Some philosophical worries

Let us take to examine some consequences of an inade-

quacy of our conjecture, namely, it is only formulated “up

to E∗’. ”
For each (p, n, q) as in Section 2.4, we can compute

both a1(G
proj
I

) ⊗ (�Merel)p and θq(u) and compare them.

Let us also restrict to (p, n, q) for which θq(u) �= 0; there

are ininitely many such p. Therefore, (5–10) speciies the

reduction α ∈ E to P1(Fp), for an ininite collection of p.

This uniquely speciies α if it exists.

The conjecture is numerically falsiiable to some

extent. For example, if we ind two diferent pairs (p, n, q)

 Recently, Lecouturier has proposed a very interesting generalization of the
conjectural equality (–) to the case when�Merel is zeromodulo p and has
verified it numerically in some cases.

 To be absolutely clear, wewrite out themeaning of this statement.We under-
stand

L := a1(G
proj
I

) ⊗ (�Merel)p,R := θq(u)

as elements of O ⊗ (Z/q)∗p; and the statement above means that if we

reduce L̄, R̄ toO/p⊗ (Z/q)∗p, then L̄ = αR̄, in the sense of (–).
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and (p, n′, q′) for which the predicted reductions of

α mod p difer, this clearly contradicts the conjecture.

Indeed, the fact that this did not occur in our numerical

computations was very encouraging to us.

However, if this type of clash does not occur, no

amount of computation can falsify the conjecture: we can,

of course, produce an α ∈ E with any speciied reduction

at any number of places. Nonetheless, this proves to be

largely a theoretical worry. In our examples, we shall ind

an α of very low height for which (5–10) holds for many

(p, n, q, z). Our sense is that this should be taken as a

satisfactory indication that the Conjecture, or something

very close to it at least, is valid.

As a inal excuse, we may note that the conjectures

about special values of L-functions were initially phrased
with aQ∗ ambiguity that is similarly unfalsiiable.

Eventually, we hope that these issues will be solved by

formulating an integral form of the conjecture; this could

perhaps be done using the theory of derived deformation

rings.

5.4. Forms associated to cubic ields

Wenowmake the foregoing discussion evenmore explicit

for the form g associated to a cubic ield K; write L for the
Galois closure of K. (This will coincide with our previ-

ously deined L in a moment).

Such a ield K deines a representation Gal(L/Q) →
S3; if we regard S3 as acting on M = {(x1, x2, x3) ∈ Z3 :
∑

xi = 0} by permuting the coordinate axes, we may

regard ρ as a rank 2 Galois representation:

ρ : GalQ � S3 → GL2(M). (5–11)

Under the representation (5–11), there is a basis for

M such that the transposition σ = (12) ∈ S3 is sent to

S :=(
0 1

1 0
), whereas a 3-cycle τ = (123) ∈ S3 is sent to

T :=(
−1 1

−1 0
). We may set things up so that the ixed ield

of (12) ∈ S3 is equal to K.
In our previous notation, take
� L as above, namely, the Galois closure of the cubic

ield K.
� E = Q andO = Z.
� p = p � 5 to be a rational prime ofQ.
� n = 1 (thus we work only modulo p rather than pn).
� q ≡ 1(p) to be a prime such that the qth Hecke

eigenvalue aq(g) = 0. In this case, the Frobenius is a

transposition5 in S3. Thus q is a Taylor–Wiles prime

with eigenvalues (1, −1).

 The primes q forwhichρ(Frobq) is a -cycle also are Taylor–Wiles primes, but
it is then easy to see that Tq,zg = 0 for such q. To verify this, one can use the
fact—notation as in (–—that theAtkin–Lehner involution atq forX01(qN)

acts by−1 onSX , but it acts byχ(q) onG, whereχ is the quadratic Neben-
typus character for g.

� Therefore, in this case, k〈1〉 = Fp〈1〉 is just the

unique quotient of (Z/q)∗ of order p.
� We also ix a prime q0 of L over q such that the image

of the Frobenius for q0 is equal to S. In particular, this
ixes K, so the prime q̃ of K below q0 is of degree 1

over q.

Lemma 5.2. Consider the isomorphism Ug �
HomGL/Q (Ad0ρ,UL) of (2–4). (Recall that UL is the
unit group of L). Then computing the image of S ∈ Ad0ρ

gives rise to an isomorphism

Ug ⊗ Z

[
1

6

]

� O
(1)
K ⊗ Z

[
1

6

]

, (5–12)

whereO(1)
K is the group of norm one units of K.

Moreover, for p ≥ 5 the reductionmap θq : Ug → Fp〈1〉
described in (2–10) becomes identiied with the composite

O∗
K → (OK/q̃)∗ = (Z/q)∗ → Fp〈1〉,

where q̃ is the unique degree one prime of K above p.

Proof. Indeed we may split

Ad0 ρ ⊗ Z

[
1

6

]

= Hom0(M,M) ⊗ Z

[
1

6

]

= Z

[
1

6

]

e ⊕ W,

where e is the projection of T ∈ Hom(M,M) to the trace

zero subspace Hom0, and W is the Z[ 1
6
]-submodule

of Hom(M,M) ⊗ Z[ 1
6
] spanned by the images of

(12), (13), (23) under ρ.

Therefore S3 acts on e by the sign character, whereas

for any S3-module V , the space of homomorphisms

HomS3 (W,V ) is identiied with the subspace of

v ∈ V (12) = (12)-ixed vectors inV

such that v + (123)v + (132)v = 0.

Using the deinition of Ug and the splitting above, we

ind that evaluation at S induces an isomorphism

Ug ⊗ Z

[
1

6

]

�
(

U
(sign)

L ⊕ O
(1)
K

)

⊗ Z

[
1

6

]

.

The irst factor corresponds to units in the imaginary

quadratic ield Q(
√
disc(L)), and is thus trivial upon

inverting 6. This proves (5–12).

Now letu be a normone unit inK; wemay now identify

it with an element of Ug ⊗ Z[1/6]. We will compute its

image under the reductionmap. Let u ∈ Hom(Ad0ρ,UL)

be the element associated to u. By deinition u(S) = u. Let
q0 be the prime of L above q̃, as before; to compute θq(u)

we must, by deinition, compute the image of u under the

sequence (2–10):

HomGL/Q

⎛

⎝Ad0ρ,
∏

q|q
F∗
q

⎞

⎠
∼→ Hom(Ad0ρ, F∗

q0
)Dq0

eq−→ Fp〈1〉,

where we phrased the previous deinition dually. The ele-

ment eq from (2–8) is identiied here with S, so that the
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Table . Data for the weight one form associated to the cubic field
with discriminant−23; in all cases the ratio is−1/72modulo p. All
allowable p ≤ 100 and q ≤ 150 shown.

p q log(ū)/ log(�Merel) ∈ Z/p η ∈ Z/p Ratio

   () () ()
  () () ()
  () () ()
  () () ()
  () () −()
  () () −()
  () () −()
 79 () () −()
  () () ()
  () () ()
 83 () () −()
 107 () () ()

last map is evaluation at S. It follows that this map is sim-

ply the reduction of u at q̃. �

It follows from this discussion and Proposition 5.1 that

we can rephrase our conjecture in the following way:

Conjecture 5.1. Let K be a cubic extension with negative

discriminant −D, with sextic Galois closure L. Let g be

the associated weight one form of level D. Let u ∈ O∗
K

be a unit. Let q ≡ 1 modulo p be as above; suppose that
(−D

q ) = −1, and p ≥ 5, and inally �Merel ∈ (Z/q)∗ (see
(5–7) for deinition) is non-zero modulo p, i.e. upon pro-

jection to the quotient Fp〈1〉.
Then there exist A,B ∈ Z such that, for all such q we

have

�
A·η
Merel = ūB in Fp〈1〉, (5–13)

where:
� η ∈ Z is the irst Fourier coeicient of the Eisen-

stein component ofGproj
I

, the projection of g(z)g(qz)
to the Eisenstein component at level q. (This is well
deined modulo the numerator of

q−1

12
, which is suf-

icient to make sense of the above deinition).
� ū ∈ (Z/q)∗ is the reduction of umodulo the unique

degree one prime of K, above q.

We have tested this conjecture numerically (see data

tables) for the ields K of discriminant −23 and −31. In

all the cases for discriminant −23, we ind A
B = −1

72
; in all

the cases for discriminant −31, we ind A
B = 1

72
. The fact

that 72 is divisible only by 2 and 3 is striking.

Remark 5.1. Although we are not able to do any compu-

tations with exotic weight one forms at present, we com-

ment on how some of the previous identiications change.

First of all, one can consider the case of a weight one

form g whose Galois representation is induced from a

character of a real quadratic ield L0 of mixed signature at

∞, i.e. taking the value +1 on one complex conjugation

and−1 on the other complex conjugation. In this case, the

Table . Data for the weight one form associated to the cubic field
with discriminant −31; in all cases the ratio is / modulo p. All
allowable p ≤ 100 and q ≤ 150 shown – means undefined.

p q log(ū/�Merel) ∈ Z/p η ∈ Z/p Ratio

  () () ()
  () ( ()
  () () ()
  () () ()
  ∞ — —
  () () ()
  () () ()
  () () ()
  () () ()
  () () ()
  () () ()
  () () ()

unit group Ug is simply the unit groupO∗
L0 ⊗ Q. It is pos-

sible that this case would be more amenable to theoretical

analysis.

The remaining cases correspond to adjoint Galois rep-

resentation with image A4, S4, or A5. In the A4 case the

description of the unit group is quite straightforward:

let L0 be the ixed ield of A3 � A4. Then (up to possi-

bly extending coeicients to a larger extension of Q) the

unit group Ug is simply O∗
L0

⊗ Q. In the other cases, the

description becomes a little more complicated since the

unit group must be “cut out” from units in the Galois clo-

sure of L0. In these A4, S4, orA5 cases, the adjoint repre-

sentation is irreducible, which should mean that the triv-

ial vanishing described in footnote 5 does not occur.

6. Flat cohomology andMerel’s computation

Wenow explain whyMerel’s computation implies Lemma

5.1. The issue is that Merel’s computation is in character-

istic zero. To relate it to 〈E,S〉, which is deined in char-

acteristic p, we will need to do a little setup in lat coho-

mology.

LetX = X0(q) regarded now as a proper smooth curve

over Zp; here q ≡ 1 modulo p. Let Jp be the p-torsion of

the Jacobian of XQp
. We shall deine several incarnations

of both the Shimura class and the Eisenstein class.

6.1. The (Shimura) class α

The Shimura coverX1(q)� → X0(q) (from Section 3.1) is

a (Z/q)∗p torsor for the etale topology. As before it deines

a classS ∈ H1
et(X,Fp〈1〉), which can be pulled back to lat

cohomology:

α ∈ H1
l (X,Fp〈1〉).

RestrictingS to the geometric generic iber XQp
, we get a

class in étale cohomology

αet ∈ H1
et(XQp

,Fp〈1〉).
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The inclusion μp ↪→ Gm induces H1
et(XQp

, μp) → Jp,
and thus αet gives

Pα ∈ Hom(μp〈−1〉, Jp), (6–1)

we use the notation Pα to suggest that this is a point on the

Jacobian.

Finally, we also obtain a Zariski class on the geometric

special iber, using the inclusion Fp ↪→ O and the identi-

ication of Zariski and etale cohomology forO:

αZar ∈ H1
Zar(XFp

,O〈1〉).

6.2. The (Eisenstein) class β

Let � be the weight twelve cusp form q
∏

(1 − qn)24, and
consider the function f := �(qz)/�(z) onX . Extracting
its pth root gives a μp-torsor (in the lat topology) on X .
Indeed, f is invertible except for the divisors correspond-
ing to 0 and ∞, and along those divisors its valuation is

divisible by p. Thus, we get a class

β ∈ H1
l (X, μp).

The μp-torsor is étale over the geometric generic iber

XQp
and we get a corresponding class in étale cohomol-

ogy

βet ∈ H1
et(XQp

,Fp〈1〉).

There is a corresponding class in the p-torsion of the

Jacobian, namely, writing 0 and ∞ for the two cusps of X
we may form

Qβ := (q − 1)

p
((∞) − (0)) ∈ Jp

—this is related to our prior discussion because p.Qβ is

the divisor of f .
Finally, there is also a Zariski class “corresponding” to

β on the special iber. Namely, the logarithmic derivative
d f
f in fact extends to a global section of �1, i.e. a class

βZar ∈ H0(X
Fp

, �1).

Observe that
d f
f is the diferential form associated to the

“Eisenstein cusp form” G of weight two.

With these preliminaries, themain point is to check the

following:

Proposition 6.1. We have an equality in Fp〈1〉:

〈Pα,Qβ〉Weil = 〈αet, βet〉et = 〈αZar, βZar〉Zar.

Here, 〈−, −〉Weil is the Weil pairing, 〈−, −〉et is the

pairing given by Poincaré duality in étale cohomology on

the geometric iber, and 〈−, −〉Zar is the pairing given by

Serre duality in coherent cohomology on the special iber.

Keeping track of twists, we see that all these take values in

Fp〈1〉.
Now 〈E,S〉 is given by 〈αZar, βZar〉Zar; the Proposi-

tion shows this coincides (inFp〈1〉) with 〈Pα,Qβ〉Weil. The

Weil pairing on the right is computed by Merel; we pin

down the relation to Merel’s computation in Section 6.3.

Taken together, the Proposition and this computation

prove Lemma 5.1.

Proof. The irst equality is straightforward: an explicit

representative for Qβ ∈ Jp � H1(X, μp) is given by the

μp-torsor associated to f := �(qz)/�(z), because the

divisor of f is pQβ .

We now discuss the second equality. We will compare

everything to the cup product in lat cohomology, i.e.

α ∪ β ∈ H2
l (X, μp〈1〉).

There is a degree map H2
l (X, μp) → Fp; let us expli-

cate it. On any scheme, the sequence μp → Gm → Gm

induces an exact sequence of represented sheaves for the

lat topology. This identiies the lat cohomology of μp

with the hypercohomology of [Gm
x 	→xp−→ Gm].

Let X
Zp

be the base change of X to Zp (theWitt vectors

of Fp). We obtain an exact sequence

Pic(X
Zp

)/p ↪→ H2
l (X

Zp
, μp) → H2

l (X
Zp

,Gm)[p].
(6–2)

Flat and étale cohomology ofGm coincide (see [Milne 80,

III, Theorem 3.9]), and the right-hand side is a subgroup

of the Brauer group ofX
Zp
, which vanishes [Grothendieck

68, Theorem 3.1]. Accordingly, any class in H2
l (XZp

, μp)

is the coboundary of a line bundle, and computing degree

gives the desired homomorphism

deg : H2
l (X

Zp
, μp) −→ Fp.

We see that deg(α ∪ β) = 〈αet, βet〉et and so it remains to

see

deg(α ∪ β) = 〈αZar, βZar〉Zar.

Let π be the morphism from the lat site on X
Fp

to the

étale site. As a reference for what follows, we refer to the

paper of [Artin and Milne 76]. We have isomorphisms:

Rπ∗(Z/pZ) � [O
1−F→ O],

Rπ∗μp � [�1 1−C→ �1][1],

where F and C are, respectively, the Frobenius and Cartier

maps. and Artin–Milne show that the pairing Z/pZ ×
μp → μp induces, after push-forward, the “obvious” pair-

ing on the complexes on the right, which can be computed

in the Zariski topology, because lat and Zariski cohomol-

ogy coincide for quasi-coherent sheaves.
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For the same reason, the second identiication induces

an isomorphism

H2
l (XFp

) � H1(X
Fp

, �1)C = Fp,

where the map H1(�1) → Fp comes from Serre duality.

Moreover, the resulting identiication is simply the degree

map, alluded to above; this comes down to the fact that

the map

H1(X
Fp

,Gm)
d log−→ H1(X

Fp
, �1) → Fp

again computes the degree of a line bundle modulo p.
With respect to the resulting identiication of

H1
l (X, μp) � H0(�1 1−C→ �1), and the Čech repre-

sentation of this last hypercohomology, the class β is

represented by
d f
f ∈ Č0(�1), which has zero boundary

and is annihilated on the nose by 1 − C. Similarly the

class α in étale cohomology is represented by a Cech

cocycle c1 ∈ Č1(O) together with a class c0 ∈ Č0(O)

satisfying (1 − F)c1 = dc0. The image of the pairing

α ∪ β ∈ H2
l (μp), under the map H2

l (μp) → H1(�1)C,

is represented by c1 · d f
f ∈ Č1(�1); its image by the trace

pairing is the usual Serre duality pairing between the

cohomology classes of c1 and
d f
f . This concludes the

proof. �

6.3. Merel’s computation

Although routine, we write out the details involving

〈Pα,Qβ〉 to be sure of factors involving gcd(q − 1, 12). In

what follows, we understand our modular curves to be

considered over an algebraically closed ield of character-

istic zero.

Recall that Pα is an element ofHom(μp〈−1〉, Jp). Thus,
the Weil pairing 〈Pα,Qβ〉 ∈ Fp〈1〉 has the property that

Weil pairing of Pα(u) and Qβ = u ·
〈Pα,Qβ〉Weil (u ∈ μp〈−1〉), (6–3)

where, on the left-hand sidewe have the “usual”Weil pair-

ing of two torsion points in Jp.
Following Merel, let ν be the gcd of q − 1 and 12; let

n = q−1

ν
. LetU ⊂ (Z/q)∗ be the subgroup of νth powers;

the map (Z/q)∗ → Fp〈1〉 factors through the νth power

map, and we get a sequence

(Z/q)∗
x 	→xν

−→ U → Fp〈1〉.

The Galois group of the covering X1(q) → X0(q) can
be identiied with U (as in Section 3.3 [Merel 96]). This

gives rise to a map

α′ : Hom(U, μn) → Jn.

Also Q′ = (∞) − (0) is n-torsion in the divisor class

group, thus deining another class in Jn. ThenMerel shows

that

〈α′(t ),Q′〉n = t(�Merel), t ∈ Hom(U, μn), (6–4)

where the equality is in μn and the subscript nmeans we

are using the Weil pairing at the n-torsion level.

We want to compare α′ to Pα . Note that if

t ∈ Hom(U, μn), the power tn/p deines an element

of Hom(U, μp) that, considered as an element of

Hom((Z/q)∗, μp), factors through Fp〈1〉. We refer to the

resulting element as t̄ ∈ Hom(Fp〈1〉, μp). Explicitly, if

μ ∈ (Z/q)∗, we have

tn/p(μν ) = t̄(μ). (6–5)

Now consider the commutative diagram (where we

write X = X0(q) for short)

When we evaluate at the element of H1(X,U ) corre-

sponding to the cover X1(q) → X0(q), the top horizontal
map becomes α′ and the bottom map becomes Pα from

(6–1). Thus, we have

α′(t )n/p = Pα(t̄ ), t ∈ Hom(U, μn) 	→ t̄ ∈ Hom(Fp〈1〉, μp).

Pairing with Qβ = q−1

p Q′ ∈ Jp and comparing with

(6–3):

t̄
︸︷︷︸

μp(−1)

〈Pα,Qβ〉
︸ ︷︷ ︸

Fp〈1〉

= 〈Pα(t̄ ), Qβ〉p = 〈α′(t )n/p,
q − 1

p
Q′〉p

= q − 1

p
〈α′(t ),Q′〉n ∈ μp

and so

t̄
︸︷︷︸

μp(−1)

〈Pα,Qβ〉
︸ ︷︷ ︸

Fp〈1〉

6.4= q − 1

p
t(�Merel)

= tn/p(� ν
Merel)

6.5= t̄(�Merel),

where the equality is once again in μp. We conclude that

〈Pα,Qβ〉 is indeed the image of �Merel inside Fp〈1〉.

7. Comparisonwith the theory of [Venkatesh nd]

Derived Hecke operators at Taylor–Wiles primes have

been deined abstractly for general q-adic groups in

[Venkatesh nd]. The purpose of the present section is

to identify the operators introduced in (3–1) with those
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deined in [Venkatesh nd]. (The results of this section are,

strictly speaking, not used elsewhere in the paper; how-

ever they show that all the constructions we have made

are inevitable).

Write G = GL2(Qq), where q ≡ 1 (mod p), and K =
GL2(Zq). Fix a base ring S that is a Zp-algebra.

What we will need to do, in order to study the derived

Hecke operator at q, is to identify the cohomology of the

modular curve with the cohomology of the K-invariants
of a complex of G-representations. Unsurprisingly, this is
done by adding ininite level at q; we just pin down the

details. We need to take a little care because the tower of

coverings that one gets by adding ininite q-level is not
étale; however, its ramiication is prime to p, which will

be enough for our purposes.

In particular, we will use6 Lemma A.10 of Appendix

A of [Venkatesh nd], which explicates the action of the

abstract derived Hecke algebra in terms of restrictions,

corestrictions, and cup products.

7.1. Construction of complexes with an action of

GL2(Qq)

Let us ix a level structure away from q for the usual

modular curve, i.e. an open compact subgroup K (q) ⊂
GL2(A

(∞,q)). We require that K (q) =
∏

v �=q Kv , where Kv

is hyperspecial maximal for almost all v .

For U ⊂ GL2(Qq), an open compact subgroup, let

X (U ) be the Deligne–Rapoport compactiication of the

modular curve with level structure K (q) ×U . This again

has (Deligne–Rapoport) a smooth proper model over

Spec S, denoted X (U )S. We denote again by ωU → X (U )

the relative cotangent bundle of the universal elliptic

curve; this deines a locally free sheaf over X (U )S.

Let us consider the pro-system of schemes

X∞ : U 	→ X (U ),

indexed by the collection of all open compact subgroups

of GL2(Qq); the maps are inclusionsV ⊂ U of open com-

pact subgroups.

The isomorphisms X (g−1Ug)
∼→ X (U ) induce an

action ofG = GL2(Qq) onX∞ (considered as a pro-object

in the category of schemes). Let ω∞ be the “vector bun-

dle” over X∞ deined by ω: by this we mean that ω∞ is a

pro-scheme over X∞, which is level-wise a vector bundle.

We will need the following properties:

(i) The action of G on X∞ lifts to an action on ω∞.

(ii) Suppose that V is a normal subgroup of U . Then

the natural map

fUV : X (V )S → X (U )S

 with an apology to st century readers, see below...

is inite, and identiies X (U )S with the quotient of

X (V )S by U/V in the category of schemes. (See

[Deligne and Rapoport 73, 3.10]).

Moreover, there is a natural (in S) identiication
f ∗
UVωU � ωV .

(iii) With notation as in (ii), if the order of U/V is a

power of p, then themapX (V )S → X (U )S is étale.

Proof. (of (iii) only:) We may suppose that S = Zp. The

map is étale over the interior of the modular curve, so,

by purity of the branch locus, it is enough to check that

it is étale at the cusps in characteristic zero. The cusps of

a modular curve are parameterized by an adelic quotient,

but replacing the role of an upper half-plane by P1(Q); so

we must verify that the map

GL2(Q)\(GL2(A f ) × P1(Q))/V −→ GL2(Q)\(GL2(A f )

×P1(Q))/U,

considered as a morphism of groupoids, induces isomor-

phisms on each isotropy group.

LetB be aBorel subgroup inGL2,/Q andN its unipotent

radical. We can identify P1(Q) with GL2(Q)/B(Q). The

desired result follows, then, if for each g ∈ GL2(A f ) we

have

B(Q) ∩ gUg−1 ⊂ gVg−1.

However, the projection of B(Q) ∩ gUg−1 to the toralQ∗

is a inite subgroup of Q∗, thus contained in {±1}. It fol-
lows that an index 2 subgroup of the left-hand side is con-

tained in N(Q) ∩ gUg−1, which is certainly contained in

gVg−1 because any open compact of N(Qq) is pro-q. �

Lemma 7.1. Suppose that, as above, V is a normal sub-
group of U . Let f = fUV be as in (ii) above. Let F be any
sheaf ofOX (V )-modules on X (V ), equipped with a compat-
ible action of U/V.

Then
(i) For each x ∈ X (V ), the higher cohomology of the

stabilizer (U/V )x on Fx is trivial.
(ii) For each y ∈ X (U ), the higher cohomology of

(U/V ) acting on (π∗F )y is trivial.

Proof. Note that we can reduce (i) to the case when

(U/V )x = (U/V ) by shrinking U . Both (i) and (ii) will

follow, then, if we prove that for anyU/V -stable aine set

Spec(A) ⊂ X (V ),

higher cohomology ofU/Von �(Spec(A),F ) = 0,

(7–1)

since the stalks appearing in (i) and (ii) are direct limits of

such spaces.

Let � = U1/V be a Sylow p-subgroup of U/V ; it is

suicient to make the same veriication for the higher

cohomology of �. Write B = A�. The map Spec(A) →
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Spec(B) is inite étale with Galois group �, by (iii) above.

It is now suicient to show:

IfM is an A-module, equipped with a �-action compat-
ible with its module structure, then Hq(�,M) = 0 for
q > 0.

Let M′ = M ⊗B A; deine a �-action on M′ using

g(m ⊗ a) = gm ⊗ a for g ∈ �. SinceA is a lat B-module,

the naturalmapHq(�,M) ⊗B A → Hq(�,M′) is an iso-
morphism. We shall show Hq(�,M′) = 0; the vanishing

of Hq(�,M) follows from faithful latness.

Now M′ is a module over A ⊗B A �
∏

δ∈� A, and
this module structure is compatible with the �-action

on
∏

δ∈� A, which permutes the factors. Therefore, M′

is induced (as a �-module) from a representation of

the trivial group, and thus has vanishing higher �-

cohomology by Shapiro’s lemma. �

7.2. Godement resolution

Let T be the “Godement functor,” which assigns to a

sheaf F the sheaf U 	→
∏

x∈U Fx of discontinuous sec-

tions. It carries a sheaf of O-modules to another sheaf of

O-modules.

We will need to discuss the behavior under images.

Suppose given a map f : X ′ → X of schemes. There is a

map of functors

T → f∗T f−1.

For a sheaf F on X and an open set V ⊂ X , this is given
by the natural pullback of discontinuous sections

∏

x∈V
Fx →

∏

x′∈ f−1V

( f−1F )x′ .

If we are working with sheaves ofO-modules, then, com-

posing with the natural f−1 → f ∗, we get T → f∗T f ∗,
or, what is the same by adjointness, a natural transforma-

tion

f ∗T −→ T f ∗ and (by iterating) f ∗T k → T k f ∗.

In particular, for a sheaf F on X , there is a map

f ∗ (Godement resolution of F )

−→ Godement resolution of f ∗F . (7–2)

This gives rise to the pullback map in cohomology

H∗(X,F ) → H∗(X ′, f ∗F ).

7.3.

It follows from Lemma 7.1 that (with notations as in that

Lemma and) for any sheaf F ofOX (V )-modules,

H p(U/V, �(X (V ),TF )) = 0, p > 0. (7–3)

Indeed, group cohomology commutes with products

(even ininite ones).

Now let G•(U ) be the Godement resolution of ωU . It

is a complex of sheaves of OX (U )-modules on X (U )S. Let

M•(U ) be the global sections of G•(U ): this is a complex

of S-modules. IfV ⊂ U , there is a natural action ofU/V
onM•(V ). It follows from (7–3) that

Lemma 7.2. For each degree i, the U/V-cohomology of
Mi(V ) vanishes, i.e. H p(U/V,Mi(V )) = 0 for p > 0.

The following result is the crucial one for us.

Lemma 7.3. The map arising from (7–2)

G•(U ) →
(

f∗G
•(V )

)U/V
(7–4)

(where U/V denotes invariants) induces on global sections
a quasi-isomorphism

M•(U ) −→ M•(V )U/V . (7–5)

Proof. It is enough to verify that (7–4) is a quasi-

isomorphism: the sheaves G•(U ) and f∗G•(V )U/V are

lasque—the latter follows just by examining the deini-

tion of the Godement functor T—and so taking global

sections will preserve the quasi-isomorphism.

Consider the following diagram:

The left vertical arrow is a quasi-isomorphism:

we have an isomorphism f∗ωV � ωU ⊗ f∗OV , and

( f∗OV )U/V = OU . The top horizontal arrow is also a

quasi-isomorphism. It then suices to show that the arrow

j is also a quasi-isomorphism.

The complex f∗G•(V ) is a resolution of f∗ωV because

f∗ has no higher cohomology on the quasi-coherent sheaf

ωV . Next the stalks of f∗ωV and f∗G•(V ) have vanish-

ing U/V -cohomology by Lemma 7.1. Given an acyclic

complex ofU/V -modules supported in degrees≥ 0, each

of which have no higher U/V -cohomology, the U/V -

invariants remain acyclic. This implies that f∗G•(V )U/V

is a resolution of ( f∗ωV )U/V as desired. �

7.4. Compatibility with traces

We must also mention the compatibility with trace

maps. Suppose, we are given a subgroupU ′ intermediate
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betweenU andV :

V ⊂ U ′ ⊂ U.

We do not require thatU ′ be normal.

There is a natural trace map

H∗(X (U ′), ωU ′ ) → H∗(X (U ), ωU ).

Explicitly the trace f∗OX (U ′) → OX (U ) induces

H∗(X (U ′), ωU ′ ) = H∗(X (U ), f∗ωU ′ )

= H∗(X (U ), ωU ⊗ f∗OX (U ′))

tr→ H∗(X (U ), ωU ).

With reference to the identiications of the previous

lemma, this trace map is induced at the level of cohomol-

ogy by

M•(U ′) → M•(V )U
′/V T→ M•(V )U/V ∼← M•(U ),

where T ∈ S[U/V ] is the sum of a set of coset representa-

tives forU/U ′.

7.5. Derived invariants and the derived Hecke

algebra

As in Section 7.3, M•(U ) is a Godement complex com-

puting the complex of ωU Now set

M•
∞ = lim−→M•(U ),

which is now a complex of S-modules equipped with an

action of G = GL2(Qq).

We will argue that the “derived invariants” ofU onM•
∞

give a complex that computes the cohomology of X (U )S.

We irst recall the notion of derived invariants, and its

relationship with the derived Hecke algebra.

LetU be an open compact subgroup of G. LetU1 ⊂ U
be a normal subgroup with the property that the pro-

order ofU1 is relatively prime to p. Let Q be a projective

resolution of S in the category of S[U/U1]-modules; we

regard this as a complex with degree-increasing diferen-

tial concentrated in degrees ≤ 0:

· · · → Q−2 → Q−1 → Q0 = S.

Wemay of course regardQ as a complex of S[U ]-modules.

Let P = indGUQ. This is a projective resolution of the

smooth S[G] module S[G/U ] (in the category of smooth

S[G] modules). For any complex R• of G-modules, we

deine the derivedU -invariants to be the complex

HomS[G](P,R•) = HomS[U ](Q, (R•)U1 ).

Explicitly, this is a complex whose cohomology computes

the hypercohomologyH∗(U,R•).
In the case above, the derived invariants of U on M•

∞
compute the cohomology ofX (U ), in the following sense:

Lemma 7.4. The natural inclusion of M•(U ) ↪→ M•
∞ and

the augmentation Q → S induce a quasi-isomorphism:

M•(U )
∼→ HomS[U ](Q,M•

∞) = HomS[G](P,M•
∞).

(7–6)

Proof. Using the remarks after (7–5), we see that

M•(U1)
q.i.−→ lim−→

U ′⊂U1

M•(U ′)U1/U ′ ∼→ U1-invariants onM•
∞.

(7–7)

(for the second arrow: sinceU1 is prime to p the functor of
takingU1 invariants commutes with taking a direct limit

of smooth S[U1]-modules).

The inclusion M•(U ) ↪→ M•(U1) and the homomor-

phismQ → S induce

M•(U ) → HomU/U1 (S,M
•(U1)) → HomU/U1 (Q,M•(U1))

and it remains to show that this composite is a quasi-

isomorphism.

The irst map is a quasi-isomorphism by Lemma 7.3.

To show that the second map is a quasi-isomorphism,

it is enough (by a devissage) to show that for each ixed

degree j

Hom(S,M j(U1)) → Hom(Q,M j(U1))

induces a quasi-isomorphism. But the right hand side

computes theU/U1 cohomology ofM j(U1), and we have

seen (Lemma 7.2) that this is concentrated in degree zero,

where it is just theU/U1 invariants, as needed. �

Now we may imitate all the reasoning above, with the

role of ω replaced by O. Let N• be the corresponding

complex. Reasoning as in Lemma 7.4, we get a quasi-

isomorphism

N•(U ) � HomS[U ](Q,N•
∞). (7–8)

The identiication of S with global sections of OX (V )

induce compatiblemaps S → N•(V ) for each levelV , and

so by passage to the limit a map S ↪→ N•
∞. This induces

H∗(U, S) −→ H∗(X (U ),O). (7–9)

For α ∈ H j(U, S), write 〈α〉 ∈ H j(X (U ),O) for its

image under this map. Then we have:

Lemma 7.5. Under the identiication H∗(X (U ), ωU )

with the hypercohomology H∗(U,M•
∞), (as in the prior

Lemma), cup product with 〈α〉 in Zariski cohomology is
carried to cup product with α in hypercohomology.

Proof. The product O ⊗ ωU → ωU extends to a map

N•(U ) ⊗ M•(U ) → M•(U ) (see [Godement 58, Chap-

ter 6]), which computes on cohomology the cup product.

This exists compatibly at every level, and by passage to the

direct limit, we arrive at a map N•
∞ ⊗ M•

∞ → M•
∞ (the
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tensor product can be passed through the direct limit, by

[Bourbaki 98, Chapter 2, Prop. 7, Section 6.3]).

Fix a quasi-isomorphism of S[U ]-modules:

q : Q → Q ⊗S Q.

Consider the following diagram, with commutative

squares:

where:
� Hommeans in every case homomorphisms of chain

complexes of S[U ] modules, taken modulo chain

homotopy.
� ⊗ comes from the tensor product, which induces

a bifunctor on the homotopy category of chain

complexes.
� We ix m ∈ Homi(Q,M•

∞), and m′ is the coho-

mology class corresponding to m under the

quasi-isomorphism (7–6).
� We identify α with a class in Hom j(Q, S) and α′ is
the image of this class, under S → N•

∞. Also α′′ is a
cohomology class in H j(N•(U )) that matches with

α′ under the quasi-isomorphism (7–8).

The image of m ⊗ α, under the bottom horizontal

arrows, computes the cup product of m and α in U -

hypercohomology. This corresponds to the image ofm ⊗
α′ in the middle horizontal row. Finally, this corresponds

to the image of m′ ⊗ α′′ in the top row, which gives the

Zariski product. �

7.6. Derived Hecke algebra

Let notation be as above, but specialized to the caseU =
K, a maximal compact of GL2(Qq). We may form the dif-

ferential graded algebra EndS[G](P) whose cohomology

we understand to be the (graded) derived Hecke algebra

for the pair (G,K). There is an isomorphism ([Venkatesh

nd], (148))

EndS[G](P,P) � ⊕x∈K\G/KHomKx (Q,Qx), (7–10)

where Qx is the complex Q but with the twisted action

of Kx = K ∩ Ad(gx)K deined by κ ∗ q = (Ad(g−1
x )κ)q;

here, we have implicitly chosen coset representatives gxK
for each x ∈ K\G/K. Taking cohomology, one inds that,

for any i there is an isomorphism ([Venkatesh nd], (149))

H i(EndS[G](P,P))
∼−→ ⊕x∈K\G/K H i(Kx, S). (7–11)

Now the diferential graded algebra EndS[G](P,P) acts

on HomS[G](P,M•
∞). Passing to cohomology and apply-

ing Lemma 7.4, we get a graded action of the derived

Hecke algebra for (G,K) on H∗(XK, ωK ). This action is

speciied by specifying, for each x = KgxK ∈ K\G/K as

above, the corresponding action of H∗(Kx, S) on coher-

ent cohomology. We can now restate Lemma A.10 of

[Venkatesh nd]:

Lemma 7.6. The action of hx ∈ H∗(Kx, S) onH∗(K,M•
∞)

is given explicitly by the following composite:

We obtain the derived Hecke operator Tq,z described
in Section 3, with the coeicient ring S = O/pn, by tak-

ing x = ( q 0
0 1 ) and by taking the cohomology class hx ∈

H1(Kx, S) as the composite:
(

a b
c d

)

∈ Kx 	→ 〈a/d mod q, z〉,

where z ∈ k〈−1〉 is regarded as a homomorphism

(Z/q)∗ → O/pn. Indeed, to verify this, it only remains to

show that the induced map

H∗(Kx,M
•
∞) → H∗(Kx,M

•
∞) (7–12)

given by cupping with the class hx is identiied with

H∗(X (Kx), ω)
∪zS−→ H∗(X (Kx), ω)

that is to say the cup product with zS, i.e. the Shimura

class multiplied by z, regarding as a class in the cohomol-

ogy ofX (Kx)with coeicients inO/pn. This follows easily

from Lemma 7.5.

The following remark is due entirely to the irst-named

author (M.H.); the second-named author disclaims both

credit and responsibility for it.

Remark 7.1. For the beneit of those millenials who

believe that the Godement resolution is one of the found-

ing documents of the United Nations, here is a translation

of the above construction into contemporary language.

We thank Nick Rozenblyum for his patient guidance.

We work in the DG category (or stable ∞-category) C
of complexes of quasicoherent sheaves on the scheme

X∞, and consider the object ω∞, all over Spec(S). This
object carries an action by G = GL2(Qq). Therefore, the

object R�(ω∞) in the DG categoryModS of complexes of

S-modules carries an action of G. Everything up through

Lemma 7.5 is automatic in this setting. The remaining

observations are not strictly necessary to formulate the

conjecture; however, they do provide the explicit com-

putation of the derived Hecke operator, as in Lemma

7.6, needed in order to test the conjecture in speciic

applications.
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8. Magma Code

What follows is a sample of Magma code that we used

to compute the derived Hecke operator for the modular

form of level 31, with q = 139 and p = 23.

N := 31;

Q := 139;

L := 23;

F := FiniteField(L);

M := ModularForms(N*Q);

S := CuspidalSubspace(M);

SQ := BaseExtend(S, Rational-

Field());

SF := BaseExtend(S, F);

V, h := VectorSpace(SF);

time Tq := HeckeOperator(SF,N);

time Wq := AtkinLehnerOpera-

tor(SF,N);

Iq := IdentityMatrix(F, Dimen-

sion(S));

Qq := Iq +Wq*Tq; /* Qq projects

from level QN back down to level

Q */

Pro := Dimension(S);

Z<q> := PowerSeries-

Ring(IntegerRing());

QQ<q> := PowerSeries-

Ring(RationalField());

CUTOFF := Dimension(S)+3;

eps := KroneckerCharacter(-N);

WeightOneSpace := Modular-

Forms(eps, 1);

etatemp := WeightOneSpace.2;

etaprodA := qExpansion(etatemp,

CUTOFF);

etaprodB := Composi-

tion(etaprodA, q^Q+O(q^CUTOFF));

g := etaprodA * etaprodB

+ O(q^CUTOFF);

g0 := SF ! g;

W := Vector(F, Inverse(h)(g0));

Wfin := W * Qq;

/*denom := Denominator(Wfin);

print(Factorization(denom)); */

M2 := ModularForms(Q);

S2 := CuspidalSubspace(M2);

S2Q := BaseExtend(S2, Rational-

Field());

S2F := BaseExtend(S2, F);

V2,h2 := VectorSpace(S2F);

CUTOFF2 := Dimension(S2)+3;

projform := S2F ! h(Wfin);

projformcoeff := Vec-

tor(F, Inverse(h2)(projform));

normcoeffF := projformcoeff;

randprime := 41;

randT := HeckeOperator(S2F, rand-

prime);

charpoly := CharacteristicPolyno-

mial(randT);

P<u>,h3 := ChangeR-

ing(PolynomialRing(IntegerRing()), F);

Factorization(P! charpoly);

unnormalizedredpoly := charpoly/(u-

randprime-1);

redpoly := unnormalizedred-

poly/Evaluate(unnormalizedredpoly,

randprime+1);

print(Evaluate(redpoly, rand-

prime+1));

projmatrix := Evaluate(P! red-

poly, randT);

finalanswerinbasis := normco-

effF * projmatrix;

print(finalanswerinbasis);
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