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Abstract—Can the MUSIC algorithm be used for period
estimation? Prior works in this direction were based on modifying
the search over the conventional complex-exponentials based
pseudospectrum to look for harmonically spaced peaks. For
applications where the period of the discrete signal can be well
approximated by integers, this paper proposes much simpler
integer valued basis functions. It is shown that this new re-
formulation of MUSIC not only makes the pseudo-spectrum
computation much simpler, but also offers significantly higher
accuracy than the conventional techniques, especially for mixtures
of periodic signals1.
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I. INTRODUCTION

One of the most well-known family of algorithms for
recovering complex-exponentials in noise is the MUltiple SIg-
nal Classification (MUSIC) algorithm [12] and its extensions.
They have widespread applications in many fields, such as
in DOA estimation [20], time delay estimation [10], speech
processing [5] and so on. Broadly speaking, MUSIC involves
two steps: First, a signal’s autocorrelation matrix is eigen-
decomposed to estimate the noise subspace. The signal fre-
quencies are then estimated by identifying the frequencies
(Vandermonde vectors) that are orthogonal to the noise sub-
space.

Closely related to estimating complex-exponentials, is the
problem of period estimation. Formally, a discrete time signal
x(n) is said to be periodic if there exists an integer P such
that:

x(n+ P ) = x(n) n Z (1)

Here, P is known as a repetition index, and the smallest
positive repetition index is known as the period. Using Fourier
series, such a signal can be decomposed as:

x(n) =
P−1

k=0

cke
j 2 k

P n (2)

So in principle, we may use MUSIC to estimate the fundamen-
tal frequency 2 /P , from which we can estimate the period.
But is this a good strategy?

There are two distinct contexts in which this question can
be answered. In conventional applications such as speech,
cardiology, EEG analysis etc., a continuous time periodic
signal is sampled. For such applications, assuming the period
of the sampled signal to be an integer may not be exactly

1This work was supported in parts by the ONR grants N00014-15-1-2118
and N00014-17-1-2732, the NSF grant CCF-1712633, and the California
Institute of Technology.

Fig. 1: Applications with Integer Periodicity: The protein AnkyrinR
(PDB 1n11) that enables red blood cells to resist shear forces. Its
period 33 structural repeats can be clearly identified in the plot on
the right, produced by the proposed techniques.

true, but the approximation gets better as the sampling rate
increases. However, such signals can still be modeled as a
sum of harmonically spaced sinusoids as:

x(n) =

K−1

k=0

cke
jk 0n (3)

where 2 / 0 (possibly not an integer) is usually considered as
the ‘period’. Now, MUSIC itself does not take into account this
harmonic structure between the sinusoids. But in a series of
publications by Christensen, et al., [3], [4], [5] the search over
the conventional MUSIC pseudospectrum was modified to look
for harmonically spaced peaks, with the resulting algorithms
offering very accurate estimates of the pitch period.

However, there is a second context of applications, where
the period is naturally an integer. For example, repeating
segments in DNA, known as micro-satellites, are used as the
primary bio-markers in forensics and kinship analysis [2], [14].
Similarly, periodic three dimensional structures in proteins
can be traced back to repeats in the underlying amino acid
sequence (Fig. 1). Such repeats in proteins play important roles
in a number of diverse contexts, such as in enzyme functioning,
intracellular transport, behavioral disorders etc. [1], [7]. For
such applications, this paper shows that one can design much
more accurate, as well as computationally efficient eigen-space
techniques than MUSIC and its prior adaptations.

The MUSIC algorithm and its variants are based on
a complex-exponentials based representation for the signal.
Consequently, a significant amount of computation is spent
on evaluating the MUSIC psuedo-spectrum on a fine grid of
uniformly spaced frequencies between 0 and 2 (e.g. [4]).
We will show that this approach is not necessarily the best
for signals satisfying (1). One in fact needs a non-uniform
grid as shown in Fig. 3 later. Further, while prior MUSIC
based techniques interpret the period of a complex-exponential
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P n as P/k, its correct integer period according to (1) is

in fact P/gcd(P, k). This small change results in a significant
improvement in the estimation accuracy. We also show that
the psuedo-spectrum can in fact be evaluated on much simpler
integer valued basis vectors than complex-exponentials. This
is done using the recently proposed Nested Periodic Subspaces
(NPSs) [15], [16] (which were originally inspired by the
Ramanujan-subspaces of [17]). The NPSs offer simple integer
valued basis vectors to span sequences with integer periods. In
fact, some of the NPSs have sparse basis vectors consisting of
1’s and mostly 0’s (Fig. 2). The resulting algorithms are much
more accurate, and at the same time, require significantly less
computations compared to prior adaptations of MUSIC.

Outline of the paper: Sec. II gives a short summary of
MUSIC and its prior adaptations to harmonic spectra. Sec.
III presents our new algorithms, and Sec. IV discusses their
performance using several simulation experiments.

II. A SUMMARY OF PRIOR WORKS

Let us start with a brief overview of MUSIC [12] in the
context of time domain signals. Let x(n) be as follows:

x(n) =

K−1

k=0

cke
j kn + e(n) (4)

where e(n) is a zero mean WSS noise term with
E[e (r)e(k)] = 2 (r− k). The coefficients ck’s are typically
modeled as having deterministic amplitudes (i.e., |ck|), but
with their phases as independent random variables, uniformly
distributed over [− , ) [4], [5]. We can rewrite (4) as:

x = Ac+ e (5)

where x and e are N × 1 vectors consisting of any N > K
consecutive samples of x(n) and e(n) respectively. A is an
N × K matrix whose columns are the complex-exponentials
in (4), and c consists of the corresponding coefficients. The
autocorrelation matrix of x is then given by:

Rxx = ACA† + 2I (6)

where (†) denotes transpose conjugation, and C = E[cc†] is
a diagonal matrix with |ck|2 being the kth diagonal entry.

In practice, Rxx is usually estimated in the following way
[5]. Given x(n) over a long enough duration, say L samples,
we can extract successive overlapping length-N subsegments
from it, say {x(i)}L−N+1

i=1 , and compute2:

Rxx
1

L−N + 1

L−N+1

i=1

x(i)x
†
(i) (7)

Let 1 2 . . . N be the eigenvalues of Rxx.
Since Rank(ACA†) = K, it can be shown that K+1 =
K+2 = . . . = N = 2. These are commonly referred to

as the noise eigenvalues, and their corresponding eigenvectors
Ue = [uK+1, uK+2, . . . ,uN ] as the noise eigenvectors.
Using (6), it is easy to see that

ACA†Ue = 0 (8)

2Strictly speaking, since x(i)’s in (7) are extracts from the same signal
x(n), the statistical independence of the phases of ck’s is not really true.
However, most of the prior literature ignores this subtle detail. Fortunately,
even when ck’s are completely deterministic, it can be shown that the sample
autocorrelation matrix constructed in (7) can be decomposed as (6) with a
diagonal C (with diagonal elements |ck|2), when L N .

Fig. 2: Simple Integer Alternatives to Complex-Exponentials: Bases
of (a) The Natural Basis Subspaces, and (b) The Ramanujan Sub-
spaces.

But since AC has full column rank, this is equivalent to:

A†Ue = 0 (9)

That is, the complex-exponentials in (4) turn out to be orthog-
onal to the noise eigenspace. So given the noise eigenvectors,
one can use the following criterion to find the frequencies in
the signal:

min
(− , ]

a†( )Ue
2
2 (10)

where a( ) = [1, ej , e2j , . . . , e(N−1)j ]T . It can be
proved that as long as N > K the only complex-exponentials
that are orthogonal to the noise eigenspace are those in (4)
[12], [13].

Now, if a signal has the harmonic structure in (3), [4]
proposes to modify the search over all frequencies in (10) in
the following way:

min
(− , ]

min
K

B†( )Ue
2
F

KN(N −K)
(11)

where B( ) = [a(0),a( ), a(2 ), . . . , a((K − 1) )]. The
factor of KN(N −K) is a normalization term. The resulting
algorithm was called the Harmonic MUSIC (HMUSIC) algo-
rithm [4]. The HMUSIC algorithm was further generalized to
the case of mixtures of periodic signals in [3] in the following
way:

min
{Kl}M−1

l=0

min
{ l}M−1

l=0

M−1

l=0

B†( l)Ue
2
F

KN(N −K)
(12)

where M is the number of component periods in the mixture,
and K is the total signal space dimension.

Although these algorithms were shown to offer good esti-
mation performance in the context of pitch estimation [4], [3],
for signals that can be approximated well by the integer period
model of (1) (such as DNA and Protein repeats), we can have
much simpler techniques, with a significantly higher accuracy
as well. We shall present such new techniques next.

III. THE PROPOSED TECHNIQUES

Our proposed alternatives to conventional MUSIC and
its variations are based on the recently developed Nested
Periodic Subspaces (NPSs) [15], [16]. NPSs are essentially



a set of subspaces that can span all integer periodic sequences
satisfying (1). For instance, consider the two examples of NPSs
shown in Fig. 2. These are the bases for the Natural Basis
and the Ramanujan Subspaces [18]. For every integer P , the
period-P subspace has dimension (P ), which is equal to the
number of positive integers smaller than and co-prime to P
(the Euler totient function).

To span signals of period-P , all subspaces that have
divisors of P as periods are used. For example, to span period
4 signals, we must use the subspaces with periods 1, 2 and 4
in Fig. 2. Gauss’ well known result d|P (d) = P ensures
that the dimensions of these subspaces do add up to P . Stating
this formally, it was shown in [16] that when using NPSs, the
LCM of the periods of the subspaces involved in spanning a
signal must be exactly equal to the period of the signal3. For
e.g., if the subspaces with periods 1, 2, 3 and 6 are involved
in spanning a signal, its period must be LCM(1, 2, 3, 6) = 6.

This idea easily extends to the case of mixtures of periodic
signals. For example, if the input is a mixture of period 4
and period 6 signals, then the subspaces with periods 1, 2,
3, 4 and 6 are involved in spanning it. Since these numbers
are essentially divisors of 4 and 6, we can conclude that the
input signal is a mixture of periods 4 and 6. Dictionaries based
on NPSs were shown to offer several new advantages over
traditional period estimation techniques in [15].

Taking inspiration from MUSIC, we can formulate an
eigenspace approach using NPSs in a similar fashion. For
example, if x(n) is a noisy version of a signal satisfying (1),
it can be expressed in matrix notation as:

x = Ac+ e (13)

This equation is similar to (5), but now A is an N×K matrix
whose columns are the basis functions of the corresponding
NPSs, (for example, those shown in Fig. 2). Here K is the total
number of NPS basis vectors needed to span the signal. The
resulting auto-correlation matrix can again be decomposed as
(6), and the eigenvalues of Rxx can be arranged as 1 2

. . . N , with K+1 = K+2 = . . . = N = 2. The corre-
sponding noise eigenvectors Ue = [uK+1, uK+2, . . . ,uN ]
will satisfy:

ACA†Ue = 0 (14)

If we assume that the coefficients of the signal along the NPS
basis vectors are statistically independent, then C = E[cc†]
turns out to be full rank4. From the linear independence
property of NPSs [16], it can be shown that, as long asN K,
A has full column rank. So (14) can be rewritten as:

A†Ue = 0 (15)

This implies that, the basis vectors of the NPSs involved
in spanning the signal will be orthogonal to the noise eigen-
space. For instance, if we know a priori that the component
periods in x(n) lie in a range 1 to Pmax, we can check the
orthogonality of Ue with the corresponding NPS basis vectors
one-by-one. In the simulations of Sec. IV, for every integer P ,
we compute:

1

(P )

(P )

m=1

1

Ue
†a(m)

P
2
2

(16)

3For arbitrary union-of-subspaces representations of periodic signals, this
property does not hold. See [16].

4The full rank of C was verified to be true with probability one in the
Monte-Carlo simulations of Sec. IV.

Fig. 3: The Non-Uniform Farey Grid: The true frequencies needed
to span periods in the range 1 P 8. See Sec. III-A for details.

where {a(m)
P } (P )

m=1 are the P th NPS’s basis vectors, and the
additional (P ) term in the denominatior is a normalizing
factor. A plot of (16), with the integer P as the x-axis is
the discrete pseudospectrum plot based on Nested Periodic
Subspaces.

Remark: A crucial step in the above formulation was the
full column rank of A. While there can be several union-
of-subspaces models for periodic signals, the choice of NPSs
is important, since they are unique in offering this linear
independence property. We refer the reader to [16] for more
details on this.

Just like in the case of MUSIC, one can derive precise
bounds on how large N must be such that, the only NPS basis
vectors that are orthogonal to Ue will be the ones actually
involved in spanning the signal. For example, it can be shown
that in the case of a single periodic signal, if the period of
x(n) is known a priori to lie in the range 1 to Pmax, then
it is sufficient for N to be 2Pmax − 2. Similar bounds
can be derived for mixtures of periodic signals. Deriving these
results needs a much broader discussion, so their development
is omitted here. They will be presented elsewhere.

A. Comparison with Conventional MUSIC

While the above formulation was inspired by, and follows
closely, the steps in the MUSIC framework, there are some
important differences:

Integer Basis Vectors: A key feature of the new techniques is
that we can evaluate the psuedospectrum in (16) using a finite
number of simple integer vectors as shown in Fig. 2, instead of
complex exponentials with a continuous parameter . One can
even have NPSs with randomly chosen integer basis functions
(Fig. 4(f)).

Non-Uniform Frequency Grid: The Ramanujan subspaces
(Fig. 2(b)) can alternatively be spanned by a basis of complex-
exponentials. For instance, the P th Ramanujan subspace can
be spanned by: {ej 2 k

P (n) : gcd(k, P ) = 1}. So in (16), we can
either use the integer valued basis vectors shown in Fig. 2(b),
or these complex-exponentials.

If we choose to use the complex-exponential basis, our
method still differs from conventional MUSIC and its variants
in important ways. Firstly, in prior works, the period of ej

2 k
P n

was interpreted as P/k. However, the strict integer definition of
period in (1) results in P/gcd(P, k). In this work, we follow
the latter interpretation, and one can see that the complex-
exponentials spanning the P th Ramanujan subspace do have
period P . Further, these complex-exponentials lie on a non-
uniform grid known as the Farey grid [19], as shown in Fig. 3.
We evaluate (15) on this Farey grid, unlike the uniform grids
in [4], [3].

These differences result in a significantly higher accuracy
over prior MUSIC based techniques. We shall demonstrate this
using a number of examples in the next section.



Fig. 4: Demonstrating the proposed techniques on a computer-generated signal. (a) The noisy periodic signal, (b) conventional MUSIC,
(c)-(f) The new NPS-MUSIC methods. (d)-(f) are based on integer valued NPS basis vectors. See Sec. IV for details.

Fig. 5: Probability of Estimating both the component periods exactly.
See Sec. IV for details.

IV. SIMULATION RESULTS

We will start with a simple demonstration. Fig. 4(a) shows
a sum of randomly generated signals with periods 3, 10 and
13 and SNR 5dB. The signal length (L in (7)) was 400. The
length of the subsegments x(i)’s in (7) was N = 101. K,
the dimension of the signal subspace in (5) and (13), turns
out to be 24 for this choice of periods. In practice, the true
value of K is unknown a priori, and we estimate it using a
simple metric: all eigenvalues of Rxx smaller than 5% of the
maximum eigenvalue were considered as noise eigenvalues.
Fig. 4(b) shows the conventional MUSIC pseudospectrum. The
peaks correspond to periods 12.79, 9.85, 6.56, 5.02, 4.34,
3.32, 3.24, 3.01, 2.59, 2.51 and 2.17. Notice that it is quite
inconvenient to spot the true periods 3, 10 and 13 from this
set. Fig. 4(c) to (f) show the pseudospectra computed using
(16) with various NPSs. All these plots have clean peaks at
periods 2, 3, 5, 10 and 13. Using the LCM property of NPSs,
these correspond to periods 3, 10 and 13.

Fig. 5 compares the accuracy of various techniques. For
each SNR, 400 Monte Carlo trials, each with a signal of length
L = 100, containing periods 3 and 10, were used. N was
chosen as 41 in (7). K turns out to be 12 in this case. Since
the period can only take discrete values in our periodicity
model in (1), Cramer-Rao bounds cannot be defined unlike
in [4], where the fundamental frequency can take continuous
values. Since our problem is closer to a detection framework,

Fig. 6: A comparison of the CPU Times. See Sec. IV for details.

in Fig. 5, instead of plotting Mean Squared Error5, we have
used a much stricter metric: the fraction of times the detected
periods were exactly equal to the set {3, 10}. Proposed method
(A) uses (16) with the Ramanujan subspaces (Farey basis),
with the true K given as an input. Proposed method (B) is the
same, but with K being estimated using the simple 5% criteria
as above. For a strong comparison, HMUSIC was given the
actual number of periodic signals in the mixture (M in (12))
as an input, and its estimates were rounded to the nearest
integers. But it still does not perform well compared to the
proposed methods. The MUSIC algorithm, with its estimates
rounded to the nearest integers, and after discarding peaks
which are harmonics of a fundamental, performs worse than
HMUSIC. This is because it does not take into account the
harmonic structure in the signal. Both the l1 and l2 norm based
dictionary techniques of [15], constructed using Ramanujan
subspaces, are also compared. Although the l1 norm based
dictionaries perform quite well, they come at a tremendously
high computational complexity (discussed below). In addition,
we have also compared the Expectation Maximization and the
Harmonic Matching Pursuit techniques described in [5]. Both
these methods, while performing better than HMUSIC and
MUSIC, are far from satisfactory.

Fig. 6 compares the average CPU times using MATLAB

5MSE is not an appropriate metric to use in many applications. For example,
in Fig. 1, proteins with Ankyrin repeats are known to have periods in the range
30 - 40. So it might be alright to estimate 66 as the period, instead of say 40,
since we can readily deduce that 66 might actually indicate period 33 repeats.



Fig. 7: Pseudospectra of the proposed NPS based techniques for the Ankyrin protein repeats shown in Fig. 1. See Sec. IV for details.

2014b on a 2.4GHz CPU with 8GB RAM, for the various
eigenspace approaches, for different sizes of the autocorrela-
tion matrix (N in (7)). The total datalength of the signal, L
was chosen as 3N , and the dimension of the signal subspace
K was fixed at 25 for simplicity. MUSIC and HMUSIC were
implemented with a uniform frequency grid of the same size
as the Farey grid. Notice that, our Natural Basis (NB) MUSIC
is the fastest. Farey-MUSIC and MUSIC are similar to each
other in terms of CPU time due to identical grid sizes. In Fig. 6,
HMUSIC( T ) uses (12), with the prior knowledge that the
number of fundamental frequencies M T . The complexity
of HMUSIC( T ) increases exponentially with T . This is
because, according to the theory of partitions [6], the number
of ways in which Kl’s in (12) can be chosen to add up to the
signal space dimension K increases exponentially with M . In
contrast, since we check the NPS basis vectors one-by-one
in (16), the complexity of our proposed techniques does not
depend on T . The NPS based l1 norm dictionary techniques,
which showed a good performance in Fig. 5, are much more
complex than the eigenspace methods. For example, for a
datalength of 250, the average CPU time required by the
Ramanujan dictionary was around 51s (implemented using
CVX (http://cvxr.com/cvx/)). In contrast, the proposed Farey-
MUSIC technique takes 0.1s for an autocorrelation matrix
of size 250 × 250, constructed using L = 750 samples.
These increase to 150s and 0.35s respectively for N = 450.
From Fig. 6 and 5, it is evident that our methods offer much
better accuracy than the prior variants of MUSIC, keeping the
complexity low at the same time.

Lastly, in Fig. 7, we show the results of applying the
proposed methods using Ramanujan (integer basis), Natural
Basis and Random Integer NPSs to the AnkyrinR protein
repeats shown in Fig. 1 (The Farey basis can also be used;
it was shown earlier in Fig. 1). The Kyte-Doolittle scale [8]
was used to map amino acids to numbers. All four plots have
clear peaks at 33 and its divisors. Notice that the Ramanujan
(integer basis) plot in Fig. 7(c) has a weak peak at 33. However,
the LCM of the peaks at 11 and 3 indicate the presence of the
period 33 repeats.

V. CONCLUSION

A new family of MUSIC-like period estimation techniques
have been derived, based on the Nested Periodic Subspaces of
[15]. These offer significantly better accuracy and computa-
tional simplicity than existing techniques for integer periods.
The model in (1) is especially relevant to applications such as
repeats in proteins and DNA sequences. Many proteins have
concurrent repeats at various scales in the 3D structure, and
these usually manifest as mixtures of periods when using the
subspace techniques. An initial analysis of our techniques on
such repeats reveals promising results, an example of which is
shown in Fig. 7. A more extensive study in this direction will
follow in our future efforts.
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