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The tensor product of L copies of a single vector, such as pi1 · · ·
piL , can be analyzed in terms of angular momentum. When

pi1 · · · piL is decomposed into a sum of components (pi1 · · · piL)L` ,
each characterized by angular momentum `, the components are
in general complicated functions of the pi vectors, especially so
for large `. We obtain a compact expression for (pi1 · · · piL)L`
explicitly in terms of the pi valid for all L and `. We use this de-
composition to perform three-dimensional Fourier transforms of
functions like pnp̂i1 · · · p̂iL that are useful in describing particle
interactions.

I. Introduction

Three-dimensional Fourier transforms of the general form

In;i1···iL(~r ) =

∫
d3p

(2π)3
ei~p·~r pnp̂i1 · · · p̂iL , (1)

(where p̂ = ~p
p and p = |~p |) have a wide variety of uses. For example,

I−2(~r ) =

∫
d3p

(2π)3
ei~p·~r

1

p2
=

1

4πr
(2)

is the Fourier representation of the Coulomb potential. Two related

transforms that occur in the study of fermion-fermion interactions

2010 Mathematics Subject Classification : 42B10, 33C55, 46N50, 46F10.

Key words and phrases : harmonic analysis; Fourier transforms; applications in

quantum physics; Fourier transforms of distributions.

c© 2018 Allahabad Mathematical Society



66 Gregory S. Adkins

([8], [4], Sect. 39 [3], Sect. 83) are

I−1;i(~r ) =
∫ d3p

(2π)3
ei~p·~r pi

p2
= ix̂i

4πr2
, (3a)

I0;ij(~r ) =
∫ d3p

(2π)3
ei~p·~r

pipj
p2

= 1
3δijδ(~r )− 3

4πr3

(
x̂ix̂j − 1

3δij
)
. (3b)

(In our notation the position vector has components ~r = (x1, x2, x3) =

(x, y, z), and r̂ = ~r
r with components x̂i = xi

r is the associated unit

vector. In order to avoid ambiguity, we will always use subscripts

to indicate Cartesian components of a vector and superscripts to de-

note powers of the magnitude of a vector, so pn = |~p |n is a power

while pi is a component.) The structure of three dimensional Fourier

transforms such as (1) is organized by angular momentum. One sees

that both the original function 1
p2

and the transform 1
4πr of (2) are

scalars under rotation. The original function pi
p2

of (3a) is a vector

with ` = 1 because the components p̂i can be expressed linearly in

terms of spherical harmonics Y m
1 (p̂) with ` = 1. The transform ix̂i

4πr2

of (3a) also has ` = 1 as x̂i can be expressed linearly in terms of

Y m
1 (r̂). The original function in (3b), p̂ip̂j , is a combination of ` = 0

and ` = 2:

p̂ip̂j = (p̂ip̂j)
2
0 + (p̂ip̂j)

2
2 =

(1

3
δij
)

+
(
p̂ip̂j −

1

3
δij
)
, (4)

where (p̂ip̂j)
2
0 = 1

3δij is the ` = 0 component and (p̂ip̂j)
2
2 = p̂ip̂j− 1

3δij

is the ` = 2 component. (In general we will write (pi1 · · · piL)L` for

the component of pi1 · · · piL of angular momentum `.) We know that

(p̂ip̂j)
2
2 has ` = 2 because it can be expressed linearly in terms of

Y m
2 (p̂): (p̂ip̂j)

2
2 =

∑
mC

2m
ij Y

m
2 (p̂). It is apparent that the ` = 0 and

` = 2 components of p̂ip̂j behaves differently under the Fourier trans-

form, acquiring different radial factors. It is generally true that in

transforms like (1) it is useful to decompose p̂i1 · · · p̂iL into compo-

nents of definite ` and deal with each component separately.



ANGULAR DECOMPOSITION OF TENSOR PRODUCTS OF A VECTOR 67

The purpose of this work is to show how the decomposition of

pi1 · · · piL can be done and to give explicit expressions for the com-

ponents of (pi1 · · · piL)L` having various values of angular momentum

`. This is a generalization of (4) to an arbitrary number of vectors

L. Our derivations are presented in terms of unit vectors because the

relation

(pi1 · · · piL)L` = pL (p̂i1 · · · p̂iL)L` (5)

allows us to immediately obtain the general case.

This work is organized as follows. In II we will review the

method for performing three-dimensional Fourier transforms like (1)

making use of angular decomposition. In III we obtain the general

expression for the component of p̂i1 · · · p̂iL of angular momentum `.

In IV, we give some examples and applications of our results. Sec. V

contains a summary and final comments.

More general studies of the relation between Cartesian and

spherical components of tensors have been done, ([9], [10], [17], [22],

[23]) but the results of those studies are not in a form useful for our

purposes here.

II. Three-Dimensional Fourier Transforms Using Angular

Decomposition

A systematic procedure exists for the evaluation of transforms

such as (1) based on the decomposition of p̂i1 · · · p̂iL into components

of definite angular momentum. [1] Our purpose in this section is

to review this procedure. We begin by noting that any function

of angles, such as p̂i1 · · · p̂iL , can be written in terms of spherical

harmonics:

p̂i1 · · · p̂iL =
L∑

`=0or 1

∑̀
m=−`

C`mi1···iLY
m
` (p̂) (6)
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for some constants C`mi1···iL . The values of ` that enter this sum begin

with 0 or 1 depending on whether L is even or odd and go up by 2s

to L. There are no values of ` greater than L because p̂ has ` = 1

and the combination of L objects having ` = 1 can lead to angular

momentum L at the most. Matching the parity (−1)L of p̂i1 · · · p̂iL
to the parity (−1)` of Y m

` (p̂) gives the requirement that only odd or

only even values of ` can contribute. We define (p̂i1 · · · p̂iL)L` to be

the component of p̂i1 · · · p̂iL of angular momentum `

(p̂i1 · · · p̂iL)L` ≡
∑̀
m=−`

C`mi1···iLY
m
` (p̂), (7)

so that

p̂i1 · · · p̂iL =

L∑
`=0or 1

(p̂i1 · · · p̂iL)L` . (8)

It follows that any transform of the form given in (1) can be expressed

as a linear combination of transforms like

In`m(~r ) =

∫
d3p

(2π)3
ei~p·~rpnY m

` (p̂). (9)

It is convenient to express the exponential in (9) as a Rayleigh ex-

pansion: ([25], p. 368), ([16], p. 1466), ([2], p. 770)

ei~p·~r =
∞∑
`=0

i`(2`+ 1)j`(pr)P`(p̂ · r̂), (10)

where the j`(x) are spherical Bessel functions ([2], Sect. 11.7) and the

P`(x) are Legendre polynomials. We substitute (10) into (9) and use

the addition theorem of spherical harmonics ([2], Sect. 12.8])

P`(p̂ · r̂) =
4π

2`+ 1

∑̀
m=−`

Y m
` (r̂)Y m∗

` (p̂) (11)

to factor the angular dependence present in P`(p̂ · r̂) into parts in-

volving the angles of p̂ and r̂ separately. We integrate over the angles
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of p̂ using orthogonality∫
dΩpY

m∗
` (p̂)Y m′

`′ (p̂) = δ``′δmm′ , (12)

where dΩp = dθp sin θpdφp is the element of solid angle for p̂, to write

the transform as

In`m(~r ) =
i`

2π2
Y m
` (r̂)

∫ ∞
0

dp pn+2j`(pr). (13)

The integral

Rn`(r) ≡
∫ ∞
0

dp pn+2j`(pr) (14)

converges for −(`+3) < n < −1 (when n and ` are real, as here), and

has the value Rn`(r) = χn`/r
n+3, where ([14], Integral 6.561, p. 684)

χn` = 2n+1√π
Γ
(
`+3+n

2

)
Γ
(
`−n
2

) . (15)

We can extend the useful range of n by generalizing (14) to

Rn`(r) = lim
λ→0+

∫ ∞
0

dp e−λppn+2j`(pr), (16)

which is also given by Rn`(r) = χn`
rn+3 for all n in the larger range

−(`+ 3) < n < `. When n = ` the integral contains a delta function:

[1]

R``(r) = lim
λ→0+

∫ ∞
0

dp e−λpp`+2j`(pr) =
2π2(2`+ 1)!!

r`
δ(~r ). (17)

We always integrate over the spherical angles before doing the ra-

dial integration as part of the definition of these possibly singular

integrals. (Non-spherical regularization alternatives have been con-

sidered by Hnizdo. [15] More general results for Fourier transforms

of the form (9) have been obtained by Samko. [21]) All in all, we see
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that the initial transform (1) can be written as

In;i1···iL(~r ) =

∫
d3p

(2π)3
ei~p·~r pnp̂i1 · · · p̂iL

=

L∑
`=0or 1

i`

2π2
Rn`(r) (x̂i1 · · · x̂iL)L` , (18)

where (x̂i1 · · · x̂iL)L` is defined in terms of Y m
` (r̂) just as (p̂i1 · · · p̂iL)L`

is in terms of Y m
` (p̂). It follows that if we can arrive at a useful

expression for (p̂i1 · · · p̂iL)L` , then we will be able to perform Fourier

transforms of the form shown in (1) in a systematic way.

III. Angular Decomposition of p̂i1 · · · p̂iL

Our goal in this section is to obtain an explicit and useful ex-

pression for the component (p̂i1 · · · p̂iL)L` of angular momentum `. We

will discuss both a constructive method most useful for low values of

L and a general result valid for all L. Both approaches make use of

the explicit solution for the constants C`mi1···iL in (7):

C`mi1···iL =

∫
dΩp Y

m∗
` (p̂) p̂i1 · · · p̂iL , (19)

obtained through use of the orthogonality of the spherical harmonics.

From this it is easy to see that the constants C`mi1···iL , and thus the

components (p̂i1 · · · p̂iL)L` , are completely symmetric in all indices.

The constructive method also uses the tracelessness of the maximum

angular momentum component (p̂i1 · · · p̂iL)LL, which follows from the

tracelessness of CLmi1···iL , which is a consequence of the fact that an

object composed of L−2 parts, each part of unit angular momentum,

has no overlap with an object of angular momentum L:

CLmi1···iLδiL−1iL =

∫
dΩp Y

m∗
L (p̂) p̂i1 · · · p̂iL−2 = 0. (20)
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The most convenient way to obtain (p̂i1 · · · p̂iL)L` for small val-

ues of L is by straightforward construction. We illustrate the con-

structive approach with a number of examples. The procedure starts

with the maximum angular momentum component (p̂i1 · · · p̂iL)LL, which

is completely symmetric and traceless. This maximum angular mo-

mentum component can be written as p̂i1 · · · p̂iL plus a linear com-

bination of symmetric terms involving fewer momentum factors (but

still with the same parity) added in with unknown coefficients. The

condition of tracelessness determines the coefficients.

As a first example of the constructive approach, consider the

case L = 3. The maximum angular momentum component is

(p̂ip̂j p̂k)
3
3 = p̂ip̂j p̂k −

1

5
(p̂iδjk + p̂jδki + p̂kδij) , (21)

where the −1
5 coefficient was determined by the tracelessness con-

dition. The other component, (p̂ip̂j p̂k)
3
1, is the difference p̂ip̂j p̂k −

(p̂ip̂j p̂k)
3
3:

(p̂ip̂j p̂k)
3
1 =

1

5
(p̂iδjk + p̂jδki + p̂kδij) . (22)

It is clear that (p̂ip̂j p̂k)
3
1 has ` = 1 because each of its terms is linear

in p̂.

As a second example of explicit construction, we consider the

term with L = 4. The term with maximal angular momentum is

(p̂i1 p̂i2 p̂i3 p̂i4)44 = p̂i1 p̂i2 p̂i3 p̂i4 −
1

7
(p̂i1 p̂i2δi3i4 + perms)6 terms

+
1

35
(δi1i2δi3i4 + perms)3 terms , (23)

where the coefficients −1
7 and 1

35 were obtained by applying the trace-

lessness condition. We are only writing one representative permuta-

tion of indices–the others are represented by “+ perms” and an indi-

cation of how many independent permutations in all there are. We
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identify the ` = 2 component (p̂i1 p̂i2 p̂i3 p̂i4)42 by isolating the term in

the difference p̂i1 p̂i2 p̂i3 p̂i4 − (p̂i1 p̂i2 p̂i3 p̂i4)44 that is quadratic in p̂ and

subtracting the appropriate momentum-independent terms so that

each part of (p̂i1 p̂i2 p̂i3 p̂i4)42 has ` = 2:

(p̂i1 p̂i2 p̂i3 p̂i4)42 =
1

7

(
(p̂i1 p̂i2)22 δi3i4 + perms

)
6 terms

. (24)

The ` = 0 component is the remainder:

(p̂i1 p̂i2 p̂i3 p̂i4)40 =
1

15
(δi1i2δi3i4 + perms)3 terms . (25)

We have also constructed the L = 5 decomposition and just

give the results:

(p̂i1 p̂i2 p̂i3 p̂i4 p̂i5)55 = p̂i1 p̂i2 p̂i3 p̂i4 p̂i5 −
1

9
(p̂i1 p̂i2 p̂i3δi4i5 + perms)10 terms

+
1

63
(p̂i1δi2i3δi4i5 + perms)15 terms , (26a)

(p̂i1 p̂i2 p̂i3 p̂i4 p̂i5)53 =
1

9

(
(p̂i1 p̂i2 p̂i3)33 δi4i5 + perms

)
10 terms

, (26b)

(p̂i1 p̂i2 p̂i3 p̂i4 p̂i5)51 =
1

35

(
p̂i1δi2i3δi4i5 + perms

)
15 terms

. (26c)

The basis of our general construction of (p̂i1 · · · p̂iL)L` is an in-

ductive argument using a recursion relation giving a component with

angular momentum ` in terms of components with lower values of `.

We will propose a general expression for (p̂i1 · · · p̂iL)L` and show that it

satisfies both the recursion relation and the appropriate initial values.

We can obtain a useful expression for (p̂i1 · · · p̂iL)L` by using

(19) in (7) along with the addition theorem for spherical harmonics:

(p̂i1 · · · p̂iL)L` =

∫
dΩp′ p̂

′
i1 · · · p̂

′
iL

∑̀
m=−`

Y m∗
` (p̂′)Y m

` (p̂)

= (2`+ 1)

∫
dΩp′

4π
p̂′i1 · · · p̂

′
iL
P`(p̂

′ · p̂). (27)



ANGULAR DECOMPOSITION OF TENSOR PRODUCTS OF A VECTOR 73

It can be seen from this expression both that (p̂i1 · · · p̂iL)L` = 0 for

` > L, and that (p̂i1 · · · p̂iL)L` = 0 unless L − ` is even (by use of a

parity argument). For any particular value of ` we could write out

P`(p̂
′ · p̂) as a polynomial of order ` and perform the angular integral

using ([7], Appendix A)∫
dΩ

4π
x̂i1 · · · x̂iN =

δN,even
(N + 1)!!

(
δi1i2 · · · δiN−1iN + perms

)
(N−1)!! terms

.

(28)

(We use the value (−1)!! = 1 where necessary.) It is easy to perform

the integral in (27) for ` = 0 and ` = 1 where P0(p̂
′ · p̂) = 1 and

P1(p̂
′ · p̂) = p̂′ · p̂ = p̂′j p̂j (with an implied sum over j from 1 to 3).

One finds that

(p̂i1 · · · p̂iL)L0

=

∫
dΩp′

4π
p̂′i1 · · · p̂

′
iL

=
δL,even

(L+ 1)!!

(
δi1i2 · · · δiL−1iL + perms

)
(L−1)!! terms

, (29a)

(p̂i1 · · · p̂iL)L1

= 3

∫
dΩp′

4π
p̂′i1 · · · p̂

′
iL
p̂′j p̂j = 3 (p̂i1 · · · p̂iL p̂j)

L+1
0 p̂j

=
3δL,odd

(L+ 2)!!

(
p̂i1
(
δi2i3 · · · δiL−1iL + perms

)
(L−2)!! terms

+ perms
)
L terms

.

(29b)

These results will serve as initial values for the inductive argument.

The recursion relation for (p̂i1 · · · p̂iL)L` is

(p̂i1 · · · p̂iL)L` =
2`+ 1

`

{
(p̂i1 · · · p̂iL p̂j)

L+1
`−1 p̂j −

`− 1

2`− 3
(p̂i1 · · · p̂iL)L`−2

}
,

(30)



74 Gregory S. Adkins

which follows from (27) and the recursion relation for Legendre poly-

nomials

`P`(x) = (2`− 1)xP`−1(x)− (`− 1)P`−2(x). (31)

In order to write down a general expression for (p̂i1 · · · p̂iL)L`
and perform the inductive proof of its correctness it will be useful

to introduce a little notation. First, we will use the usual summa-

tion symbol to represent a ‘sum over permutations’ instead of the ‘+

perms’ notation used up until now. Specifically, we will write∑
(L−1)!!

(
δi1i2 · · · δiL−1iL

)
(32)

for the sum over the (L−1)!! independent permutations of the indices

of the quantity in parentheses. This sum over permutations doesn’t

include ones that trivially equal one another, which is why there are

only (L− 1)!! permutations in (32), but would be L! permutations in

a sum over permutations of A1
i1
· · ·ALiL , but only one in a sum over

permutations of Si1···iL if Si1···iL is completely symmetric. Also, we

define the new symbol

XL,`
i1···iL ≡

∑
(L`)

(
p̂i1 · · · p̂i`

∑
(L−`−1)!!

(
δi`+1i`+2

· · · δiL−1iL

))
(33)

to represent the completely symmetric object with L indices formed

of ` momentum unit vectors and L−`
2 Kronecker deltas. The

(
L
`

)
notation represents the combinatoric factor L!

`!(L−`)! for the number

of ways to pick ` indices out of a collection of L indices. We can

represent XL,`
i1···iL slightly more compactly as

XL,`
i1···iL =

∑
(L`)(L−`−1)!!

(
p̂i1 · · · p̂i`δi`+1i`+2

· · · δiL−1iL

)
. (34)
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We note that the XL,`
i1···iL symbol only makes sense when L and ` are

either both even or both odd–we define it to be zero otherwise. We

also define XL,`
i1···iL to be zero if L or ` is negative or if ` is greater

than L. With the new notation we can write the results of (29) as

(p̂i1 · · · p̂iL)L0 =
1

(L+ 1)!!
XL,0
i1···iL , (35a)

(p̂i1 · · · p̂iL)L1 =
3

(L+ 2)!!
XL,1
i1···iL . (35b)

Identities among XL,`
i1···iL quantities can often be found by sim-

ple counting. For instance, consider the following identity for the

symmetrized product of two Xs:

∑
(L+N

L )

(
XL,`
i1···iLX

N,n
iL+1···iL+N

)
= κXL+N,`+n

i1···iL+N
. (36)

Both sides of (36) involve the same set of L + N indices, both are

symmetric in all indices, and both have exactly ` + n momentum

unit vectors in each term, so the two sides of (36) are proportional.

Since all terms enter with the same sign and there are no cancel-

lations, the constant of proportionality κ can be found simply by

counting the total number of terms on each side. On the left there

are
(
L+N
L

)(
L
`

)
(L− `− 1)!!

(
N
n

)
(N −n− 1)!! terms, while on the right

there are
(
L+N
`+n

)
(L + N − ` − n − 1)!! terms. The constant κ is the

ratio:

κ =
(L+N − `− n

L− `

)(`+ n

`

)(L− `− 1)!!(N − n− 1)!!

(L+N − `− n− 1)!!
. (37)

Two additional identities that will be useful to us involve the

contractionXL,`
i1···iL p̂iL of anX with p̂ and the contractionXL,`

i1···iLδiL−1iL
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of two indices of an X. For the first identity, we note that

XL,`
i1···iL =

∑
(L−1

` )

(
p̂i1 · · · p̂i`

∑
(L−`−1)!!

(
δi`+1i`+2

· · · δiL−1iL

))
+
∑

(L−1
`−1 )

(
p̂i1 · · · p̂i`−1

p̂iL
∑

(L−`−1)!!

(
δi`i`+1

· · · δiL−2iL−1

))
,

(38)

where in the first term it is understood that index iL is definitely on

a δ, while in the second term index iL is attached to a p̂. Contraction

with p̂iL then gives two corresponding terms: p̂iL times the first term

of (38) has L − 1 indices and ` + 1 factors of p̂, while p̂iL times the

second term of (38) has L− 1 indices and only `− 1 powers of p̂, so

that XL,`
i1···iL p̂iL = αXL−1,`+1

i1···iL−1
+ βXL−1,`−1

i1···iL−1
for some constants α and

β. Counting terms allows us to identity the constants to be α = `+1

and β = 1, so that

XL,`
i1···iL p̂iL = (`+ 1)XL−1,`+1

i1···iL−1
+XL−1,`−1

i1···iL−1
. (39)

For the second identity we write XL,`
i1···iL as

XL,`
i1···iL =

∑
(L−2

` )

(
p̂i1 · · · p̂i`

{ ∑
(L−`−3)!!

(
δi`+1i`+2

· · · δiL−1iL

)
+

∑
(L−`−2)(L−`−3)!!

(
δi`+1i`+2

· · · δiL−3iL−1δiL−2iL

)})
+
∑

(L−2
`−1 )

(
p̂i1 · · · p̂i`−1

p̂iL−1

∑
(L−`−1)!!

(
δi`i`+1

· · · δiL−2iL

))
+
∑

(L−2
`−1 )

(
p̂i1 · · · p̂i`−1

p̂iL
∑

(L−`−1)!!

(
δi`i`+1

· · · δiL−2iL−1

))
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+
∑

(L−2
`−2 )

(
p̂i1 · · · p̂i`−2

p̂iL−1 p̂iL
∑

(L−`−1)!!

(
δi`−1i` · · · δiL−3iL−2

))
,

(40)

where it is understood that in the first two terms the indices iL−1

and iL are definitely on δs, on the same δ in the first and on different

δs in the second; in the third term iL−1 is on a p̂ while iL is on a δ;

in the fourth iL is on a p̂ and iL−1 on a δ; and in the last term both

iL−1 and iL are on p̂s. Contraction of iL−1 with iL gives rise to two

structures: XL,`
i1···iLδiL−1iL = ρXL−2,`

i1···iL−2
+ σXL−2,`−2

i1···iL−2
, with the first

four terms of (40) contributing to ρ and only the last contributing to

σ. Again, we use term counting to identify values for ρ and σ, finding

ρ = L+ `+ 1 and σ = 1. (The four contributions to ρ are, in order,

3, L− `− 2, ` and `.) The final form of the contraction identity is

XL,`
i1···iLδiL−1iL = (L+ `+ 1)XL−2,`

i1···iL−2
+XL−2,`−2

i1···iL−2
. (41)

We propose the following form for the general decomposition

formula

(p̂i1 · · · p̂iL)L` =
(2`+ 1)(L− `− 1)!!

(L− `)!(L+ `+ 1)!!

∑̀
n=0or 1

(−1)
`−n
2 ×

(L− n)!(`+ n− 1)!!(`− n− 1)!!

(`− n)!(L− n− 1)!!
XL,n
i1···iL , (42)

where the sum starts with n = 0 and includes only even values of

n if ` is even, otherwise it starts with n = 1 and includes only odd

values of n if ` is odd. We proceed to verify the correctness of this

formula by: (i), showing that it is consistent with the initial values of

(35a), (35b); and (ii), verifying that it satisfies the recursion relation

(30). Verification of consistency with the initial values is immediate

by substituting ` = 0 and ` = 1 into (42) and noting that in each case

there is only one term in the sum and that it agrees with (35a), (35b).
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For step (ii), verification that (42) satisfies the recursion relation (30),

we substitute (42) into the right hand side of (30) and obtain two

terms. The first of these is

2`+ 1

`

(2`− 1)(L− `+ 1)!!

(L− `+ 2)!(L+ `+ 1)!!

`−1∑
n′=0or 1

(−1)
`−n′−1

2 ×

(L− n′ + 1)!(`+ n′ − 2)!!(`− n′ − 2)!!

(`− n′ − 1)!(L− n′)!!

(
(n′ + 1)XL,n′+1

i1···iL +XL,n′−1
i1···iL

)
(43)

and the second is

− 2`+ 1

`

`− 1

2`− 3

(2`− 3)(L− `+ 1)!!

(L− `+ 2)!(L+ `− 1)!!

`−2∑
n=0or 1

(−1)
`−n−2

2 ×

(L− n)!(`+ n− 3)!!(`− n− 3)!!

(`− n− 2)!(L− n− 1)!!
XL,n
i1···iL . (44)

We shift the summation index in the first part of (43) according to

n′ −→ n− 1 and in the second part by n′ −→ n+ 1, so that all terms

are proportional to XL,n
i1···iL . We add the two parts of (43) to (44)

and, after some algebraic simplification, find that the sum is equal

to (42). Thus (42) satisfies the recursion relation and by induction

is correct for all values of `. (An expression consistent with (42)

is given in ([5], [6]) but is more general because not restricted to

three dimensions of space. The consistency of (42) with Theorem 1

of ([5], [6]) is established through use of the identity ∆npi1 · · · piL =

2nn!pL−2nXL,L−2n
i1···iL , where ∆ is the Laplacian.)

It is useful to find an expression for the component of p̂i1 · · · p̂iL
having maximal angular momentum. With ` −→ L in the general

decomposition formula (42) we find that

(p̂i1 · · · p̂iL)LL =
L∑

n=0or 1

(−1)
L−n
2

(L+ n− 1)!!

(2L− 1)!!
XL,n
i1···iL . (45)
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This expression is traceless on all pairs of indices as required by (20)

and as can be confirmed by applying the trace identity (41) to (45).

Using (45), the product identity (36), and expression (35a) for

(p̂i1 · · · p̂iL)L0 , it is easy to see that (p̂i1 · · · p̂iL)L` can be written in an

alternative, and illuminating, form:

(p̂i1 · · · p̂iL)
L
` =

(2`+ 1)!!(L− `+ 1)!!

(L+ `+ 1)!!

∑
L
`


(p̂i1 · · · p̂i`)

`
`

(
p̂i`+1

· · · p̂iL
)L−`

0
.

(46)

This form displays clearly the fact that every sub-part of (p̂i1 · · · p̂iL)L`
has angular momentum ` among some subset of momentum unit vec-

tors and angular momentum zero among the rest. This behavior is

illustrated by the examples shown in (24), (26b), and (26c) (since

(p̂i)
1
1 = p̂i).

IV. Applications

As discussed in [1] and Sec. II, a useful class of three-dimensional

Fourier transforms (that of functions like pnp̂i1 · · · p̂iL) can be conve-

niently done after separation of the various angular momenta in the

tensor product. With a Fourier transform pair Φ(~p ) and Ψ(~r ) defined

through

Ψ(~r ) =

∫
d3p

(2π)3
ei~p·~rΦ(~p ), (47a)

Φ(~p ) =

∫
d3r e−i~p·~rΨ(~r ), (47b)

it is generally true that the angular momenta of Φ(~p ) and Ψ(~r ) are

the same. It follows that the transform pairs can be represented by

Φ(~p ) = φ(p)Y m
` (p̂) ⇐⇒ Ψ(~r ) = ψ(r)Y m

` (r̂) (48)
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or

Φ(~p ) = φ(p) (p̂i1 · · · p̂iL)L` ⇐⇒ Ψ(~r ) = ψ(r) (x̂i1 · · · x̂iL)L` , (49)

where the radial functions φ(p) and ψ(r) are related by

ψ(r) =
i`

2π2

∫ ∞
0

dp p2j`(pr)φ(p), (50a)

φ(p) = 4π(−i)`
∫ ∞
0

dr r2j`(pr)ψ(r). (50b)

In the case that φ(p) = pn the transform is ψ(r) where

ψ(r) =


i`

2π2
χn`
rn+3 −(`+ 3) < n < ` ,

i`(2`+1)!!
r`

δ(~r ) n = ` .

(51)

Since the transform pair (50a), (50b) is essentially the Hankel

transform, ([18], [11], Sect. 15) many additional φ, ψ pairs are also

available, for example those that relate momentum space and coordi-

nate space versions of the Coulomb wave functions. [19] Results for

the examples given in Sec. I are immediate consequences of angular

decomposition and the transforms contained in (51).

An interesting use of Fourier transforms of the type considered

here is to find unusual differential identities. Consider the Fourier

transform of f(p) (pi1 · · · piL)L` . The momentum vectors can be con-

verted into derivatives when acting on the exponential in the Fourier

transform, leading to∫
d3p

(2π)3
ei~p·~rf(p) (pi1 · · · piL)L` = (−i)L (∂i1 · · · ∂iL)L`

∫
d3p

(2π)3
ei~p·~rf(p).

(52)

On the other hand, the transform can be evaluated explicitly using

(51). Comparison leads to a differential identity. For example, com-

parison of the two approaches for the transform of 1
p2

(pi1 · · · pik)kk



ANGULAR DECOMPOSITION OF TENSOR PRODUCTS OF A VECTOR 81

leads to the identity

(∂i1 · · · ∂ik)kk
1

r
=

(−1)k(2k − 1)!!

rk+1
(x̂i1 · · · x̂ik)kk . (53)

(The same identity expressed in terms of spherical harmonics has

been given by Rowe. [20] General derivatives of inverse powers of r

have been worked out by Estrada and Kanwal from a distribution

point of view. [12]) For k = 2, and with use of the Poisson equation

∂2 1r = −4πδ(~r ), one obtains the familiar identity ([13], [26])

∂i∂j
1

r
= −4π

3
δijδ(~r ) +

3

r3
(
x̂ix̂j −

1

3
δij
)
, (54)

as also follows from (3b) of Sec. I. A second interesting identity of

this class follows from consideration of the transform of (pi1 · · · pik)kk:

(∂i1 · · · ∂ik)kk δ(~r ) =
(−1)k(2k + 1)!!

rk
(x̂i1 · · · x̂ik)kk δ(~r ). (55)

Other differential identities can be obtained as easily.

V. Conclusion

Decomposition of tensor products of a vector is useful for many

purposes. For example, in quantum mechanics, if one knows the an-

gular momentum structure of an operator, one can bring the powerful

and efficient methods of general angular momentum theory to bear

on a calculation of matrix elements or expectation values. [24] As

one simple example, we define the angular integral

K ≡
∫
dΩp Y

m∗
` (p̂) (p̂i1 p̂i3 p̂i3)33 (p̂i4)11

=

∫
dΩp Y

m∗
` (p̂)

{
pi1pi2pi3 −

1

5

(
pi1δi2i3 + pi2δi3i1 + pi3δi1i2

)}
pi4 .

(56)
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The general rules for the combination of angular momentum assure

us that the integral K vanishes unless ` = 4 or ` = 2. We know

this because the combination of two objects with angular momenta

3 and 1 gives (3 − 1) ≤ `tot ≤ (3 + 1) where the combined angular

momentum `tot is an integer, and is even since parity is preserved. As

another important use of angular decomposition, we have seen that

Fourier transforms involving tensor products of vectors are organized

according to angular momentum. For example, the transform

I0;ijk(~r ) =

∫
d3p

(2π)3
ei~p·~r p̂ip̂j p̂k (57)

is evaluated by decomposing the product p̂ip̂j p̂k into its angular mo-

mentum components (p̂ip̂j p̂k)
3
3 and (p̂ip̂j p̂k)

3
1 as in (21) and (22) and

using the results of the previous section:

I0;ijk(~r )

=
3∑

`=1, odd

i`

2π2
χ0`

r3
(x̂ix̂j x̂k)

3
` =

i

2π2
2

r3
(x̂ix̂j x̂k)

3
1 −

i

2π2
8

r3
(x̂ix̂j x̂k)

3
3

=
−i
π2r3

{
4x̂ix̂j x̂k − (x̂iδjk + x̂jδki + x̂kδij)

}
. (58)

In this work we have given explicit and convenient expressions

for the various angular momentum components of a tensor product

of vectors. Specifically, (42) expresses the angular momentum ` com-

ponent of the tensor product p̂i1 p̂i2 · · · p̂iL in terms of the elementary

XL,n
i1···iL objects, while (45) and (46) together give an especially com-

pact form for the same thing. These expressions are the main results

of this paper.

In closing, we make note of a curious and nontrivial summation

identity that holds for non-negative integers L and n with L ≥ n and
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L and n either both even or both odd:

L∑
`=n

(−1)
`−n
2 (2`+ 1)(L− `− 1)!!(`+ n− 1)!!(`− n− 1)!!

(L− `)!(L+ `+ 1)!!(`− n)!
= δn,L,

(59)

where the sum is over even or odd ` depending on whether L and n are

even or odd. This summation identity is derived from (8) expressing

p̂i1 · · · p̂iL as a sum of angular momentum components (p̂i1 · · · p̂iL)L`
when (42) is used to give an explicit formula for (p̂i1 · · · p̂iL)L` followed

by interchange of the order of summation.
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