
ON THE LOCAL CONVERSE THEOREM FOR p-ADIC
GLn

HERVÉ JACQUET AND BAIYING LIU

Abstract. In this paper, we completely prove a standard conjec-
ture on the local converse theorem for generic representations of
GLn(F ), where F is a non-archimedean local field.

1. Introduction

Let F be a non-archimedean local field. Let Gn := GLn(F ) and let
π be an irreducible generic representation of Gn. The family of local
gamma factors γ(s, π × τ, ψ), for τ any irreducible generic representa-
tion of Gr, ψ an additive character of F and s ∈ C, can be defined
using Rankin–Selberg convolution [JPSS83] or the Langlands–Shahidi
method [S84]. The following is a standard conjecture on precisely which
family of gamma factors determine π.

Conjecture 1.1. Let π1, π2 be irreducible generic representations of
Gn. Suppose that they have the same central character. If

γ(s, π1 × τ, ψ) = γ(s, π2 × τ, ψ),

as functions of the complex variable s, for all irreducible generic rep-
resentations τ of Gr with 1 ≤ r ≤ [n

2
], then π1 ∼= π2.

The conjecture and the global version of the conjecture ([CPS99, Sec-
tion 8, Conjecture 1]) emerged from early discussions between Piatetski-
Shapiro, Shalika and the first mentioned author. In particular, they
proved Conjecture 1.1 in the case n = 3 ([JPSS79]).

The fact that the representations have the same central character
implies that if, for a given r, the above equality is true for one choice
of ψ, then it is true for all choices of ψ. Moreover, if the above equality
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is true for r = 1 and one choice of ψ, then the representations have the
same central character ([JNS15, Corollary 2.7]).

One can propose a more general family of conjectures as follows (see
[ALSX16]). We say that π1 and π2 satisfy hypothesis H0 if they have
the same central character. For m ∈ Z≥1, we say that they satisfy
hypothesis Hm if they satisfy hypothesis H0 and satisfy

γ(s, π1 × τ, ψ) = γ(s, π2 × τ, ψ)

as functions of the complex variable s, for all irreducible generic repre-
sentations τ of Gm. For r ∈ Z≥0, we say that π1, π2 satisfy hypothesis
H≤r if they satisfy hypothesis Hm, for 0 ≤ m ≤ r.

Conjecture J (n , r). If π1, π2 are irreducible generic representations
of Gn which satisfy hypothesis H≤r, then π1 ' π2.

Conjecture 1.1 is exactly Conjecture J (n, [n
2
]). Henniart proved Con-

jecture J (n, n − 1) in [H93]. Conjecture J (n, n − 2) (for n ≥ 3)
is a theorem due to Chen [Ch96, Ch06], to Cogdell and Piatetski-
Shapiro [CPS99], and to Hakim and Offen [HO15]. As we mentioned
above, Conjecture J (3, 1) is first proved by the first mentioned author,
Piatetski-Shapiro, and Shalika [JPSS79]. Conjecture J (2, 1) is first
proved by the first mentioned author and Langlands [JL70].

In [JNS15, Section 2.4], Conjecture 1.1 is shown to be equivalent to
the same conjecture with the adjective “generic” replaced by “unita-
rizable supercuspidal” as follows:

Conjecture 1.2. Let π1, π2 be irreducible unitarizable supercuspidal
representations of Gn. Suppose that they have the same central char-
acter. If

γ(s, π1 × τ, ψ) = γ(s, π2 × τ, ψ),

as functions of the complex variable s, for all irreducible supercuspidal
representations τ of Gr with 1 ≤ r ≤ [n

2
], then π1 ∼= π2.

In [JNS15], Jiang, Nien and Stevens introduced the notion of a spe-
cial pair of Whittaker functions for a pair of irreducible unitarizable
supercuspidal representations π1, π2 of Gn. They proved that if there
is such a pair, and π1, π2 satisfy hypothesis H≤[n

2
], then π1 ∼= π2. They

also found special pairs of Whittaker functions in many cases, in partic-
ular the case of depth zero representations. In [ALSX16], Adrian, the
second mentioned author, Stevens and Xu proved part of the case left
open in [JNS15]. In particular, the results in [JNS15] and [ALSX16]
together imply that Conjecture 1.2 is true for Gn, n prime. We remark
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that both [JNS15] and [ALSX16] make use of the construction of super-
cuspidal representations of Gn in [BK93] and properties of Whittaker
functions of supercuspidal representations constructed in [PS08].

In this paper we prove Conjecture 1.1, hence Conjecture 1.2. We use
analytic methods. We do not resort to the construction of special pairs
of Whittaker functions for supercuspidal representations. The idea is
inspired by the proof of Conjecture J (n, n − 2) in [Ch06]. We state
the main result of the paper as the following theorem.

Theorem 1.3. Conjecture 1.1 is true.

We were recently informed that Chai has an independent and differ-
ent proof of Conjecture 1.1 ([Ch16]).

One straightforward application of Theorem 1.3 is that it reduces
the amount of necessary GL-twisted local factors, in order to obtain
the uniqueness of local Langlands correspondence (proved by Henniart
in [H02]), and it also gives a corresponding local converse theorem for
local Langlands parameters via the local Langlands correspondence.

By the argument of [CPS99, Section 7, Theorem], one can see that
Conjecture 1.2 is a consequence of the global version of Conjecture
1.1 ([CPS99, Section 8, Conjecture 1]). Hence, Theorem 1.3 provides
evidence for the global version of Conjecture 1.1 on the global converse
theorem.

It is easy to find pairs of generic representations showing that in
Conjecture 1.1, [n

2
] is sharp for the generic dual of Gn. In [ALST16], we

showed that, in Conjecture 1.2, [n
2
] is sharp for the supercuspidal dual

of Gn, for n prime, in the tame case. It is believed that in Conjecture
1.2, [n

2
] is sharp for the supercuspidal dual of Gn, for any n, in all

cases. This is our work in progress. However, it is expected that for
certain families of supercuspidal representations, [n

2
] may not be sharp,

for example, for simple supercuspidal representations (of depth 1
n
), the

upper bound may be lowered to 1 (see [BH14, Proposition 2.2] and
[AL16, Remark 3.18] in general, and [X13] in the tame case).

Nien in [N14] proved the finite fields analogue of Conjecture 1.1, using
special properties of normalized Bessel functions. We remark that the
idea in this paper also applies to the finite field case, and could give a
new proof for the result in [N14]. Moss in [M16] proved an analogue of
Conjecture J (n, n− 1) for `-adic families of smooth representations of
GLn(F ), where F is a finite extension of Qp and ` is different from p.

The local converse problem has been studied for irreducible generic
representations of groups other than GLn: U(2, 1) and GSp(4) (Baruch,
[B95] and [B97]); SO(2n + 1) (Jiang and Soudry, [JS03]); U(1, 1) and
U(2, 2) (Zhang, [Z15a] and [Z15b]). We remark that since the local
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converse theorem for SO2n+1 in [JS03] is eventually reduced to the
local converse theorem for GL2n, following exactly the same proof given
in [JS03], Theorem 1.3 implies that twisting up to irreducible generic
representations of GLn is enough in the local converse theorem for
SO2n+1 in [JS03].

Section 2 will be preparation on properties of irreducible generic
representations of GLn(F ) and Rankin-Selberg convolution. Theorem
1.3 will be proved in Section 3. Section 4 will be the proof of Proposition
3.6.

Finally, we would like to thank J. Cogdell, D. Jiang and F. Shahidi
for their interest in the problems discussed in this paper and for their
encouragements, and S. Stevens for a helpful suggestion which makes
the paper more readable. We also would like to thank the referee for
helpful comments and suggestions.

Acknowledgements. This material is based upon work supported by
the National Science Foundation under agreement No. DMS-1128155.
Any opinions, findings and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

2. Generic representations and Rankin-Selberg
convolution

In this section, we review basic results on generic representations
and the Rankin-Selberg convolution, which will be used in the proof of
Theorem 1.3 in Section 3.

Let F be a non-archimedean local field, and let q be the cardinality
of the residue field of F . Let Gn := GLn(F ). All representations of Gn

considered in this paper are irreducible smooth and complex.

2.1. Whittaker models. Let Bn = TnUn be the standard Borel sub-
group of Gn consisting of upper triangular matrices, with unipotent
radical U := Un and diagonal group Tn. Fix a nontrivial additive char-
acter ψ of F . Define a non-degenerate character ψUn of Un also denoted
by ψU as follows:

ψUn(u) := ψ

(
n−1∑
i=1

ui,i+1

)
, u ∈ Un .

An irreducible representation (π, V ) of Gn is generic if

HomGn(V, IndGn
U ψU) 6= 0 .
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It is known that if π is generic, then the above Hom-space is of di-
mension 1. Let π be an irreducible generic representation of Gn, fix
a nonzero functional ` in the above Hom-space, then the image of V
under ` is called the Whittaker model of π, denoted by W(π, ψ). It is
known that W(π, ψ) is independent of the choice of `. For each v ∈ V ,
let Wv = `(v). Then for u ∈ U , g ∈ Gn,

Wv(ug) = ψU(u)Wv(g) ,

Wv(g) = `(v)(g) = `(π(g)v)(In) = Wπ(g)v(In) .

For W ∈ W(π, ψ), let

W̃ (g) = W (ωn
tg−1) ,

where

ω1 = 1 , ωn =

(
0 1

ωn−1 0

)
.

It is well known that W̃ ∈ W(π̃, ψ), where π̃ is the representation
contragradient to π.

Let P be the maximal parabolic subgroup of Gn with Levi subgroup
Gn−1 × G1. Let Z be the center of Gn. Given two irreducible generic
representations π1 and π2 of Gn with the same central character, to
show that π1 ∼= π2, it suffices to show that their Whittaker models
W(π1, ψ) andW(π2, ψ) have a nonzero intersection. The following two
propositions allow us to study Whittaker functions by restricting them
to P .

Proposition 2.1 ([GK75]). Let π be an irreducible generic represen-
tation of Gn with central character ωπ. Then the restriction W(π, ψ)|P
has a Jordan-Hölder series of finite length which contains the compact
induction indPZUωπψU as an irreducible subrepresentation.

The following proposition is proven in [JPSS79] for n = 3, and the
same argument works for general n. The proof can also be found in
[BZ77, Theorem 4.9].

Proposition 2.2. Let (π, V ) be an irreducible generic representation
of Gn. Then

v 7→ Wv|P
is an injective map from V to the space of smooth functions on P .

Let π1, π2 be two irreducible generic representations of Gn with the
same central character ω. Let V0 = indPZUωψU . For p ∈ P , let ρ(p) be
the operator of right translation on complex functions v on P :

ρ(p)v(x) = v(xp) .
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By Propositions 2.1 and 2.2, for any v ∈ V0 there is a unique element
W i
v in the Whittaker model of πi such that, for all p ∈ P , W i

v(p) = v(p).
Thus, we have

W 1
v (p) = W 2

v (p) , ∀p ∈ P , ∀v ∈ V0 .
Note that for p ∈ P , we have

W i
v(gp) = W i

ρ(p)v(g) , ∀g ∈ Gn , ∀v ∈ V0 .

2.2. Rankin-Selberg convolution. Let n, t ∈ Z≥1, and let π and τ
be irreducible generic representations of Gn and Gt, with Whittaker
models W(π, ψ) and W(τ, ψ), respectively. Let W ∈ W(π, ψ) and
W ′ ∈ W(τ, ψ). Assume that n > t, which is the case of interest to us
in this paper.

For any integer j with 0 ≤ j ≤ n− t− 1, let k = n− t− 1− j, define
a local zeta integral as follows:
(2.1)

Ψ(s,W,W ′; j) :=

∫ ∫
W

 g 0 0
X Ij 0
0 0 Ik+1

W ′(g)|det g|s−
n−t
2 dXdg ,

with integration being over g ∈ Ut\Gt and X ∈Mj×t(F ).
For g ∈ Gn, let ρ(g) be the operator of right translation on complex

functions f on Gn:

ρ(g)f(x) = f(xg) .

Let

ωn,t =

(
It 0
0 ωn−t

)
.

The following result is about functional equations for a pair of ir-
reducible generic representations, proved by the first named author,
Piatetski-Shapiro and Shalika in [JPSS83]. It plays an important role
in proving the main result of this paper.

Theorem 2.3 ([JPSS83], Section 2.7). With notation as above, the
followings hold.

(1) Each integral Ψ(s,W,W ′; j) is absolutely convergent for Re(s)
large and is a rational function of q−s. More precisely, for any
fixed j, the integrals Ψ(s,W,W ′; j) span a fractional ideal (in-
dependent of j) of C[qs, q−s]:

C[qs, q−s]L(s, π × τ) ,

where the local factor L(s, π × τ) has the form P (q−s)−1, with
P ∈ C[X] and P (0) = 1.
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(2) For any 0 ≤ j ≤ n − t − 1, there is a factor ε(s, π × τ, ψ),
independent of j, such that

Ψ(1− s, ρ(ωn,t)W̃ , W̃ ′; k)

L(1− s, π̃ × τ̃)
= ωτ (−1)n−1ε(s, π × τ, ψ)

Ψ(s,W,W ′; j)

L(s, π × τ)
,

where k = n− t− 1− j and ωτ is the central character of τ .

The local gamma factor attached to a pair (π, τ) is defined to be

γ(s, π × τ, ψ) = ε(s, π × τ, ψ)
L(1− s, π̃ × τ̃)

L(s, π × τ)
.

Then the functional equation in Part (ii) of Theorem 2.3 can be written
as
(2.2)

Ψ(1− s, ρ(ωn,t)W̃ , W̃ ′; k) = ωτ (−1)n−1γ(s, π × τ, ψ)Ψ(s,W,W ′; j) .

At the end of this section, we introduce the following important
lemma.

Lemma 2.4. Let π1 and π2 be two irreducible generic representations
of Gn. Let t ≤ n−2 and j with 0 ≤ j ≤ t. Suppose that W 1 and W 2 are
elements in the Whittaker models of π1 and π2 respectively. Suppose
further that for all irreducible generic representations τ of Gn−t−1 we
have

Ψ(s,W 1,W ′; j) = Ψ(s,W 2,W ′; j)

for all W ′ ∈ W(τ, ψ) and for Re(s)� 0. Then∫
W 1

In−t−1 0 0
X Ij 0
0 0 It+1−j

 dX =

∫
W 2

In−t−1 0 0
X Ij 0
0 0 It+1−j

 dX ,

where the integrals are over X ∈Mj×(n−t−1)(F ).

Proof. For j = 0, the assumption is that∫
Un−t−1\Gn−t−1

W 1

(
g 0
0 It+1

)
W ′(g)|det g|s+

t+1
2 dg

=

∫
Un−t−1\Gn−t−1

W 2

(
g 0
0 It+1

)
W ′(g)|det g|s+

t+1
2 dg ,

(2.3)

for all W ′. The conclusion is that W 1(In) = W 2(In). Indeed, recall
that given C > 0 the relations

|det g| = C , W i

(
g 0
0 It+1

)
6= 0
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imply that g is in a set compact modulo Un−t−1. Both sides of the
identity (2.3) converge for Re(s)� 0. Thus they can be interpreted as
formal Laurent series in q−s. We conclude that for any C > 0∫
|det g|=C

W 1

(
g 0
0 It+1

)
W ′(g)dg =

∫
|det g|=C

W 2

(
g 0
0 It+1

)
W ′(g)dg .

One then applies the spectral theory of the space L2(Un−t−1\G0
n−t−1)

where G0
n−t−1 = {g ∈ Gn−t−1 : |det g| = 1}. For more details, see [H93,

Section 3] and [Ch06, Section 2].
For 0 < j ≤ t, one observes that there is a compact subset Ω of

Mj×(n−t−1)(F ) such that for all g ∈ Gn−t−1 and i = 1, 2,

W i

 g 0 0
X Ij 0
0 0 It+1−j

 6= 0

implies that X ∈ Ω. Thus, for i = 1, 2, there is an element W i
0 ∈

W(πi, ψ) such that for all g ∈ Gn−t−1∫
Mj×(n−t−1)(F )

W i

 g 0 0
X Ij 0
0 0 It+1−j

 dX = W i
0

g 0 0
0 Ij 0
0 0 It+1−j

 .

We are therefore reduced to the case j = 0. �

3. Proof of Theorem 1.3

In this section, we prove Theorem 1.3. Let π1 and π2 be irreducible
generic representations of Gn with the same central character ω. We
recall from Section 2.1 that P is the maximal parabolic subgroup of Gn

with Levi subgroup Gn−1×G1, Z is the center of Gn, V0 = indPZUωψU ,
and we have

(3.1) W 1
v (p) = W 2

v (p) , ∀p ∈ P , ∀v ∈ V0 ,

(3.2) W i
v(gp) = W i

ρ(p)v(g) , ∀g ∈ Gn , ∀p ∈ P , ∀v ∈ V0 , i = 1, 2 .

We recall the decomposition of Gn into double cosets of U and P as
in [Ch06]:

Gn =
⋃̇n−1

i=0
UαiP ,

where

α =

(
0 In−1
1 0

)
.

Note that αi =

(
0 In−i
Ii 0

)
, in particular, α0 = αn = In.
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Definition 3.1. For each double coset UαiP , 0 ≤ i ≤ n− 1, we call i
the height of the double coset. We say that π1 and π2 agree at height i
if

W 1
v (g) = W 2

v (g) , ∀g ∈ UαiP , ∀v ∈ V0 .
By (3.1), π1 and π2 agree at height 0. The following lemma gives a

characterization of π1 and π2 agreeing at height i.

Lemma 3.2 ([Ch06], Lemma 3.1). π1 and π2 agree at height i if and
only if

W 1
v (αi) = W 2

v (αi) , ∀v ∈ V0 .
The following lemma is one of the main ingredients for this paper.

Lemma 3.3 ([Ch06], Proposition 3.1). Let t with 1 ≤ t ≤ n− 1. If π1
and π2 satisfy hypothesis Ht, then they agree at height t.

To proceed, we give a characterization of the matrices in the double
coset PαsU , 0 ≤ s ≤ n− 1.

Lemma 3.4. Suppose 0 ≤ s ≤ n − 1, Then g ∈ PαsU if and only if
the last row of g has the form

(0, . . . , 0, as, as+1, . . . , an) , as 6= 0 .

Proof. Recall that

αs =

(
0 In−s
Is 0

)
.

It is clear that the last row of any matrix in Pαs has the form

(0, . . . , 0, as, 0, . . . , 0) ,

where as 6= 0 occurs in the s-th column of the matrix. After multiplying
by matrices in U from the right, one can see that last row of any matrix
in PαsU has the form (0, . . . , 0, as, as+1, . . . , an), with as 6= 0. �

In fact, this lemma gives at once the decomposition in the disjoint
double cosets

Gn =
⋃̇n−1

i=0
PαiU =

⋃̇n−1

i=0
UαiP .

The next lemma is a generalization of [Ch06, Lemma 3.2].

Lemma 3.5. Let t with [n
2
] ≤ t ≤ n − 2. Suppose that for any s

with 0 ≤ s ≤ t the representations π1 and π2 agree at height s. Then
the following equality holds for all X ∈ M(n−t−1)×(2t+2−n)(F ), all g ∈
Gn−t−1, and all v ∈ V0:

W 1
v

In−t−1 0 0
0 I2t+2−n 0
0 X g

 = W 2
v

In−t−1 0 0
0 I2t+2−n 0
0 X g

 .
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Proof. First note that the hypothesis [n
2
] ≤ t ≤ n − 2 implies that

n− t− 1 ≥ 1 and 2t+ 2− n ≥ 1.

Let A =

In−t−1 0 0
0 I2t+2−n 0
0 X g

, where X ∈ M(n−t−1)×(2t+2−n)(F ),

and g ∈ Gn−t−1. Then A−1 =

In−t−1 0 0
0 I2t+2−n 0
0 −g−1X g−1

. By Lemma

3.4, A−1 ∈ PαiU , where i ≥ n− t, hence, A ∈ Uαn−iP with n− i ≤ t.
Since π1 and π2 agree at heights 0, 1, 2, . . . , t, W 1

v and W 2
v agree on A,

for any v ∈ V0.
This completes the proof of the lemma. �

The following proposition allows us to prove Theorem 1.3 inductively.

Proposition 3.6. Assume that π1 and π2 satisfy hypothesis H≤[n
2
]. Let

t with [n
2
] ≤ t ≤ n − 2. Suppose that for any s with 0 ≤ s ≤ t, the

representations π1 and π2 agree at height s. Then they agree at height
t+ 1.

Before proving the proposition, we apply it to the proof of our main
result as follows.

Proof of Theorem 1.3. Assume that π1 and π2 satisfy hypothesis
H≤[n

2
]. By Lemma 3.3, π1 and π2 agree at heights 1, 2, . . . , [n

2
]. Note

that by (3.1), π1 and π2 already agree at height 0. Applying Proposition
3.6 repeatedly for t from [n

2
] to n − 2, we obtain that π1 and π2 also

agree at heights [n
2
] + 1, . . . , n − 1. Hence, π1 and π2 agree at all the

heights 0, 1, . . . , n− 1, that is, W 1
v (g) = W 2

v (g), for all g ∈ Gn and for
all v ∈ V0. Therefore, π1 ∼= π2. This concludes the proof of Theorem
1.3. �

Therefore, we only need to prove Proposition 3.6, which will be done
in Section 4.

4. Proof of Proposition 3.6

In this section, we prove Proposition 3.6.
Proof of Proposition 3.6. By Lemma 3.5,

W 1
v

In−t−1 0 0
0 I2t+2−n 0
0 X g

 = W 2
v

In−t−1 0 0
0 I2t+2−n 0
0 X g


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holds for all X ∈ M(n−t−1)×(2t+2−n)(F ), all g ∈ Gn−t−1, and all v ∈ V0.
Fix any pair (X, g). Then,

W 1
v

ωnωn
In−t−1 0 0

0 I2t+2−n 0
0 X g

 = W 2
v

ωnωn
In−t−1 0 0

0 I2t+2−n 0
0 X g

 ,

that is,

W 1
v

ωn
g1 X1 0

0 I2t+2−n 0
0 0 In−t−1

ωn

 = W 2
v

ωn
g1 X1 0

0 I2t+2−n 0
0 0 In−t−1

ωn

 ,

where g1 = ωn−t−1gωn−t−1, X1 = ωn−t−1Xω2t+2−n.
Note that

ωn =

(
ωn−t−1 0

0 It+1

)
ωn,n−t−1α

t+1 .

Recall that

ωn,n−t−1 =

(
In−t−1 0

0 ωt+1

)
.

Hence,

W 1
v

ωn
g2 X1 0

0 I2t+2−n 0
0 0 In−t−1

ωn,n−t−1α
t+1


= W 2

v

ωn
g2 X1 0

0 I2t+2−n 0
0 0 In−t−1

ωn,n−t−1α
t+1

 ,

where g2 = ωn−t−1g, X1 = ωn−t−1Xω2t+2−n.
Let X i

v = ρ(αt+1)W i
v. Then

X1
v

ωn
g2 X1 0

0 I2t+2−n 0
0 0 In−t−1

ωn,n−t−1


= X2

v

ωn
g2 X1 0

0 I2t+2−n 0
0 0 In−t−1

ωn,n−t−1

 .
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Recall that X̃ i
v(g) = X i

v(ωn
tg−1). Then,

X̃1
v

 g3 0 0
X2 I2t+2−n 0
0 0 In−t−1

ωn,n−t−1


= X̃2

v

 g3 0 0
X2 I2t+2−n 0
0 0 In−t−1

ωn,n−t−1

 ,

where g3 = ωn−t−1
tg−1, X2 = −ω2t+2−n

tX tg−1.
Therefore,

X̃1
v

 g 0 0
X I2t+2−n 0
0 0 In−t−1

ωn,n−t−1


= X̃2

v

 g 0 0
X I2t+2−n 0
0 0 In−t−1

ωn,n−t−1

 ,

for all X ∈M(2t+2−n)×(n−t−1)(F ), all g ∈ Gn−t−1, and all v ∈ V0. Then,
by the definition of the zeta integral Ψ in (2.1), we have the following
equality:

Ψ(1− s, ρ(ωn,n−t−1)(X̃1
v ), W̃τ ; 2t+ 2− n)

= Ψ(1− s, ρ(ωn,n−t−1)(X̃2
v ), W̃τ ; 2t+ 2− n) ,

for all irreducible generic representations τ of Gn−t−1, all Whittaker
functions Wτ ∈ W(τ, ψ), and all v ∈ V0. Note that the above equality
first holds for Re(s) � 0 and is then an identity of rational functions
of q−s for all τ , all Wτ , and all v ∈ V0.

Since π1 and π2 satisfy hypothesis H≤[n
2
], and n − t − 1 ≤ [n

2
], by

functional equation in (2.2), we have that

Ψ(s,X1
v ,Wτ ;n− t− 2) = Ψ(s,X2

v ,Wτ ;n− t− 2) ,

for all irreducible generic representations τ of Gn−t−1, all Whittaker
functions Wτ ∈ W(τ, ψ), and all v ∈ V0. Hence, by Lemma 2.4,∫

M(n−t−2)×(n−t−1)(F )

X1
v

In−t−1 0 0
X In−t−2 0
0 0 I2t+3−n

 dX

=

∫
M(n−t−2)×(n−t−1)(F )

X2
v

In−t−1 0 0
X In−t−2 0
0 0 I2t+3−n

 dX ,
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for all v ∈ V0. We claim (Lemma 4.1 below) that this identity implies
in fact

X1
v (In) = X2

v (In) , ∀v ∈ V0 .
Taking this for granted at the moment we finish the proof. Indeed, we
have then

W 1
v (αt+1) = W 2

v (αt+1) , ∀v ∈ V0 .
Therefore by Lemma 3.2, π1 and π2 agree at height t+1. This concludes
the proof of Proposition 3.6. �

In the rest of this paper we establish our claim, that is, we prove the
following lemma. We remark that in the case t = n− 2, considered in
[Ch06], there is no need of the following lemma, since n − t − 2 = 0
when t = n− 2.

Lemma 4.1. Recall that X i
v = ρ(αt+1)W i

v, i = 1, 2. If∫
M(n−t−2)×(n−t−1)(F )

X1
v

In−t−1 0 0
X In−t−2 0
0 0 I2t+3−n

 dX

=

∫
M(n−t−2)×(n−t−1)(F )

X2
v

In−t−1 0 0
X In−t−2 0
0 0 I2t+3−n

 dX ,

(4.1)

for all v ∈ V0, then X1
v (In) = X2

v (In), for all v ∈ V0.

Proof. Since X i
v = ρ(αt+1)W i

v, by (3.2), equality (4.1) implies that

∫
M(n−t−2)×(n−t−1)(F )

X1
v

u
In−t−1 0 0

X In−t−2 0
0 0 I2t+3−n

 p

 dX

=

∫
M(n−t−2)×(n−t−1)(F )

X2
v

u
In−t−1 0 0

X In−t−2 0
0 0 I2t+3−n

 p

 dX ,

(4.2)

for all u ∈ U , all p ∈ αt+1P (αt+1)−1, and all v ∈ V0. Recall that

αt+1 =

(
0 In−t−1
It+1 0

)
.

Hence the (n − t − 1)-th row of any p in αt+1P (αt+1)−1 has the form
(0, . . . , 0, a, 0, . . . , 0) with a 6= 0 in the (n−t−1)-th column. Conversely,
this condition characterizes the elements of αt+1P (αt+1)−1. We will use
the relation (4.2) only for p ∈ U ∩ αt+1P (αt+1)−1.
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We denote by ξi,j the matrix whose only non-zero entry is 1 in the
i-th row and j-th column. Thus

ξi,jξj′,k = δj,j′ξi,k .

Given a root α (positive or negative) we denote by Xα the correspond-
ing root subgroup. Thus if α = ei − ej, for any a ∈ F , the element
In + aξi,j is in Xα.

Set

X =


 In−t−1 0 0

X In−t−2
0 0 I2t+3−n

 , X ∈M(n−t−2)×(n−t−1)(F )

 .

The group X is abelian and is the direct product of the groups Xea−eb
with

n− t ≤ a ≤ 2(n− t)− 3 , 1 ≤ b ≤ n− t− 1 .

For such a pair (a, b) we have either

b ≤ a− (n− t) + 1

or

a ≤ b+ n− t− 2 .

We then define subgroups of X as follows. For n− t ≤ a ≤ 2(n− t)−3,
we define the following subgroup of X:

Xa =
∏

1≤b≤a−(n−t)+1

Xea−eb .

We also define a subgroup of U as follows.

Ya =
∏

1≤b≤a−(n−t)+1

Xeb−ea+1 .

We can identify Ya with the dual of Xa as follows: if for X ∈ Xa,
Y ∈ Ya, write

X = In +
∑

1≤b≤a−(n−t)+1

ξa,bxb ,

Y = In +
∑

1≤b≤a−(n−t)+1

ξb,a+1yb ,

then set

〈X, Y 〉 =
∑

1≤b≤a−(n−t)+1

xbyb .

We remark that Ya is contained in the subgroup U ∩ αt+1Pα−(t+1).
Indeed, b cannot take the value n − t − 1, otherwise, we would have
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n− t− 1 ≤ a− (n− t) + 1 or 2(n− t)− 2 ≤ a, which contradicts the
assumption a ≤ 2(n− t)− 3.

For 2 ≤ b ≤ n− t− 1, we define

Zb =
∏

n−t≤a≤b+n−t−2

Xea−eb .

We also define a subgroup of U as follows:

Tb =
∏

n−t≤a≤b+n−t−2

Xeb−1−ea .

Again we can identify Tb with the dual of Zb as follows: if for Z ∈ Zb,
T ∈ Tb, write

Z = In +
∑

n−t≤a≤b+n−t−2

ξa,bza ,

T = In +
∑

n−t≤a≤b+n−t−2

ξb−1,ata ,

then set
〈Z, T 〉 =

∑
n−t≤a≤b+n−t−2

zaya .

Since b− 1 ≤ n− t− 2, the (n− t− 1)-th row of a matrix in Tb has
all its elements 0 except the diagonal element equal to 1. Thus Tb is
contained in U ∩ αt+1Pα−(t+1).

The group X is the product∏
n−t≤a≤2(n−t)−3

Xa

∏
2≤b≤n−t−1

Zb .

The identity (4.1) can be written as follows: for all v ∈ V0,∫
X

X1
v (X)dX =

∫
X

X2
v (X)dX .

Note that the two functions X i
v on X are smooth and compactly sup-

ported. We should keep in mind that

X i
ρ(p)v(X) = X i

v(X(αt+1pα−(t+1))) , ∀p ∈ P , ∀v ∈ V0 .
First step. We show that we have, for all v ∈ V0, the identity∫

X1
v (X)dX =

∫
X2
v (X)dX ,

where both integrals are over the product∏
n−t≤a≤2(n−t)−4

Xa

∏
2≤b≤n−t−1

Zb .
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By (4.2), for all Y ∈ Y2(n−t)−3 =
∏

1≤b≤n−t−2Xeb−e2(n−t)−2
and all

v ∈ V0, we have ∫
X1
v (XY )dX =

∫
X2
v (XY )dX ,

where both integrals are over the product∏
n−t≤a≤2(n−t)−3

Xa

∏
2≤b≤n−t−1

Zb .

We write

X =

 In−t−1 0 0
A In−t−2 0
0 0 I2t+3−n

 ,

Y =

 In−t−1 0 B
0 In−t−2 0
0 0 I2t+3−n

 .

Then

XY =

 In−t−1 0 B
0 In−t−2 AB
0 0 I2t+3−n

 In−t−1 0 0
A In−t−2 0
0 0 I2t+3−n

 .

We must evaluate

ψU

 In−t−1 0 B
0 In−t−2 AB
0 0 I2t+3−n

 .

We write 0n−t−1 0 0
A 0n−t−2 0
0 0 02t+3−n

 =
∑

n−t≤a≤2(n−t)−3 , 1≤b≤n−t−1

ξa,bxa,b .

By abuse of notations, we write this in the form

A =
∑

n−t≤a≤2(n−t)−3 , 1≤b≤n−t−1

ξa,bxa,b .

Similarly,

B =
∑

1≤j≤n−t−2

ξj,2(n−t)−2yj .

Hence

AB =
∑

n−t≤a≤2(n−t)−3

ξa,2(n−t)−2

( ∑
1≤j≤n−t−2

xa,jyj

)
,
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and

ψU

 In−t−1 0 B
0 In−t−2 AB
0 0 I2t+3−n


= ψ

( ∑
1≤j≤n−t−2

x2(n−t)−3,jyj

)
= ψ(〈X2(n−t)−3, Y 〉) ,

where X2(n−t)−3 is the projection of X on the subgroup X2(n−t)−3.
Hence we have, for all Y ∈ Y2(n−t)−3 and all v ∈ V0,∫

X1
v (X)ψ(〈X2(n−t)−3, Y 〉)dX =

∫
X2
v (X)ψ(〈X2(n−t)−3, Y 〉)dX ,

where both integrals are over the product∏
n−t≤a≤2(n−t)−3

Xa

∏
2≤b≤n−t−1

Zb .

Applying Fourier inversion formula on the group X2(n−t)−3, we obtain
our assertion.

Second step. Assume that for k with n− t ≤ k ≤ 2(n− t)− 4 and
for all v ∈ V0, we have established the identity∫

X1
v (X)dX =

∫
X2
v (X)dX ,

where both integrals are over the product∏
n−t≤a≤k , 2≤b≤n−t−1

XaZb .

We show that for all v ∈ V0, we have the identity∫
X1
v (X)dX =

∫
X2
v (X)dX ,

where both integrals are over the product∏
n−t≤a≤k−1 , 2≤b≤n−t−1

XaZb .

By (4.2), for all v ∈ V0 and all Y ∈ Yk, we have∫
X1
v (XY )dX =

∫
X2
v (XY )dX ,

where both integrals are over the product∏
n−t≤a≤k , 2≤b≤n−t−1

XaZb .
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Recall that

Xk =
∏

1≤b≤k−(n−t)+1

Xek−eb ,

Yk =
∏

1≤b≤k−(n−t)+1

Xeb−ek+1
.

Hence n − t + 1 ≤ k + 1 ≤ 2(n − t) − 3 and b ≤ n − t − 3. Thus we
may write Y as the matrix

Y =

 In−t−1 B 0
0 In−t−2 0
0 0 I2t+3−n

 .

We still write

X =

 In−t−1 0 0
A In−t−2 0
0 0 I2t+3−n

 .

Then

XY =

 In−t−1 B 0
A In−t−2 + AB 0
0 0 I2t+3−n

 .

To continue we must check that the matrix In−t−2+AB is invertible.
Now again by abuse of notations as in the First step, write

A =
∑

1≤b≤a−(n−t)+1 , n−t≤a≤k

ξa,bxa,b +
∑

2≤b≤n−t−1 , n−t≤a≤b+n−t−2

ξa,bza,b ,

and
B =

∑
1≤j≤k−(n−t)+1

ξj,k+1yj .

In the product AB, the contribution of the first sum in A is∑
n−t≤a≤k

ξa,k+1

 ∑
1≤j≤k−(n−t)+1

xa,jyj

 .

The contribution to AB of the second sum in A is itself a sum of terms
of the form

ξa,k+1za,jyj ,

with
n− t ≤ a ≤ j + n− t− 2, 2 ≤ j ≤ k − (n− t) + 1 ,

inequalities which imply that a ≤ k − 1. We conclude that

AB =
∑

n−t≤a≤k

ξa,k+1ma ,
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where

mk =
∑

1≤j≤k−(n−t)+1

xk,jyj = 〈Xk, Y 〉 ,

and Xk is the projection of X on the group Xk. Thus In−t−2 + AB is
invertible and in fact, since AB has only one non-zero column,

(In−t−2 + AB)−1 = In−t−2 − AB .

We introduce the matrix

Ã = (In−t−2 + AB)−1A = (In−t−2 − AB)A .

We compute ABA. The first sum in A does not contribute to the
product of AB by A. The second sum contributes

ξa,bzk+1,bma ,

where the sum is for

n− t ≤ a ≤ k, 2 ≤ b ≤ n− t− 1, n− t ≤ k + 1 ≤ b+ n− t− 2 .

Recall that n− t ≤ k. So, the range of b is

k − (n− t) + 3 ≤ b ≤ n− t− 1 .

Thus

ABA =
∑

n−t≤a≤k , k−(n−t)+3≤b≤n−t−1

ξa,bzk+1,bma .

The pairs (a, b) which appear satisfy the inequalities

2 ≤ b ≤ n− t− 1 , n− t ≤ a ≤ b+ n− t− 2 .

We conclude that

Ã

= A− ABA

=
∑

1≤b≤a−(n−t)+1 , n−t≤a≤k

ξa,bxa,b +
∑

2≤b≤n−t−1 , n−t≤a≤b+n−t−2

ξa,bz
′
a,b .

In words, Ã has the same shape as A and the same xa,b coordinates.
Hence the matrix

X̃ =

 In−t−1 0 0

Ã In−t−2 0
0 0 I2t+3−n


is in the same group as the matrix X. Also

ÃB =
∑

n−t≤a≤k

ξa,k+1m̃a ,
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and
X̃k = Xk, m̃k = 〈X̃k, Y 〉 = 〈Xk, Y 〉 .

On the other hand the matrix BA is the sum of

ξb,b′zk+1,b′yb

with

1 ≤ b ≤ k − (n− t) + 1 , k − (n− t) + 3 ≤ b′ ≤ n− t− 1 .

The inequalities imply

b+ (n− t) ≤ k + 1 ≤ b′ + n− t− 2

or
b ≤ b′ − 2 .

Thus BA is an upper triangular matrix with 0 entries in the diagonal
and just above the diagonal. In particular, In−t−1 − BA is invertible.

The same remarks apply to the matrix BÃ and In−t−1 − BÃ.
Thus we can continue our computation

XY

=

 In−t−1 − BÃ B 0
0 In−t−2 + AB 0
0 0 I2t+3−n

 In−t−1 0 0

Ã In−t−2 0
0 0 I2t+3−n

 ,

and we have

ψU

 In−t−1 − BÃ B 0
0 In−t−2 + AB 0
0 0 I2t+3−n


= ψUn−t−2(In−t−2 + AB)

= ψ(〈Xk, Y 〉)

= ψ(〈X̃k, Y 〉) .
Hence our identity reads∫

X1
v (X̃)ψ(〈X̃k, Y 〉)dX =

∫
X2
v (X̃)ψ(〈X̃k, Y 〉)dX , ∀v ∈ V0 ,

where both integrals are over the product∏
n−t≤a≤k , 2≤b≤n−t−1

XaZb .

We want to use X̃ as the variable of integration. Because AB and
BA are nilpotent we have

dX̃ = |p(X)|dX
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and

dX = |p̃(X̃)|dX̃
where p and p̃ are polynomials in the entries of X and X̃ respectively.
Then

|p̃(X̃)p(X)| = 1 .

Since X̃ is a polynomial function of X we see that p is a constant c > 0

and so dX̃ = cdX. In fact c = 1 but we do not need this fact. Hence
our identity reads∫

X1
v (X̃)ψ(〈X̃k, Y 〉)dX̃ =

∫
X2
v (X̃)ψ(〈X̃k, Y 〉)dX̃ , ∀v ∈ V0 ,

where both integrals are over the product∏
n−t≤a≤k , 2≤b≤n−t−1

XaZb .

Applying Fourier inversion formula on the group Xk, we get, for all
v ∈ V0, the equality ∫

X1
v (X)dX =

∫
X2
v (X)dX ,

where both integrals are over the product∏
n−t≤a≤k−1 , 2≤b≤n−t−1

XaZb .

Third step. Applying descending induction on k we arrive at∫
∏

2≤b≤n−t−1 Zb

X1
v (Z)dZ =

∫
∏

2≤b≤n−t−1 Zb

X2
v (Z)dZ , ∀v ∈ V0 .

We prove now that for 2 ≤ k ≤ n− t− 1, if we have∫
∏

k≤b≤n−t−1 Zb

X1
v (Z)dZ =

∫
∏

k≤b≤n−t−1 Zb

X2
v (Z)dZ , ∀v ∈ V0 ,

then we have∫
∏

k+1≤b≤n−t−1 Zb

X1
v (Z)dZ =

∫
∏

k+1≤b≤n−t−1 Zb

X2
v (Z)dZ , ∀v ∈ V0 .

By ascending induction this will establish our contention.
By (4.2), we have for all T ∈ Tk and all v ∈ V0,∫

∏
k≤b≤n−t−1 Zb

X1
v (TZT−1)dZ =

∫
∏

k≤b≤n−t−1 Zb

X2
v (TZT−1)dZ .



22 HERVÉ JACQUET AND BAIYING LIU

We write

Z =

 In−t−1 0 0
A In−t−2 0
0 0 I2t+3−n

 ,

and

T =

 In−t−1 B 0
0 In−t−2 0
0 0 I2t+3−n

 .

Again by abuse of notations as in previous steps, write

A =
∑

k≤b≤n−t−1 , n−t≤a≤b+n−t−2

ξa,bza,b ,

B =
∑

n−t≤j≤k+n−t−2

ξk−1,jtj .

Since b ≥ k, the product ξa,bξk−1,j is always 0 and so AB = 0. On the
other hand

BA =
∑

k≤b≤n−t−1

ξk−1,b

( ∑
n−t≤j≤k+n−t−2

zj,btj

)
.

So BA is upper triangular with zero diagonal. The only nonzero entry
just above the diagonal is the coefficient of ξk−1,k which is∑

n−t≤j≤k+n−t−2

zj,ktj = 〈Zk, T 〉 ,

where Zk is the projection of Z on the group Zk. Thus In−t−1 +BA 0 0
0 In−t−2 0
0 0 I2t+3−n

 ∈ U ,
and

ψU

 In−t−1 +BA 0 0
0 In−t−2 0
0 0 I2t+3−n

 = ψ(〈Zk, T 〉) .

Using the fact that AB = 0, we find

TZT−1

=

 In−t−1 +BA 0 0
0 In−t−2 0
0 0 I2t+3−n

 In−t−1 0 0
A In−t−2 0
0 0 I2t+3−n

 ,
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and our identity reads, for all T ∈ Tk and all v ∈ V0,∫
∏

k≤b≤n−t−1 Zb

X1
v (Z)ψ(〈Zk, T 〉)dZ =

∫
∏

k≤b≤n−t−1 Zb

X2
v (Z)ψ(〈Zk, T 〉)dZ .

Applying Fourier inversion formula on the group Zk, we conclude that∫
∏

k+1≤b≤n−t−1 Zb

X1
v (Z)dZ =

∫
∏

k+1≤b≤n−t−1 Zb

X2
v (Z)dZ , ∀v ∈ V0 .

This concludes the proof of the lemma. �
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