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A More Sums Than Differences (MSTD) set is a set A for which |[A+A| > |A—A|. Martin
and O’Bryant proved that the proportion of MSTD sets in {0, 1,...,n} is bounded below
by a positive number as n goes to infinity. Iyer, Lazarev, Miller and Zhang introduced
the notion of a generalized MSTD set, a set A for which [sA — dA| > |cA — §A| for a
prescribed s + d = o + §. We offer efficient constructions of k-generational MSTD sets,
sets A where A, A+ A, ... kA are all MSTD. We also offer an alternative proof that the
proportion of sets A for which |sA — dA| — |0 A — §A| = x is positive, for any z € Z. We
prove that for any € > 0, Pr(1 — e < log [sA — dA|/log|cA — §A| < 1+ €) goes to 1 as
the size of A goes to infinity and we give a set A which has the current highest value
of log|A + Al/log|A — A|. We also study decompositions of intervals {0,1,...,n} into
MSTD sets and prove that a positive proportion of decompositions into two sets have
the property that both sets are MSTD.
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1. Introduction

A More Sums Than Differences (MSTD) set is a set A where the sumset of A,

denoted A+ A = {a1 + a2 : a1,a2 € A}, has a greater cardinality than the
difference set, A— A = {a1 —as : a1,as € A}. Since addition is commutative while
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subtraction is not, it is reasonable to expect the difference set to be larger than the
sumset in most cases; such sets are said to be difference-dominated, while sets where
|A+ A| = |A — A| are called sum-difference balanced. Interestingly, while most sets
of {0,1,...,n} are difference dominated as n — oo, Martin and O’Bryant [5] proved
that a positive percentage are sum-dominated. They predict an expected limiting
density of MSTD sets of about 4.5 x 10~%; the best lower bound at the time of
writing is due to Zhao [15]: 4.28 x 10~%.
Conway found the first example of an MSTD set

{0,2,3,4,7,11,12,14}

in the 1960’s. Hegarty later proved that there were no MSTD sets of smaller
cardinality [2]. While some work has been generalized to MSTD sets in abelian
groups [8,[12,[17], we concern ourselves with MSTD sets A with A C Z. Some
progress has been made in constructing infinite families of such sets [2L6L[7LOHT5], as
well as MSTD sets with additional properties. One example is due to Iyer, Lazarev,
Miller and Zhang [4], who developed constructions for generalized MSTD sets, sets
A that satisfy [sA — dA| > |0 A — 6 A| for a given s+ d = o + ¢. This provided them
with the framework to construct k-generational sets, a rarer class of MSTD sets A
for which A, A+ A, ..., kA are all sum-dominant.

A unifying strategy used throughout this paper is the manipulation of fringe
pairs, a concept introduced by Zhao [I6] (see Definition 2XT]). Our first set of results
concern fringe constructions for generalized MSTD sets that are much more efficient
than the ones in [4]. Before stating these we first set some notation:

|A| is the cardinality of A,

[a,b] = {a,a+1,...,b},

emA = {3 " a;:a; € A} for m > 1 (note this is not m times each
element of A),

em-A = {ma:ac A},

o —A = {—-a:a€ A}, —-mA=—(mA),

e A° = [min A, max A] \ A.

Our first result significantly improves upon the constructions of k-generational
sets given by Iyer et al. [4], which used base expansion and therefore yielded sets A
which grow astronomically with k.

Theorem 1.1. For any q > 2, there exists a set A with |A] = O(q?) such that for
all s+d= o0+ 6§ with s > o,

|sA—dA| > [cA— A (1.1)
Further, given k > 0 there exists a k-generational set A with |A| = O(k).

We prove Theorem[TTlin §3.21 Our constructions generate explicit k-generational
sets that are much smaller than those previously constructed, making them far easier
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to manipulate and verify. We then apply the fringe pairs framework to give a new
proof of the following result in §4.2

Theorem 1.2. For any x € Z and 0 < d < § < o < s with s+d = o + 0, the
proportion of A C [0,n] such that |sA — dA| —|cA — §A| = x is bounded below by a
positive number as n goes to infinity.

We also study the values of log |sA—dA|/ log|c A—§ A|. These are natural objects
to study as they normalize the excess of one generalized sum or difference set relative
to the number of elements of that set. In other words, if we want to construct a
set with many more sums than differences we don’t want to do so through base
expansion and taking exponentially large sets; we want to construct small sets with
the desired excess. The quantity log |A+ A|/log|A— A| was studied by Ruzsa in [14],
where he proved that there are a “multitude” of sets with log|A+ A|/log|A— A| >
1 + ¢ with ¢ > 0. Precisely, he proved that there exists ¢ > 0 such that for every
sufficiently large n there exists a set such that

Al = n, [A=A] < 2*7° [A+A] = n®/2-n"",
or in other words, log |A+ A|/log |A—A| > 1+c¢; where ¢; > 0. We show that for any
€ > 0 there are not enough sets A C [0,n] with log|sA — dA|/log|cA—JA| >1+e¢

to constitute a positive proportion. In fact, we prove a stronger statement about

|sA —dA|/|cA—dA| in §5.2

Theorem 1.3. Choosing subsets A C [0,n] uniformly, for every e > 0 we have

) log|sA — dA]
lim Pr{1-— — <1 =1. 1.2
e r< ““logloAd—sa] < T€ (12)
In fact,
. s+d—1  [sA—dA| s+d
lim P = 1. 1.3
e r( s+d JoA—6A] Sstd—1 (13)
We also construct a set A for which
log|A + A] log 892
= = 1.02313 1.4
log |A — A] log 765 ’ (14)
which is larger than the previous largest value of
log|A+ A log 91
op|A+ Al _ log9l ) o0 (1.5)

log|A— Al  log83

found in [21[5].
Finally, we investigate decompositions of the interval [0,n] into two disjoint
MSTD sets in §6l It turns out that a positive proportion of decompositions of [0, n]

into two disjoint sets have the property that both components are MSTD. If both
A C[0,n] and [0,n] \ A are MSTD, we say that A is bi-MSTD.

Theorem 1.4. Let A be a uniform random subset of [0,n] with n > 19. Then the
probability that A is bi-MSTD is bounded below by a positive number (and there are
no bi-MSTD sets for n < 19).
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The proof of Theorem [[4]is given in §6.21

The paper is organized as follows. We define fringe pairs and prove some needed
properties in §21 We then prove our results on efficient k-generational constructions
in §3] on arbitrary differences in § on the ratio of the logarithms in §5 and bi-
MSTD sets in §6l We conclude in §7l with topics for future investigations.

2. Background
2.1. Definitions

Martin and O’Bryant used the idea that the fringes of A essentially determine
whether or not A is MSTD, as the middle does not contribute as much to |A +
Al — |A — A| since almost all middle elements of the sum and difference set are
attained [5]. This is because the number of elements of a set A chosen uniformly
among subsets of [0,n] is tightly concentrated around (n + 1)/2, and there are
so many ways of writing middle numbers as a sum or difference that with high
probability all are realized. Zhao built on these ideas to prove that the proportion
of MSTD sets in [0,7n] converges as n goes to infinity. We extend many of Zhao’s
definitions and results in [16] to the setting of generalized MSTD sets. Of particular
interest are Definition 2.1] and Definition 23] which define fringe pairs and rich
sets for generalized MSTD sets. The results in this section will prove valuable in
the proofs of our main results in Sections 3.2] [£.2] and In the following, we fix
s+d=o0+46.

Definition 2.1. Let s,d, 0,0 be non-negative integers such that 0 < d <j <o <s
and s +d =0+ 0. A generalized MSTD fringe pair of order k for (s,d),(c,0) is a
pair (L, R; k) such that L, R C [0,k] with 0 € L, R and

|(sL +dR) N [0,k]| + |(sR+ dL) N[0, k]|
> |(cL+6R)N[0,k]| + |(cR+ 6L) N[0, k]|. (2.1)

We impose an order on the set of generalized MSTD fringe pairs by having
(L,R; k) < (L',R';K) if k <k and

L = L'n[0,k, R=RnNI[0k, [k+1,K]CsL +dR, sR +dL. (2.2)

(L,R; k) < (L', R'; k') is defined as expected with k < k" as well as the stipula-
tions listed in (Z.1I).

Definition 2.2. A minimal generalized MSTD fringe pair is a pair (L, R; k) such
that (L, R; k) < (L', R'; k') for all generalized MSTD fringe pairs (L', R'; k") with
K > k.
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We later use the partial order of generalized MSTD fringe pairs to reduce the
study of all generalized MSTD fringe pairs to simply the minimal ones.

Definition 2.3. A set A C [0,n] is a k-rich set with MSTD fringe pair (L, R; k) if
2k < m, AN[0,k] = L, ANfn—k,n] = n—R,
k+1,2n—k—-1] C A+ A. (2.3)

When we do not specify a fringe pair and say A is k-rich, we often simply mean
[k+1,2n—k—1] C A+ A. Sometimes we simply say that A is rich if k is clear
from the context.

2.2. Important Characteristics of Rich Sets

It turns out that a rich set with generalized MSTD fringe pair (L, R; k) is a gen-
eralized MSTD with respect to (s,d), (0,6) (Lemma [ZH]). We first prove a simple
lemma.

Lemma 2.4. A k-rich set A C [0,n] has the property

[dn+k+1,sn—k—1] C sA—dA (2.4)
for any s +d > 2.
Proof. Suppose without loss of generality that s > d. For d > s, simply switch

the roles of s and d. Since s +d > 2 and s > d, we have s > 2. Thus s4A — dA =
2A+ (s — 2)A — dA. Then

24+ (s—2)A—dA D [k+1,2n—k—1]+ (s—2)A—dA
D k+1,2n—k—-1]+4 (s —2){0,n} — d{0,n}
= [-dn+k+1,sn—Fk—1] (2.5)
since [k+1,2n—k—1Un+k+1,3n—k—1U{2n} =[k+1,3n—k — 1] and so
on. |

Lemma 2.5. Let0<d<d<o<sand s+d=0c+0d. A rich set A C [0,n] with
generalized MSTD fringe pair (L, R; k) satisfies |sA — dA| > |0 A — 0A]|.

Proof. We split sA — dA into two portions, the fringe and the middle. We assert
the following two statements, which are sufficient to prove the lemma:

[(sA —dA) N ([—dn,—dn + k] U [sn — k, sn])]|
> |(6A = 0A)N([—on, —on+ k] U[on —k,on])| (2.6)
and
[(sA—dA)N[—dn+k+1,sn—k—1]|
> |(cA=0A)N[-dn+k+1on—k—-1]]. (2.7)
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Since A is a rich set, (sA — dA) D [-dn+k +1,sn — k — 1]. Thus (27 follows. To
show (2.6]), we notice that

|[(sA —dA) N ([—dn,—dn + k] U [sn — k, sn])|
= |(sA—dA)N[—dn,—dn+ k]| + |(sA— dA) N[sn — k,sn]|. (2.8)

Since A C [0,n] has generalized MSTD fringe pair (L, R; k), we have L = AN [0, k]
and R=n— (AN [n— k,n]). Using = to denote equivalence under translation and
dilation, we find

(sL + dR) N [0, k]

(s(AN[0,k]) +dn—d(AN[n—k,n])) N[0,k
(s(AN[0,k]) —d(AN[n—k,n]))N[—dn,—dn + k]
= (sA—dA)N[—dn,—dn + k. (2.9)

1

Similarly, we have

(sR+dL)N[0,k] = (sn—s(AN[n—k,n|)+d(ANI0,k])) N[0, k]

~ (s(AN[n—k,n])—d(ANJ0,k])) N[sn — k, sn]
= (sA—dA)N[sn —k,sn]. (2.10)
Now (26]) follows from the definition of a generalized MSTD fringe pair. |

2.3. Minimal Fringe Pairs

Now we show that the order we imposed on fringe pairs earlier is completely deter-
mined by k, k' for fringe pairs (L, R; k) and (L', R’; k") corresponding to a rich set
A C[0,n].

Lemma 2.6. Let A C [0,n] be a rich set. Let (L, R;k) and (L', R'; k') be two

generalized MSTD fringe pairs corresponding to A. If k = k', then (L,R;k) =

(L',R; K. If k < K, then (L, Ry k) < (L', R'; k).

Proof. The first statement follows trivially. If k¥ < k', then we need to show
L=L'n[0,k], R=RNI[0,k], [k+1,K]CsL +dR' sR +dL'

We have AN[0,k] = L, AN[0,k'] = L', and the analogous statements for R and R'.
Since k < k', L =AN[0,k] = (AN0,k'])N[0,k] = L' N[0, k]. The same holds for
R and R’. Finally, we have

[~dn+K +1,sn—k' —1] C [-dn+k+1,sn—k—1] C sA—dA.
Thus
[~dn+k+1,—dn+k] C sA—dA, [sn—k—1,sn—k] C sA—dA.

An argument from the proof of Lemma shows that [—dn + k + 1, —dn + k'] C
sA—dA <= [k+1LK]CsL+dRand [sn—k—1,sn—Fk] C sA—dA —
[k +1,k'] € sR+ dL. Therefore (L, R; k) < (L', R'; k). O
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Lemma 2.7. Let (L, R; k) be the minimal generalized MSTD fringe pair of a rich
set A C [0,n]. Then (L, R;k) is minimal in the partial ordering of all generalized
MSTD fringe pairs. Also, for every k < k' < n/2, (L', R'; k') is also a generalized
MSTD fringe pair of A, where L' = AN[0,K'],R' = (n — A)N[0,k'], and every
generalized MSTD fringe pair of A has this form.

Proof. Suppose (L, R; k) is not minimal. Then there is a generalized MSTD fringe
pair (L', R'; k') < (L,R; k). So k' < k and

L'=LNn[0,k]), R =Rn[0,K], [k+1,k]CsL +dR sR +dL

This implies that [k+1,2n—k—1] C A+ A and therefore A is rich with generalized
MSTD fringe pair (L', R’; k') as well, which contradicts the minimality of (L, R; k)
when attached to A.

So (L, R; k) is the minimal generalized MSTD fringe pair of A. Take k < k.
Then the only possible generalized MSTD fringe pair is (L', R'; k") where

L' = An[0,k], R = An][0,k].

By the previous lemma, (L', R'; k') > (L, R; k). A simple computation confirms that
(L', R'; k') is also a generalized MSTD fringe pair. O

The above results show that we may count all generalized MSTD sets by count-
ing all minimal generalized MSTD fringe pairs.

Remark 2.8. Tyer et al. [4] proved that the proportion of generalized MSTD sets
is bounded below by a positive number as n goes to infinity. Zhao’s methods should
easily generalize to show that this proportion converges. Our definition of a rich set
is identical to Zhao’s. The only difference is the nature of the fringe pairs, but the
fringe pairs are not involved in the proof of convergence.

Zhao introduced k-affluent sets, sets A for which [k+1,2n —k—1 C A+ A
and [-n+k+1,n—k—1] C A— A (see Definition .T]), in order to show that for
any m € Z the proportion of A which satisfy |A + A| — |A — A| = m converges as
n — oo. The analogous result for generalized MSTD sets does not require affluent
sets (we use affluent sets in this paper, albeit for a different purpose). Since we may
assume that s+d =o0+9 > 3, both sA—dA and 0 A — § A contain a copy of A+ A,
up to a minus sign. Thus all the convergence results in [I6] should be applicable to
the generalized MSTD case. We do not pursue this path as it is too repetitive to
merit detailing.

3. Efficient constructions of k-generational sets and their
generalizations

3.1. Previous Constructions

In [4], Iyer et al. gave a construction of k-generational sets, which are sets A such
that A, A+ A, ..., kA are all MSTD. The primary tool was a technique called base
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expansion, summarized in the following proposition.

Proposition 3.1 (Iyer et al. [4]). Fiz a positive integer k. Say A1, ..., Ay C ZT.
Choose some m > k-max(UF_| Ay). Let C = Ay +m - Ag+ - +mF~1 . Ay, where
- denotes scalar multiplication. Then

k
sC —dC| = []IsA; — dA;|
j=1

for all s+d <k.

Using base expansion, we may choose A; such that |jA; + jA;| > |7A; — jA,]
(and |sA; — dAj| = |0A; — §A;| for s+d =0+ 0 # 2j) and create the appropriate
C prescribed above, which is k-generational. However, a major drawback of base
expansion is that the set C' grows large very quickly (we explore this issue in greater
detail in §5] where we investigate the ratio of the logarithms of the cardinalities).
According to the construction in [4], the middle of A; has at least 2(2jr — 4j + 1)
elements where r = 45 + 2. Thus |4;| = Q(j?), which means there is a constant ¢
such that ¢j? < |A;|. By the proof of Lemma 4.3 in [4], we have |C| = H?Zl |4;].
Therefore |C| = Q(k!?).

This is a huge growth rate that leads to sets which are computationally impracti-
cal to work with even when k& = 2. For example, an optimization of the construction
with base expansion yields a 5-generational set of 2, 685, 375 elements. Our construc-
tion reduces this size to 35 (see Proposition B.4]). We are able to create much more
reasonably sized sets by choosing appropriate fringe pairs and filling out the middle
rather than using base expansion, which has no regard for the size of the set.

3.2. Proof of Theorem [1.1]

We first prove the existence of a k-generational fringe pair in Proposition In
Proposition 3.4, we construct a rich set with the k-generational fringe pair from
Proposition 3.3 giving us a k-generational set. We note that our rich set varies
linearly with k to complete the proof.

Lemma 3.2. Let R =[0,m]U{q}. Then
Further, if ¢ > km, then

kR| = (mk+22)(k+1).

Proof. Observe that
k(AUB) = kAU((k—1)A+B)U---U(A+ (k—1)B)UkB.

Set A = [0,m],B = {q} to obtain the result. Note then if km < ¢, |kR| =
(k) (k+1)m _ (mk+2)(k+1)
3 +khk+1= " O
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Proposition 3.3. Let L = {0}, R = {0,1,3}. Then the fringe pair (L, R,6k) is
k-generational in the sense that for all 1 < j <k,

[(25)L N[0, 6k]| + |(27)RN[0,6k]| > 2|(jL + jR) N[0, 6EK]|.

Proof. Fix 1 < j < k. In Lemma B2 set m = 1,q¢ = 3,k = 2j to get (2j)R =
[0,65]\ {65 — 1}. Also, jL + jR = [0, 3j] \ {37 — 1}. Therefore

[(25)L N[0,6k]| + [(2j)RN[0,6k]] = 1+6j, 2|(jL+jR)NI[0,6k]|=2-3j. O

By Lemma [Z5] we may pick any rich set A with fringe pair ({0}, {0, 1, 3};6k)
and A is k-generational. In Proposition B.4] we explicitly construct such a set.

Proposition 3.4. Let A= {0} U [6k + 1,12k + 1] U (18k +2 — {0,1,3}). Then A
is a rich set with k-generational fringe pair (L, R,6k) and thus k-generational.

Proof. It suffices to show that [6k+1, 30k+3] C A+ A. Note that |[6k+1,12k+1]| =
6k + 1. Compute

A+ A D [6k+ 1,12k +1]U2[6k + 1,12k + 1] U ([6k + 1,12k + 1] + {18k + 2})
= [6k+ 1,30k + 3. O

Since A has 6k+5 elements, the growth of the size of these k-generational sets A
is |A] = O(k). This is a significant improvement over the previous best construction
of k-generational sets, which have size |A| = Q(k!?).

Remark 3.5. This construction provides us with a nice 2-generational MSTD set
with 17 elements,

{0,13,14,15,16,17, 18,19, 20, 21, 22, 23, 24, 25, 35, 37, 38},
as well as a 3-generational set of size 23,

{0, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 53, 55, 56 .

Remark 3.6. One advantage of the base expansion method is that for any given
sequence {(s;,d;,04,0;)}i_o with s; +d; = 0; +0; = i and s; # 04, s; # 0;, the base
expansion method can construct a set A which satisfies |s;4 — d; A| > |0, A — §; A
Our construction is specific to k-generational sets. Though we do not reach the full
level of generality achieved by Iyer et al., for any given sequence {(s;,d;,0:,0;)}i_,
with s; +d; = 0; +8; =1 and 0 < d; < §; < 0; < s;, we describe an efficient
construction of a set A which satisfies |s;A — d; A| > |0, A — §;A] in §8.3
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3.3. Super k-generational MSTD Sets

We prove the existence of a stronger form of k-generational sets, super k-generational
sets, in Proposition

Definition 3.7. A super k-generational MSTD sets is a set A in which for all
s+d=0c+0<kwith0<d<d§<o<s,|sA—dA|l >|cA—-JA|

Lemma 3.8. Consider the set {0,1,q} with ¢ > 2. We have k{0,1,q} = [0,k] U
[g.q+k—1U[2¢,2¢+k—2]U--- U {kq}.

Proof. This is a consequence of Lemma [3.2] |

Note that if k& < g, then |k{0,1,¢}| = $FHEED) “Gimilarly if & = ¢ then
k{0, 1, q}| = (2,

Proposition 3.9. Let L = {0}, R = {0,1,q},k = ¢*> where ¢ > 2. Then for any
std=0c+4+06<quwith0<d<d<o<s, (L R;k) is a generalized MSTD fringe
pair.

Proof.

Case 1: Let d = 0. Observe that sL = {0}, sR = [0, s]U[q, ¢+ s—1]U---U{sq}. Also

oL+dR = [0,6]U[g, ¢g+d—1]U---U{dq} and 6L+oR = [0, o]U[q, g+ —1]U- - -U{og}.

Therefore

(s+1)(s+2)
2

|(sL +dR) N [0,k]| + |(sR+dL) N [0,k]] > 1+ -1

and

(0L +6R) N [0,k]| + |(cR + 6L) N[0, k]| < (”+1)2(U+2)+(5+1>2(5+2).

Since s > ¢ and o,d are nonzero, it is clear that s> > 02 + 62 (remember d = 0 in
this case, so s = o + §). Thus

|(sL +dR)N[0,k]| +|(sR+dL)N [0, k]|
> |(cL+6R)N[0,k]| +|(cR+ L) N[0, k]|,
and (L, R; k) is a generalized MSTD fringe pair.

Case 2: Let d # 0. Observe that
siL+d;R = [0,d;]U[q,q+d; —1]U---U{diq}
and
diL+sikR = [0,8]Ulg,q+si —1]U---U{siq}.
Then

(si +1)(si +2) n (di +1)(di + 2).

|(s;L + d;R)N[0,k]| + |(siR+ d; L) N [0, k]| = 5 5
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We have s2 + d? > o2 + §2; this follows from 0 < d < § < o < s (thus 208 > 2sd,
and the claim follows from combining that inequality with (s + d)? = (o + §)?).

Thus
|(sL +dR) N [0,k]| + |(sR+dL) N0, k]|
> |(cL+0R)N[0,k]| +|(cR+ 6L) N[0, k]|.
and (L, R; k) is a generalized MSTD fringe pair. O

The existence of such a fringe pair gives an infinite family of super k-generational
MSTD sets and proves their positive density as n approaches infinity. For the sake
of completeness, we give one possible construction of a super k-generational set
from a super k-generational fringe pair.

Proposition 3.10. Let A = {0} U[k+ 1,2k +2]U (3k +3 —{0,1,q}) with ¢ > 2
and k = ¢*. Then A is a rich set with fringe pair (L, R, k) for all s+d =0+ < q
and |A| = ¢* +6.

Proof. It suffices to show [k + 1,5k + 5] C A + A, which follows from

A+ A D [k+1,2k+2U2[k+1,2k+2 U ([k+ 1,2k + 2] + {3k + 3})
= [k+1,5k+5). O

Remark 3.11. This construction gives a super 4-generational set with 22 elements:

{0,17,18,19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 47, 50, 51}

4. Arbitrary differences

We now turn our attention to a simple construction for attaining specific differences
between |A+ A| and |A — AJ, and more generally |sA — dA| and |0 A — § A|. Though
Martin and O’Bryant and Iyer et al. have already proved that for any integer m,
a positive percentage of sets have the property that |[A + A] — |A — A] = m and
a positive percentage of sets have the property that |sA — dA| — |[0A — 0A| = m
respectively, we include the proof to advocate for the loose notion that fringe pairs
are a clean perspective with which to think about arbitrary differences. We first
give necessary definitions for our construction before proving Theorem [[.2] in §4.2

4.1. Preliminaries

Definition 4.1. Let k and n be positive integers with 2k < n. Let A C [0,n]. We
say A is k-affluent with generalized MSTD fringe pair (L, R; k) if [k+1,2n—k—1] C
A+Aand [-n+k+1,n—-k—-1CA-A.
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Note that an affluent set has all middle sums and differences present; therefore,
discrepancies in numbers of sums and differences are completely determined by the
fringes.

Proposition 4.2. Given m > 0, L = {0}, R = [0,m] U {¢}, and k = 2q with
q > 2m, if A is k-affluent with fringe pair (L, R; k), then |A+ A| — |A — A] = m.

Proof. Observe that |2L N [0,k]] = 1 and |2R N [0, k]| = 3m + 3 by Lemma
Furthermore, |(L+R)N[0, k]| = m+2. It follows that |2LN[0, k]|+|2RN[0, k]| —2|(L+
R)N [0, k]| = m. Since A is affluent, the difference between sums and differences is
completely determined by the fringes. Thus |[A + A| — |A — A] = m. O

Proposition 4.3. Given m > 0, L = [0,m], R = [0,m] U {q} and k = 2q with
q > 2m, if A is k-affluent with fringe pair (L, R; k), then |A+ A — |A — A = —m.

Proof. Observe that 2L N [0,k])| = 2m + 1 and [2RN [0, k]| = 3m + 3 by Lemma
Furthermore, (L + R) N[0, k] = [0,2m] U [g, ¢ + m] and has cardinality 3m + 2.
It follows that 2|(L + R) N [0,k]| — (]2L N [0, k]| + |2R N [0, k]|) = m. Since A is
affluent, the difference between sums and differences is completely determined by
the fringes. Thus |[A + A| — |[A — 4] = —m. O

Another advantage of this simple proof is that it is easily generalizable to the
case of s +d = o + §. This construction can be extended to attain [sA — dA| —
|cA — §A| = (06 — sd)m by again using Lemma Then some further work
shows that any arbitrary difference can be attained with a positive proportion as
n goes to infinity. The idea of the proof is quite simple: for positive differences
[sA — dA| — |cA — 6A] = = > 0, we take the same fringe as in Proposition £.2]
L ={0}, R=1[0,m]U{q} with m > 2. Then from k = (s + d)q, we simply decrease
k until (L, R; k) has the property

|(sL +dR)N[0,k]| + |(sR+dL)N]I0,k]|
— |(cL+6R)N[0,k]| — |[(cR+6L)N[0,K]] = =.

This quantity is ultimately reflected in |[sA — dA| — |0A — §A| if A is k-affluent.
The negative differences case is similar but for the left fringe, which we take from
Proposition @3] to be L = [0, m].

4.2. Proof of Theorem [1.2
We divide our proof into two theorems proving the positive and negative cases.
Theorem 4.4. Let x > 0 be a nonnegative integer and s+d = o+ 6 with d < § <

o < s. Then the proportion of A C [0,n] satisfying |sA — dA| — |cA — 6A| = x is
bounded below by a positive number as n goes to infinity.
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Proof. Let L = {0} and R = [0, m]U {q} with ¢ > (s + d)m. Then by Lemma [32]
cR = [0,em]Ufg, g+ (¢ = m]U---Uf(c = 1)g, (¢ = 1)g + m] U {cq},

where we define OR to be {0}. Notice that if ¢ < 7, then ¢R C vR. Now since
d < § <o < s, we have the relation

dR C R C oR C sR. (4.1)
Now define the quantity
f(k) = |[dRN[0,k]| + |sRN[0,k]| — [0RN[0,k]| — [cR N[0, k]].
Since L = {0}, the quantity f(k) is also equal to

|(sL+dR)N[0,k]| + |(sR+dL) N[0,k
— (6L 4+ 6R)N[0,k]| — |(cR+6L)N[0,k]|.

We have the following implications:

(1) kedR = f(k)— f(k—-1) = 0,

(2) k€ dR, ¢ dR = f(k)— f(k—1) = —1,
(3) keoR, ¢ 0R = f(k)— f(k—1) =0,
(4) ke sR,¢doR = f(k)— f(k— 1):1,
(5) k¢skR = f(k)—f(k—1) =

Therefore, f(k) and f(k—1) differ at most by one. Since |cR| = (mc+2)(c+1)/2,

(md+2)(d+1) (ms+2)(s+1) (mé+2)6+1) (mo+2)(c+1)
2 + 2 B 2 B 2
1

= §m(d(d +1)+s(s+1)—0(0+1)—0o(c+1))

= (06 —sd)m

f(sq)

Since 0 < d < § < o < s implies 0§ — sd > 1, f(sq) > m.

Now we want an integer k for which f(k) = 0. For any ¢ > 0, cRN[0,q — 1] =
[0,cm]. Therefore, f(¢—1)=dm+1+sm+1—0om—1—om—1=0.

We have the facts that |f(k) — f(k—1)] < 1, f(¢ — 1) = 0, and f(sq) =
(06 —sd)m > m. Therefore, for any given difference x such that 0 < x < (0§ —sd)m
there exists a k such that ¢ — 1 < k < sq and f(k) = z.

Pick an arbitrary = > 0 and let m > z. Then let ¢—1 be large enough so that for
a sufficiently large n, the proportion of g-affluent sets in [0, n] is positive (see Lemma
[B54). Consider the fringe pair (L, R; k) where ¢—1 < k < sq and f(k) = . Then the
proportion of affluent sets with fringe pair (L, R; k) is positive and bounded below
as n goes to infinity. O
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Similarly, we can prove that for any x < 0, a positive proportion of sets have
|sA —dA| —|0cA —6A| = z. However, we must use a different fringe pair.

Lemma 4.5. Let 0 < d < d <o < sands+d=oc+6 and L = [0,m], R =
[0,m] U {q} where ¢ > (s +d)m. Then
sL+dR = [0,(s+d)m]U[q,q+ (s +d—1)m]U---U
[(d=1)g,(d = 1)g + (s + 1)m] U [dg, dg + sm]
with
|sL +dR| + |dL + sR| — |[cL + 6R| — |6L+ oR| = (sd —od)m < —m.
Furthermore,

sL+dR C oL+0R C 6L+0R C dL+ sR.

Proof. The first claim is a routine calculation. The set sL + dR can be written as
[0, sm] + ([0,dm] U [g,q + (d = 1)m]U---U[(d — 1)g, (d — 1)g + m] U {dg}),

which can be simplified to the desired expression. Next, we calculate |sL + dR| +
|dL + sR| — |oL + 0R| — |0L + oR)|.

[sL+dR| = (s+dm+1)+((s+d—1)m+1)+ -+ (sm+1)
= %((S+d)m+2)(s+d+1)—%((s—l)m—i—Q)s.

Therefore |sL + dR| + |[dL + sR| = ((s + dym +2)(s + d+ 1) — 1((s = 1)m + 2)s —
2((d = 1)m + 2)d. Similarly, 0L + 0R| + |§L + oR| = ((c 4+ 0)m +2)(c + 6 + 1) —
(0 =1)m+2)o — 2((6 — 1)m + 2)6. Since s+ d = 0 + 0,
g((s+d)q) = % (((c—1)m+2)0+((6 —1)m+2)6
—((s=1)m+2)s—((d—1)m+ 2)d)
1
= (0" +0% =" —d*)m
= (sd—od)m < —m.

For the last claim, notice that oL+ éR = (sL+dR)U [(d+ 1)q,(d+ 1)g+ (s —
1)m]U---U[dq,dq + om]. So o < s implies that oL + R O sL + dR. The chain of
inclusions follows. |

Theorem 4.6. Let x < 0 be a negative integer and s+d =0+ with0<d < § <
o < s. Then the proportion of A C [0,n] satisfying |sA — dA| — |cA — 0A| = x is
bounded below by a positive number as n goes to infinity.

Proof. Let L = [0,m] and R = [0,m] U {q} with ¢ > (s + d)m. Define a similar
quantity

g(k) = |(sL+dR)N[0, k]|+|(dL+sR)N[0, k]|—|(c L+ R)N[0, k]| —|(6 L+ R)N[O0, k]|
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It suffices to show three things: |g(k) —g(k—1)| <1, g(¢—1) =0, and g((s+d)q) =
(sd — gd)m < —m. We begin by claiming that |g(k) — g(k — 1)| < 1.
By Lemma 5 the chain of inclusions is

sL+dR C oL+6R C 0L+0R C dL+ sR,
and we have the implications

(1) kesL+dR = g(k)—g(k—1) = 0,

(2) keoL+déR,&€sL+dR = g(k)—glk—1) = -1,
(3) k€ 6L +0R, & oL +0R = g(k)—g(k—1) = 0,
(4) k€ dL + sR,& 6L+ oR = g(k) —g(k—1) = 1
(5)

5) k¢ dL+sR = g(k)—g(k—1) = 0.

Now consider ¢((s + d)q). By LemmaLhl ¢g((s +d)q) = (sd —od)m < —m.

Finally, consider g(q — 1). The intersection of each set (sL + dR), (L + éR),
(0L + oR), (dL + sR) with [0, ¢ — 1] is [0, (s+ d)m]. Therefore g((s+d)m) = 0.
The rest of the proof is identical to the positive arbitrary differences proof. O

Together, Theorems [4.4] and imply Theorem

log |sA—dA|

5. Another MSTD construction and Tog [ A—SA|

5.1. New Construction and Large Ratio

We have used the fringe L = {0}, R = [0,m] U {q} for various m and ¢ in the
previous sections. The choice L = {0} has a nice property: if we fix the left fringe
to be the singleton {0}, almost any right fringe gives an MSTD fringe pair. If we
let R be a uniform random subset and k a suitably large integer (say 2 - max R),
then it is likely that |(R+ R) N [0,k]| +1 > 2|RN [0, k]|, in which case we have an
MSTD fringe pair. We make this statement precise below.

Proposition 5.1. Let R be a uniform random subset of [0,r] with r > 1. Then

(r+1)3—(r+1)?2

Pr((R+R|+1>2R|) > 1— 52

Proof. Recall that |R+ R| = 2|R|—1 if and only if R is an arithmetic progression,
and |R+ R| > 2|R| — 1 otherwise. The proof is straightforward. Write the elements
of Ras z1 < 22 < -+ < x, (with » = |R)|); as the claim is trivial for arithmetic
progressions, we may assume R is not an arithmetic progression. We are left with
proving that we cannot have |R + R| = 2|R| — 1 for such R. We proceed by con-
tradiction. Note 21 + 21 < - <11+ 2, < ot x, < 23+ 2, < -+ < Tp_1 + 2y
< &y + z,. We have just listed 2|R| — 1 distinct elements, and thus all other sums
must be in this list. In particular, xo + x,_1 is less than x2 + 2, but more than
1 + z,_1; it must therefore equal 1 4+ x,., which implies 3 — 1 = ©,, — z,._1. We
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then note o + z,,_1 < 3 + 1 < x3 + T, and thus z3 + .1 = x5 + x,, which
implies x3 — 2 = ©, — T,—1. Arguing similarly shows all adjacent differences are
equal, proving the set is an arithmetic progression.

Thus it suffices to bound the number of arithmetic progressions in [0, r]. There
are (H;) pairs (7,7) such that ¢ < j. For each (4,7), there are at most 7(j — 7)
arithmetic progressions starting with ¢ and ending with j, where 7(x) is the number

of divisors of x. Since 7(j — i) < r+ 1, we have that there are at most (r + 1)(T‘51)

arithmetic progressions in [0,7]. Thus Pr(|R+ R|+1 > 2|R|) > 1 — WD;%(ZTHFD

Sending r to infinity yields an almost sure method to construct MSTD sets.
One consequence of this construction is a set A for the current largest value of
log|A + Al/log|A — A|. We obtained the following R by a random search through
subsets of [0,90], fixing 0 and picking each element with probability 0.27. We then
sifted through the set to add or discard obvious elements, finding

R = {0,1,2,4,5,9,10,12,23,26, 32, 38,
47,53,59, 61, 65,76, 78,79, 81, 85, 86, 88,89}.  (5.1)

Let A={0}U[k+1,n—k—1]U(n—R) for k =2-89, n = 3k+2. Then we get
log |A+A|/log|A—A| = 1.02313. The previous largest value of log | A+ A|/ log | A—A|
was 1.0208, achieved by setting

A = {0,1,2,4,5,9,12,13,17,20,21,22,24, 25,29, 32, 33, 37, 40, 41, 42, 44, 45}

as found in [5]. In fact, sets A for which log|A + A|/log|A — A| > 1.0208 are rel-
atively common: a random search through sets R C [0,90], picking each element
with probability 0.27 (this value was chosen as it yielded good results from our sim-
ulations), yielded 174 such sets out of 100,000. Since R in (&) was found basically
through a random search, a more sophisticated method may yield a larger value for
log |A+ Al/log|A — Al

It seems unlikely that log|A + A|/log|A — A| can exceed 1.1, or even 1.05. Is
there a theoretical upper bound? A result due to Ruzsa [13], also shown in [I], states
that for any finite set A C Z,

log|A + A]
3/4 < m < 4/3.

The upper bound of 4/3 is still quite far above what has been seen, and it is probably
the case that the upper bound is not tight.

Remark 5.2. Our method yields values
log(4k + 4+ |R+ R|)

log(4k + 3+ 2IR)) (52)
where k = 2 - max R. Since R + R C [0, k], we have
log(4k +4+ |R + R|) < log(5k +4) (5.3)
log(4k +3+2|R|) ~ log(4k +3) '
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which converges to 1 as k — oco. Therefore we do not expect to find large values of
log|A+ Al/log|A — A| when we pick R from [0, r] with r large. In fact, by (&3] we
know that the maximum value of log|A + A|/log|A — A| found with our method
has r < 2000.

The above analysis suggests that the value log |A 4+ A|/log|A — A] tends to 1 as
the size of A grows. We formalize that statement below.

5.2. Proof of Theorem

Propositions and 0.7 together prove the full inequality (equation (LZ)) in The-
orem Proposition [0.8] proves the second half of the theorem, equation (I3)).

Proposition 5.3. Let 0 <d<§d <o < s withs+d=oc+9. For every e > 0 and
a uniform random subset A C [0,n],

log|sA — dA]
log|ocA — 0 A]
The idea is that for a set A with generalized MSTD fringe pair (L, R; k), A+ A

and A — A are almost always full in the middle as n goes to infinity and then k goes
to infinity. We must first introduce a lemma from Zhao [16, Lemma 2.13].

lim Pr

> 1+e) = 0. (5.4)

Lemma 5.4 (Zhao). Let n,k be positive integers with n > 2k. Let A be a uniform
random subset of [0,n]. Then

- = 3(3/4)%/2
and
_ _ 3 k+2 3 (n—1)/3
Pr([-n+k+1,n—k—-1Z A-A]) < 8(1) +(n+1)(1> .

We now set up the proof of Proposition 5.3l Recall that a set A is k-affluent if
k+1,2n—k—-1CA+Aand [-n+k+1,n—k—1C A— A Fix e >0 and let

(1)

pn(L, R k) = 27" TH{A C[0,n]:0,n € A,
Ais affluent with fringe (L, R; k), elsA=dal 1 4 ¢},

) Tog [cA—dA]
(2)
Moo= 27"{AC[0,m]: 0,n € A, 2= > 146},
(3)

—n— log |sA—dA
Ap = 27" {AC[0,n]: 2= > 146},
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Our final goal is showing that lim,_,., A, = 0. To show this, we prove that

0= Y p(L,Rik) = lim A, = lim A,,

n—oo n—oo
(L, R;k)
where Z(L)R;k) tn (L, R; k) is summing over all minimal MSTD fringe pairs (L, R; k).

Lemma 5.5. If p = lim, .o Z(L_’R;k) wn (L, Ry k) exists, then lim, oo Ay, = p.

Proof. First notice that for any k < n,

S bn(L Rsk) = > pa(L,Rsk) < A
k

We may say this because of Lemma[2.71 We want to bound above the number of sets
which are counted in A, but not in » - u, (L, R; k). Suppose A C [0,n], 0,n € A,
and log|A + A|/log|A — A| > 1+ ¢ but A is not k-affluent for any k < k. Let
L=AnNI0,k],R=(n— A)N[0,k]. There are two cases.

In the first case, (L, R;k) is not a generalized MSTD fringe pair. Since A is
generalized MSTD, A — A must be missing at least one element in [-n+k + 1,1 —
k —1]. In the second case, (L, R; k) is a generalized MSTD fringe pair. Then either
A+A2[k+1,2n—k—1or A— AP [-n+k+1,n—k—1]. So the probability
that A is counted in A, but not in ) & u, (L, R; k) is bounded above by

Pr(A+ A2 [k+1,2n—k—1))+Pr(A— A2 [-n+k+1,n—k—1])

= % +8 <%)E+2 +(n+1) (g)wl)/g

by Lemma 54l Let n go to infinity to get

> (L, R;k) < lim inf A, <

n—oo
k
. 3(3/4)k/2 (3) b2
lim sup A, < L Rk)+ ——+8| - .
s zk:“ (LER 5" 0 1
Let k go to infinity to get u = Z(L,R;k) w(L, Ry k) = limy, s 00 An. O

Proposition 5.6. For every e >0, u=0.

Proof. Fix n and suppose A C [0,n], 0,n € A, A is affluent for some k < n/2 and
log|A+A|/log|A—A| > 1+e€ Let L = AN[0,k], R = (n—A)N[0, k]. Then sA—dA
contains [—-dn+k+1,sn —k — 1] and 0 A — 0 A contains [—-on+k+1,on —k —1].
This imposes strict bounds on log |sA —dA|/log|cA—§A|. Note that the quantities
[(sR+dL)N0,k]|, |(dL + sR) N[0, k]| are both bounded above by k + 1. Observe
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the inequalities [sA — dA| < (s+d)n—2k—1+4+2k+2 and |0 A —§A| > (o0 +)n —
2k -1+ (s+d+1) (since —dn,...,sn € c A+ §A). Thus
log |sA — dA| < log((s +d)n — 2k — 14 2k 4 2)
logloA —0A| = log((c +d)n—2k—1+(s+d+1))
log((s +d)n +1)
~ log((s+d—1)n+s+d)’

(5.5)

which goes to 1 as n goes to infinity. There is an N such that log((s + d)n +
1)/log((s +d—1)n+s+d) < 1+ € for all n > N. Therefore u, (L, R; k) is zero for
all n > N. This implies that pu = Z(LR;,C) w(L, R; k) counts finitely many sets, so
n=0. O

To get rid of the stipulation that 0 and n are in A, we must show that
lim,, 00 Ay = limy, 00 Ap. This result may be found in [I6l Lemma 2.15]. This
concludes the proof of Proposition The key point is showing that the propor-
tion of affluent sets satisfying our property is the same as the proportion of all sets
satisfying our property, an idea first developed in [I6]. The pairs (s,d) and (o, )
may be reversed to show that

Proposition 5.7. Let 0 <d<d <o < swiths+d=o0+9. For every e >0 and
a uniform random subset A C [0,n],

) log|sA — dA] B

In fact, (5.5) shows that there are no affluent sets A for which |sA — dA|/|c A —
SA| > (s+d)/(s+ d—1). Similarly, there are no affluent sets A for which |sA —
dA|/|cA —8A| < (s+d—1)/(s+d). Then we may say the following.

Proposition 5.8. Let 0 < d < § < o < s with s+d = oc+4§. For a uniform random
subset A C [0,n],

(5.7)

lim Pr<s+d—1 [sA — dA| s+d ) _
n—00

std S JoA—dA] S srd-1

Remark 5.9. If s +d = 0 + 6 > 3, then all of the instances of k-affluent sets in
the proof above may be replaced with k-rich sets.

6. Bi-MSTD Sets

We use similar techniques as in the previous sections to resolve the following ques-
tion: Is there a decomposition of [0,n] into two disjoint MSTD sets? We show that
for sufficiently large n, such decompositions do exist and, in fact, are a positive
proportion of all decompositions of [0, 7] as n goes to infinity. Rather than starting
with an interval [0, n] and decomposing it, we consider the cases in which both A
and A€ := [min A, max A] \ A are MSTD. We first begin with some terminology.
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6.1. Definitions

Definition 6.1. We say that a set A C Z is bi-MSTD if A and A¢ are both MSTD.
An example of a bi-MSTD set in [0,19] is
A = {0,1,3,7,8,10,11,12,15,17,18,19}. (6.1)

Both A and its complement A = {2,4,5,6,9,13,14,16} are MSTD. Notice that
A¢—2is the smallest MSTD set up to translation and dilation, as proved by Hegarty
in [2]. By an exhaustive computer search, we determined that there are no bi-MSTD
sets in [0, 18]. To show that a positive proportion of subsets of [0,n] are bi-MSTD,
we use the framework developed by Zhao in [I6]. We must first develop an analogue
of fringe pairs for bi-MSTD sets.

Definition 6.2. A fringe pair (L, R; k) is bi-MSTD if
[(L+L)N[0,k]|+ |(R+ R)N[0,k]| > 2|(L+ R)NI0,k]l
[(L°+ L) N [0,K]| + |(R°+ R) N[0, k]| > 2|(L°+ R°) N [0,k]l,
where L¢ = [0,k] \ L and R® = [0,k] \ R.

(6.2)

Recall from Definition 23] that a set A which has MSTD fringe pair (L, R; k)
and satisfies the property
A+A D [k+1,2n—k—1]
is called rich, and a rich set with an MSTD fringe pair is MSTD. Therefore, if A
has a bi-MSTD fringe pair and satisfies
A+ A D [k+1,2n—k—1],
A+ A° D [k+1,2n—k—1],

then A is bi-MSTD. We call such sets bi-rich. We now show that the set of A C [0, 7]
which are bi-rich has density one as n goes to infinity.

(6.3)

6.2. Proof of Theorem [1.7]

Lemma 6.3. Let 0 < 2k < n and A C [0,n] be a uniform random subset (dropping
the condition that 0,n € A). Then

¢4 pe 6(3/4)*/2
Pr(fk+1,2n—k—-1Z€A+Aork+1,2n—k -1 A°+ A°) < ———.
2-3
Proof. We apply the union bound. The expression above is simply two times the
expression given in Lemma [5.4 O

Note that for k& = 30,
Pr(k+1,2n—k—-1ZA+Aor [k+1,2n—k—1] € A°4+ A°) < 0.299.
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Thus a positive proportion of A C [0,n] are k-bi-rich (in fact, most of them are).
Now we simply need to find a bi-MSTD pair (L, R; k) with k = 30. We give an
example below:

L = {0,1,2,5,8,10,11,12, 14, 15,16, 18, 23, 25, 26, 28, 29}

6.4
R = {0,1,3,4,8,10,11,13,14,15,17,19,20,22, 23,24, 28} (6.4)

With this fringe pair, we have shown that for some sufficiently large N > 60,
for any n > N, the proportion of subsets of [0, 7] which are bi-MSTD is bounded
below by a positive number. Since the bi-MSTD set in (6]) is contained in [0, 19],
the same holds for n > 19.

7. Future work
We end with a list of some interesting additional questions to pursue.

(1) We were able to construct a fringe pair for which [sA — dA| > |0 A — §A]
for s+d=0+d+2 < qand s > 0. Can we construct a fringe pair to
satisfy |sA — dA| > |cA — §A| for s +d = o +d + 2 < ¢ for any sequence
{(s,d,0,0); : s+d=0+=1,2 <i<q} without using base expansion?

(2) As n goes to infinity, |sA — dA|/|cA — 0A| is between (s +d —1)/(s + d)
and (s + d)/(s + d — 1) almost all the time. For any ¢ > 0, is there a
positive proportion of A such that ¢t < |sA — dA|/|cA — §A| < t + € for
(s+d—1)/(s+d) <t < (s+d)/(s+d—1)—e€? What if instead of uniform
random subsets A C [0,n], we have the probability of j € A C [0,n]
decaying with n?

(3) We showed that a positive proportion of subsets of [0,n] are bi-MSTD,
which is equivalent to showing that a positive proportion of decompositions
of [0,n] into two sets have the property that both sets are MSTD. Can we
decompose [0,n] into three sets which are MSTD? For any finite number
k, is there a sufficiently large n for which there is a k-decomposition into
MSTD sets?

(4) We found bi-MSTD fringe pairs by random searches and were not able to
come up with any deterministic algorithm to produce bi-MSTD fringe pairs.
Are there clean families of bi-MSTD fringe pairs? What about generalized
bi-MSTD fringe pairs?

(5) We have shown that any arithmetic progression can be decomposed into
two MSTD sets, and such decompositions have positive density among all
decompositions of that arithmetic progression as n goes to infinity. What
are the sets which can be decomposed into two MSTD sets? With positive
density?

(6) In our proof that a positive proportion of subsets in [0, n] are bi-MSTD, we
showed that the proportion of bi-rich sets goes to one as n goes to infinity.
How quickly does the density go to one? How quickly does the proportion
of MSTD sets that are bi-MSTD increase with n?
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