ON THE LOCAL CONVERSE THEOREM FOR p-ADIC
GL,

HERVE JACQUET AND BAIYING LIU

ABSTRACT. In this paper, we completely prove a standard conjec-
ture on the local converse theorem for generic representations of
GL,(F), where F is a non-archimedean local field.

1. INTRODUCTION

Let F' be a non-archimedean local field. Let G,, := GL,(F) and let
m be an irreducible generic representation of G,,. The family of local
gamma factors y(s, 7 x 7,1), for 7 any irreducible generic representa-
tion of G,, 1 an additive character of I’ and s € C, can be defined
using Rankin—Selberg convolution [JPSS83] or the Langlands—Shahidi
method [S84]. The following is a standard conjecture on precisely which
family of gamma factors determine 7.

Conjecture 1.1. Let m,m be irreducible generic representations of
G,. Suppose that they have the same central character. If

7(877‘-1 X T, ¢) = 7(877‘-2 X T, 1/})7

as functions of the complex variable s, for all irreducible generic rep-
resentations T of G, with 1 < r < [§], then m = 7y.

The conjecture and the global version of the conjecture ([CPS99, Sec-
tion 8, Conjecture 1)) emerged from early discussions between Piatetski-
Shapiro, Shalika and the first mentioned author. In particular, they
proved Conjecture 1.1 in the case n = 3 ([JPSS79]).

The fact that the representations have the same central character
implies that if, for a given r, the above equality is true for one choice
of 1, then it is true for all choices of ¥. Moreover, if the above equality
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is true for » = 1 and one choice of 1, then the representations have the
same central character ([JNS15, Corollary 2.7]).

One can propose a more general family of conjectures as follows (see
[ALSX16]). We say that m; and 7y satisfy hypothesis H, if they have
the same central character. For m € Z>;, we say that they satisty
hypothesis H,, if they satisfy hypothesis Hy and satisfy

7(5771 X T, ¢) = ’7(577‘-2 X T, ¢)

as functions of the complex variable s, for all irreducible generic repre-
sentations 7 of G,,. For r € Z>(, we say that 7, mo satisfy hypothesis
‘H, if they satisfy hypothesis H,,, for 0 < m < r.

Conjecture J(n,r). If m,m are irreducible generic representations
of G, which satisfy hypothesis H<,, then m =~ .

Conjecture 1.1is exactly Conjecture J (n, [5]). Henniart proved Con-
jecture J(n,n — 1) in [H93]. Conjecture J(n,n — 2) (for n > 3)
is a theorem due to Chen [Ch96, Ch06], to Cogdell and Piatetski-
Shapiro [CPS99], and to Hakim and Offen [HO15]. As we mentioned
above, Conjecture [J (3, 1) is first proved by the first mentioned author,
Piatetski-Shapiro, and Shalika [JPSS79]. Conjecture J(2,1) is first
proved by the first mentioned author and Langlands [JL70].

In [JNS15, Section 2.4], Conjecture 1.1 is shown to be equivalent to
the same conjecture with the adjective “generic” replaced by “unita-
rizable supercuspidal” as follows:

Conjecture 1.2. Let m,m be irreducible unitarizable supercuspidal
representations of G,. Suppose that they have the same central char-
acter. If

7(377T1 X T, 'l/}) = 7(377@ X T, ¢)7

as functions of the complex variable s, for all irreducible supercuspidal
representations T of G, with 1 <r < [3], then m = .

In [JNS15], Jiang, Nien and Stevens introduced the notion of a spe-
cial pair of Whittaker functions for a pair of irreducible unitarizable
supercuspidal representations my, my of GG,,. They proved that if there
is such a pair, and 7, mo satisfy hypothesis H<pz, then m = my. They
also found special pairs of Whittaker functions in many cases, in partic-
ular the case of depth zero representations. In [ALSX16], Adrian, the
second mentioned author, Stevens and Xu proved part of the case left
open in [JNS15]. In particular, the results in [JNS15] and [ALSX16]
together imply that Conjecture 1.2 is true for GG,,, n prime. We remark
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that both [JNS15] and [ALSX16] make use of the construction of super-
cuspidal representations of G,, in [BK93] and properties of Whittaker
functions of supercuspidal representations constructed in [PS08§].

In this paper we prove Conjecture 1.1, hence Conjecture 1.2. We use
analytic methods. We do not resort to the construction of special pairs
of Whittaker functions for supercuspidal representations. The idea is
inspired by the proof of Conjecture J(n,n — 2) in [Ch06]. We state
the main result of the paper as the following theorem.

Theorem 1.3. Conjecture 1.1 is true.

We were recently informed that Chai has an independent and differ-
ent proof of Conjecture 1.1 (|Ch16]).

One straightforward application of Theorem 1.3 is that it reduces
the amount of necessary GL-twisted local factors, in order to obtain
the uniqueness of local Langlands correspondence (proved by Henniart
in [HO2]), and it also gives a corresponding local converse theorem for
local Langlands parameters via the local Langlands correspondence.

By the argument of [CPS99, Section 7, Theorem|, one can see that
Conjecture 1.2 is a consequence of the global version of Conjecture
1.1 ([CPS99, Section 8, Conjecture 1]). Hence, Theorem 1.3 provides
evidence for the global version of Conjecture 1.1 on the global converse
theorem.

It is easy to find pairs of generic representations showing that in
Conjecture 1.1, [5] is sharp for the generic dual of G,. In [ALST16], we
showed that, in Conjecture 1.2, [7] is sharp for the supercuspidal dual
of G,, for n prime, in the tame case. It is believed that in Conjecture
1.2, [3] is sharp for the supercuspidal dual of G, for any n, in all
cases. This is our work in progress. However, it is expected that for
certain families of supercuspidal representations, [§] may not be sharp,
for example, for simple supercuspidal representations (of depth %), the
upper bound may be lowered to 1 (see [BH14, Proposition 2.2] and
[AL16, Remark 3.18] in general, and [X13] in the tame case).

Nien in [N14] proved the finite fields analogue of Conjecture 1.1, using
special properties of normalized Bessel functions. We remark that the
idea in this paper also applies to the finite field case, and could give a
new proof for the result in [N14]. Moss in [M16] proved an analogue of
Conjecture J(n,n — 1) for f-adic families of smooth representations of
GL,(F), where F is a finite extension of @), and ¢ is different from p.

The local converse problem has been studied for irreducible generic
representations of groups other than GL,,: U(2,1) and GSp(4) (Baruch,
[B95] and [B97]); SO(2n + 1) (Jiang and Soudry, [JS03]); U(1,1) and
U(2,2) (Zhang, [Z15a] and [Z15b]). We remark that since the local
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converse theorem for SOs,4q in [JSO3] is eventually reduced to the
local converse theorem for GL,,, following exactly the same proof given
in [JS03], Theorem 1.3 implies that twisting up to irreducible generic
representations of GL, is enough in the local converse theorem for
SOg,41 in [JSO3].

Section 2 will be preparation on properties of irreducible generic
representations of GL,,(F) and Rankin-Selberg convolution. Theorem
1.3 will be proved in Section 3. Section 4 will be the proof of Proposition
3.6.

Finally, we would like to thank J. Cogdell, D. Jiang and F. Shahidi
for their interest in the problems discussed in this paper and for their
encouragements, and S. Stevens for a helpful suggestion which makes
the paper more readable. We also would like to thank the referee for
helpful comments and suggestions.
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2. (GENERIC REPRESENTATIONS AND RANKIN-SELBERG
CONVOLUTION

In this section, we review basic results on generic representations
and the Rankin-Selberg convolution, which will be used in the proof of
Theorem 1.3 in Section 3.

Let F' be a non-archimedean local field, and let ¢ be the cardinality
of the residue field of F. Let G,, := GL,,(F). All representations of G,,
considered in this paper are irreducible smooth and complex.

2.1. Whittaker models. Let B, = T,,U,, be the standard Borel sub-
group of G,, consisting of upper triangular matrices, with unipotent
radical U := U,, and diagonal group 7},. Fix a nontrivial additive char-
acter ¢ of F'. Define a non-degenerate character ¢y, of U, also denoted
by ¥y as follows:

n—1
@ZJUn(U) = 1/) <Z ui,i—l—l) , U € Un.
=1

An irreducible representation (7, V') of G,, is generic if

Homg, (V, IndS ) # 0.
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It is known that if 7 is generic, then the above Hom-space is of di-
mension 1. Let m be an irreducible generic representation of G,,, fix
a nonzero functional ¢ in the above Hom-space, then the image of V'
under / is called the Whittaker model of 7, denoted by W(m,¢). It is
known that W(m, 1) is independent of the choice of £. For each v € V,
let W, = ¢(v). Then for u € U, g € G,

Wy (ug) = Yy (u)Wy(g)

Wi(g) = £(v)(g) = U (9)v)(Ln) = Wr(g)o(In) -
For W € W(m, ), let

W(g) = W(w'g ™),

0 1
wi=1,w,= Wy 0)

It is well known that W € W(7,v), where 7T is the representation
contragradient to 7.

Let P be the maximal parabolic subgroup of GG,, with Levi subgroup
Gn_1 X G1. Let Z be the center of GG,,. Given two irreducible generic
representations m; and my of GG, with the same central character, to
show that m = mo, it suffices to show that their Whittaker models
W(m1,1) and W(ms, 1) have a nonzero intersection. The following two
propositions allow us to study Whittaker functions by restricting them
to P.

where

Proposition 2.1 ([GK75]). Let m be an irreducible generic represen-
tation of G, with central character w,. Then the restriction W(m,¥)|p
has a Jordan-Holder series of finite length which contains the compact
induction inngw,,wU as an 1rreducible subrepresentation.

The following proposition is proven in [JPSS79] for n = 3, and the
same argument works for general n. The proof can also be found in
[BZ77, Theorem 4.9].

Proposition 2.2. Let (m,V) be an irreducible generic representation
of G,,. Then
U Wv|p

is an injective map from V to the space of smooth functions on P.

Let 7y, my be two irreducible generic representations of G,, with the
same central character w. Let V = ind5 wiy. For p € P, let p(p) be
the operator of right translation on complex functions v on P:

p(p)v(z) = v(xp).
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By Propositions 2.1 and 2.2, for any v € V| there is a unique element
W in the Whittaker model of 7; such that, for all p € P, Wi(p) = v(p).
Thus, we have

W, (p) = Wi(p),Vp € P, Vv e Vp.
Note that for p € P, we have
W:)J(gp) = WZ)(p)'U(.g) ) Vg € Gna Vo € ‘/0

2.2. Rankin-Selberg convolution. Let n,t € Z>;, and let 7 and 7
be irreducible generic representations of G,, and G, with Whittaker
models W(r, 1) and W(r, 1)), respectively. Let W € W(r, ) and
W' € W(r,v). Assume that n > t, which is the case of interest to us
in this paper.

For any integer j with 0 < j <n—t—1,let k =n—t—1—j, define
a local zeta integral as follows:

(2.1)
g 0 0 B
W(s, W, W j) :://W X I, 0 | Wi(g)|det gl dxXdg,
0 0 Iy

with integration being over g € U;\G; and X € M, (F).
For g € G, let p(g) be the operator of right translation on complex
functions f on G,,:

p(9)f(z) = f(zg).

(L 0
Wnt = 0 Wit .

The following result is about functional equations for a pair of ir-
reducible generic representations, proved by the first named author,
Piatetski-Shapiro and Shalika in [JPSS83]. It plays an important role
in proving the main result of this paper.

Let

Theorem 2.3 ([JPSS83], Section 2.7). With notation as above, the
followings hold.

(1) Each integral V(s, W, W’; j) is absolutely convergent for Re(s)
large and is a rational function of ¢=°. More precisely, for any
fized j, the integrals V(s, W, W', j) span a fractional ideal (in-
dependent of j) of Clq®, q~*]:

Clg®, g °|L(s, ™ x ),

where the local factor L(s,m x T) has the form P(q~%)~', with
P e C[X] and P(0) = 1.
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(2) For any 0 < j < n —1t — 1, there is a factor e(s,m X 7,1),
independent of 7, such that
U(1— 5, p(wns) W, W' k)
L(1—s,7xT)

where k =n —t —1—j and w;, is the central character of T.

U(s, W, W j)
L(s,m xT)

Y

= w‘r(_l)nil‘g(‘g? X, ¢)

The local gamma factor attached to a pair (7, 7) is defined to be
L(1—s,7xT)
L(s,mxT1)

(s, X7 ) = €(s,m X 7, 9)

Then the functional equation in Part (ii) of Theorem 2.3 can be written
as
(2.2)

U(1 — s, plwn )W, W' k) = w(—1)" (s, x 7,9)U(s, W, W'; 7).

At the end of this section, we introduce the following important
lemma.

Lemma 2.4. Let m; and 7y be two irreducible generic representations
of G,,. Lett <n—2andj with0 < j <t. Suppose that W' and W? are
elements in the Whittaker models of m and my respectively. Suppose
further that for all irreducible generic representations T of G,_y_1 we
have

(s, WL W' 5) = W(s, W2, W', j)
for all W' € W(r,%) and for Re(s) > 0. Then

In—t—l 0 0 ]n—t—l 0 0
/W1 I, 0 dXz/WQ X I, 0 |dX,
0 0 Iy 0 0 Iy

where the integrals are over X € My (n—1—1)(F).

Proof. For j = 0, the assumption is that

/ wi (90 ) wi(g)det g+ dg
Un—t—l\Gn_t_l O ‘[t+1

= / W2 (9 0 ) I/Vl(g)ldetgls-‘,-%dg7
Un—t—1\Gn—t—1 0 It+1

for all W’. The conclusion is that W'(I,,) = W?(I,,). Indeed, recall
that given C' > 0 the relations

_ i(9 0
|detg|—C’,VV(O It+1)7é0

(2.3)
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imply that g is in a set compact modulo U,_; ;. Both sides of the
identity (2.3) converge for Re(s) > 0. Thus they can be interpreted as
formal Laurent series in ¢~°. We conclude that for any C' > 0

/ w ( 0 ]0 )W’(g)dg—/ w2 ( g ]0 >W’(g)dg.
|det g|=C' 0 t+1 |det g|=C 0 t+1

One then applies the spectral theory of the space L*(U,_—1\G>_, ;)
where G°_, | ={g € G,y : |det g| = 1}. For more details, see [H93,
Section 3] and [Ch06, Section 2].

For 0 < j < t, one observes that there is a compact subset €2 of
M (n—1—1)(F') such that for all g € G,,—4—1 and i = 1,2,

(g O 0
Wil X I 0 #0
0 0 Iy

implies that X € . Thus, for i = 1,2, there is an element W} €
W(m;, 1)) such that for all g € G,y

(g 0 0 (9 O 0
/ Wil X I 0 daX =Wil0 I; 0
Mjx(n—t-1)(F) 0 O ]t+1—j 0 0 ]t+1—j
We are therefore reduced to the case j = 0. U

3. PROOF OF THEOREM 1.3

In this section, we prove Theorem 1.3. Let m; and 7y be irreducible
generic representations of G, with the same central character w. We
recall from Section 2.1 that P is the maximal parabolic subgroup of G,,
with Levi subgroup G,,_1 X G1, Z is the center of G,,, Vj = indIZDwaU,
and we have

(3.1) Wy (p) =W (p), ¥p € P, Vv € Vh,
(32)  Wilgp) =W,(9),Vge Gy, Vpe P, YoeVy,i=1,2.

We recall the decomposition of G,, into double cosets of U and P as
in [ChO06]:

-1
Gn=J._, Ua'P,

o O[nfl
a(l 0).

), in particular, «

where

0 [nfi
I; 0

0

Note that o' = ( =a"=1,.
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Definition 3.1. For each double coset Ua'P, 0 <i <mn —1, we call i
the height of the double coset. We say that m1 and my agree at height

if
W,(g) = W2(g), ¥g € Ua'P, Vv € V.

By (3.1), m; and 7 agree at height 0. The following lemma gives a
characterization of m; and my agreeing at height i.
Lemma 3.2 ([Ch06], Lemma 3.1). m; and m agree at height i if and
only if ' ‘
Wl(a')y = W2(a'), Yo e V.
The following lemma is one of the main ingredients for this paper.

Lemma 3.3 ([Ch06], Proposition 3.1). Let t with 1 <t <n—1. Ifm
and o satisfy hypothesis Hy, then they agree at height t.

To proceed, we give a characterization of the matrices in the double
coset Pa’U,0<s<n—1.

Lemma 3.4. Suppose 0 < s < n —1, Then g € Pa®U if and only if
the last row of g has the form

0,...,0,a5,G541,-..,0,), as # 0.
Proof. Recall that
s __ 0 In—s
o=y )

It is clear that the last row of any matrix in Pa® has the form
0,...,0,as,0,...,0),

where as; # 0 occurs in the s-th column of the matrix. After multiplying
by matrices in U from the right, one can see that last row of any matrix
in Pa’U has the form (0,...,0,as,asy1,- .., a,), with ag # 0. O

In fact, this lemma gives at once the decomposition in the disjoint
double cosets

- n—1 . 1
Gn=\J_ Pa'U=]J_ Ua'P.
The next lemma is a generalization of [Ch06, Lemma 3.2].

Lemma 3.5. Let t with [5] <t < n — 2. Suppose that for any s
with 0 < s < t the representations m, and my agree at height s. Then
the following equality holds for all X € M, —1—1)x(2t42-n)(F), all g €
Gr_i—1, and all v € Vj:
[nftfl 0 0 [nftfl 0 0
W, 0 Iyyon O =W 0 Ition 0
0 X g 0 X g
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Proof. First note that the hypothesis [§] < ¢ < n — 2 implies that
n—t—1>1land 2t +2—n > 1.
I 0 0
Let A = 0 Iogyo, 0], where X € M(n,t,l)x(2t+2,n)(F),
0 X g

In—t—l 0 0
and ¢ € Gp_y—1. Then A7! = 0 Iyion 0 |. By Lemma

0 _gle gfl
3.4, A=t € Pa'U, where i > n —t, hence, A € Ua™ ‘P with n —i < .
Since 7, and 7y agree at heights 0,1,2,....¢, W and W2 agree on A,

for any v € V.

This completes the proof of the lemma. 0

The following proposition allows us to prove Theorem 1.3 inductively.

Proposition 3.6. Assume that 1 and mo satisfy hypothesis H<z). Let
t with [5] <t < n — 2. Suppose that for any s with 0 < s < t, the
representations m; and my agree at height s. Then they agree at height
t+1.

Before proving the proposition, we apply it to the proof of our main
result as follows.

Proof of Theorem 1.3. Assume that 7; and 7y satisfy hypothesis
H<(z. By Lemma 3.3, m and 7y agree at heights 1,2,..., [5]. Note
that by (3.1), m; and m, already agree at height 0. Applying Proposition
3.6 repeatedly for ¢ from [3] to n — 2, we obtain that m; and my also
agree at heights [§] +1,...,n — 1. Hence, 7; and 7, agree at all the
heights 0,1,...,n — 1, that is, W} (g) = W2(g), for all g € G,, and for
all v € V. Therefore, m; = my. This concludes the proof of Theorem
1.3. ]

Therefore, we only need to prove Proposition 3.6, which will be done
in Section 4.

4. PROOF OF PROPOSITION 3.6

In this section, we prove Proposition 3.6.
Proof of Proposition 3.6. By Lemma 3.5,

[nftfl 0 0
W} 0 Lo O =W2 0 Iyo ., O
0 X g
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holds for all X € M,—1—1)x(2t+2-n)(F), all g € G,—4—1, and all v € V5.
Fix any pair (X, g). Then,

[nftfl 0 0 [nftfl 0 0
Wvl WnWn 0 12t+2_n 0 = Wv2 WnWn 0 [2t+2—n 0 s
0 X g 0 X g
that is,
g Xi 0 g Xi 0
Wvl Wn 0 I2t+2fn 0 Wn = sz Wn 0 12t+27n 0 Wn )
0 0 It 0 0 Lt

where g1 = wp_—19Wp——1, X1 = Wp_y—1 Xworyo p.
Note that

Wp—t—1 0
Wp = " Wn, nftflatJrl .
0 Ii ’

Recall that

. In—t—l 0
wn,nftfl - ( 0 Wt+1> .
Hence,
g2 Xu 0
Wvl Wn 0 12t+2—n 0 wn,n—t—lat+1
0 0 ]n—t—l
g2 Xu 0
= Wv2 wp [ O IQt+2—n 0 Wn,n—t‘—lat—’—1 )
0 0 [n—t—l
where g2 = Wn—t—19, Xl = wnftlew2t+27n'
Let X! = p(a!™)W!. Then
9 Xi 0
Xq} Wn, 0 ]2t+2—n 0 Wnn—t—1
0 0 ]n—t—l
g Xi 0
= XE Wn, 0 ]2t+2—n 0 Wnn—t—1

0 0 ]n—t—l
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Recall that )?/;(g) = X'(w,'g™1). Then,

N gs 0 O
X} Xy Ipqo-p 0 Wnn—t—1
0 0 [nftfl

N gg 0 O
= X? Xo Ipqo-p 0 Wnn—t—1 | »
O 0 [nftfl

— t —1 _ tyt,—1
where g3 =Wn—t-19 X2 = —Watr2-n X g
Therefore,

. g 0 0
X! X IDyyoyp 0 Wnn—t—1
0 0 In—t—l
. g 0 0
= Xg X I2t+2—n 0 Wnn—t—1 5
0 0 In—t—l

for all X € Mgrro-n)xn—t—1)(F), all g € Gp¢—1, and all v € V. Then,

by the definition of the zeta integral W in (2.1), we have the following
equality:

\I](l -5, p(wn,nftfl)(:i{z})? W;, 2t +2 — n)
= \D(l - S p(wn,n—t—l)(jzg)? Wﬂ 26+ 2 — n) ’

for all irreducible generic representations 7 of G,,_;_1, all Whittaker
functions W, € W(r,v), and all v € V;. Note that the above equality
first holds for Re(s) < 0 and is then an identity of rational functions
of ¢7° for all 7, all W, and all v € V},.

Since m; and 7y satisfy hypothesis H<(n), and n —¢ —1 < [3], by
functional equation in (2.2), we have that

U(s, X} Wen—t—2)=U(s, X2 Wyn—t—2),

for all irreducible generic representations 7 of G,—;—1, all Whittaker
functions W, € W(t,1), and all v € ;. Hence, by Lemma 2.4,

]n—t—l 0 0
/ X X Lo 0 |dx
Mn—t—2)x (n—t—1)(F) 0 0 Iotysn
]n t—1 0 0

_/ X2\ X L 0 ]dX,
Mn—t—2)x (n—t—1)(F) 0 0 oz —p
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for all v € V. We claim (Lemma 4.1 below) that this identity implies
in fact

XNI,) = X2(I,)), Vo € Vj.

Taking this for granted at the moment we finish the proof. Indeed, we
have then

W) = W2 (™), Vv € V4.

Therefore by Lemma 3.2, m; and 79 agree at height ¢+1. This concludes
the proof of Proposition 3.6. 0

In the rest of this paper we establish our claim, that is, we prove the
following lemma. We remark that in the case t = n — 2, considered in
[Ch06], there is no need of the following lemma, since n —t —2 = 0
when t =n — 2.

Lemma 4.1. Recall that X! = p(a!THYW! i=1,2. If

Lt 0 0
/ X& X L, 9 0 dX
(1) Mn—t—2)x (n—t—1)(F) 0 0 I3 0
Liyn 0 0
= / Xg X L, o 0 dX,
Mn—t—2)x (n—t—1)(F) 0 0 i3 0

for all v € Vi, then X!(I,) = X2(I,,), for allv € Vj.
Proof. Since X! = p(a!™)W!, by (3.2), equality (4.1) implies that
(4.2)

Lty 0 0
/ X' Mu|l X Liyos 0 |pldX
M(n—t—2)><(n—t—1)(F) 0 0 [2t+3fn
Ly 0 0
= / X2 ul X Lo 0 p | dX,
M(n—t—2)><(n—t—1)(F) 0 0 [2t+3fn

for all w € U, all p € o' P(a!*1)~1 and all v € Vj. Recall that

0 I,
t+1 n—t—1
“ _(Im 0 )

Hence the (n —t — 1)-th row of any p in a/**P(a*™!)~! has the form
0,...,0,a,0,...,0) with @ # 0 in the (n—t—1)-th column. Conversely,
this condition characterizes the elements of o™ P(a!*)~!. We will use
the relation (4.2) only for p € U N ! P(a!t1) 71



14 HERVE JACQUET AND BAIYING LIU

We denote by &; ; the matrix whose only non-zero entry is 1 in the
i-th row and j-th column. Thus

§ij&i k= 05/ €k
Given a root « (positive or negative) we denote by X, the correspond-

ing root subgroup. Thus if o = ¢; — ¢;, for any a € F, the element
I, +a&;; is in X,.

Set
In—t—l 0 0
X= X I , X € M—1—2)x(n—t—1)(F)
0 0 12t+37n

The group X is abelian and is the direct product of the groups X, _.,
with
n—t<a<2n—-t)—3,1<b<n—t—1.
For such a pair (a,b) we have either
b<a—(n—1t)+1
or
a<b+n—t—2.

We then define subgroups of X as follows. For n—t < a < 2(n—t)—3,
we define the following subgroup of X:

Xo= ]I Xee-
1<b<a—(n—t)+1
We also define a subgroup of U as follows.
Y, = H Xebfeaﬂ .
1<b<a—(n—t)+1

We can identify Y, with the dual of X, as follows: if for X € X,,
Y eY,, write

X = In + Z ga,bxba

1<b<a—(n—t)+1
Y=L+ > &b,
1<b<a—(n—t)+1
then set

XY= S o

1<b<a—(n—t)+1

We remark that Y, is contained in the subgroup U N o' Pa~(t+D),
Indeed, b cannot take the value n — ¢t — 1, otherwise, we would have
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n—t—1<a—(n—t)+1or2(n—t)—2 < a, which contradicts the
assumption a < 2(n —t) — 3.
For 2 <b<n—t—1, we define

Zy = I Xe-
n—t<a<b+n—t—2
We also define a subgroup of U as follows:
T, = I X
n—t<a<b+n—t—2

Again we can identify T with the dual of Z, as follows: if for Z € Z,,
T € Ty, write

Z = -[n + Z ga,bzay

n—t<a<b+n—t—2
T = In + § Sb—l,ataa
n—t<a<b+n—t—2
then set

<27 T> - Z ZaYa -

n—t<a<b+n—t—2
Since b—1 <n —t— 2, the (n —t — 1)-th row of a matrix in 7} has
all its elements 0 except the diagonal element equal to 1. Thus T, is
contained in U Nttt Pa~ (D),
The group X is the product

0 o« I %
n—t<a<2(n—t)—3 2<b<n—t—1

The identity (4.1) can be written as follows: for all v € Vj,

/X )dX = /X2

Note that the two functions X’ on X are smooth and compactly sup-
ported. We should keep in mind that

;(p)v(X> = X! (X (attpa~ D))  Vpe P, Yo eV,
First step. We show that we have, for all v € 1}, the identity

/X;(X)dX = /Xg(X dX

where both integrals are over the product

11 x. I 2.

n—t<a<2(n—t)—4 2<b<n—t—1
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By (4.2), for all Y € Y5,—4)-3 = ngbgn—t—2 Xey—esn_py_, and all
v € Vp, we have
/ XHXY)dX = / X2(XY)dX,
where both integrals are over the product
11 X, I 2.
n—t<a<2(n—t)—3 2<b<n—t—1
We write
]n—t—l 0 0
X = A In—t—Z 0 )
0 0 [2t+3—n
Inftfl 0 B
Y = 0 I, ¢ o 0
0 0 12t+3—n
Then
[nftfl 0 B Inftfl 0 0
XY - O [nfth AB A Infth O
0 0 Iyy3-n 0 0 I3 n
We must evaluate
In—t—l 0 B
Yy 0 I,+o AB
0 0 [2t+3fn
We write
Op—t—1 0 0
A 0n7t72 0 - Z ga,bxa,b .
0 0 Oor43-n n—t<a<2(n—t)—3,1<b<n—t—1

By abuse of notations, we write this in the form
A= § Sa,bxmb .
n—t<a<2(n—t)—3,1<b<n—t—1

Similarly,
B = Z 6j,2(n7t)72yj~

1<j<n—t—2

Hence

AB = Z éa,Q(n—t)—Q ( Z xa,jyj> )
)3

n—t<a<2(n—t 1<j<n—t—2
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and
I 0 B
Yy 0 I, AB
0 0 Iyi3n
=¢< Z $2(n—t)—3,jyj>
1<) <n—t—2

_ w(<X2(n7t)73, Y>) ’
where X2("~=3 is the projection of X on the subgroup X, 3.
Hence we have, for all Y € Y5(,_4)—3 and all v € 1§,

/ XLXO((X2003 Y))dx = / X2(X)((X2003 Y))ax

where both integrals are over the product

I x I 2

n—t<a<2(n—t)—3 2<b<n—t—1

Applying Fourier inversion formula on the group Xy(,—y—3, we obtain
our assertion.

Second step. Assume that for k withn —t <k <2(n—1t) —4 and
for all v € Vj, we have established the identity

/Xg(X)dX = /Xg(X)dX,
where both integrals are over the product

H X, 7.

n—t<a<k,2<b<n—t—1
We show that for all v € Vj, we have the identity

/X;(X)dX = /Xg(X)dX,
where both integrals are over the product

H X, 7.

n—t<a<k—1,2<b<n—t—1

By (4.2), for all v € Vj and all Y € Y}, we have
/ XHXY)dX = / X2(XY)dX,

where both integrals are over the product

H X, 7, .

n—t<a<k,2<b<n—t—1
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Recall that
Xk = H Xekfeb )

1<b<k—(n—t)+1
Yy = I X
1<b<k—(n—t)+1

Hencen —t+1<k+1<2n—t)—3and b <n—t—3. Thus we
may write Y as the matrix

I B 0
Y = 0 ) 0
0 0 Ipy3-n
We still write
J 0 0
X = A Lt o 0
0 0 IDyizx
Then
I B 0
XY = A I, o+ AB 0
0 0 D3y

To continue we must check that the matrix I,,_;_» + AB is invertible.
Now again by abuse of notations as in the First step, write

A= E ga,bxa,b + E ga,bza,b 5
1<b<a—(n—t)+1,n—t<a<k 2<b<n—t—1,n—t<a<b+n—t—2

and

B = S Grnys

1<j<k—(n—t)+1
In the product AB, the contribution of the first sum in A is

Z fa,k+1 Z La,jY;

n—t<a<k 1<j<k—(n—t)+1
The contribution to AB of the second sum in A is itself a sum of terms
of the form
fa,kﬂza,jyj )
with
n—t<a<j+n—t—22<jij<k—(n—-t)+1,
inequalities which imply that a < k — 1. We conclude that
AB = Z Sa,k-{—lma s

n—t<a<k
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where

me= > mggy = (XNY),

1<j<k—(n—t)+1

and X* is the projection of X on the group Xj. Thus I,,_;_s + AB is
invertible and in fact, since AB has only one non-zero column,

(In-t o +AB) ' =1, ;- AB.
We introduce the matrix
A=, s+AB)"A= (I, s — AB)A.

We compute ABA. The first sum in A does not contribute to the
product of AB by A. The second sum contributes

EabZk+1,6Ma 5
where the sum is for
n—t<a<k2<b<n—-t—1n—t<k+1<b+n—t—2.
Recall that n —t < k. So, the range of b is
k—(n—-t)+3<b<n—t—1.
Thus
ABA = Z Ea,bZh+1,6Ma -

n—t<a<k,k—(n—t)+3<b<n—t—1
The pairs (a,b) which appear satisfy the inequalities
2<b<n—t—-1,n—t<a<b+n-—-t-—2.
We conclude that

A
=A—- ABA
/
= § fa,bxa,b + E fa,bz(hb .
1<b<a—(n—t)+1,n—t<a<k 2<b<n—t—1,n—t<a<b+n—t—2

In words, A has the same shape as A and the same z,; coordinates.
Hence the matrix

" [nftfl 0 0
X = A [nfth 0
0 0 Ioty3-n

is in the same group as the matrix X. Also

AB= > Cappiiita,

n—t<a<k
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and B B
XF = X" mp = (X" Y) = (X"Y).
On the other hand the matrix BA is the sum of
&b, Zh+-1,6/ Yo
with
1<b<k—(n—t)+1,k—(n—t)+3<b <n—-t—1.
The inequalities imply
b+(n—t)<k+1<V+n—-t—2
or
b<b —2.
Thus BA is an upper triangular matrix with 0 entries in the diagonal

and just above the diagonal. In particular, I, — BA is invertible.

The same remarks apply to the matrix BA and L1 — BA.
Thus we can continue our computation

XY
L1 —BA B 0 Lisger 0 0
- O In—t—2 —|— AB O A [n—t—Q 0
0 0 Dy 3-n 0 0 Doty 3-n
and we have
I, 1— BA B 0
1/}U 0 ]n—t—2 + AB 0
0 0 Iyii3—p
= v, , ,(In-t—2+ AB)
= p((X*Y)).

Hence our identity reads
[ XUOUEREYIX = [ XR(EY)IX, o e Vi,

where both integrals are over the product

H X,7,.

n—t<a<k,2<b<n—t—1

We want to use X as the variable of integration. Because AB and
BA are nilpotent we have

= [p(X)[|dX
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and
dX = [p(X)|dX

where p and p are polynomials in the entries of X and X respectively.
Then

p(X)p(X)| =1.
Since X is a polynomial function of X we see that p is a constant ¢ > 0

and so dX = c¢dX. In fact ¢ = 1 but we do not need this fact. Hence
our identity reads

/ XX (R, Y))dX = / XX )R, Y))dX o € Vi,

where both integrals are over the product

H X,7,.

n—t<a<k,2<b<n—t—1

Applying Fourier inversion formula on the group X, we get, for all
v € Vp, the equality

/Xg(X)dX = /Xg(X)dX,

where both integrals are over the product

H X, 7, .

n—t<a<k—1,2<b<n—t—1

Third step. Applying descending induction on k we arrive at

Ji

We prove now that for 2 < k <n —t — 1, if we have

Ji

then we have

Ji

By ascending induction this will establish our contention.
By (4.2), we have for all T' € T}, and all v € Vj,

Ji

XN2)dzZ = / XX(Z)dZ ,Nv € V.

2<b<n—t—1 Zy H2§b§n7t71 Zy

XN2)dZ = / X2(2)dZ , Vv € Vy,

k<b<n—t—1 Zb i<b<n—t—1 %

XN 2)dZ = / X2(2)dZ ,Nv € V.

k+1<b<n—t—1 Zy Hk+1gbgn—t—1 Zy

XN TzTYYdZ = / XX (TzT YYdZ .

k<b<n—t—1 b [i<b<n—t—1 %
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We write
L1 0 0
7 = A Lyt o 0 ,
0 0 Doty3—n
and
L1 B 0
T = 0 Lo 0
0 0 Iyg3—n

Again by abuse of notations as in previous steps, write

A= Z ga,bza,b 3

k<bt<n—t—1,n—t<a<b+n—t—2

B = Z fkfl,jtj .

n—t<j<k+n—t—2

Since b > k, the product &, {x—1,; is always 0 and so AB = 0. On the
other hand

BA = E Er—1, < g Zj,btj) :
k<b<n—t—1 n—t<j<k-+n—t—2

So BA is upper triangular with zero diagonal. The only nonzero entry
just above the diagonal is the coefficient of &,_; ; which is

k
§ : Zj,ktj = <Z 7T>>
n—t<j<ktn—t—2

where Z* is the projection of Z on the group Z;. Thus

I, .1+ BA 0 0
0 ) 0 eU,
0 0 12t+37n
and
I,_+1+ BA 0 0
wU 0 I 1o 0 = ¢(<Zk>T>) :
0 0 J LT
Using the fact that AB = 0, we find
TZT™1
I, + 1+ BA 0 0 Ly 4 0 0
= 0 In—t—? 0 A In—t—2 0 )
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and our identity reads, for all T" € T}, and all v € V4,

/ X}(Z)0((24,T))dZ = / X2(Z)((24,T))dZ
I1

k<b<n—t—1 Zb i<b<n—t—1 %

Applying Fourier inversion formula on the group Z;, we conclude that

Ji

This concludes the proof of the lemma. O

X (2)dzZ = / X2(2)dZ ,Nv € V.

k+1<b<n—t—1 Zy Hk+1gbgn—t—1 Ly
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