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The nonrelativistic hydrogen atom in D = 3 — 2¢ dimensions is the reference system for perturbative
schemes used in dimensionally regularized nonrelativistic effective field theories to describe hydrogen-
like atoms. Solutions to the D-dimensional Schrédinger-Coulomb equation are given in the form
of a double power series. Energies and normalization integrals are obtained numerically and also
perturbatively in terms of €. The utility of the series expansion is demonstrated by the calculation of
the divergent expectation value ((V /)2).
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1. Introduction

For over a century the hydrogen atom has been a touchstone of
fundamental physics. From the earliest days of quantum physics,
the challenge to understand the structure and behavior of hy-
drogen has been a driver of new developments and has stimu-
lated the craft of countless innovators in the field. [1,2] One can
mention the Bohr Model, Sommerfeld’s relativistic hydrogen atom,
wave and matrix mechanics at the birth of quantum mechanics,
the development of QED to explain the Lamb Shift and the elec-
tron’s anomalous moment as observed in hydrogen, detection of
the hydrogen Bose-Einstein condensate, current experiments on
antihydrogen, and its role in the “proton size puzzle” as develop-
ments in which hydrogen has played a central role. Hydrogen is
also a model for a number of “exotic atoms” including positronium,
muonium, muonic hydrogen, hydrogen-like ions, charmonium, and
bottomonium. Deep understanding of hydrogen and hydrogen-like
systems has been and continues to be crucially important.

Much of the modern work on hydrogen and its exotic siblings is
based on the effective quantum field theories NRQED and NRQCD
(non-relativistic quantum electro- and chromo-dynamics) [3-6]
and pNRQED/QCD (potential NRQED/QCD) [7,5,8]. These theories
build up the dynamics of both electro- or chromo-interactions as
well as relativity as perturbations on a non-relativistic base. Most
recent work using the effective field theories uses dimensional
regularization to control both ultraviolet and infrared divergences.
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Consequently, the notion of a non-relativistic hydrogen-like system
in D = 3 — 2¢ dimensions often plays a role as the lowest order of
a perturbative development. A typical calculation might involve the
energy E and the value of the wave function at contact v (r = 0)
of this D-dimensional system [7,9,10]. Usually, all divergences are
arranged to cancel before values of the energy levels or wave func-
tion are actually needed, in which case the D — 3 limit can be
taken first, and traditional results for E and v (r = 0) employed.
More generally, for higher-order calculations it is crucial to have as
much flexibility in calculational approach as possible, and the re-
striction to schemes where all divergences must cancel first before
making use of explicit forms for the wave functions is too limit-
ing. A detailed understanding of the system that is being used as
a basis for perturbation theory is required.

In this work we describe the solution to the D-dimensional
Schrédinger-Coulomb equation for non-integral D near D = 3.
Separation of variables is used to write the solution as a radial
function times an angular function describing the orbital angular
momentum. The radial solution can be expressed as a power series
of a novel type. With the help of this series solution to handle the
small-distance regime, the radial equation can be solved numeri-
cally using standard techniques. We also work out the perturbative
expansions for the energy and wave function at contact in terms
of the small parameter € = (3— D)/2. For energies, results through
0(62) are obtained with estimates for the O (e 3) terms, while for
the wave functions at contact results through O(e€) are obtained
with estimates for the O (e 2) terms.

Much of the earlier work on hydrogen in D dimensions made
use of a strict 1/r potential instead of the physical 1/r D=2 poten-
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tial implied by Gauss’ Law, or was restricted to an integral number
of dimensions. Quantum mechanics with the physical potential in
non-integral dimension has been studied by Andrew and Supplee
[11], Morales [12], and is reviewed in [13]with additional refer-
ences.

2. Solution of the D-dimensional Schrédinger equation
The D-dimensional Schrodinger-Coulomb equation is
1 -5~ . N P - -
—5 VAE + V) =By (), (1)

where we use the bar to signify D-dimensional quantities, with no
bar for 3-dimensional ones. The potential energy

r({d/2-1)a*Za

V(T):—W (2)

arises as the D-dimensional Fourier transform of the momentum-
space Coulomb interaction term —47 Zo j1%¢€/p2. It follows that (1)
is the lowest approximation for the study of hydrogen-like atoms
in NRQED/QCD or pNRQED/QCD (where h =1, « is the fine struc-
ture constant, and Z is the nuclear charge in units of the elec-
tron charge magnitude). The potential V (r) can also be deduced
from the requirement that the electric field derived from it sat-
isfy Gauss’s law in D dimensions, or equivalently that the potential
satisfy the D-dimensional Poisson equation with a point charge
source. The mass scale p has been introduced to ensure that
Zo remains dimensionless in D dimensions, and ji (with ji% =
w2e¥e /[4m]) is the corresponding MS (modified minimal subtrac-
tion) scale. It is convenient to separate variables in the Schrédinger
equation using spherical coordinates. The D-dimensional Laplacian
can be written as

D-1 L?

9 — —
r 2

V2=02+ (3)

r
where 1= (}; x,~2)]/2 is the usual radius and L?= }3"; ; Lizj with
Lij = —i(x;0; — X; ;) is the angular momentum squared. We sepa-
rate variables in the wave function according to ¥ (X) = R(Y (%)
where X =x/r. The angular functions Y(X) are eigenstates of L?
[14-16]:

L2Y,®) =€ + D —2)Y (%), (4)

where the allowed quantum numbers ¢ are 0, 1, 2, ---, just as
in an integral numbers of dimensions. The D-dimensional angular
functions have (2¢+ D —2)(¢ + D —3)!/ (£![D —2]') independent
components. An explicit representation is given by the symmetric
traceless harmonic polynomials. For example, the lowest few are
Yo®) = Ao, Y1i(X) = A, Yz,'j(?() = A2 ()2,‘)?]' — Sij/D), containing 1,
D, and (D — 1)(D + 2)/2 independent components, where the A ,
are appropriate normalization factors.
The radial equation is the object of our main concern. It is

1 D-1, £(t+D—-2)]-
—{—82 o+ LCHD )}Rne(r)
2m r r

-

+V () Rp¢ (1) = EngRpe (r). (5)

We follow the usual steps of first working out the leading short
and long distance behavior of Rne. The r — 0 limit of (5) shows
that Rne(r) — r for small r. We also find Rpe(r) — e~ 7" for large
r where f:'nz = —)7n2£/(2m). We define a new function L n¢(p) ac-
cording to

+0! \'"? plerr2
(n+20 ) pe ©6)

5 7 1/2
Rpe(r) = ¢n€QD71 (n(n—ﬁ —) i+ 1)!Lni(p)

where p = 2y,r is dimensionless and Qn = Zﬂ#/r(ﬁzﬂ) is

the surface area of a unit N-sphere. We normalize L n¢(r) so that

Lne(0) = 1. We see that ¢no = lin}) Yo (r) is the S-state wave func-
r—

tion at the origin (at “contact”), and generally ¢ne is proportional
to lirr%) Rue(r)/rt. When expressed in terms of p and L ne(p), the
r—

radial equation becomes

2004+1— 41— fine 02€
{35+(7(+ E)—l)ap——Jr o }Lne(p>=o

o o
(7)
where
mZa T(1)2—€) [ I )25
= . 8
Nng )7"[ 12— <2)_/nl ( )

In three dimensions, np¢ would be the principal quantum num-
ber n and yn; would be the momentum scale factor mZo//n. In
D dimensions, n is an integer that, for each value of ¢, satisfies
n> ¢+ 1 and labels the solutions to (7) for that value of ¢ in order
of increasing energy, while nn¢ is a numerical parameter deter-
mined by the requirement that Ln¢ (o) be a normalizable solution
to (7).

We intend to find a series solution for (7)about the origin.
Since p2¢~1 is not analytic in a region containing the origin for
most values of €, the usual type of series solution won't work. We
require the more general form

oo j

Lue(p) = ) ajediy, T2k (9)

j=0k=0

Using (9) in (7) and assuming that all powers p it2¢k are indepen-
dent, we obtain the recursion relation:

A= 01_1,k(1+5+6[2k—1]) —aj_lyk_l
K TG 2el) G2+ 1+ 2e[k—1])

Using (10) and the initial condition ago = 1, it is easy to calcu-
late as many coefficients a jx as desired and obtain a convergent
series solution near p = 0. (When € — 0, the solution for a j,
is (=1)Js_¢41)(G,k)/(j!(2€ + 2);), where the sq(j,k) are “non-
central Stirling numbers of the first kind” as defined by Koutras
[17] and (n); is the Pochhammer symbol for the rising factorial
(n)j=n(n+1)---(n+ j—1). In this limit the L ¢ reduce to the
usual associated Laguerre polynomials.) We use the series to find
Lne(p) in a small region (0 < p < po) around the origin and extend
that region to 0 < p < oo using standard numerical methods to
solve (7). We developed a procedure to home in on acceptable val-
ues of nye for which Ly¢(p) can be normalized (as in the integral
(11)below). For each value of ¢ we labeled these solutions by the
“radial quantum number” n, taking values 0, 1, 2, ---. We also de-
fine the standard principal quantum number n withn, =n—£¢—1,
which takes positive integer values starting with ¢ + 1 for each
value of ¢. The acceptable values of npe with € = 0.001 for the
low-lying states are shown in Table 1 as ﬁE[E. We used the numer-
ical solutions to compute values for the integrals

(10)

(n+0)!

? 2
— D—1+2¢ _—
= i+ DIP /dpp e p[L”‘(p)] (1)

0

Ing

that are related to the normalization of the corresponding states.
These appear in the table as I Df. Were D = 3, the I integrals
would all be one.
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Table 1

1547

Numerical values for several quantities for low-lying states: the second-order perturbation theory matrix element

Knes sn[f], the O(e?) part of &y = fin¢/n; the perturbation result for nye = néye when € = 0.001 (through O (€2));
the value of i,y when € =0.001 found directly from the differential equation; an estimate for & FE?] the 0(e3)
coefficient of &p¢; the perturbation result for the normalization integral I ,, when € = 0.001 (through O (¢€)); the
normalization integral I, when € =0.001 found by numerical integration after solving the differential equation;
and an estimate for ILZJ, the 0 (e %) coefficient of I . The uncertainties in the values for 7L and 2 are no more
than one in the least significant digit. We note that « ne, &ne, fine, and Ine are all dimensionless objects that are
found directly from the dimensionless differential equation (7) and thus are independent of the arbitrary scale

parameter p introduced in (2).

N ke b i i L A [
1 0 0447424 0.264439 0.998154696  0.998154698 2.4 1.006734  1.006747 13
2 0 0.024322 —0.621005 1995307621 1.995307635 73 1010814  1.010857 43
2 1 0125789 2.859042 1993981247 1993981249 09 1012147  1.012206 58
3 0 —0.039708 —0.228670  2.991462608  2.991462640  10.8 1013227  1.013295 68
3 1 0.342397 2.811021 2989971727  2.989971739 4.0 1016394 1016507 113
3 2 0539319 5.240299 2988779015  2.988779009 —1.8 1017994 1.018135 141
4 0 0.050335 0.533015 3.986953191 3.986953242 129 1014946  1.015034 88
4 1 0.562100 3.210384 3.985363900  3.985363925 6.1 1019657  1.019824 167
4 2 0839676 5435611 3.984039468  3.984039469 0.2 1.022323  1.022547 223
4 3 1062267 7338238 3.982904221 3.982904201 —5.1 1024038  1.024302 263

3. Perturbative analysis

As a complement to the numerical solutions obtained above
we have also worked out results for n;; and Iy¢ using pertur-
bation theory in the small parameter €. This was done in order
to confirm the consistency of the whole D-dimensional procedure
and for use in the evaluation of coordinate-space matrix elements.
The zeroth-order problem for this perturbative calculation is also
D-dimensional, but with a potential V(r) = —Za/r. It is essen-
tial that the zeroth-order problem be D-dimensional, as the two
Hamiltonians and the perturbation must be hermitian in the same
space. Fortunately this zeroth-order problem has an exact solution
[18,19] as described by Nieto. The radial equation in this case is
identical to (7)except that the potential term e p %€/ p is replaced
by in/p. The exact solution to this zeroth-order problem can be
expressed as

Rue( = (n,0e P2 p L2417 %¢(p) (12)

where p = 2ynr, in =N — €, Yo =mZa/fin. The bound state energy
is Ep = —]7,12/(2m), and the normalization constant is given in [19].
The associated Laguerre polynomials are defined in the standard

way: L) =" (Zir‘;‘) ‘_]’!‘)1. The perturbation is

- ~ 2Za
H/:V(r)—V(r):—T(ln(ur)+yE)e+0(62) (13)
where = /4me~V¥/? 1. 1t is straightforward to work out the first
energy correction:

AEY =4E, (L, + Hpyo) €, (14)

where Ep = —ynz/(Zm) is the standard Bohr energy, y, =mZa/n,

Ln=10g<2%)=ln(2£;a>,

and Hjp :ZL]l/j is the nth harmonic number. Our calcula-
tion of the second order energy correction makes use of the
form for the reduced Schrédinger-Coulomb Green’s function gy
given by Johnson and Hirschfelder [20]. (Additional properties of
this Green’s function and its use in perturbation theory can be
found in [21-24].) We were not able to obtain a general for-
mula for the O (e 2) energy correction. For any particular state we

(15)

were able to obtain the O(ez) correction in terms of kn¢ where
Enkne = (V ln(Zynr)fgn ln(2ynr)V), for which we could only obtain
numerical results. (In the calculation of k ¢ it was adequate to use
the standard 3-dimensional expressions for the states and reduced

Green’s function g, and V (r) = —Za/r.) For instance, the ground
state energy has the expansion

_ m(Zo)?

Eo= ——(2 ) {1 + €[4l + 6]+ € [SL% + 161,

—4y52+15—{(2)+4/<10]+ 0(63)}, (16)

where Y is the Euler—-Mascheroni constant and the value of « 19 is
given in the first row of Table 1. From the energies, we can obtain
the series for yn¢e = (—2mEn) /2. For the ground state, we find

P10 =mZa {1 +el2L) +3] +ez[2L%+2L1

—27/:?+3—§(2)/2+2K1o]+0(63)}. (17)
The series for npe is found from that of yu¢ using (8), and finally
&y can be expanded as & =npe/n=1+ 5,[11@]6 + 55162 + 55163 +
---. The exact result for sr[l}] is gn[}] =2y —2H o — 1/n, and for
the ground state we have

&o=1 +€{2)/E—3} + € {4)/1;2—5)/E+2§(2) —2K10} +0(e3).
(18)

Table 1 contains numerical results for 5,[123] as calculated using per-

turbation theory as well as estimates for & ,[13[] obtained by a numer-

ical exploration of the difference between ADF and the truncated
series ﬁgzrt‘th' =n(1+ *g‘n[}]e + S,,[f]ez) for various small values of €.

The series for £y, seems well-behaved at least through 0 (€3).

Now we work out the perturbative result for e describing the
short-distance behavior of the solution Rn¢ (r) to (5), and the re-
lated result for the normalization integral (11)for the radial func-
tions Lne(p). We can calculate ¢y from (6)as the short-distance
limit

(19)

q_SM = QD—l mxo! lim —Rn@ ().

L mmt N2 e+ 1
(2)7,7[)6 r—0 TZ
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We use first-order perturbation theory based on the exact solution
of the D-dimensional 1/r problem, as given in (12), to find the
0(€) correction to the wave function and then to ¢y¢. Since the
perturbation is purely radial, we can factor out the angular depen-
dence and write

Rne(r) = Rne (1) + / dry 107 g (r, 1) H (1) Rue(r1) + 0 (€2),
(20)

where ,:gnz (r,r1) is the component of the reduced Green’s function
for the D-dimensional 1/r problem having angular momentum ¢.
The O (€) correction here contains an explicit factor of € in H’, so
in order to get just the first order correction we can take € — 0 in
the rest and simply use the regular 3-dimensional reduced Green’s
function and radial wave function. The result for the expansion of

énz is
1/2
bt = (”n" ) {1+e[3Ln+2ndiH+(n+£,—n,)
(HH@ Hﬁ)@) —i-n<1-12 +H(2)>+2Hn+€ +2Hoe41
1 2
+§(lnnfy5)72+rznc<2)]+0<e2>}4 (21)

Here H? = >4 1/j% is a generalized harmonic number. We
have found it convenient to define as well the “diharmonic” num-
bers

n mq:]il

diHy (n,m) = ZH"””*‘ 3 Z (22)
j=1

i=1 i=1

in terms of which it is possible to express any diharmonic sum
(a sum of 1/(ij) for positive integers i, j) over a region of the i,
j lattice having a boundary that includes only vertical, horizontal,
and diagonal sides of angle £45°. The explicit result for the ground
state wave function at the origin is

o\ 172
F1o = (y?') {1+6[3L1 —20(2)+4

+%(lnn—y5)}+0(ez)}. (23)

The normalization integral I, is connected to q_bnz because
the radial wave function is normalized in D-dimensional space:
1= [°drrP1 Rﬁe(r) = ¢ﬁZQD,12Ing/(2)7ng)D, so the normaliza-
tion integral I, must have the value

D-2 5D
Iy=2_ 1P/ ( Yo ) (24)

7D/2—1 ﬂ¢3£
We use our earlier result for ¢ and (21) for &m to find
Ine=1 +2e[ (HM H,‘fje) —n(H§r+H;2r>)
—2ndiHy (n+ €, —ny) + 208 (2) + Hpyyp
1
—2Hyp41 +1 - pri J/E] +0(e?). (25)

For the ground state one has

110:1+6[2)/E+4§(2)—1]+O(62). (26)

Table 2

Numerical values for the ground state energy as given by
Andrew and Supplee (“A&S”) [11], Morales [12], Waldstein
[30], and E o= 7}730/(2111) in the present work. The dimen-
sionless units suggested in [11] are used. The uncertainties
in the energies computed here are no more than one in the
least significant digit.

D A&S Morales Waldstein  this work

24 —2.1678 —2.1766 —2.1667 —2.176589
2.8 —0.8110 —0.8011 —0.8004 —0.801097
3.0 —0.5000 —0.5000 —0.5000 —0.500000
3.4 —0.1501 —0.1502 —0.1489 —0.150171
3.8 —0.0087 —0.0089  —0.0077 —0.008741

The result for I, truncated at O(e) is glven in Table 1 as [Pt
By comparison with the numerical result I E for various small val-
ues of €, an estimate for the O (e ) term I[ne was also obtained
and displayed in the table.

In this work we can see that ny, and I play the role of scale
invariant quantities independent of p since they are determined
directly from the scale-free differential equation (5). On the other
hand, the energy En¢, momentum scale ¥, and the short distance
wave function factor ¢y all depend on i, as can be seen directly
from their definitions and from the logarithms present in their se-
ries expansions.

The numerical approach developed here gives precise results for
all D in the range 2 < D < 4. This range is bordered by D =2,
where the potential becomes logarithmic and the spectrum takes
a qualitatively different form [25,26]; and by D = 4, where the po-
tential and centrifugal terms merge and stable solutions do not
exist (as reviewed in [27-29]). We can compare our numerical re-
sults for the ground state energy to previous numerical estimates
by Andrew and Supplee [11], who obtained a numerical solution
to the Schrodinger equation directly, Morales [12], who used the
“shifted 1/d method”, and Waldstein [30], who used the variational
method with trial function r%e~?". The results are given in Table 2
using the same units m= h =1 and 47 Zaj1?¢/Qp_1 =1 as in
[11,12].

4. Use of the series expansion to evaluate V 2 ;9

As an example of the utility of knowing the series expansion
for the wave function, we will evaluate ((V')2)0 = ((dV /dr)2) 0,
an expectation needed when working out energy corrections for
hydrogenic systems at O (ma ). This expectation value is easy to
evaluate for £ > 0 but is divergent, containing a 1/¢, when ¢ =0,
in which case

(v ) drP=1 [V ()] RZ (). (27)

We write Ryo(r) = ¢no QDf]e‘/’/ano(p) and separate out the short
distance behavior of Lno (p):

Lno(p) = Lno (p) + [Lno (0) — Lno (0)] (28)
where
Lno(p) =1+ p/2 — fino p' 72 /(2[1 + 2€]). (29)

The only divergence comes from the part of (27) containing
ano(p)—the rest is finite and is relatively easy to evaluate for all n.
We find

(@2) =mmze)*dZ i

2 4 16
xi—E—SLn-i-SHn-i- —————I—O(G)}, (30)

302 n 3
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with the logarithmic factor L defined in (15). Our result for
(V') o can also be obtained by a momentum space calculation.
The most important application of Eq. (30)is to the ground state,
where

_ - 2

<(v/)2)m=nm(2a)3¢§0ﬂ2€ {—— - 8L, +O(e)} : (31)
€

since the value of ((\7’)2 )nO for n> 1 can be obtained by combining

(31) with the finite difference

<<( v’)z»n En3(n5| (V/)2|n5)7<15| (V’)2|1S) (32)

as in [10]. (We note that our result (28)is consistent with the
value for (((V/)2)), given in [10].) Other dimensionally regularized
expectation values needed at 0(ma®) coming from second order
perturbation theory, not easily accessible to momentum space cal-
culations, can also be obtained by means of the series expansion
for the wave function. Expectation values of additional, yet more
singular, operators that will arise in higher orders of perturbation
theory, can be evaluated by the same methods. The detailed in-
formation about the short distance behavior of the wave function
contained in the double series expansion (9) allows for calculations
involving arbitrary values of n and highly singular operators to be
achieved completely in dimensional regularization.

5. Summary

The D-dimensional Schrodinger equation for the hydrogen
atom is solved for 2 < D < 4. The 1/rP=2 potential considered
is the one that results from Gauss’s Law and also arises as the
D-dimensional Fourier transform of the static electromagnetic in-
teraction —47 Zar [12€/p 2. The solution is given as a double power
series of a novel form involving fractional powers. Using the se-
ries solution for short distances and standard numerical methods
for long distances, precise results for the wave functions and en-
ergies are possible for all values of quantum numbers n and ¢£.
Perturbative results for the energies, the wave function at spatial
contact, and normalization integrals are obtained for small values
of € = (3 — D)/2. The perturbative results confirm the series so-
lution method and are needed for the evaluation of expectation
values, some of which are divergent for small €. As an exam-
ple, the divergent expectation value (( V')2),o is obtained. This
work is motivated by current treatments of hydrogen-like atoms

in the context of effective non-relativistic quantum field theories,
for which the non-relativistic D-dimensional hydrogen atom serves
as the lowest order of perturbation theory.

The author acknowledges helpful conservations with I. Wald-
stein. This work was supported by the National Science Foundation
through Grant No. PHY-1707489.
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