A REMARK ON A CONVERSE THEOREM OF
COGDELL AND PIATETSKI-SHAPIRO

HERVE JACQUET AND BAIYING LIU

ABSTRACT. In this paper, we reprove a global converse theorem
of Cogdell and Piatetski-Shapiro using purely global methods.

1. INTRODUCTION

Let F' be a number field or a function field. Denote by A the ring of
adeles of ' and by ¢ a non-trivial additive character of F\A. Let n > 4.
Let 7 be an irreducible generic representation of GL,(A). We assume
that the central character w, of 7 is automorphic (condition A(n,0)).
We also assume that if 7 is a cuspidal automorphic representation of
GL,,(A) the complete L—function L(s,m x 7) converges for Res large
enough. We denote by A(n,m) the condition that, for every such 7,
the L—function L(s, 7 X 7) has the standard analytic properties (is nice
in the terminology of Cogdell and Piatetski-Shapiro [CPS94, CPS96,
CPS99, Cog02], see p. 4 for details).

Following them, for every { in the space V; of m, we let W, be
the corresponding element of the Whittaker model W(w, 1) of m. We
denote by U, the group of upper triangular matrices in GL,, with unit
diagonal. We set

w- £ (i)

YEUn—1(F)\GLp—1(F)

va= X wel( )]
~EUn—1(F)\GLn_1(F) - -
If 7 is automorphic cuspidal then Us = V, for all £ € V,.. Conversely, if
Ue = Vg for all £ € V; or, what amounts to the same, Ug(1,,) = V(1)
for all £ € V,, then 7 is automorphic.
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Let Zy, be the center of the group U,,. Cogdell and Piatetski-Shapiro
([PS76], [CPS96], [CPS99]) prove that the conditions A(n,m) with
0 <m <n—2imply that

/ (Ue = Vo) (2)6(2)dz = 0
Zy, (F)\Zu,, (A)

for all non-trivial characters 6 of Zy, (F)\Zy,(A). They do not have
the same relation for the trivial character which would then imply that
Ue(L,) = Ve(I,) for all £ € V;. Nonetheless, they prove that m is
automorphic by using an ingenious local construction.

Our goal in this paper is to prove that conditions A(n,m), 0 < m <
n — 3, imply that

/ (Ve — Ve)(2)dz = 0, ¥E € Vs
Zy, (F)\Zu,, (A)

This proves directly that the conditions A(n,m) with 0 <m <n — 2
imply Ue(1,) = Ve(1,,) for all £ € V; and, in turn, imply 7 is automor-
phic (and cuspidal).

While our result is not needed, it gives a purely global proof of the
Theorem of Cogdell and Piatetski-Shapiro. It is also germane to the
conjecture that the conditions A(n,m) with 0 < m < [Z] imply that
7 is automorphic (and cuspidal). Of course, the conjecture is true for
n=2,3,4 (see [JL70], [JPSS79], [PS76] and [CPS96]).

The material is arranged as follows. In the next section, for the con-
venience of the reader, we review the work of Cogdell and Piatetski-
Shapiro and state our result. In section 3 we provide preliminary ma-
terial of an elementary nature. In section 4 we prove our result.
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2. PRELIMINARIES AND THE MAIN RESULT

In G,, = GL,, we let U, be the subgroup of upper triangular matrices
with unit diagonal. We let A,, be the group of diagonal matrices and
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Z, the center of G,,. We define a character ¢y, of U,,(A) which is trivial
on U,(F) by

Yo, (u) = P(ur g+ sz + -+ Up_12) -

We let 7 be an irreducible generic representation of G, (A). As usual,
this means that 7 is a restricted tensor product of local irreducible
representations m,. For a finite place v, 7, is an irreducible admissible
representation of G, (F,) on a complex vector space V,. We assume
that m, is generic, that is, there is a non-zero linear form

AV, = C

such that
)\v(ﬂ-v(u)e> = 77ZJU,“1J(U’))‘U(6)

for all vectors e € V,, and all u € U,(F,). We denote by W(m,, Yu, )
the space of functions

g+ M(my(gle), e €V,

on G, (F,). It is the Whittaker model of 7, noted W(m,, ¢y, »,). For all
finite v not in a finite set S, the space contains a unique vector W, o
fixed under G, (O,) and taking the value 1 at I,,. The representation
7, is then determined by its Langlands semi-simple conjugacy class
A, € G,(C). We assume that there is an integer m > 0 such that for
all finite v ¢ S, any eigenvalue « of A, verifies ¢, < |a] < ¢

For an infinite place v, the representation 7, is really an irreducible
admissible Harish-Chandra module. We denote by (7, V,,) its canonical
completion of slow growth in the sense of Casselman and Wallach. We
assume that there is a non-zero continuous linear form

AV, = C

satisfying the same condition as before. We also define W(m,, Yy, ) as
before.
Finally, let oo be the set of infinite places of F' and

Gn,oo = H Gn<Fv)

VEOO

We let (74, Vao) be the topological tensor product of the representa-
tions (m,, V,), v € 0o. Let A be the tensor product of the linear forms
Ay, U € 00. We can define the space W (7w, Y1, 00)-

We denote by V the restricted tensor product @V, and 7 the
natural representation of G, (A) on V; = V. The Whittaker model
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W(m, vy, ) of 7 is the space spanned by the functions

W [ We

VE 00

with W € W(7wo, Yu,.00), Wy € W(my, Y, ») and W, = W, for
almost all v ¢ S. For every £ € V; we denote by W; the corresponding
element of W(m, ¢y, ).

We assume that the central character of m is automorphic. It is
convenient to refer to this condition as condition A(n,0). In view of our
assumptions, for any cuspidal automorphic representation 7 of G,,(A),
1 <m < n—1, the complete L—function L(s,7 X 7) is defined by a
convergent product for Res large enough. Condition A(n,m) is that,
for any such 7, the function L(s, 7 X 7) extends to an entire function
of s, bounded in vertical strips and satisfies the functional equation

L(s,m x1)=¢€(s,m X T,0)L(1 —8,T XT).

In G, let Y, ,, be the unipotent radical of the standard parabolic
subgroup of type (m +1,1,1,...,1). For instance:

1 00 o e

1 0 e 01 0 e @

Y3, = 01 e , Y59 = 0 01 e o
0 0 1 0 001 e

0 00 01

If a function ¢ on G,(A) is invariant on the left under Y, ,,(F') we set

P" (6)(g) = / 6(49) T, (1) dy
Ynym (F)\Yn’m(A)

Here dy is the Haar measure on Y, ,,,(A) normalized by the condition
that the quotient Y, ., (F)\Y,.m(A) has measure 1. Our notation differs
slightly from the notations of Cogdell and Piatetski-Shapiro ([Cog02]).
Here P (¢) is a function on G,(A), while in [Cog02], it is a function
on P, 11(A), the mirabolic subgroup of G,,+1(A), embedded in G, (A).
Note that Y, ,,—1 = {I,} and P}_; is the identity.

Suppose 7 is as above. For each £ in the space V. of m we set

Ulg)= Y. Welyg),

YEUR (F)\ Py (F)
where P, is the subgroup of matrices of (z,, whose last row has the form

(0,0,...,0,1).
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This is also
0
iw= X we|(g ).
NYEUn—1(F)\Gn_1(F)

Then we have the following result.

Lemma 2.1. With the previous notations,

A (F)wg{(g )]

WEUm+1(F)\Pm+1
or equivalently

_ v 0

Pr(Ue)(g) = Z We {( 0 I, ,, ) g} :
YEUm (F)\\Gm (F)
Likewise, let R,, be the subgroup of matrices of GG,, whose first column
is
1

0
0

We can consider the function
Velg)= ) Welvg).
E€Un(F)\Rn(F)

Let w, be the permutation matrix defined by
0 wy—
wlzl,wnz(l 01).

t p—1 trr—1
R, =w,P w,, U, =w, U, w,.

Moreover the automorphism u — w,'u"'w, changes vy, into EU,,,-
If 7 is automorphic cuspidal then for the cusp form ¢, corresponding
to £ € V. we have

We(g) = / b (ug) s, (w)du
Un(F)\Un(A)

Then

and
de(g) = Ue(yg) -

By the previous observation relative to R,,, we also have

Pe(9) = Velg) -
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Thus we have
U=V, V6 eV,

Conversely if 7 is given and
Ue =V, VE €V,

then Uy is invariant on the left under Z,,(F), P, (F'), R,(F'). Since these
groups generate G, (F), for every £ € V; the function Ug is invariant
on the left under G, (F') and hence 7 is automorphic.

In general, U and V¢ are invariant on the left under P, (F) N R, (F)
and A,,(F). In other words, they are invariant under S, (F") where S,, is
the standard parabolic subgroup of type (1,n—2, 1). The notations here
differ slightly from those of Cogdell and Piatetski-Shapiro ([CPS99]).
Moreover, we have, for all g, h € G(A),

Wame(g) = Welgh)

and similar formulae for Us and V. As a consequence, if an identity
involving W, Ue or Vg is true for all £ € V, the identity obtained by
translating the function on the right by an arbitrary element of G, (A)
is also true for all £ € V., and conversely. For instance, the relation
Ue(I,) = Ve(I,,) for all £ € V; is equivalent to the relation Ug(g) = Ve(g)
for all £ € V; and for all g € G,,(A). We appeal repeatedly to this
principle.

Following Cogdell and Piatetski-Shapiro ([Cog02, Section 5.2]), for
1 <m <n-—2, we define

0 1 0
ap=1 In O 0
0 0 ]n—m—l

We note that o, € P,. We also define
Vi"(9) = Ve(omg) , Vg € Gu(A).

Thus Vém is invariant under @,, = «;,' R,a,,. This is the subgroup of
matrices of G,, whose (m + 1)-th column has the form

0

—_
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with 1 in the (m + 1)-th row. Note that @, contains the group Y, ,,.
Thus we may consider P}, (V™).

Theorem 2.2 (Cogdell, Piatetski-Shapiro, Section 5 of [Cog02], [CPS99]).
Suppose conditions A(n,j), 0 < j < m, are satisfied. Then, for all
§eVr,

Py (Ug) = P (VE™).

We denote by &£(n,m) the condition that
B (Ue) = B(V") Ve € Vs
This condition can be simplified. Indeed, we have the following result.

Proposition 2.3 (Cogdell, Piatetski-Shapiro, Section 5 of [Cog02],
[CPS99]). Let k,1 <k <n—m, be an integer. The condition E(n,m)
15 equivalent to the condition

/ o] %) o] oot
n—m (F)\Un—m(4)

m Im xr —
B / (VU _m(A)/V£ K 0 u)g} Yy, _, (w)drdu,

forall§ € Vi and for all g € G, (A), where x € My (n—m)(F)\Mumx (n—m)(A)
with zero first k columns.

(2.1)

PRrROOF: For the convenience of the reader, we review the proof. For
k = 1 our conclusion is just the hypothesis. Thus we may assume our
assertion true for k, 1 < k <n —m — 1 and prove it for k + 1. In the
integral we write z = (0,0,...,0, Zg11, Tki2, - - . Tn_m) Where the z; are
column vectors of length m. We also introduce

Om
I, 0 0 0
5= Xp Ir 0 , Xg = : k,BeF™.
0 0 [nfmfk 0
B

Since v is in P,(F) N Qm(F), in the identity, we can conjugate the
matrices by v3. We note that

[m x -1 [m s
B0 ow )8 T 0 o

/
Ut kmak+1 — Umtkm+k+1 + 6$k+1 .

where
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Hence the equality becomes

/U (F\U (A)/U5 K Ién i )g] EUnfm(u)w(_ﬁxqul)dl’du
) / (F)\Un—m (&) /ng K Ig)n z >g} Yy, (W (=Bagi)dedu,

where & € M (n—m)(F)\Mpnx(n-m)(A), with zero first k columns.
Summing over all 5 € F™ and applying the theory of Fourier series,

we get
1, =« —
/ /Ug {( 0 )g} Yy, (u)drdu
Unm (F)\Un—m (A) u

m Im xr —
- /U (F)\Un_ (A)/V5 [( 0 u)g] Yy, (w)drdu,

where © € My, x(n—m)(F)\Mpx(n—m)(A), with zero first k 4+ 1 columns.
The other direction is obvious, since the if the condition (2.1) holds
for k + 1, then integrating both sides with respect to

YIS me(nfm) (F)\me(nfm)(A)

with only (k + 1)-th column being possibly nonzero, we obtain the
condition (2.1) for k, which is equivalent to the condition £(n,n—m) by
induction assumption. This concludes the proof of the proposition. [

Since ay,, € P, and Ug is P,(F') invariant on the left, we can apply
the condition (2.1) with g replaced by a;.!. Thus the condition (2.1)
can be written also as

I, x -
/U o (F)\Un— (A)/UE {ozm < 0 wu ) O‘ml] Yy, (u)drdu
N / /Vé {am ( I[T)n y ) O‘;zl} EUn—m (u)dzdu,
”_m(F)\Un—m(A) u

for all £ € Vi, where © € Moy tn—m) (F)\Mpx (n—m)(A) with zero first k
columns. In this paper, we are mainly interested in the case k = n—m
of condition (2.2). We make it explicit.

Taking k = n —m and m = n — 2, then condition (2.2) leads to the
condition of Cogdell and Piatetski-Shapiro

1 0 =z
/ Ue=Ve) | 0 Lo 0 | 9(—2)dz=0
F\A 0 0 1

for all € € V.. Since Ug and Vg are invariant on the left under A, (F)
and this relation is true for any right translate of Us and V¢ we can

(2.2)
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conjugate by an element of A, (F") and obtain the condition

1 0 =z
/ (Ue=Ve)| 0 L2 0 | ¢(—az)dz=0,
F\A 0 0 1
for all £ € V; and all o € F'*.
Now let us take k = n —m and m = n — 3. Let ¢y and fy be
respectively the following row and column of size n — 2:

0

Condition (2.2) reads

1 xzeq =z
/ / Ue=Ve) 0 Inz yfo | (=2 —y)dzdxdy =0,
(F\A)2 JF\A 0 0

for all £ € V. Abusing notation, we write the above integral as

1 zey =z

/ (Ue=Ve) | 0 Lz yfo | (-2 —y)dzdzdy =0,
(F\&)3 0o 0 1

for all £ € V.. For instance, for n = 4 the condition reads

1 0 =z =z
01 00

/(F\A)s(UE —Ve) 001 vy (—z — y)dzdxdy =0,
00 01

for all £ € V;. Again we can conjugate by an element of A, (F) to
obtain

1 zeg =z

(2.3) / Ue—=Ve)| 0 Li—s yfo | ¥(—ax — By)dzdzdy =0,
(F\a)? 0 0 1

forall £ € V,a € F*, 5 € F*. Our own contribution is the following.

Theorem 2.4. Suppose n > 3. Then condition E(n,n—3) is equivalent
to the condition

1 z
/ (Us—=Ve)| 0 L2 0 |dz=0
F\A 0 1
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for all £ € V.

Combining our Theorem 2.4 with the results of Cogdell and Piatetski-
Shapiro ([Cog02]) we arrive at the following result.

Corollary 2.5. Suppose conditions A(n,i), 0 < 1 < n—3, are satisfied.
Then for every & € Vy

1 0 =z
/ (Ue=Ve)| 0 T2 0 |dz=0
F\A 0O 0 1

3. SEPARABLE FUNCTIONS

Let U and V' be vector spaces over F'. A function
O UF)\UA) x V(F)\V(A) - C

is said to be (additively) separable, if there exist two functions ®; :
U(F)\U(A) — C and @5 : V(F)\V(A) — C such that, for all (u,v) €
U(A) x V(A),

O (u,v) = Py(u) + Po(v) .
[t amounts to the same to demand that, for all (u,v),
P (u,v) = ®(u,0) + ®(0,v) — ¢(0,0) .
In what follows, if ® : U(F)\U(A) x V(F)\V(A) — C is a function,

an integral
//q)(u,v)dudv

means that the integral is over the product U(F)\U(A) x V(F)\V(A)
and the Haar measure du (resp. dv) is normalized by demanding that
the quotients have volume 1. This convention remains in force for the
rest of this paper.

Lemma 3.1. Suppose that
o: F\Ax F\A - C

is a smooth function such that, for all o € F*, p € F*,

/ / B(u, o) (u + Bo)dudy = 0.

Then ® is separable.
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PrRoOOF: We write the Fourier expansion of @,
O(z,y)

= Y Yozt By) (//@(u,v)¢(—au—ﬁv)dudv) .

a€F,BEF

In view of the assumptions, we have

P (z,y)
_ / / B, v)dudv

Y W(az) ( / / <I>(u,v)w(—au)dudv)

aclF'x

+ 3 wsy) ( I/ @(u,vw(—ﬁv)dudv).

BeEFX

+

The function on the right hand side of the equation is indeed separable.
O

Proposition 3.2. Suppose U and V' are finite dimensional spaces over
F in duality by the bi-linear form (u,v) — (u,v). Suppose

O UF)\UA) x V(F)\V(A) - C
is a smooth function with the following property: for all pairs (e, f) €
U(F) x V(F) with (e, f) =1 we have
/ (u+ ze,v +yf)(az + By)dzdy =0
(F\A)2

or att u € , ALV € , Gl o € , ana a S . en
for all U(A), all V(A), all F~ dall B € F*. Then ®

15 separable.

Proor: If dim(U) = dim(V) = 1, our assertion follows from the
previous lemma. Thus we may assume that dim(U) = dim(V') = n+1,
n > 0 and our assertion is true for dimension n. Let e € U(F), f €
V(F) with (e, f) = 1. Let U; be the subspace of U orthogonal to f
and V) the subspace of V' orthogonal to e. By Lemma 3.1, for u €
Ui(A),v € Vi(A) we have

Olu+ se,v+tf] = ®lu+ se,v] + Plu, v + tf] — Plu, v].
Each one of the functions

(u,v) = ®[u+ se,v], (u,v) = Plu,v+tf], (u,v) = ®lu,v]
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satisfies the assumptions of the proposition. By the induction hypoth-
esis, the right hand side is equal to

Olu + se, 0] + D[se, v] — P[se, 0] + P[u,tf] + P[0, v + tf] — P[0, f]
—®[u, 0] — [0, v] + ®[0,0].
Thus it suffices to show that (u,t) — ®[u,tf] and (s,v) — P[se, v] are
separable functions. Let us show this is the case for the first function.
Let ey, e, ..., e, be a basis of U (F'). Write
U = 811 + S99 + -+ 4+ Sp€p .
Now (e; + e, f) = 1. Thus,
D[s1eq + sgex + -+ - spe, + s16,0 + tf]

must be separable as a function of (s1,¢). All the terms on the right
hand side (with s = s1) have this property, except possibly the term

Dlu, tf].
Thus this term must have this property as well. Hence
O[s1e + sgea + -+ - + Spep, tf]

is a separable function of the pair (si,t). Likewise it is a separable
function of each pair (s;,t), 1 < j < n. By the lemma below it is a
separable function of ((s1, s2, ..., S,),t), that is, ®[u,tf] is a separable
function of (u,t). O

Lemma 3.3. Suppose
(I)((Sl, S9, ... ,Sn),t)

15 a function with the property that for each index j it is a separable
function of (sj,t). Then it is a separable function of the pair

(51,82, +y8n),1).

PROOF: Our assertion is obvious if n = 1. So we may assume n > 1
and our assertion true for n — 1. We have, by separability in (s1,1),

D((s1,892,...8,),t) =

D((s1,82,--54),0) +P((0, s2,...8,),t) — P((0, s2,...5,),0) .
By the induction hypothesis the term ®((0, ss,...s,),t) is a separa-
ble function of the pair ((ss,...s,),t). Thus the right hand side is a
separable function of the pair ((s1, g, ... $,),t). O
Finally, we have a simple criterion to decide whether a separable
function vanishes.
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Proposition 3.4. Suppose ® is a separable smooth function on

UFNU(A) x V(FN\V(A),

where (U, V) zs a pazr of vector spaces over F' in duality by the bilinear
form (u,v) — . Suppose that

// w, o) ((u, F) + (e, v))dudv = 0,

ifec U(F), f e V(F), and either e =0 or f =0 (or both e = 0 and
f=0). Then & =0.

PROOF: By assumption,
P (u,v) = ®(u,0) + ¢(0,v) — ¢(0,0).
Taking e = 0 and f # 0 we get

/@(u, 0)w((u, £))du + (/ (0, v)dv — B(0, 0)) /¢((u, £))du =

Since f # 0, there exists ug € U(F)\U(A), such that ¥ ({uo, f)) # 1.
By changing of variables,

/¢ (u, f) du—/z/z ((u + g, f))du = ¥((ug, f /¢ (u, f))d

which implies that [ ¢((u, f))du = 0. Hence we get

/ D (u, 0))((u, f))du =

This shows that u — ®(u,0) is a constant function. Likewise v
®(0,v) is a constant function. By the above formula from assumption,
(u,v) — ®(u,v) is a constant function. Now if we take e = 0 and f =0

we get
//CI)(u, v)dudv = 0.

But since ® is constant, this integral is just the constant value of ®.
Hence ® is 0 as claimed. U

4. PROOF OF THEOREM 2.4
It will be convenient to introduce for every & € V. the function

1 v =z

<I>5(u,v):/F\A(U5—V§) 8 Ino,g 11) dz .
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Here u is a row of size n — 2 and v a column of size n — 2. The scalar

product of u and v is denoted by (u,v). Thus ®¢ is a smooth function
on (F\A)"2 x (F\A)"2

Proposition 4.1. Let A be a rational column of sizen — 2 and B a
rational row of size n — 2. Suppose A =0 or B =0 (or both A =0
and B =0). Then, for every £ € V., the integral

//@5(U,U>¢(<U,A> + (B, v))dudv
is 0.

Proo¥r: It suffices to prove the integral

1 Uu z
///U§ 0 L2 v | ¥(u,A)+ (B,v))dudvdz
0 0 1

has the properties described in the proposition.
Indeed, the automorphism

t —1
gr—Wng Wn

changes the function Ug relative to the character ¢ into the function Vg
relative to the character 1)~! and leaves invariant the group over which
we integrate. Thus the integral

1 u =z
///Vg 0 I,—2 v | ¥(uA+ Bv)dudvdz
0O O 1

has the same properties and so does the integral of the difference U —V.
Note that (u, A) = uA, (B,v) = Buv.

Now consider the integral for Ue. If B = 0 it suffices to show that,
for every &,

1 0 =z
//Ug 0 1,2 v |dvdz=0.
0O 0 1

Indeed, as we have remarked, if this identity is true for all &, then the
identity obtained by translating on the right by an element of G,, is
still true for every £. In particular, then, for all £ and all w,

1 0 =z 1 «w O
//Ug 0 1,2 v 0 1,2 O dvdz = 0.
0O 0 1 0O 0 1



GLOBAL CONVERSE THEOREM 15
Integrating over u with respect to the character ¢ (uA) we find

1 0 z 1 u 0
/du//U5 0 I,o v 0 I,» O dvdzip(uA)du =0,
0 0 1 0O 0 1

1 u oz
///Ug 0 I, v | ¥(uA)dudvdz =0,
0O 0 1
as claimed.

Replacing U by its definition, we find

or

1 0 =z
//Ug 0 1,9 v | dvdz=
0 0 1
[ 0 1 0 z\]
// 3 We <g 1) 0 Iy v || dvdz.
YEUp—1(F)\Grn-1(F) i 0 0 1

Exchanging summation and integration we find

0 1 0 =z
// Z We ( g 1 ) 0 I, v dvdz .
i 0 0 1

YEUR—1(F)N\Gn-1(F)

0 1 0 =z
— Z //WE ( g . ) 0 I,_o v dvdz
YEUn_1(F)\Gn_1( 0O 0 1
After a change of variables this becomes
1 0 =z 0
- 3 //Wé 0 Ins (g 1) dvd>
YEUn—1(F)\Gn—1( 0 0 1

which is 0.
Now suppose B # 0 (and thus A = 0). To prove that the integral
vanishes we may conjugate by a matrix

1 0 0
0 v O .Y E GpoF).
0 01
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This amounts to replacing B by By~!. Thus we may assume B =
(0,0,...,0,—1). Then the integral takes the form

1 uw 0
/]P)ZQUg 0 I,o 0 |du.
0 0 1
Replacing Py _,U, by its expression in terms of W, we find
0 1 «w 0
/ We (31) 0 Ino 0 ||du.
YEUn_2(F)\Grn_2(F) 2 0O 0 1
Let us write this as
1 0 4 0
1 o 0
Y 0 0 [n,;), 0 0 " /
//ZW6<0 12) 0 0 1 0 81"0*3? du” | du,
! 0 0 0 1 2

with v € U,,_2(F)\G,_2(F). The inner integral is in fact a multiple of

the integral
ol (4 )

where v,,_s is the last row of . This integral is then 0 unless the last
row has the form
(07.7.7"'7.)7
in which case the integral is 1. Thus our expression is
1 0

u/
/ng <g ?) 0 I,y 0 ||du,
Y ? 0 0 I
where v € U,_o(F)\Gn—2(F) and the last row of v has the form
(0,0,0,... 0).
Now let us write the Bruhat decomposition of v € U,,_o(F)\G,_2(F):

v = wra

with w a permutation matrix, a a diagonal matrix and v € U,_o(F).
The last row of w cannot have the form (1,0, ...,0) otherwise the last
row of 4 would have the form (z,e,e,... ®) x # 0. Thus the last row
of w has the form (0,e, e ... e). Let us write down the contribution
of such a w to the above expression and show it is 0. We introduce the
abelian group

1 4 0
x={[0 1,5 0
0O 0 I
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The contribution of w has the form

Femsan 2|5 2 )] o=

where 7 = wra, a € An_2<F) and v is in a set of representatives for the
cosets w U, _o(F) N U,_o(F)\U,_2(F). For a set of representatives,
we will take the group

S = wilUn,g(F)w N Un,Q(F) s

where as usual U,_, is the subgroup opposite to U,_, (that is, its
transpose).

Now viewed as a subgroup of G,,_(F') the group X (F') is the unipo-
tent radical of the standard parabolic subgroup of type (1,n — 3) and
Un_o(F') is contained in this parabolic subgroup. In particular, X is
normalized by U,,_o(F') and by S.

We keep in mind that X is an abelian group. Let us write X as the
product X; X, where

X{(F)=w'Up_o(F)wNX(F), Xo(F) = w U, (F)w N X(F).
Thus S contains X5(F') and is the product of X,(F') and the group T,

1 0 0
T=5nN 0 p 0 ) :peU,_3(F)
0 0 Iy

Moreover the group S normalizes X,. In particular it normalizes the
groups
X(F) = X1 (F)X(F), Xa(A),
hence also the closed subgroup
X1 (F)Xa(A)

Then our expression becomes

//ZWsKO ]2)(”00‘ g)xlxg}dmdmz.

Here z; and xs are integrated over X;(F)\X;(A) and X5 (F)\X2(A)
respectively. We sum for v € A, o(F) and v € S. We can take the
sum over « outside as follows:

S om0 (5 D) an (L))

We now show that each term of the o sum is 0 for all £&. As usual, we
may take o = I,,_5. Now we write

V=T0
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with 0 € X5(F) and 7 in 7. We combine the integration over z, and
the sum over o to obtain an integral over X3(A). We arrive at

Jom (Sl (5 2) (5 2 )] o)

Here the integral is for z; € X (F)\X1(A) and zo € X5(A). We will
show that for every 7 and every £ the following integral is 0:

0 0
X1(FO\X1(4A) X2(A) 2 2

In order for this expression to even make sense we better show first
that, on X (A), the function

w 0 7 0
T —> We Txo | dx
Xo(A) [( 0 I > < 0 I ) 2} ’

is invariant under X;(F'). Recall it is invariant under X,(A). So it
amounts to the same to prove it is invariant under X;(F)X5(A). Since
7 normalizes the groups X (A) and X;(F)X3(A) it amounts to the same
to prove that on X (A) the function

(5 )5 )l

is invariant under X;(F)X5(A). The invariance under X3(A) being
clear we check the invariance under X;(F'). But if z; € X;(F') we have

w 0 T 0
Pul(s 1)oe(3 2
w 0 T 0
< frel (6 5)=(5 2 )]
(w0 w 0\
=80 )" \o ) -
Since ¥ is in U,,_o(F'), this expression does not depend on x;.

At this point we can reformulate our goal as follows: we have to
prove that for every 7 and every &, the integral of the function

oo Jel (5 5 ) (6 3o

over the quotient

with

Xi(F)Xa(A\X(A)
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is 0. Conjugation by 7 defines an automorphism of this quotient which
preserves the Haar measure. Hence it suffices to prove that the integral
of the function

o JUel (5 1) (G )

over the same quotient vanishes. Equivalently, we want to prove that

X1(F)\X1(A) Xa(A) 2 2

for all 7 and all £. At this point we may exchange the order of integra-
tion. So it will be enough to prove that

0
dz, W, [( v >x]g:o
/XI(F>\X1<A> B AN AR

for all £ and g. Now let Y be the subgroup defined by
Y(F) = U,_o(F) NwX;(F)w™".

The integral can be written as

dywe | ¥ 0) }
/Y(F)\m)%"(y) / fK 0 I )Y

Now we claim that the subgroup Y contains a root subgroup for a posi-
tive simple root. Thus the character vy, is non-trivial on the subgroup
Y (A) and the integral vanishes which concludes the proof.

It remains to prove the claim. Since the proof requires an inductive
argument we state the claim as a separate lemma. O

Lemma 4.2. Let X be the unipotent radical of the standard parabolic
subgroup of type (1,m — 1) in GL,,. Let w € GL,, be a permutation
matriz whose last row has the form (0,e,e ... e). Then conjugation
by w changes one of the root subgroups of X into the root subgroup
associated to a positive simple root.

PROOF: Our assertion is trivial if m = 2 because then w = I,. So
we may assume m > 2 and our assertion true for m — 1. The matrix

w has the form
W — w1 0 1 0
o 0 1 0 Wo

where w; and wsy are permutation matrices of size m — 1. Since

(o0 )
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normalizes X, it suffices to prove our assertion for

o w1 0

o 0o 1 /-
If the last row of w; has the form

(1,0,...,0),

the root group corresponding to e; —e,, is conjugated to the root group
corresponding to e,,_1 — €,,. S0 our assertion is true in this case. If
the last row of w; has the form

(0,0,...,0),

we can apply the induction hypothesis to w; and obtain again our
assertion. O
PROOF OF THEOREM 2.4: Recall from (2.3) that

1 zeg =z
/( \ )3<U£ —Vo | 0 L yfo | ¥(ax+ By)dzdedy =0
F\A 0 O 1

forall £ € Vi, a € F*,5 € F*. Here ¢y and f are of size n — 2 and

Note that if ¢ = 0 for all £ € V, then the condition £(n,n — 3) holds,
since the integral over z is just an inner integral of the above integral.
Hence, in the following, we assume that the condition £(n,n—3) holds,
that is, the above integral equals to 0.

We can conjugate by a matrix of the form

1 00
0 7 0 |,7€G.sF)
0 01

to obtain

1
/ Ue=Ve)| 0 Lo yvfo | ¢¥(ax+ By)dzdedy =0,
(F\A)3 0
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forall £ e V,, a € F*, 5 € F*. Thus

1 ze Z
/ Ue=Ve)| 0 Lz yf |¥(ax+ By)dzdrdy =0,
(F\A)3 0 0 1

for e (resp. f) an F-row (resp. column) of size n — 2 and (e, f) = 1
and for all £ € V., a € F*, 3 € F*. Moreover, right translating by
an adelic matrix in the unipotent radical of the parabolic subgroup of
type (1,n —2,1) we obtain

/(F\A)3 Pe(u+ ze, v+ yf(ax + fy)dzdedy =0,

for all (u,v) € A" 2 x A" 2 and for all £ € V,;, « € F*, 3 € F*. Thus
by Proposition 3.2, the function ®, is separable, for all £ € V;. By
Propositions 4.1 and 3.4, it is in fact 0 and we are done. U
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