
B → D∗`ν at non-zero recoil

Alejandro Vaquero Avilés-Casco1,?, Carleton DeTar1, Daping Du2, Aida El-Khadra3,4, Andreas
Kronfeld4,5, John Laiho2, and Ruth S. Van de Water4

1Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, 84112, USA
2Department of Physics, Syracuse University, Syracuse, New York, 13244, USA
3Department of Physics, University of Illinois, Urbana, Illinois, 61801, USA
4Fermi National Accelerator Laboratory, Batavia, Illinois, 60510, USA
5Institute for Advanced Study, Technische Universität München, 85748 Garching, Germany

Abstract. We present preliminary results from our analysis of the form factors for the
B → D∗`ν decay at non-zero recoil. Our analysis includes 15 MILC asqtad ensembles
with N f = 2+1 flavors of sea quarks and lattice spacings ranging from a ≈ 0.15 fm down
to 0.045 fm. The valence light quarks employ the asqtad action, whereas the heavy quarks
are treated using the Fermilab action. We conclude with a discussion of future plans and
phenomenological implications. When combined with experimental measurements of the
decay rate, our calculation will enable a determination of the CKM matrix element |Vcb|.

1 Introduction

Although the Standard Model (SM) is widely regarded as a very successful theory, its description
of nature is not fully satisfactory, and it is believed to be incomplete. This fact has set a large part
of the scientific community in the search for physics Beyond the Standard Model (BSM). One of
the most promising places to look for new physics is the flavor sector of the SM. In particular, the
unitarity triangle and the CKM matrix elements [1, 2] have been object of extensive research [3], as
newer methods and algorithms improved the precision of the measurements. The latest experimental
averages [4, 5] reveal a tension of about 3σ between the inclusive and exclusive determinations of
|Vcb|, and it is of foremost importance to investigate the origins of this tension.

One way to obtain |Vcb| is from the decay rate of B → D∗`ν. Experimental measurements of
this decay rate are precise for large momenta, but noisy at low recoil, due to a supression of the
phase space [4]. The lattice approach, on the other hand, excels at low recoil, where it becomes
more precise. Forthcoming experiments at LHCb [6] and Belle-II [7], are expected to reduce the
experimental uncertainties, so improved lattice calculations are needed to maximize their impact on
|Vcb| determinations. In this work we present first, preliminary results of our lattice QCD calculation
of the form factors for the B→ D∗`ν process at non-zero recoil.
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2 Form factor definitions and ratios

The B→ D∗`ν decay is mediated by a V − A weak current. The matrix elements can be decomposed
in the following way:

〈D∗(pD∗ , ε
ν)| Vµ

∣∣∣B̄(pB)
〉

2
√

MB MD∗
=

1
2
εν∗ε

µν
ρσv

ρ
Bv
σ
D∗hV (w), (1)

〈D∗(pD∗ , ε
ν)| Aµ

∣∣∣B̄(pB)
〉

2
√

MB MD∗
=

i
2
εν∗

[
gµν (1 + w) hA1 (w) − vνB

(
v
µ
BhA2 (w) + v

µ
D∗hA3 (w)

)]
, (2)

where Vµ and Aµ are the vector and axial, continuum, electroweak currents, respectively. The 4-
vectors vµX (X = B,D∗) are the 4-velocities, defined as vµX = pµX/MX , w = vB · vD∗ is the recoil
parameter, the εν is the polarization of the D∗ final stat eand the hk(w) (k = V, A1,2,3) are the different
form factors that contribute to the decay rate.

The differential decay rate can be expressed as

dΓ

dw
=

G2
F M5

B

4π3 r3(1 − r)2(w2 − 1)
1
2 |ηEW |

2 |Vcb|
2 χ(w) |F (w)|2 , (3)

with r = MD∗/MB, the ratio of the meson rest masses and ηEW , the electroweak correction factor
for NLO box diagrams. The kinematic factor

√
w2 − 1 is what makes experimental measurements so

difficult at low recoil. The functions χ(w) and F (w) are standard, motivated by the heavy-quark limit:

χ(w) = (1 + w)2 λ(w) with λ(w) =
1 + 4w

w+1 t2(w)
12

, t2(w) =
1 − 2wr + r2

(1 − r)2 , (4)

F (w) = hA1 (w)

√
H2

0(w) + H2
+(w) + H2

−(w)
λ(w)

, (5)

where

XV (w) =

√
w − 1
w + 1

hV (w)
hA1 (w)

, (6) X2(w) = (w − 1)
hA2 (w)
hA1 (w)

, (7)

X3(w) = (w − 1)
hA3 (w)
hA1 (w)

, (8) H0(w) =
w − r − X3(w) − rX2(w)

1 − r
, (9)

H±(w) = t(w) (1 ∓ XV (w)) , (10)

The calculation of F (w) will allow us to determine |Vcb| from experimental measurements of the
differential decay rate.

3 Simulation details

For this analysis we use the same set of ensembles as in the zero recoil publication [9]. These are
15 different MILC asqtad ensembles with N f = 2 + 1 flavors of sea quarks [10]. The valence light
quarks are simulated with the asqtad action [11], whereas the heavy quarks use the clover action
with the Fermilab interpretation [12]. The calculations on these ensembles are performed at p2 =

0,
(

2π
L

)2
,
(

4π
L

)2
in lattice units, with L the spatial size of the lattice. We distinguish two different

cases: momentum perpendicular to the D∗ polarization and an average over parallel and perpendicular
directions. Fig. 1 shows the size of the ensemble as a function of the lattice spacing and the quark
masses. For further details we refer to tables I and II of [9].



Figure 1. List of available ensembles. The area of the circle is
proportional to the statistics.

4 Calculation of correlation functions

4.1 Two-point functions and calculation of rest masses and excited states

The 2-point functions give us information about the energy levels of the states, as well as the overlap
factors Z. In this work, the definitions and notation of the 2-point functions follow ref. [13]. We fit
2-point functions for the B̄ and the D∗ meson with smeared (1S ) and point (d) sources at source and
sink, giving rise to four possible combinations per ensemble and momentum: (1S , 1S ), (d, d), (1S , d)
and (d, 1S ), where we combined the latter two into a symmetric average.

For our analysis, we perform the joint fit of the three 2-point functions with different smearings
at the same time on each ensemble. At non-zero momentum (D∗), we also distinguished between
momentum parallel or perpendicular with respect to the meson polarization. Therefore at non-zero
momentum our simultaneous fits involve six 2-point functions. We use Bayesian constraints with
loosely constrained priors. The main function of the priors here was to prevent the fitter from arriving
at absurd values. The prior errors were large enough so small variations in their values didn’t change
the final results. The correlation matrix for the fitter was obtained using the jackknife method.

We vary the number of states in our fit function: 1 + 1, 2 + 2 and 3 + 3, where the first figure is
the number of standard states, and the second gives the number of oscillating states. We choose the
2+2 fits, which balance reasonable p values results with low errors, and are consistent with the results
coming from the 3 + 3 fits. The initial time of the fit is chosen after reaching a plateau in the value of
the meson mass, and it is adjusted to be similar in physical units for all the ensembles. The final time
is taken to ensure the resulting p value is reasonable, i.e., we check that the p values follow a uniform
distribution.

As a consistency check, we test the continuum dispersion relation E2 = p2 + m2 by plotting
E2/(p2 + m2) vs p2 (fig. 2). Discretization effects with large masses (in lattice units) could cause this
quantity to deviate from ∼ 1. Nonetheless, we clearly see an improvement as the lattice spacing is
reduced.

4.2 Three-point function ratios and general considerations

We extract the matrix elements from ratios of 3-point correlation functions. To this end, we use the
same setup and notation as in [9, 13]. We construct the non-zero momentum correlation functions as

CB→D∗
J (p, t,T ) = 〈OD∗ (−p, 0)J(p, t)OB(0,T )〉 . (11)



Figure 2. Dispersion relation for the D∗

meson, all ensembles. The legend gives
the lattice spacing a and the ratio between
the light and the strange quark masses,
called here rm. The cones represent the
expected discretization effects for the
green and the black points. Deviations
from E2/(p2 + m2) are observed only for
the coarsest ensembles at high momenta,
and even in the worst case they are well
within the expected discretization errors,
of order O

(
αs (ap)2

)
.

where OD∗ (p, 0) and OB(0,T ) are interpolating operators with the quantum numbers of the D∗ and the
B mesons, respectively, with 3-momentum p and 0, and J is a vector or axial current. Then we can
relate the correlation functions to the matrix elements using

CB→D∗
J (p, t,T ) =

√
ZD∗ (p)ZB(0)e−ED∗ te−MB(T−t)

〈
D∗(p)

∣∣∣J∣∣∣B(0)
〉

+ . . . (12)

The ZX factors are the overlap factors obtained from the 2-point functions of the meson X, and the
exponentials decay with the energy of the constructed states. The missing extra-terms refer to higher
excited states, which are suppressed at large values of t and T − t, as well as extra, oscillatory terms,
whose contribution is proportional to (−1)t and (−1)T−t. Regarding renormalization and matching, we
follow references [9, 13], but at the time of the conference the perturbative ρ factors were not available
yet.

In our calculations, the parent meson is always at rest and B propagates from time T . The daugther
meson propagates from time 0, and both of them are tied together at the current insertion point t. We
fix the sink and move the insertion in the range [0,T ], expecting the excited states in (12) to die as we
move far from the extremes. The different source-sink separations used in this analysis are listed in
table IV of [9].

From (12) we construct ratios of 3-point functions that remove as many Z factors and exponentials
as possible from the rhs of (12). In order to suppress the effect of the oscillatory terms coming from
the 3-point functions, we use the following weighted average [8]

R̄(t,T ) =
1
2

R(t,T ) +
1
4

R(t,T + 1) +
1
4

R(t + 1,T + 1), (13)

where R is the ratio to be analyzed, T is the sink time and R̄ is the weighted average we use for the
analysis. This average ensures that the errors introduced by oscillating states are negligible compared
with other errors. As a general ansatz to fit the ratios, we use the following function:

r(t) = R
(
1 + Ae−∆EM0 t + Be−∆EMT (T−t)

)
, (14)

where R is the ratio of matrix elements we want to extract, T is the sink time, ∆EM0 and ∆EMT are the
differences between the energies of the first excited and the ground state for the mesons living at t = 0
and t = T respectively, taken from the 2-point fits, and A and B are fit parameters.



In our analysis we use constrained fits with priors. Whenever the parameters are largely unknown
or known with poor precision, a loose prior is set just to guide the fitter. In constrast, whenever the
parameters involve quantities obtained in previous fits, the priors are set to the fit outcome and are
counted as data points. To remove autocorrelations in our data, we compute the covariance matrix
given to the fitter after processing the data with jackknife.

Finally, the parent meson is always smeared using Richardson smearing, but the daughter meson
can be smeared or not. This fact gives rise to several versions of each ratio, and following the same
technique as in the 2-point function analysis, we perform a joint fit of all the available data to obtain the
final results. As an example, we show in fig. 3 one of the fits we use to estimate the recoil parameter.

Figure 3. Sample ratio fit for a 3-point function ratio, x f in this
case. The blue points show the data with a smeared interpolating
operator, whereas the red points represent a point interpolating
operator. The green horizontal bar represents the result for R in
(14). In this particular case, we force B = 0 because the B
smearing suppresses all the excited states coming from the sink.

5 Form factors from lattice matrix elements

In order to extract the matrix elements from the lattice, we consider several ratios that reduce the
errors in the determination of the form factors.

5.1 Recoil parameter

Considering the B̄ meson at rest, one can compute the recoil parameter as

w(p) =
1 + x2

f (p)

1 − x2
f (p)

, (15) x f (p) =
〈D∗(p)|V |D∗(0)〉
〈D∗(p)|V4 |D∗(0)〉

, (16)

where the ratio for x f comes from the flavor-diagonal transition D∗(p, s)→ D∗(p′, s′).

5.2 Axial form factors

5.2.1 Axial double ratio RA1

Although RA1 is directly obtained from
〈
D∗(p⊥)

∣∣∣A1
∣∣∣B(0)

〉
, it is advantageous to use a ratio,

RA1 (p) =

〈
D∗(p⊥)

∣∣∣A1
∣∣∣B̄(0)

〉〈
D∗(0)

∣∣∣A1
∣∣∣B̄(0)

〉 . (17)

Eq. (17) has an important drawback: when expressed as a ratio of 3-point functions, exponentials
depending on time are not cancelled for the daughter meson. Hence, we need to add an energy-
dependent correction factor before we can fit the ratio on the lattice. In the zero momentum case a



double ratio was used to get rid of the exponential and some overlap factors, reducing the errors and
improving the quality of the fit [8, 9]. Here we can do the same,

∣∣∣RA1 (p)
∣∣∣2 =

〈
D∗(p⊥)

∣∣∣A1
∣∣∣B(0)

〉 〈
B(0)

∣∣∣A1
∣∣∣D∗(p⊥)

〉〈
D∗(0)

∣∣∣V4
∣∣∣B(0)

〉 〈
B(0)

∣∣∣V4
∣∣∣D∗(0)

〉 . (18)

From this quantity we can directly extract hA1 (w) = 2/(1+w)RA1 . As we don’t have any measurements
for the matrix element

〈
B(0)

∣∣∣A1
∣∣∣D∗(p⊥)

〉
, we use time reversal T to reconstruct it from known data,

CD∗→B(p⊥, t,T )
T
−−→ CB→D∗

A1
(p⊥,T − t,T ). (19)

Our preliminary results for hA1 (w), computed from eq. (18) is shown in the right pane of fig. 4.

5.2.2 Ratios R0 and R1

The quantities R0 and R1

R0(p) =

〈
D∗(p‖)

∣∣∣A4
∣∣∣B(0)

〉〈
D∗(p⊥)

∣∣∣A1
∣∣∣B(0)

〉 , (20) R1(p) =

〈
D∗(p‖)

∣∣∣A1
∣∣∣B(0)

〉〈
D∗(p⊥)

∣∣∣A1
∣∣∣B(0)

〉 , (21)

encode the behavior of hA2 (w) and hA3 (w) as

R0 =

√
w2 − 1(1 − hA2 + whA3 )

(1 + w)hA1

, (22) R1 = w −
(w2 − 1)hA3

(1 + w)hA1

. (23)

Preliminary results for hA2 (w) and hA3 (w) are reported in fig. 5.

5.3 Vector form factor

The previously defined quantity XV (w) can be measured as the following ratio of matrix elements:

hV =
RA1
√
w − 1

XV (24) XV (p) =

〈
D∗(p⊥)

∣∣∣V1
∣∣∣B(0)

〉〈
D∗(p⊥)

∣∣∣A1
∣∣∣B(0)

〉 . (25)

When this ratio is expressed in terms of lattice 3-point correlation functions, all the exponentials and
overlap factors are cancelled, and the result yields directly the quotient of form factors we are looking
for. Our preliminary result for hV (w) is shown in the left pane of fig. 4.

5.4 Results for the form factors as a function of the recoil parameter

In figs. 4,5 we show the preliminary results for the axial and vector form factors, with statistical errors
only, without rho factors, and before taking the chiral-continuum extrapolation. It is important to
notice that near zero recoil (for small w − 1), F (w) is dominated by hA1 , because the contributions
from hV , hA2 , and hA3 are suppressed by kinematic factors (see eqs. (7), (8) and (6)).

6 Summary and future work

In this paper we have presented first preliminary results from our lattice QCD calculations of the form
factors for B → D∗`ν at non-zero recoil. Still to be completed are further improvements in the fits
to the correlation functions, after which we plan to study the chiral-continuum extrapolations, use the
z-expansion to parametrize the shape, and construct a complete, systematic error budget.



(a) hV (w) form factor. (b) hA1 (w) form factor.

Figure 4: Preliminary results for hV (w) and hA1 (w) from XV and the double ratio RA1 . The contribution
of hV (w) to F (w) is suppressed due to kinematic factors, and the final result is clearly dominated by
hA1 (w).

(a) hA2 (w) form factor. (b) hA3 (w) form factor.

Figure 5: Preliminary results for hA2 (w) and hA3 (w) from R0 and R1. We expect to reduce the errors
in these form factors when we refine the analysis. However, the contribution of hA2 (w) and hA3 (w)
to F (w) is highly suppressed by kinematic factors at low recoil. Therefore the final total error is
dominated by the errors coming from hA1 (w).
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