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                 The nonrelativistic hydrogen atom in  D = 3 − 2 dimensions�  is the reference system for perturbative 
           schemes used in dimensionally regularized nonrelativistic effective field theories to describe hydrogen-

like                   atoms. Solutions to the D-dimensional Schrödinger–Coulomb equation are given in the form 
             of a also double power series. Energies and normalization integrals are obtained numerically and  

                perturbatively in is terms of of � . The utility  the series expansion  demonstrated by the calculation  of 
the divergent  expectation value �(V �)2�.

 © 2018   Elsevier B.V. All rights reserved.

 1. Introduction

 For over a a century the hydrogen atom has been  touchstone of 
        fundamental physics. of physics, From the earliest days  quantum  

         the the challenge understand to   structure and behavior of hy-

drogen               has been a driver of new and has developments   stimu-

lated                the craft of countless innovators [ , in the field. 1 2] One  can

       mention Model, the Bohr  Sommerfeld’s relativistic hydrogen atom, 
         wave and at matrix mechanics  the birth of quantum mechanics,  

           the development the the  of QED to explain  Lamb Shift and  elec-

tron’s                  anomalous moment as observed in hydrogen, detection of
      the hydrogen Bose–Einstein on condensate, current experiments  

          antihydrogen, and as its in role  the “proton size puzzle”  develop-

ments                in which hydrogen has played a central role. Hydrogen is 
also a model for a number of “exotic atoms” including positronium,  

  muonium, muonic hydrogen-like hydrogen,  ions, charmonium,  and 
      bottomonium. Deep understanding of hydrogen and hydrogen-like 

     systems has and  been  continues crucially to be  important.

Much  of the modern work on hydrogen and its is exotic siblings  
         based on the effective quantum      field theories NRQED and NRQCD

 (non-relativistic  quantum      electro- and chromo-dynamics) [ – ]3 6

and         pNRQED/QCD (potential NRQED/QCD)  [ , ,7 5 8]. These theories 
        build dynamics up the  of electro- or both  chromo-interactions as 

         well as as relativity  perturbations on a non-relativistic base. Most 
        recent work using dimensional the field effective  theories uses  

       regularization to control both ultraviolet and infrared divergences. 

 E-mail address: gadkins @fandm .edu.

 Consequently, of the notion  a non-relativistic hydrogen-like  system 
         in  D = 3 − 2 a� dimensions often plays  role as the lowest order of 

a perturbative development. A typical calculation might involve the 
               energy E and the value of the wave function at contact ψ(r = 0)

        of this D-dimensional system  [ , ,7 9 10]. Usually, all divergences are 
arranged to cancel before     values of the energy levels or wave func-

tion                are actually needed,      in which case the D → 3 limit can be 
              taken first, and and traditional results for E  ψ(r = 0 employed.)  

More generally, for higher-order calculations it is  crucial to have as  
         much flexibility approach in calculational  as possible, and the re-

striction            to schemes where all divergences must cancel first before 
           making the use of explicit forms for   wave functions is too limit-

ing.                        A detailed understanding of the system that is being used as

   a basis for perturbation theory is required.

In                    this work we describe the solution to the D-dimensional
       Schrödinger–Coulomb equation for  non-integral D near  D = 3. 

           Separation of variables   is used to write the solution as a radial 
        function function describing times an angular   the angular orbital  

momentum. The can radial solution  be expressed as a power series 
       of of a novel type. With the help  this series solution to handle the 

        small-distance solved regime, equation the radial  can be  numeri-

cally   using standard techniques. We also work out the perturbative 
          expansions function for the energy and wave  at contact in terms 

   of the parameter small  � = (3 −D)/2.     For energies, results through

 O(�2          ) (are      obtained with estimates for the O � 3     ) terms,   while for

          the wave functions through at contact results  O( )� are obtained 
    with estimates  for the O (� 2) terms.

Much                      of the earlier work on hydrogen in D dimensions made

           use of of a 1 strict /r potential instead  the physical 1/r D−2 poten-
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 tial Gauss’ implied by  Law, or was restricted to an integral number 
        of dimensions. Quantum mechanics  with the physical potential  in 

        non-integral dimension  has and been studied by Andrew  Supplee 
         [ ] Morales [ ] [ ]11 ,  12 , and is reviewed in 13 with  additional refer-

ences.

  2. Solution of the  D-dimensional Schrödinger equation

  The -dimensional D  Schrödinger–Coulomb equation is

− 1

2m
�∇2ψ̄(�   x ) + ¯  V r( )ψ̄(�   x ) = Ēψ̄(�   x ), (1)

  where -dimensional we use the bar to signify D  quantities, with no 
   bar for 3-dimensional ones. The   potential energy

 ̄  V r( ) = −
�(  D/2 1− )μ̄2�Zα

π D/2 1− rD−2
(2)

        arises as the D-dimensional Fourier transform of the momentum-

space    Coulomb interaction term −4π Zα μ̄2�/�p 2. It follows that ( )1

is                  the lowest approximation for the study of hydrogen-like atoms 
    in NRQED/QCD or pNRQED/QCD (where ¯           h= 1, α is the fine struc-

ture               constant, nuclear and Z is the  charge in units of elec- the 
tron          charge magnitude). The potential ¯        V r( ) can also be deduced 

          from the the field  requirement that  electric  derived from it sat-

isfy     Gauss’s law in D dimensions, or equivalently that the potential 
        satisfy the D-dimensional Poisson  equation with a point  charge 
           source. The ensure mass scale has μ  been introduced to  that 

        Z Dα remains dimensionless in dimensions, and ¯  μ (with μ̄2 ≡
μ2eγE       /[4π ]) is the corresponding MS (modified minimal subtrac-

tion)   scale. It is convenient to separate variables in the Schrödinger 
 equation spherical using  coordinates. The -dimensional D  Laplacian 

 can be written as

�∇2 = ∂ 2
r +

 D − 1

r
∂r −

L2

r2
(3)

   where r =
� �

i x
2
i

�1 2/      is the usual  radius and L 2 = 1
2

�
 i j, L

2
i j with 

Li j = −i x( i∂ j  − x j ∂i         ) is      the angular momentum squared. We sepa-

rate                variables in the wave function according to ψ̄(� x ) = ¯  R r  Y( ) (x̂)

where ˆ  x = �      x r Y/ . The angular functions ( ˆ      x) are eigenstates of L2

[ –14 16]:

L2 Y� (ˆ        x D Y) = �(� + − 2) �(ˆ  x), (4)

             where quantum the allowed          numbers � are 0, 1, 2, · · · , just as

        in an integral numbers of dimensions. The -dimensional  D  angular 
       functions have (2� + D − 2)(� + D − !3) / (�![  D − 2]!) independent 

        components. An the explicit representation is given by  symmetric 
        traceless harmonic polynomials. For example, the lowest few are 

Y 0(x̂) = A0  , Y1i( x̂) = A1x̂i  , Y 2i j(x̂) = A2

�
x̂i x̂ j − δi j/D

�
, containing 1, 

          D D, and (  − 1)(D + 2)/2 independent    components, where the A �

 are appropriate normalization factors. 
The                   radial equation is the object of our main concern. It is

1

2m

�
−∂2
r −  D − 1

r
∂r +

 �(� +  D − 2)

r 2

�
R̄n�( )r

+ ¯  V r( ) R̄n�  ( )r = Ē n� R̄n�  (r). (5)

           We follow the usual the  steps of first working out  leading short 
    and long distance behavior of R̄ n�         . 0 limit ( The r →  of 5) shows 

that R̄n�( )r  → r� for small also  r . We  find R̄n�  ( )r  → e− γ̄n�r for large 
 r where Ēn� = −γ̄ 2

n�       /(2m). a We define  new function L n�  ( )ρ ac-

cording to

R̄ n�  ( )r = φ̄n��
1 2/
D−1

	
(  n+ !�)

   n n( − −� 1)!


1 2/ ρ�e−ρ/2

 ( � )2 + 1 ! Ln�  ( )ρ (6)

 where ρ ≡ 2γ̄n�      r is dimensionless and �N ≡ 2π N+1
2 / (� N+1

2  ) is 
         the surface unit -sphere. area of a  N  We normalize L n�    ( )r so  that

Ln�      ( )0  = 1.    We see that φ̄n0  = lim
r→0

ψ̄n0       ( )r is    the S-state wave func-

tion                at the origin (at “contact”), and generally φ̄n�  is proportional 
 to lim
r→0

R̄n�(r)/r
�          . When expressed in terms of ρ and L n�  ( )ρ , the 

 radial equation becomes

�
∂2
ρ +

	
   2 1(� + − �)

ρ
− 1



∂ρ −  � +  1 − �

ρ
+ n̄n�ρ

2�

ρ

�
Ln�  ( )ρ = 0

(7)

where

n̄n� ≡ mZα
γ̄n�

 �( / )1 2 − �

π 1 2/ −�

	
μ̄

2γ̄n�


2�

 . (8)

  In three  dimensions, n̄n�      would be the principal quantum num-

ber     n and γ̄n�        would be the momentum scale factor mZα/n. In 
              D ndimensions, is an integer of that, for each value  �, satisfies 

   n ≥ � +1 and     labels the solutions to (7) for      that value of � in order

   of increasing energy, while n̄n�     is a numerical parameter deter-
mined         by the requirement that L n�      ( )ρ be    a normalizable solution

 to (7).

We                   intend to find a series solution for ( )7 about   the origin.

 Since ρ 2 1�−          is in not analytic  a region containing the origin for 
        most values of of � , the usual type  series solution won’t work.  We 

   require the more general form

Ln�  ( )ρ =
∞�

j=0

j�

k=0

a jk n̄
k
n�ρ

j k+2�  . (9)

     Using (9) in      ( )7 and assuming that all powers ρ j k+2� are indepen-

dent,         we obtain the recursion relation:

a jk=
a j k−1, (      j k+ + [� � 2 − 1]) − a j k−1, −1

   ( )j+ 2�k (        j k+ 2 1 2� + + �[ − 1])
. (10)

       Using ( )10 and the initial condition a 00        = 1,     it is easy to calcu-

late         as many coefficients a jk      as and desired  obtain a convergent 
           series solution solution near the ρ = 0. 0, (When � →     for a jk

 is (−1) j s− +(� 1)  ( ,j  k)/
�

 j!(2 2� + ) j
�

   , where the sa      ( ,j  k) are “non-

central                      Stirling numbers of the first kind” as defined by Koutras

 [ ] 17 and (n) j        is the Pochhammer symbol for the rising factorial 
( )n j              = n(n + 1) · · · (n + j − 1). In this limit the L n�   reduce to the 

         usual associated the  Laguerre polynomials.) We use  series to find 
Ln�  ( ) ρ in a small region (0 ≤ ≤ρ ρ 0 ) around the origin and extend 

             that region to 0 ≤ ∞ρ < using standard numerical methods to 
 solve ( ) a7 . We developed  procedure to home in on acceptable val-

ues    of n̄n�   for which L n�         ( )ρ can       be normalized (as in the integral

            ( )11 below).           For each value of � we labeled these solutions by the

 “radial quantum number” n r        taking values 0, 1, 2, · · · . We also de-

fine         the standard principal quantum number n with n r = n − � − 1, 
          which takes positive integer  values starting with  � + 1 for  each

      value values of �. The acceptable  of n̄n�         with � = 0.001 for the 
       low-lying states are shown in Table 1 as n̄DE

n�     . We used the numer-

ical             solutions to compute values for the integrals

I n� ≡
(  n+ !�)

2nnr  ![ !]( � )2 + 1 2

∞�

0

dρ ρD−1 2+ �e−ρ


Ln�( )ρ

�2

(11)

         that are related to the the normalization of  corresponding states. 
      These appear in the table as I DE

n�
    . Were D = 3,  the I n� integrals 

  would all be one.
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 Table 1

Numerical   values for several quantities for low-lying states: the second-order perturbation theory matrix  element 
κn�; ξ [ ]2

n�
  , the O(� 2  ) ξpart  of n� ≡ n̄n�/n; the perturbation result for n̄n� = nξn�       when 001 (through � = 0.  O (� 2)); 

  the value of n̄n�               when directly � = 0.001 found  from differential estimate the  equation; an   for ξ [ ]3
n�    , the O (�3 )

coefficient of ξn�   ; the perturbation result for the normalization integral I n�         when � = 0.001 (through O ( )� ); the 
 normalization integral I n�      when � = 0.001 found by numerical integration after solving the differential equation; 

 and an estimate for I [ ]2
n�  , the O (� 2  ) coefficient  of I n�. The uncertainties in the values for n̄DE

n�
 and I DE
n�

are no more 
       than that one in digit. note the least significant  We   κ n�  , ξn� , n̄n�  , and In�    are are all dimensionless objects that  

             found directly equation from differential the dimensionless   (7) and        thus are independent of the arbitrary scale

parameter μ introduced in (2).

   n � κn� ξ
[ ]2
n� n̄

pert.th.
n� n̄DE

n� ξ
[ ]3
n� I

pert.th.
n� IDE

n� I
[ ]2
n�

                 1 0 0.447424 0.264439 0.998154696 0.998154698 2.4 1.006734 1.006747 13

   2 0 0.024322            −0.621005 1.995307621 1.995307635 7.3 1.010814 1.010857 43

                 2 1 0.125789 2.859042 1.993981247 1.993981249 0.9 1.012147 1.012206 58

3 0              − −0.039708 0.228670 2.991462608 2.991462640 10.8 1.013227 1.013295 68

                 3 1 0.342397 2.811021 2.989971727 2.989971739 4.0 1.016394 1.016507 113

         3 2 0.539319 5.240299 2.988779015 2.988779009      −1.8 1.017994 1.018135 141

                 4 0 0.050335 0.533015 3.986953191 3.986953242 12.9 1.014946 1.015034 88

                 4 1 0.562100 3.210384 3.985363900 3.985363925 6.1 1.019657 1.019824 167

                 4 2 0.839676 5.435611 3.984039468 3.984039469 0.2 1.022323 1.022547 223

         4 3 1.062267 7.338238 3.982904221 3.982904201      −5.1 1.024038 1.024302 263

 3. Perturbative analysis

        As the a complement to  numerical solutions obtained above 
      we have also worked out results for n̄n�  and In�  using pertur-

bation                 theory in the small parameter �. This was done in order 
        to confirm of the consistency  the whole D-dimensional procedure 

     and for use in the evaluation of coordinate-space elements. matrix  
        The zeroth-order problem this  for  perturbative calculation is also 

    D-dimensional, but with a potential  ̃      V r( ) = −Z rα/ . It is essen-

tial                    that the zeroth-order problem be D-dimensional, as the two

       Hamiltonians the and  perturbation must be hermitian in the same 
       space. Fortunately this zeroth-order problem  has an  exact solution 

          [ ,18 19] as           described by Nieto. The radial equation in this case is

identical to ( )7 except   that the potential term n̄n�ρ 2�/ρ is  replaced

by ñn          /ρ . The exact solution to this zeroth-order problem can be 
 expressed as

R̃n�  ( ) (r = n, �)e−ρ/2ρ�L2 1 2�+ − �
n− −� 1  ( )ρ (12)

   where ρ = 2γ̃nr , ñn = n − � , γ̃n =mZα/ñn   . energy The bound state  
is Ẽn = −γ̃ 2

n /(2m), given [ ] and the normalization constant is  in 19 . 
        The associated defined the Laguerre polynomials are  in  standard 
 way: L α
n ( )x  =

�n
j=0

�n+α
n j−

� )(−x j

j!   . The perturbation is

H � = ¯    V r( ) −  ̃  V r( ) = −  2Zα

r

�
 ln( )μr + γE

�
     � �+ O ( 2  ) (13)

where  μ=
√

4πe−γE/2 μ̄. It is straightforward to work out the first 
energy correction:

�E
[ ]1
n� = 4En (Ln  + Hn+�)  �, (14)

 where En = −γ 2
n   /(2m) is     the standard Bohr energy, γn =mZα/n,

Ln = log

	
μ

2γn



= ln

� μn

2mZα

�
, (15)

and  Hn = �n
j=1            1/ j is the nth harmonic number. Our calcula-

tion             of the second order energy  correction makes  use of  the 
      form for  the reduced Schrödinger–Coulomb Green’s function ĝn
        given [ ] by Johnson and Hirschfelder 20 . (Additional properties of 

          this Green’s its in function and  use  perturbation theory can be 
           found in [ –21 24].) We were not able to obtain a general for-

mula        for the O (� 2         ) energy particular correction. For any  state we 

      were able to obtain the O(� 2       ) correction    in terms of κn� where 
Enκn� =

�
 V ln(2γnr)ĝn ln(2γnr V)

�
      , for which we could only obtain 

    numerical of results. (In the calculation  κ n�   it was adequate to use 
    the the standard 3-dimensional expressions for  states and reduced 

 Green’s function ĝn         , and V r( ) = −Z rα/ .) For instance, the ground 
   state energy has the expansion

Ē10 = −m Z( α)2

2

�
 1 + � [4L1 + 6] + �2



8L2

1 + 16L1

−4γ 2
E    + −15 ζ(2 4) + κ10

�
+  O(�3)

�
 , (16)

where γE  is the constant the Euler–Mascheroni  and  value of κ 10 is 
            given in the first row of Table 1. From the energies, we can obtain 

 the series for γ̄n� = −( 2mĒn�)
1 2/     . For the ground state, we find

γ̄10 =mZα
�

 1 + � [2L1 + 3] + �2


2L 2

1 + 2L1

−2γ 2
E    + −3 ζ(2 2 2)/ + κ10

�
+  O(�3)

�
 . (17)

  The series for n̄n�     is found from that of γ̄n�    using ( )8 , and finally 
ξn�     can be expanded as ξ n� = n̄n�  /n = 1 + ξ [ ]1

n�
 � + ξ [ ]2

n�
�2 + ξ [ ]3

n�
�3 +

· · ·      . The exact result for ξ [ ]1
n�  is ξ [ ]1

n�  = 2γE  − 2Hn+�     − 1/n, and for 
  the ground state we have

ξ10  = +1 �
�
2γE− 3

�
+ �2

�
4γ 2
E − 6γE  + 2ζ(2 2) − κ10

�
+  O(�3).

(18)

       Table 1 contains numerical results for ξ [ ]2
n�    as calculated using per-

turbation     theory as well as estimates for ξ [ ]3
n� obtained by a numer-

ical            exploration of the difference between n̄DE
n�   and the truncated 

series n̄pert.th.
n�

= n(1 + ξ [ ]1
n�  � + ξ [ ]2

n� �2        ) for     various small values of � . 
  The series for ξn�     seems well-behaved at least through O (� 3 ).

Now            we work out the perturbative result for φ̄n� describing the 
    short-distance behavior of the solution R̄n�       ( )r to    ( )5 , and the re-

lated               result for the normalization integral ( )11 for   the radial func-

tions   Ln�    ( )ρ . We can calculate φ̄n�    from ( )6 as   the short-distance

limit

φ̄n� = �
−1/2
D−1

	
nnr !
 (n+ !�)


1 2/
 ( � )2 + 1 !

(2γ̄n�)�
lim
r→0

1

r�
R̄n�  (r). (19)
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  We use first-order perturbation theory based on the exact solution 
            of the D-dimensional 1 given (12)/r problem, as  in , to find the 
           O( )� correction to the wave function and then to φ̄n�   . Since the 

     perturbation is purely radial, we can factor out depen- the angular 
dence    and write

R̄ n�  ( )r = R̃n�  ( )r +
�
dr1 r

D−1
1

ˆ̃gn�  ( ,r r1)H �(r1)R̃n�(r1      ) (+ O �2),

(20)

where ˆ̃gn� ( ,r  r1       ) is        the component of the reduced Green’s function

         for the D-dimensional having momentum 1/r problem  angular  �. 
              The O ( )� correction here contains an explicit factor of  � in H �  , so 

      in order order to get just the first  correction we can take � → 0 in 
 the the rest and simply use  regular 3-dimensional  reduced Green’s 
          function and radial wave function. The result for the expansion of  

φ̄n� is

φ̄n� =
	

γ Dn
π


1 2/ �
 1 + �

�
3Ln  + 2ndiH+    (n+ −�, nr)

−n
�
H2
n+�  − H ( )2

n+�

�
+ n

�
H2
nr

 + H( )2
nr

�
+ 2Hn+� + 2H2 1�+

+1

2
   (lnπ − γE    ) − +2

2

n
− 2nζ(2)

�
   + O (�2)

�
 . (21)

Here  H ( )2
n = �n

j=1  1/ j 2      is a generalized harmonic number. We 
         have as num- found it convenient to define  well the “diharmonic” 

bers

diH±    (n m, ) ≡
n�

i=1

Hm i∓1±
i

=
n�

i=1

m∓ ±1 i�

j=1

1

i j
 , (22)

           in it is terms of which   possible to express any diharmonic sum 
               (a sum of 1/(i j) for           positive integers i , j) over a region of the i ,

          j lattice having a boundary that includes only vertical, horizontal, 
and diagonal sides  of angle ±45 ◦ . The explicit result for the ground 

     state wave function at the origin is

φ̄10 =
�

γ D1
π

�1 2/ �
 1 + �

�
3L1  − 2ζ(2 4) +

+ 1

2
   (lnπ − γE )

�
   + O (�2)

�
 . (23)

 The normalization integral    I n�  is connected  to φ̄n� because 
        the radial wave function normalized is  in D-dimensional space: 

1 =
� ∞

0
 dr rD−1 R̄2

n�
( )r  = φ̄2

n��D−12I n�/(2γ̄n�)
D    , so the normaliza-

tion    integral I n�  must have the value

In� = 2D−2�( / )D 2

πD/2 1−

�
γ̄ Dn�

πφ̄2
n�

�
. (24)

    We use our earlier result for γ̄n� and (21) for φ̄n�  to find

In�  = +1 2�

�
n
�
H2
n+�  − H ( )2

n+�

�
−n

�
H2
nr

 + H ( )2
nr

�

−  2ndiH+    (n+ −�, nr      ) + 2nζ(2) + Hn+�

−2H2 1�+  + −1
1

2n
+ γ E

�
+  O(�2  ). (25)

    For the ground state one has

I10  = +1 �


2γ E  + 4ζ(2 1) −

�
+  O(�2  ). (26)

 Table 2

Numerical                    values for the ground state energy as given by

      Andrew and Supplee (“A&S”) [ [11], Morales 12], Waldstein 
[30], and Ē n0 = −γ̄ 2

n0
/(2m) in the present work. The dimen-

sionless      units suggested in [11] are    used. The uncertainties

in the energies computed here are no more than one in the 
least significant digit.

         D A&S Morales Waldstein this work

       2.4 −2 2 2 2.1678 − .1766 − .1667 − .176589

2.8      − − − −0.8110 0.8011 0.8004 0.801097

3.0      − − − −0.5000 0.5000 0.5000 0.500000

3.4      − − − −0.1501 0.1502 0.1489 0.150171

3.8      − − − −0.0087 0.0089 0.0077 0.008741

   The result for I n�             truncated at O( )� is in given  Table 1 as I pert.th.
n� . 

  By comparison with the numerical result I DE
n�  for various val- small 

ues                of � , an estimate for the O (� 2    ) term I [ ]2
n�   was also obtained 

  and displayed in the table.
In              this work we can see that n̄n�  and In�     play of the role  scale 

         invariant quantities independent of μ since they are determined 
         directly differential from the  scale-free  equation On ( )5 .  the other 

hand, the energy Ēn�, momentum scale γ̄n� , and the short distance 
  wave function factor φ̄n�         all as depend on μ,  can be seen directly 

      from from the their definitions and   logarithms present in their se-
ries expansions.

The  numerical approach developed here gives precise results for 
               all D in the range 2 < D < 4.    This range is bordered by  D = 2, 

        where the the potential becomes logarithmic  and  spectrum takes 
   a qualitatively different form [25,26]; and by  D = 4,   where the po-

tential                and centrifugal terms merge and stable solutions do not 
         exist (as compare numerical reviewed in [ –27 29]). We can  our  re-

sults                    for the ground state energy to previous numerical estimates

         by Andrew and Supplee ] [11 , who obtained a numerical solution 
         to the Schrödinger equation  directly, Morales [ ] 12 , who used the 

 “shifted 1/d method”, and Waldstein [ ]30 , who used the variational 
    method with function trial  r a e−br       . given The results are  in Table 2

using          the same units m  = ¯       h = 1 and 4π Zαμ̄2�/�D−1    = 1 as  in

[ ,11 12].

 4. Use of the series expansion to evaluate V
2

n0

          As the the an example of  utility of  knowing  series expansion 
       for the will wave function, we  evaluate �( V̄ � )2 �n0 = �(d ¯  V /dr)2�n0, 
        an expectation energy needed when working out  corrections for 

   hydrogenic systems at  O m( α 6       ). expectation This  value is easy to 
            evaluate for  � > 0 but        is divergent, containing a 1 ,/� when � = 0, 
 in which case

�
(V̄ � )2

�

n0
=

∞�

0

 dr rD−1
�
V̄ �( )r

�2
R̄2
n0  (r). (27)

We write R̄n0( )r  = φ̄n0�
1 2/
D−1
e−ρ/2 Ln0  ( )ρ and  separate out the short 

 distance behavior of Ln0 ( )ρ :

Ln0  ( )ρ = �Ln0  ( )ρ +
�
Ln0  ( )ρ −�Ln0( )ρ

�
(28)

where

�Ln0      ( ) /ρ = +1 ρ 2 − n̄n0ρ1 2+ �    /(2 1 2[ + �]). (29)

       The only   divergence  comes of from the  part  (27) containing 
�L 2
n0     ( )ρ —the             rest is finite and is relatively easy to evaluate for all n.

 We find
�
(V̄ � )2

�

n0
 = π αm(Z )3φ̄2

n0 μ̄2�

×
�
−

2

�
− 8Ln + 8Hn +

4

3n2
−

4

n
−

16

3
   + O ( )�

�
 , (30)
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 with the  logarithmic factor    L n    defined  in (15). Our result  for 
�(V̄ � )2 �n0         can momentum calculation. also be obtained by a  space  

           The most important Eq. ( ) application of  30 is     to the ground state,

where
�
(V̄ �)2

�

10
 = π αm(Z )3φ̄2

10μ̄
2�

�
− 2

�
− 8L1    + O ( )�

�
 , (31)

since the value of 
�
(V̄ � )2

�
n0

 for  n> 1 can be    obtained by combining

  (31) with   the finite difference
��
( V �)2

��

n
≡ n3

�
nS| (V � )2|nS

�
−

�
1S V| ( �)2|1S

�
(32)

           as note in (We [ ]10 .   that our result ( )28 is    consistent with the
  value for ��(V �)2��n  given [ ] in 10 .) Other dimensionally regularized 

     expectation values needed at O m( α6      ) coming    from second order

    perturbation theory, easily not  accessible to momentum space cal-
culations,                      can also be obtained by means of the series expansion

         for the wave function. Expectation values of additional, yet more 
         singular, operators that will arise in higher orders of perturbation 

          theory, can The be evaluated by the same methods.  detailed in-

formation               about the short distance behavior of the wave function 
 contained in the double series expansion ( )9 allows for calculations 

           involving arbitrary highly values of n and  singular operators to be 
  achieved completely in dimensional regularization.

 5. Summary

      The -dimensional D  Schrödinger equation  for the hydrogen 
        atom The is solved for 2 < D < 4.  1/r D−2  potential considered 

            is the from the one that results  Gauss’s Law and as also arises   
       D-dimensional Fourier transform of the static electromagnetic in-

teraction      −4π Zαμ̄2�/�p 2        . given a The solution is  as  double power 
          series powers. of a novel form involving fractional  Using the se-

ries                  solution for short distances and standard numerical methods

          for for long distances, precise results  the wave functions and en-
ergies                    are possible for all values of quantum numbers n and �. 

         Perturbative results for the the energies,  wave function at spatial 
        contact, and are normalization integrals  obtained for small values 

            of � = (3 − D)/2.       The perturbative results confirm the series so-

lution              method and are needed for the evaluation of expectation 
           values, some of which are divergent for small � . As an exam-

ple,           the divergent expectation value �( V̄ �)2�n0   is obtained. This 
        work is motivated by current hydrogen-like treatments of  atoms 

        in the context of effective non-relativistic quantum field theories, 
for which the non-relativistic D-dimensional atom hydrogen  serves 

   as the lowest order theory. of perturbation 
The          author acknowledges helpful conservations with I. Wald-

stein.       This work was supported by the National Science Foundation 
 through Grant No. PHY-1707489.
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