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1 Introduction

The classical theorem B of H. Cartan states that for any coherent analytic sheaf F over a
Stein manifold X, the sheaf cohomology groups H? (X, F) vanish for all ¢ > 1 (cf. [12,
Theorem 7.4.3]). The converse is also true ([24, p. 65]; see [12, pp. 86—89] for a proof of this
equivalence). The 5—complexes of the smooth forms, the L[20 . forms, and the currents on an
open set €2 in a complex manifold are all resolutions of the sheaf O of germs of holomorphic
functions. As a consequence, the Dolbeault cohomology groups obtained through these res-
olutions are all isomorphic to H (€2, ©O) and will all be denoted by H 0.4 (2). However, this
isomorphism does not hold in general if one considers the Dolbeault cohomology groups for
the 3-complexes acting on function spaces with some growth or regularity properties on the
boundary of the open set.

When  is a relatively compact pseudoconvex domain in a Stein manifold, it follows from
Hormander’s L2-existence theorem for the d-operator that the L2-Dolbeault cohomology
groups Hg’zq (€2) vanish for ¢ > 1. The converse of Hormander’s theorem also holds, under
the assumption that the interior of the closure of €2 is the domain €2 itself. Sheaf theoretic
arguments for the Dolbeault cohomology groups [2,16,23,24,29] can be modified to give a
proof of this fact (see, e.g., [8,9]). We remark that some regularity of the boundary is necessary
in order to characterize pseudoconvexity by the L2-Dolbeault cohomology. The Dolbeault
isomorphism also fails to hold between the usual Dolbeault cohomology groups and the L>-
Dolbeault cohomology groups. For example, on the unit ball in C> minus the center, the L2-
Dolbeault cohomology group Hg'zl (B>\{0}) is trivial but the classical Dolbeault cohomology
group H 0.1 (IB%2\{0}) is infinite dimensional.

It follows from the work of Kohn [15] that, if €2 is a bounded pseudoconvex domain
in C" with smooth boundary, then the Dolbeault cohomology groups H&q () with forms
smooth up to the boundary also vanish for all ¢ > 0 and the converse is also true. But this
does not hold in general if the boundary of the domain is not smooth. For example, on the
Hartogs’ triangle T = {(z, w) € C?; |z] < |w| < 1}, by Sibony [28], we have that HOL(T)
is trivial but H&l (T), the Dolbeault cohomology of forms with coefficients smooth up to the
boundary, is infinite dimensional. In fact, it is not even Hausdorff (see [21]). In general, the
Dolbeault cohomology groups with some growth or regularity properties up to the boundary
are not the same as the usual Dolbeault cohomology.

Andreotti and Grauert [1] showed that, for a relatively compact domain €2 with smooth
boundary in a complex manifold that is strictly pseudoconvex (or more generally, satisfies
Condition aq)l, the Dolbeault cohomology group H?:9(f2) is finite dimensional. Further-

I Recall that the boundary b§2 satisfies condition ag if the Levi form of a defining function has either at least
g + 1 negative eigenvalues or at least n — g positive eigenvalues at every boundary point.
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more, by Grauert’s bumping methods, the usual Dolbeault cohomology group is isomorphic
to the Dolbeault cohomology group with regularity up to the boundary (see, e.g., [11]). It
follows from Hormander’s work [13, § 3.4] that on a bounded domain € with C3-smooth
boundary in a complex manifold, if the boundary b2 satisfies the a, and a4 conditions,
then H fz’q (2) is isomorphic to H?9(2). (See [22] for relevant results.) In particular, when
Q is an annulus between two C3-smooth strictly pseudoconvex domains in a complex man-
ifold, the L? cohomology group Hg;q (2) is finite dimensional when 0 < ¢ < n — 1. When

the domain €2 is an annulus between two weakly pseudoconvex domains with C3 smooth
boundary in C”, similar results are proved in Shaw [26]. The regularity of the boundary can
be relaxed by assuming only that €2 has Cc? boundary (see [27]). In this case, H If’z’q (2)=0
forallg #0and g #n — 1.

In this paper, we study the Dolbeault cohomolgy groups on various function spaces for a
bounded domain €2 in C" (or more generally in a Stein manifold) in the form of Q = ?2\5
where Q is a bounded domain with connected complement in C" and D is relatively compact
open subset of € with connected complement and with finitely many connected components.
We obtain characterizations of pseudoconvexity of Qand D through vanishing or Hausdorff
property of the Dolbeault cohomology groups on various function spaces, including those of
forms with coefficients smooth up to the boundary and of extendable currents. In particular,
we consider L2-Dolbeault cohomology groups and spectral theory for 3-Neumann Laplacian
on the domain 2. We show that if the outer boundary bS2is Lipschitz and the inner boundary
bD is C2-smooth, then both & and D are pseudoconvex if and only if O is not in the spectrum
of the 9-Neumann Laplacian on (0, g)-forms for 1 < g <n —2 whenn > 3; or 0is not a
limit point for the spectrum of the 3-Neumann Laplacian on (0, 1)-forms when n = 2 (see
Corollary 5.4, Theorems 5.6, and 5.7 below).

An earlier result in this spirit is due to Trapani [32]. In his case, vanishing and Hausdorff
properties of the classical Dolbeault cohomology groups characterize the holomorphic con-
vexity of D; not just the pseudoconvexity of D. Our results and methods are different from
the results in Trapani [32] (see the remark at the end of Sect. 3).

The plan of the paper is as follows: In Sect. 2, we first recall the classical Serre duality
and the definitions of various Dolbeault cohomology groups and their duals. In Sect. 3, we
study the Dolbeault cohomology groups on forms that are smooth up to the boundary and
on extendable currents. We obtain necessary and sufficient conditions for the vanishing or
Hausdorff properties of these Dolbeault cohomology groups. Sections 4 and 5 are devoted
to the L2—theory for 8 on such a domain €. In Sect. 4, we study the relationship between the
Dolbeault cohomology groups of €2 and those of Qand D on L% or W! spaces. In Sect. 5,
we establish necessary and sufficient conditions for such domains 2 that have vanishing
L? or W!'-Dolbeault cohomology groups. In particular, we show that when the boundary of
D is Lipschitz, the Dolbeault cohomology groups with WIIUC:coefﬁcients are vanishing for
1 < g < n—1andHausdorff forg = n—1if and only if both €2 and D are pseudoconvex (see
Corollary 5.3). When the inner boundary 5D is C? and the outer boundary b is Lipschitz,
we obtain a characterization of pseudoconvexity of Qand D by the vanishing and Hausdorff
properties of the LZ-Dolbeault cohomology groups, which implies the above-mentioned
statement that one can determine pseudoconvexity of € and D from spectral properties of
the 8-Neumann Laplacian on .
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2 Dolbeault cohomology and the Serre duality

Let X be an n-dimensional complex manifold. If D CC X is a relatively compact subset of
X, we consider the d-complexes and their dual complexes associated with several spaces of
forms attached to D (see section 2 in [20] for more details).

We first recall definitions of several function spaces and their duals. Let £(D) be the space
of C*°-smooth functions on D with its classical Fréchet topology. It is well known that its
dual can be identified with the space £'(X) of distributions with compact support in D. We
will also consider the space C>°(D) of smooth functions on the closure of D; this is the
space of the restrictions to D of C°°-smooth functions on X. It can also be identified with the
quotient of the space of C°°-smooth functions on X by the ideal of functions that vanish with
all their derivatives on D. We endow C* (D) with the Fréchet topology induced by £(X).
If D has Lipschitz boundary, the dual space of C*°(D) is the space €’§(X ) of distributions

on X with support contained in D. In general, when the boundary of D is not necessarily
Lipschitz, then we only have that the dual space of C*°(D) is always a subspace of %(X ).
We refer the reader to Laurent-Thiébaut and Shaw [20] for details.

Denote by D5 (X) the subspace of D(X) consisting of functions with support in D,
endowed with the natural Fréchet topology. If D has Lipschitz boundary, the dual of D#(X)
coincides with the space of restrictions to D of distributions on X. This dual is called the
space of extendable distribution on D and will be denoted by 15/(5). Moreover D5 (X) is
a Montel space as a closed subspace of the Montel space £(X) and hence reflexive, which
implies that the dual space of D'(D), endowed with the strong dual topology, is the space
D5(X). As before, when the boundary of D is not Lipschitz, we only have that the dual
space of ﬁ/(ﬁ) is a subspace of D5(X).

Recall that a cohomological complex of topological vector spaces is a pair (E®, d), where
E*® = (E?)4cz is a sequence of topological vector spaces and d = (d?),¢z is a sequence of
densely defined closed linear maps d¢ from E9 into E¢*! that satisfy d9*! 0 d? = 0. To any
cohomological complex (E®, d)we associate cohomology groups (H?(E®)),c7 defined by

H9(E®) =kerd?/Imd?™!

and endowed with the quotient topology. We fix 0 < p < n and set £ = 0 and d¥ = 0, if
g < 0and 0 < p < n. We consider the d-complex (E®, d) withd? = 9 if0 < g < n and
d? =0if g > n acting on:

(1) E? = EP1(D), the space of C*°-smooth (p, ¢)-forms on D.

(2 E1T=Cp, (D), the space of C>°-smooth (p, ¢)-forms on D.

3) E1= DIPa (D), the space of extendable (p, ¢)-currents on D.

The associated cohomology groups with (1)—(3) are denoted respectively by H?-9(D),
HZ9(D), and HP4(D).

The dual complex of a cohomological complex (E,, d) of topological vector spaces is
the homological complex (E., d’), where E, = (E;)qez with E; the strong dual of £9 and
d = (d[;)qez with d(; the transpose of the map d4.

Set E (’I =0 and d(’l = 0if g < 0. If the domain D has Lipschitz boundary, then the dual
complexes of the previous cohomological complexes are (E,, d’) with d(; =9for0<g <n
and:
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(1) E, = EM~P"74(D), the space of currents with compact support in D.
(2) E, = 8/5"_1’ ""749(X), the space of currents with compact support in X whose support

is contained in D. B
() E, = D%_p "749(X), the space of C*-smooth forms with compact support in D.

The associated cohomology groups are denoted respectively by H. 7" ~9(D), H%_CZ 'r"_q (X)
n—p.n—q ’
and HE - (X).

The next proposition is a direct consequence of the Hahn—Banach theorem.

Proposition 2.1 Ler (E®, d) and (E,, d’) be two dual complexes, then
Imdd = [g cE (g, f)=0,Vfe Kerd[;}.
Let us recall the main result of the Serre duality (see [3,19,25]).

Theorem 2.2 Let (E®, d) and (E,, d") be two dual complexes. Assume Hy11(E,) = 0, then
either HIT1(E®) = 0 or H1T(E®) is not Hausdorff.

If (E®, d) is a complex of Fréchet-Schwartz spaces or of dual of Fréchet-Schwartz spaces,
then, for any q € Z, H1TY(E®) is Hausdorff if and only if Hy(E,) is Hausdorff.

As a consequence of the previous theorem and of the solvability of the Cauchy—Riemann
equation with prescribed support in the closure of a bounded domain with connected com-
plement in a Stein manifold of dimension n > 2, in bidegree (p, 1), 0 < p < n, we obtain

Theorem 2.3 Let X be a Stein manifold of complex dimension n > 2 and D CC X a
relatively compact subset of X such that X\ D is connected. Then

(i) Either HO"~1(D) = 0 or H%"~1(D) is not Hausdor{f:
if moreover D has Lipschitz boundary,

(ii) Either I:I&”fl (D) =0o0r I-VIC(,)O"“1 (D) is not Hausdorff;
(iii) Either H®"~1(D) = 0 or H*"~1(D) is not Hausdorff.

For a more general result and the proof of this theorem, see Theorem 3.2 in Laurent-
Thiébaut and Shaw [20].

3 Characterization of pseudoconvexity by extendable Dolbeault
cohomology

3.1 Necessary condition for the outside boundary

Let X be a Stein manifold of complex dimension n > 2 and Q2 a relatively compact domain
in X. Let us denote by D the union of all the relatively compact connected components of
X\ and set Q = QU D. Note that ﬁ\D is a closed subset of € and we use H&,‘f (Q\D) to
denote the Dolbeault cohomology groups for forms smooth up to the boundary of D.

In his paper [32], Trapani proved that if H>9(Q) = O forall 1 < g < n — 2 and
H%"=1(Q) is Hausdorff, then  has to be pseudoconvex. We now prove that this result
extends to cohomology with growth or regularity conditions up to the boundary.

Theorem 3.1 Let X, Q and Q be as above. Then
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@) for eachg eNwithl <g <n-2, Hé)o’q (§~2LD) = 0 implies Ho’q(ENZ) =0
(i) HY" N(Q\D) is Hausdorff implies H*"~1(Q) = 0

Proof Let us first prove (i). Let f € cg?q(EZ) be a d-closed form. Then its restriction to

§\D is a d-closed smooth form on §\D. Since H&,q (ﬁ\D) = 0, there exists a form
g € Cg’oqfl(ﬁ\D) such that f = dg on Q. Let g be a smooth extension of g to €. Then
f — 9% is smooth and 3-closed on Q and f — 9% vanishes on &\ D. Therefore we can extend
f — 32 by 0 to a d-closed form on X. Since X is Stein, there exists a smooth form u on X
such that f = 3(g 4 u) on Q.

Let us now consider the assertion (ii). We first prove that H™ 0.1~ 1(Q) is Hausdorff. Let
f e CO e 1(Q) be such that, for any d-closed (1, 1)-current 7' with compact support in Q,
(T, f) = 0. Then for any (n, 1)-current S with compact support in Q\D, we have

(8, f)=0.

In particular, f is orthogonal to any current with coefficients in the dual space of C°°(Q\ D).

Using the assumptions that H&”“ (Q\D) is Hausdorff, we get from Proposition 2.1 the
existence of a form g € C(‘f?n_z(ﬁ\D) such that f = dg on Q. Then following the proof of
assertion (i) we obtain that H9"~1 (ﬁ) is Hausdorff. Since X \5 is connected, it follows from
Theorem 2.3 (see also Theorem 3.2 in [20] and Theorem 2 in [31]) that HOn—1 (5) =0. O

It is well known (see, for example, Corollary 4.2.6 and Theorem 4.2.9 in [12]) that a
domain U in C”" is pseudoconvex if and only if we have H 0.9 (U)=0foralll <g <n-—1.
So from Theorem 3.1 we can deduce.

Corollary 3.2 Letn > 2 and D CC S be two relatively compact open subsets of C" such
that both C"\$2 and 2\ D are connected. Assume H&Q(Q\D) =0,ifl <qg<n-2 and
H&"‘l (Q\D) is Hausdorff, then Q2 is pseudoconvex.

Note that, replacing smooth forms up to the boundary by extendable currents in the proof
of Theorem 3.1, we get:

Proposition 3.3 Letn > 2and D CC Q be two relatively compact open subsets of C" such
that bvoth (C”\NQ and Q\D are connecte’fi. Assume that H*(Q\D) =0, ifl < g <n —2,
and H*"=1(Q\D) is Hausdorff. Then S is pseudoconvex.

Let us notice that the vanishing or the Hausdorff property of the Dolbeault cohomology
groups of the annulus Q2 = Q\D are in fact independent of the larger domain € as soon as
it satisfies some cohomological conditions.

Proposition 3.4 Let D CC Qi CC Q0 be bounded domains in C" such that H*4($,) = 0
for some q, 1 < q <n — 1. Then we have the following:

() H2($1\D) = 0 implies HY ($22\D) = 0,
i) H%4(Q\D) = 0 implies H*4($,\D) = 0,
and
(i1) Hooq (Ql\D) is Hausdorff implies Hooq (Qz\D) is Hausdorff,
(ii’) HO4 (Q] \ D) is Hausdorff implies HO%4 (QZ\D) is Hausdorff.

Proof Let us first prove (i). Let f € Cgf’q (ﬁz\D) such that 3 f = 0. Using the assumption
H&q (ﬁl\D) =0, we getaformu € Cgf’q_l(ﬁl\D), which satisfies du = f on 51\5. Let
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Hearing pseudoconvexity in Lipschitz domains with holes. . . 1163

x be asmooth function on C" with support in € and identically equal to 1 on a neighborhood
of D. Consider d(xu), it belongs to Cgf’q (22\ D) and is such that f — d(yu) vanishes near
the bougdary of D. After exiending by zeroin D, we geta 5-closed form oniﬁz, still dgnoted
by f—9d(xu). SinCEHO’q(Qg) =0, theje exists v € CQO,?‘I_L(QZ) such that dv = f — 90 (xu).
After restriction to £2,\D, we get f = d(xu +v) on 2,\D. B

For assertion (ii), note that if f € Cgoq(Qz\D) is orthogonal to d-closed currents with
compact support in QQ\D, it is orthogonal to d-closed currents with compact support in
Q1\D, then the proof follows the same argument used to prove (i). The proofs of (i) and
(i1”) are similar by substituting smooth forms with currents. O

Corollary 3.5 Let D CC 521 cC ?22 be bounded domains in C" such that 52 is pseudo-
convex.

(i) Assume that Ho'q(fll\D) =0,ifl<qg<n-2and Hgo’"fl (EZ]\D) is Hausdorff.
Then HY! ($\D) = 0, if 1 < q < n — 2, and HY" " ($3,\D) is Hausdorff
(i) Assume that H%9(Q\D) =0, if1 < g <n — 2, and H*"~'(,\D) is Hausdor{f.
Then H*4($3,\D) =0, if 1 < g < n — 2, and H*"1(Q,\D) is Hausdorff.

Note that by Corollary 3.2 and Proposition 3.3, if Q1 = ﬁl\D is connected, each of
the hypothesis in (i) or (ii) of Corollary 3.5 forces S~21 to be pseudoconvex. Note also that if
Q) = ﬁz\D is connected, the condition §~22 pseudoconvex is necessary for the conclusion
in (i) or (ii) of Corollary 3.5 to hold.

3.2 Necessary condition for the inside boundary

Let X be a connected, complex manifold and D a relatively compact open subset of X
with Lipschitz boundary. If D is not a domain (i.e., a connected open set), then the Lipschitz
boundary assumption implies that D is a finite union of domains. The Dolbeault cohomology
groups for D are the direct sum of the corresponding cohomology groups on each connected
components. In this section we will prove that in any dimensionn > 2 and for some Dolbeault
cohomology groups on X\D, such as forms smooth up to the boundary, vanishing and
Hausdorff properties of these groups implies pseudoconvexity for the domain D, provided
its boundary is sufficiently smooth. A related result for n = 2 was proved in Trapani [30].
We will first relate the Hausdorff property or the vanishing of the cohomology groups
with prescribed support in D with the same property for the cohomology groups of X\ D.

Proposition 3.6 Assume H 0"1_1(X ) =0, for some 2 < q < n. We have

() if Ho! (X) is Hausdorff, then Hy'™' (X\D) is Hausdor;

(ii) ifH%‘iur (X) is Hausdorff, then HOa-1 (X\D) is Hausdorff.

Proof Let f € C§° 0.q— (X\D) bea d-closed form such that for any d-closed (n,n — g + 1)-
current 7 on X with compact support in X\ D, we have (T, f) = 0. Let f be a smooth
extension of f to X, then 3 f is a d-closed smooth (0, q)-form on X with support in D. Let
us prove that for any d-closed (n,n — g)-current S on D extendable to a current in X, we
have (S, 3 ]7 ) = 0. Let S be an extension of S to X with compact support, then, we get
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and since T = 05 is a 9-closed (n, n — q + 1)-current on X with compact support in X\ D,
the orthogonality property of f implies

(35, f) = (@5. f) =0.
By hypothesis H%’qOO(X ) is Hausdorff, therefore there is a smooth (0, g — 1)-form g in X

with supportin D such that 3 f = 9g on X. Hence f — g is a 9-closed smooth (0, ¢ — 1)-form
on X, whose restriction to X\ D is equal to f. Therefore, H™ 0.¢=1(X) = 0 implies that there
exists a smooth (0, g — 2)-form & on X such that 9k = f — g and by restriction to X\ D
we get 31 = f on X\ D. This proves that H0 A ](X\D) is Hausdorff. Assertion (ii) can be
proved in the same way. O

Proposition 3.7 Assume H*9(X) = 0 and either H™"~9+1(X) = 0 or H"" 17 (X) = 0,
for some 2 < q < n. We have

(i) if H' (X\D) is Hausdorff, then H%iO(X) is Hausdorff,
(i) if H*9=1(X\D) is Hausdorff, then H%’qc . (X) is Hausdorff.

0,q—1

Proof Let f be a 9-closed (0, ¢)-form on X with support contained in D such that for any
d-closed (n, n — g)-current T on D extendable as a current to X, we have (T, f) = 0. Since
HY%9(X) = 0, there exists a smooth (0, q — 1)-form g on X such that 3¢ = f on X. In
particular, g = 0 on X\D.

Let S be a d-closed (n, n — g + 1)-current on X with compact support in X\ D. Since
H""—4t1(X) =0 or HC”’"_q'H (X) = 0, there exists a (n, n — g)-current U on X such that
AU = S. (Here and hereafter we use H. "'~ 7 (X) to denote the Dolbeault cohomology groups
with compact support in X.) Hence U = 0 on D. Thus

(S,8) = (U, g) = (U,dg) = (U, f) =0,

by hypothesis on f. Therefore, the Hausdorff property of Hooq 1(X \ D) implies that there
exists a smooth (0, g — 2)-form h on X\ D such that dh = g. Let J be a smooth extension
of h to X. Then u = g — 0h is a smooth form with support in D and

du=0(g—0oh)=0g=f.
Assertion (ii) is proved in the same way. O

Corollary 3.8 Let X be a complex manifold of complex dimension n > 2 and D be a
relatively compact open subset of X with Lipschitz boundary. Assume H*4(X) = 0 and
H%4+1(X) = 0, for some 1 < q <n — 1, then

H%"gl(X) is Hausdorff & H%'(X\D) is Hausdorft,

H%‘fc:rl(x ) is Hausdorff < H%9(X\D) is Hausdorff.
Proof By Theorem 2.2, the assumption H%9+1(X) = 0 implies that H,""~ ¢ (X) is Haus-
dorff. Since H%9(X) = 0, we have H.""~9(X) = 0. The corollary then follows by applying
Propositions 3.6 and 3.7. O

By applying the Serre duality for the complexes (5’ %" (X), 5) and (D%’ (X)), 5), we
obtain.
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Corollary 3.9 Assume that X is a Stein manifold and D a relatively compact open subset of
X with Lipschitz boundary. Then forany 1 < g <n — 1,

1) I-vlgo’q (X\D) is Hausdorff if and only ifﬁ"’”_q (E) is Hausdorff,
(i) H%9(X\D) is Hausdorff if and only if HY" 4 (D) is Hausdorff.

In the special case ¢ = 1, the following theorem is a direct consequence of Corollary 3.9
and Theorem 2.3.

Theorem 3.10 Let X be a Stein manifold of complex dimension n > 2 and D be a relatively
compact open subset of X with Lipschitz boundary such that X\ D is connected. Then

@) 1:1c(>)61 (X\D) is Hausdorff if and only if[-}”’”’l (E) =0,
(i) HOY(X\D) is Hausdorff if and only if H"~' (D) = 0.

Theorem 3.11 Let X be a complex manifold of complex dimension n > 2 and D be a
relatively compact open subset of X. Assume H*9(X) = 0, H*t1(X) = 0, for some
1 <qg <n-—1,then

0,q+1 0,
Hﬁ‘; X)=0 & HXI(X\D)=0;

0,g+1 _ 70,q _
HY?P () =0 & H*(X\D)=0.

Proof The proof is analogous to the proof of Corollary 3.8, Propositions 3.6, and 3.7. O

Corollary 3.12 Let X be a Stein manifold of complex dimension n > 2 and D be a relatively
compact open subset of X with Lipschitz boundary such that X\ D is connected. Consider
the assertions

() Foralll <g <n—2, H*(X\D) = 0 and H*"~(X\D) is Hausdor{f:
(i) Forall2 <g <n—1, H%’ZML(X) =0and H%Zur (X) is Hausdorff;
(iii) foralll <g <n —1, HY!(D) = 0.

() Foralll <q <n—2, HS(X\D) = 0 and HY"~" (X\D) is Hausdorff:
(i’) Forall2 <g <n-—1, H%”io(X) =0and H%';O(X) is Hausdorff;

(iii*) forall1 <q <n—1, H*4(D) = 0.

Then the triplets of assertions (i), (ii) and (iii), respectively (i’), (ii’) and (iii’ ), are equivalent.

Proof Using the Serre duality the corollary follows from Corollary 3.9, Theorem 3.10 and
Theorem 3.11. O

Note that, under the hypotheses of Corollary 3.12, the assertions (ii) and (ii’) still hold
for ¢ = 0 and ¢ = 1 by analytic continuation and the fact that HCO /1 (X) = 0and X\D is
connected.

As mentioned above in Sect. 3.1, a domain D in C" is pseudoconvex if and only if we
have H%9(D) = O forall 1 < g < n — 1. Analogous results also hold for the Dolbeault
cohomology of forms smooth up to the boundary for any n and of extendable currents for
n=2.

Theorem 3.13 Let D C C" be a domain such that interior(D)= D. If Hé’(;‘f (D) is finite
dimensional for any 1 < g <n- 1, then D is pseudoconvex. Moreover, when n = 2, D is
pseudoconvex provided H*' (D) is finite dimensional.
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Proof Following Laufer’s argument ([17]; see also Theorem 5.1 [18]), we obtain that if
H2Y (D) (respectively H%9(D)) is finite dimensional, then Hu!(D) = 0 (respectively
H%4(D) = 0). The Laufer’s argument can be applied here because the spaces £(D) and
D'(D) are invariant under differentiation and multiplication by polynomials. Thus we can
assume that H&q (D) =0forall 1 <g <n —1orin the case when n = 2, ﬁo’l(ﬁ) =0.

The proof uses the forms introduced in Laufer [16] (see also [8]). We will prove by
contradiction. Suppose that D is not pseudoconvex. Then there exists a domain D strictly
containing D such that any holomorphic function on D extends holomorphically to D. Since
interior(D)= D, after a translation and a rotation we may assume that 0 € 5\5 and there
exists a point zg in the intersection of the plane {(zl, ..., 2Zn) € C? lz1==zp—1 = 0}
with D that belongs to the same connected components (as the origin) of the intersection of
that plane with D.

For any integer ¢ such that 1 < ¢ <nand {ky, ..., k;} C {1,...,n}, we set

(g—1D! <& o
M(k],...,kq): q|z|2q Z(_l)]zkjdzkjv
j=1

where?l_z\/; =dzi N+ -/\jz'kTA- . -Adqu . (Here, as usual, jz'k\jindicates the deletion odekj
from the wedge product.) Note that u(ky, ..., k;) is a smooth form on C*\ {0}. Since 0 ¢ D,
uky, ..., ky) € C?‘&qfl)(ﬁ). Moreover, u(ky, ..., ky) is skew-symmetric with respect to
the indexes in the tuple (ki, ..., k). In particular, u(ky, ..., k;) = O when two k;’s are
identical. A direct calculation yields that

n
Bulk, ... .kg) =zl ki, ... ky). 3.1)
=1

Forany 1 < g <n — 1, we consider the following assertion.

H(q): For all integer r < ¢ and all multi-index K i(kl’ .o, k), setting K =@ ifr =0,
there exists a smooth (0, n — r — 2)-form v(K) on D such that

Bu(K) =Y (=1 2 v(K\kj) + (=1 Ku((1, ... m\K),
j=1

where |K| = k1 + - - - + k, and (K'\J) denotes the tuple of remaining indexes after deleting
those in J from K.

Note that u(l,...,n) is a d-closed smooth (0, n — 1)-form on C"\{0} which contains
D. Since H&WI (D) = 0, there exists a smooth (0,n — 2)-form v(¥) on D such that
v(@) = u(l, ...,n). Therefore H(1) is satisfied.

Let us prove now thatif 1 < ¢ < n —2 and H(q) is satisfied, then H(q+1) is satisfied. It is
sufficient to prove the existence of the v(K)’s satisfying the assertion H(q+1) for any multi-
index of length g, the other ones for r < ¢ already exist by H(q). Let K = (ky, ..., k;), we
set

q
w(K) =Y (=D zjv(K\kj) + (=DM, ... n\K).
j=1

The (0, n — g — 1)-form w(K) is smooth on D and moreover, using (3.1) and the hypothesis
H(q), a straightforward calculation proves that gw(li ) = 0on D. Since H&"_q_l (D) =0,
there exists a smooth (0, n — g — 2)-form v(K) on D such that
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q
(K) = w(K) = Z(—I)szv(l(\kj) + (=DK@, .. n)\K).
j=1
A finite induction process implies that H(n — 1) is satisfied and for K = (1,...,n — 1),
we can consider the function
n—1
F=w(l,...on—1) =Y (= zjp((1,....n = D\J) = (=" T u(n).

Jj=1

It is smooth on D and satisfies dF = 0 on D. As F is a holomorphic function on D, it can
n(n—1
be extended holomorph1cally to D. However, we have F(0,...,z,) = (—=1)!T7 2 ot 1 on

DNz = =Zy_1 = O} which is holomorphic and smgular at z;, = 0, which glves the
contradiction since 0 € D\D

When n = 2, let us denote by B(zy, z2) the(0, 1)-form W derived from the

Bochner-Martinelli kernel in C2, it is a 9-closed form on (CZ\{O} Then the L'-function = B ‘2

defines a distribution in C2 which satisfies 9 ( B |2 ) = z1B(z1,z2) on (CZ\{O}. On the other

hand, if H 0'1(5) :70, there exists an extendable distribution v such that 9v = B on D and
by regularity of the 9 in bidegree (0, 1), v is smooth on D, since B is smooth on C2\{0}. Set
F=ziv+ I%’ then F is a holomorphic function on D, so it extends holomorphically to D,

but we have F (0, zp) = = S on D N {z; = 0}, which is holomorphic and singular at z, = 0.
This gives the contradlctlon since 0 € D\D. O

Returning to the case when Q = 5\5 is a bounded Jomain in C", where D is the union
of all relatively compact connected components of C"\ 2 as in Sect. 3.1. We can easily derive
the following corollary from Corollary 3.12 and the results of Sect. 3.1.

Corollary 3.14 Let D CC 2 be bounded open subsets of C",'n = 2, such that CN\Q is
connected. Assume D has Lipschitz boundary and Q2 = Q\D is connected. Consider the
assertions

() Foralll <g <n—2 H"(Q\D)=0 and HO"=Y(Q\ D) is Hausdorff:
(ii) foralll <g <n — 1 H" q(D) =0and Q is pseudoconvex.

@) Foralll <g <n-—2, Hooq (Q\D) =0 and Hgo" 1(Q\D) is Hausdorff;
@ii’) foralll <g <n-—1, H" (D) = 0 and Qis pseudoconvex.

Then the pairs of assertions (i) and (ii), respectively (i’) and (ii’), are equivalent.

We are now in position to give characterizations of pseudoconvexity of the inside and
outside boundaries for domains with holes in terms of their Dolbeault cohomolgy on various
spaces, depending on the regularity of the boundary of the holes.

Corollary 3.15 Let D CC Q be two relatively compact open subsets of C*, n > 2, such that
both (C”\§ and §\D are connected. Assume D has smooth boundary. Then H4 (SNZ\D) =
0, foralll < g <n-—2, and I?O’”’I(KNZ\D) is Hausdorff if and only if Q and D are
pseudoconvex.

Proof The necessary condition is a direct consequence of Corollary 3.14 and Theorem 3.13.
To get the sufficient condition, we use Kohn’s result [15], which asserts that if D is a pseudo-
convex domain with smooth boundary then Hy? (D) = 0, forall 1 < ¢ < n — 1 and apply
Corollary 3.14. O
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The following corollary is an analogous of Corollary 3.15 for smooth forms in C? under
the assumption that D has Lipschitz boundary. The reason for the restriction to dimension 2
comes from the proof of Theorem 3.13. Note that in the cases of the extendable current
cohomology, since the restriction of a distribution to a complex hyperplane does not exist
in general (see also the remark before Lemma 5.2), we need the regularity property for the
d-operator which in this case holds only in bidegree (0, 1).

Corollary 3.16 Ler D CC Q be two relatively compact open subsets of C* such that both
C\Q and Q\D are connected. Assume D has Lipschitz boundary. Then H&I(Q\D) is
Hausdorf(f if and only if Q and D are pseudoconvex.

Proof The necessary condition is a direct consequence of Corollary 3.14 and Theorem 3.13.
The sufficient condition follows from Theorem 5 in Chakrabarti and Shaw [4]. ]

Remark 3.17 One can only characterize pseudoconvexity for such domain €2 with holes by
using the right cohomology groups. In an earlier paper by Trapani [30], he proved that if &
is the annulus between a pseudoconvex domain and some Diederich—Fornaess worm domain
D € C? with smooth boundary, the classical Dolbeault cohomology group H%!(€) is not
Hausdorff. Thus if we replace ch’,l (§~2\D) by H%! (5\5), Corollary 3.16 does not hold.

4 Characterization of pseudoconvexity by L2 and W! Dolbeault
cohomology

Let X be a Stein manifold of dimension n > 2, equipped with a hermitian metric. Let Q2 be
a bounded domain in X. Let Lf,’ ¢ (€2) be the space of (p, ¢)-forms with L2-coefficients. Let
Ipg: L%’q(Q) — L%,qH(Q) be the densely defined closed operator such that its domain
consists of all f € L?)’q (£2) such that 51,,(1 f, defined in the sense of distribution, is in
p g+1 (R2). Let 3 q be its Hilbert space adjoint. We drop the subscript p.g when there is no
danger of confusmn B
Let o, : Lf,‘q (Q) — Lf) q+1(Q) be the minimal (strong) closure of 9. By this we mean
that f € Dom(d..) if and only if that there exists a sequence of smooth forms f‘, in C7°,(€2)
compactly supported in €2 such that f, — f and df, = df in L. Let ¥ = 3 be the dual
of d.. Then ¥ is equal to the maximal (weak) L? closure of the operator ¥ : L (Q) —
Li,q_l(Q). We also define an:)perator 9z p,q (Q) — quﬁ_l(ﬂ) to be thiclosure of &
such that f is in the domain of d; if and only if we extend f to be zero outside €2, there exists

a Li g1 X ) form g supported in  such that d f = g in X. The operator 9z corresponds to

solving 8 with prescribed support on € in the L? sense. B _
We denote the cohomology groups in L2 ¢(€2) with respect todand 0. by H fz’q (£2) and

H b q (). The cohomology group for 9z is denoted by H? 12 (£2). Note that
HY (@) = H2Y, ().

Suppose that €2 is a bounded domain in X with Lipschitz boundary. Then the weak and
strong maximal (or minimal) L? extensions are the same by Friedrichs’ lemma (see [13],
[6]). When €2 has Lipschitz boundary, we have 9, = dz and

HP 4(Q) = HP qz(X) 4.1)
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(For a proof of this fact, see, e.g., Lemma 2.4 in [20]).
The cohomology groups for the d-complexes on forms with W' or W1 coefficients
are defined similarly and denoted by Hy P9 (Q) and Hv’:/q (€2) respectively. We will use
loc

Wl oc(X\2) to denote the space of functions with W coefficients on compact subsets
of X\ and H P9 (X\) to denote the Dolbeault cohomology groups for forms with

1 m

coefficients in W, OC(X \2). Thus the space H]f,lq (X\) is different from the space of
o loc .
HVI;’I’I (X\€2), which is isomorphic to the usual Dolbeault cohomology group H?-9(X\2).

loc

The dual space of Wllo (X\£2) is denoted by W~1(X\). The dual complex is denoted by
e - w, 111_ | (X\Q) — W, (II(X \$2) and its corresponding cohomology groups are denoted
by H Cp ‘;{,71 (X\2). Again, when the boundary of €2 is Lipschitz, this corresponds to solving

9 in W~1(X) spaces with compact support in X\ .
We first establish the following version of the Hartogs phenomenon. Without loss of
generality, we will deal with only (0, g)-forms.

Lemma 4.1 Let Q be a domain in a Stein manifold X equipped with a hermitian metric and

let K be a compact subset of Q. Let Q = é\K . Then 5;2 has closed range provided 5;2 has
closed range.

Proof 1t suffices to show that there exists a constant C > 0 such that for any f €
dom (5;27 1), one can find u € dom (5;27 1) such that

4.2)

5u:5f on fl,
lullg < ClId fllg-

(see, e.g., [14, Appendix 1]). Evidently, the restriction f|q of f to Q is in dom (5;2_1).

. . =Q
Thus under the assumption, there exists a g € dom (8 q_l) such that

lgle < Cilldfla,

where C is independent of f. Let x be a smooth cut-off function such that0 < x <1, x =1
in a neighborhood of K, and supp X CC Q. C0n51dercx =3f—0(1—yx)g = xaf—i-ax Ag.
Then « is a d-closed form in L2 (Q) and suppa CC . Extend « to 0 outside & and apply

iag:af on €2,

Hoérmander’s L2-estimates to a bounded pseudoconvex domain Qoo Q, we then obtain

) such that

v € dom (5;2_1

ov=a onQ, |vlg=<Cllalg

for some constant C; > 0. Let u = v+ (1 — x)g. Then u satisfies the desired property (4.2).
O

Lemma 4.2 Let Q2 be a bounded domain with Lipschitz boundary in a Stein manifold X of
dimension n such that X\Q is connected. Then R <8:QI> =N (5,,92) where R and N

denote the range and the null spaces of the relevant operators.
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Proof Let f € N <5:S32> Let f0 be the extension of f to X such that f0 = 0 on X\S~2.

Then f° is compactly supported and @ f 0 = 0 in the sense of distribution on X where ¢
denotes the formal adjoint of d. Let *x be the Hodge *-operator given by (u#, v)dV = u A xv

where dV is the volume form. Then ¢ = — % 3 (see, e.g., [6, § 9.1]). Thus 5,i1 (xf% =0
Since & has Lipschitz boundary, we have from (4.1) that

H! (@) = HE (X = H]'),(X) = (0).

Note that in the last two identities we use the assumptlons that X is Stein and X \Q is

=8
connected. Thus there exists # € dom (8 ) such that 8 u = xf in X. Since *u is in the

domain of 3, we have 3" (+u) = f on Q. The lemma is proved. o

Let €2 be a relatively compact domain in X. We denote by D the union of all the relatively
compact connected components of X\ and set 2 = QU D.

Theorem 4.3 Let X, Q and Q be as above. Then

() foreach 1 < g <n—2, H) () = 0 implies H 5 (&) = 0;
@) if Q has Lipschitz boundary, H 0 T 1(Q) is Hausdorff implies Hg’zn_l (SNZ) =0.

Similarly, we have

(i) foreachl1 <qg <n —2, H‘?Vq (Q\D) = 0 implies HY ‘1(9) =0;
loc

@iv) if D has Lipschitz boundary, HO T 1(Q\D) is Hausdorff implies H%"~ 1(Q) =0.
l

oc

Proof The proof of (i) exactly the same as in Theorem 3.1 or Lemma 4.1.
The proof of (ii) follows from the L? Serre duality (see [4,20]). We provide a simple proof
here for the benefit of the reader.

If R <5,?72 is closed, then Hg’zn_l(ﬁ) is trivial. This is a direct consequence of

Lemma 4.2 since

a a\*" a\" a
R (5”_2> =N <5j_z> =R (a* ) =N (5”_1>. (4.3)

Note that in the first equality, we use the fact that R 5;272> is closed.

The proof of (iii) is analogous to the proof of (i), using interior regularity we can choose g
with W! coefficients on a neighborhood of the support of dx, if f € (Wllo c)o q (2). We get

HSV’? (5'2) = 0 and by the Dolbeault isomorphism H%4 (ﬁ) = 0. The proof of (iv) is similar
loc
to that of (ii) in Theorem 3.1. ]

As in the smooth case, we have:

Corollary 4.4 Let n =2 agd D cC Q be two relatively compact open subsets of C"
such that both C"\Q and Q\D are connected and D has Lipschitz boundary Assume
(Q\D) =0ifl <qg <n-2 and Hofl l(Q\D) is Hausdorff, then Q is pseu-

/oc

a’oconvex.
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From Theorem 4.3, we deduce:

Corollary 4.5 Let n_> 2 and D CC Q be two relatively compact open subsets of cr
such that both C" \Q and Q\D are connected, and Q¢ has Lipschitz boundary Assume

2 (Q\D) =0ifl <g <n-—2 and HBZH ](Q\D) is Hausdorff, then Q is pseu-
doconvex.

Proof We will postpone the proof to the corollary in Theorem 5.1. O

As in the smooth case, the vanishing or the Hausdorff property of the Dolbeault cohomol-
ogy groups of the annulus 2 = Q\ D are in fact independent of the larger domain 2 as soon
as it satisfies some cohomological conditions. The following was proved in Chakrabarti et
al. [5].

Corollary 4.6 Let DccQ 1 CC S~22 be bounded domains in C" such that S~22 is pseudo-
convex. Assume H (Q]\D) =0,ifl <g<n-2 and H0 o 1(Q]\D) is Hausdorff, then

HI(‘)’zq(EZQ\D) =0ifl<qg<n-—2 and H0 ' I(QQ\D) is Hausdorff.

Note that by Corollary 4.5, if Q1 = Ql \ D is connected and €21 has Lipschitz boundary,
the hypothesis of Corollary 4.6 forces Q) tobe pseudoconvex. Note also that if 2, = §Q\D
is connected and €27 has Lipschitz boundary, the condition & pseudoconvex is necessary
for the conclusion of Corollary 4.6 to hold.

Next we will develop in the L2 and W! settings what is done in Sect. 3.2 for forms smooth
up to the boundary and extendable currents.

Theorem 4.7 Let X be a Stein manifold of complex dimension n > 2 and D be a relatively
compact open subset of X with Lipschitz boundary such that X \ D is connected. The following
assertions are equivalent:
() Foralll <qg <n—2, H;’V‘f (X\D) = 0 and Hy'' "' (X\D) is Hausdorff:
loc loc
(i) Forall2 <q <n-—1, H L (X\D) =0and HZ’V"‘,_I (X\D) is Hausdorff;

(i) Forall2 <g <n —1, H (X) =0, HY (X) is Hausdorff;

DL2 DL2
(iv) forall1 < g <n—1, H3'(D) =0.

loc

Proof The Serre duality for the complexes ((Wl]o C)O"(X \D), 9), respectively ((L%)”*'(X ),

9), implies the equivalence between (i) and (ii), respectively (iii) and (iv). Thus it is sufficient
to prove that (i) implies (iii) and (iv) implies (ii).

Let us prove now that, forany 2 < g < n, if H0 -1

(X\D) is Hausdorff, then H%‘ILZ (X)

l oc *“loc

is Hausdorff. Let f be a d-closed (0, ¢)-form on X with L? coefficients and support contained
in D such that for any -closed L2-form u of bidegree (n, n — g) on D, we have (i, f) = 0.
Since H%4(X) = 0 and by interior regularity, there exists a form g in (Wzloc)O,q—l (X) such
that g = f on X, in particular 3¢ = 0 on X\ D.

Let S be a d-closed (n,n — g + 1)-current on X with compact support in X\ D and
coefficients in W—1(X), then, since HZL’"_qJrl (X) = 0, there exists an (n, n — g)-current U
with compact support on X such that 9U = S and in particular 3U = 0 on D. Moreover U

can be chosen with leo . coefficients. Thus

(S,8) = (dU, g) = (U,dg) = (U, f) =0,
by hypothesis on f.
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0,q—1
W[(}L
h on X\ D coefficients in W, loc (X\D) such that 31 = g. Let hbea Wz; -extension of & to X

thenu = g — 9h is a L2-form with support in D and
du zg(g—g};) =dg=f.

In the same way we can prove that, forany 2 < ¢ <n —1,if H

Therefore the Hausdorff property of H (X\ D) implies there exists a (0, ¢ — 2)-form

0-9=1 ¥\ D) = 0, then
Wloc

1, (X)=0.

loc

Assume now that for some 1 < ¢ <n —2, H” J1(D) = 0. Let f be a 3-closed form in

W, ; +1(X) with compact support in X\ D. Since X is a Stein manifold, there exists a (n, g)-
form g with compact support in X such that 3¢ = f and by interior regularity g can be
chosen with L? coefficients on D. Since the support of f is contained in X\ D, g is 9-closed
in D and as HZ;’ (D) = 0, we get g = dh for some (n, ¢ — 1)-form & in Lﬁ’%l (D). Let i be
the extension of i by 0 outside of D.Then g — 0h vanishes on D and satisfies 9(g — 9h) = f.
This shows H"/* 'x\p) =

To end the proof, assume HZ;"il(D) = 0. Let f be a 9-closed form in W, !(X) with

compact support in X\ D orthogonal to the 9-closed functions, which are W' in X\ D and in
particular to the holomorphic functions in X. The Hausdorff property of H'"_, (X) implies

n,n

that there exists an (1, n — 1)-form g with compact support in X such that 3¢ = f and by
interior regularity, g can be chosen with L2 coefficients on D. Asfor 1 < g <n—2,wecan
conclude that f = du, where u is in Wn n—1(X) with compact support in X\ D. O

Theorem 4.8 Let X be a Stein manifold of complex dimension n > 2 and D be a relatively
compact open subset of X with Lipschitz boundary such that X\ D is connected. The following
assertions are equivalent:

() Forall1 <q <n—2, H)y(X\D) = 0and H'"'(X\D) is Hausdorff
(ii) Forall2 <q <n—1, H",(X\D) =0 and H" " (X\D) is Hausdorff
(iii) forall1 < g <n—1, HZ/(D) = 0.

Proof The equivalence between (i) and (ii) is a direct consequence of the Serre duality (see
[4] or Theorem 2.2). From Proposition 4.7 in Laurent-Thiébaut and Shaw [20], we know that
H™ L"2 (X\D) is Hausdorff if and only if H'™ 1(D) = 0. Let us now prove the equivalence
between (ii) and (iii) for the other degrees
Assume (ii) is satisfied. Let f € n’q(D), 1<g<n-2bea 9-closed form on D and

let )? be a W! extension with compact support of f to X. The (0, ¢ + 1)-form 5fhas L?
coefficients and compact support in X\ D. By (ii), H) " "H (X\D) = 0 and therefore there
exists a form g € L 4(X) with compact support in X \D such that 8 f = dg. So the form
f g is a d-closed form on X whose restriction to D is equal to f. As X is a Stein manifold,
f g = oh for some L l c-form i on X. Then we have f = dh on D and it follows from
interior regularity that we can choose & to belong to W, q (D), which proves H g (D) =0.

Let us prove the converse. Let f € L” q(X), 2<qg<n-—1,bea 9- closed form with
compact support in X\ D. Since X is a Stein manifold, there exists a (n, ¢ — 1)-form g with
compact support in X such that g = f and by interior regularity g can be chosen with
W coefficients on D. Since the support of f is contained in X\ D, g is 9-closed in D and
as H;/’?_I(D) = 0, we get g = 0h for some (1, g — 2)-form /4 in Wr},q—Z(D)' Let /1 be a
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W! extension of & with compact support in X, which exists since D is a relatively compact
domain with Lipschitz boundary. Then g — 0k vanishes on D and satisfies d(g — 0h) = f.
This shows H'",(X\D) = 0. |

Corollary 4.9 Let D CC Q be bounded open subsets of C", n > 2, such that C\Q is
connected. Assume D has Lipschitz boundary and Q2 = Q\D is connected. Consider the
assertions:

() Foralll <qg <n-—2, va’? (@\D) = 0 and HSV-',H(Q\D) is Hausdorff:

loc loc

(ii) Foralll <qg <n—1, HZ;q(D) =0and Q is pseudoconvex.
and if Q has Lipschitz boundary

(") Foralll <q <n—2, HE*;? () = 0and H);'"~' () is Hausdorf:
(ii’) Foralll <g <n—1, H;'V’?(D) =0and Q is pseudoconvex.

Then the pairs of assertions (i) and (ii) are equivalent, and if moreover Q has Lipschitz
boundary, (i’) and (ii’), are equivalent.

5 Hearing pseudoconvexity with L2 Dolbeault cohomology

It is well known (see e.g. Corollary 4.2.6 and Theorem 4.2.9 in [12]) that a domain D in C"
is pseudoconvex if and only if we have H%9(D) = O forall 1 < g < n — 1. This result also
holds for the Lz-cohomology, provided D satisfies interior(D)= D (see [8] and references
therein). We will extend the results to the case when the Dolbeault cohomology groups with
W*P-forms are finite dimensional for any given s > 0 and p > 1. (Here W7 (D) is the
LP-Sobolev space of order s.)

Theorem 5.1 Let D CC C" be a bounded domain such that interior(D)= D. Let s > 0
and p > 1. IfHSV’?,p(D) is finite dimensional for all 1 < g < n — 1, then D is pseudoconvex.

We will present a proof using an idea of Laufer [16] as in the proof of Theorem 3.13. The
subtle difference is that while it makes sense to restrict a smooth form on a domain to the
intersection of the domain with a complex hyperplane, restriction of an L?-form to a complex
hyperplane is not well-defined. This difficulty was overcome by appropriately modifying the
construction of Laufer so that the factor z; in (3.1) is replaced by z;" for a positive integer
m. By choosing m sufficiently large, we are able to make this restriction work. We now
provide the detail, following Fu [8]. The following simple lemma illustrates the idea behind
the construction of the forms uy , (k1, k2, .. ., ky) given by (5.2) below.

Lemma 5.2 Letvy,...,v,—1 € LP(D), p > 1, and let m be a positive integer. Assume that
G is a continuous function on D such that

n—1
G(z) = Zz’;’vj(z). 5.
j=1

Ifm>2n—1)/p, then GO, ...,0,z,) =0forall 0,...,0,z,) € D.

Proof Let (0,...,0, zg) € D. Write 27 = (z1,...,2n—1). Then for a sufficiently small
positive numbers a; and a;, we have

D(ay,a) == {|Z| < a1} x {lzn — 20| < @2} C D.
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For any § € (0, 1), we have

1/p 1/p
(/ |G(az’,zn)|PdV) sa'ramz(/ |vj(8z’,zn>|PdV)
D(ay,az) i D(ay,az)

n—1

1/p
Ea;1118m—2(n—1)/172</ |vj(Z,72n)|pdV>
e D(ay$,az)

n—l 1/p
<afsm2ehiry :( f |v,,-(z>|"xD<ala,a2><z>dV> :

. D

j=l1

Sincem > 2(n —1)/p, letting 6 — 0, we obtain from the Lebesgue dominated convergence
theorem that

/ IG(0', z,)|7dV = 0.
D(ay,az)

Thus G(0', z,) = 0 for |z, — 20| < as. o

Proof of Theorem 5.1 The proof for W*:P-cohomology is the same as for L”-cohomology.
For economy of notation, we will only provide the proof for L”-cohomology. Proving by
contradiction, we assume that D is not pseudoconvex. Then there exists a domain D 3 D
such that every holomorphic function on D extends to D After a translation and a umtary
transformation, we may assume that the origin is in D\D and there is a point z° in the
intersection of z,-plane with D that is in the same connected component of DN {z1 =0} as
the origin.

For any integersa > 0, m > 1,q > 1, {ky,..., ky—1} C {1,2,...,n— 1} and k; = n,

let |
(@+q— DGy )" & o
Uam(ki, ... kg) = T ‘ Y (=Dzydzn,  (5.2)
T'm =

where 7, :lelzm S e Evidently, u(k1, ..., ky) is a smooth form on C"\{0}.
Since 0 ¢ D, u(ky, ..., k) € Lfo qil)(D). Moreover, u(ky, ..., ky) is skew-symmetric
with respect to the indices (ki, ..., k;—1). In particular, u(ky, ..., k;) = O when two k;’s
are identical.

For K = (ky, ..., ky), writedzg =dzg, N -+ /\dikq, Z%il = (Tpy *- -qu)’”_l. Denoted
by (ki, ..., ks\J) the tuple of remaining indices after deleting those in J from (ky, ..., ky).
It follows from straightforward computations that

_ (a + g)lmzmezn! _
aua,m(klan-akq): aJrqﬁl b rmdZg
m

n q
+ (Zz%%;ﬂd@) A Do =Dz dz
=1 j=1
n—1

=m Zzznua,m(ﬁ, kl, e ,kq),

=1
In particular, uy (1, ..., n)is 9-closed. Our next goal is to solve the 5—equation in LP-
spaces inductively with the (0, n — 1)-forms uq (1, . . ., n) as the initial data, and eventually
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produce an L”-holomorphic function on D. This holomorphic function has a holomorphic
extension to D. By way of the construction, the extension has singularity at the origin, which
leads to a contradiction. We now provide the details.

We fix m > 2(n — 1)/p. Let M be an integer such that M > dim Hg’pq (D) for all
1 < ¢ <n— 1.Let 7 be the linear span of {ugn(1,....n); a=1,..., M”_l}. For any

u € Fp and for any {ki, ..., k;—1} C{1,...,n — 1}, we set
k
ki, . kg1,m) =Y cjug mikis kg1, m)
j=1
ifu = Z];:l cjuaj,m(l,...,n). We decompose Fy into a direct sum of M"2 sub-
spaces, each of which is M-dimensional. Since dim Hg’,,"fl (D) <M and ug p,m(l,...,n) €

N (3,,_1), there exists a non-zero form u in each of the subspaces such that dv, (%) = u for
some v, () € Lé)o,n—z)(D)' Let F| be the M"~2-dimensional linear span of all such u’s. We
extend u +— v, (¥) linearly to all u € F7.

For 0 < g < n — 1, we use induction on ¢ to construct an M"~972_dimensional sub-

space F,41 of F, with the properties that for any u € F, 1, there exists v, (ky, ..., k;) €
Lfo n—q—z)(D) for all {ky,...,ks} C {1,...,n — 1} such that v, (kq, ..., k;) depends lin-
early on u; vy (ky, ..., ky) is skew-symmetric with respect to indices K = (ky, ..., ky);
and

q
v (K) =m Y (=12l v (K\kj) + (=D Klul, .. n\K),
j=1

where [K| = ki +--- + kq.

We now show how to construct 71 and vy, (ky, ..., kg) foru € Fyypand {ky, ... k) C
{I,...,n — 1} once F; has been constructed. For any u € F; and any {ki,...,k;} C
{1,...,n— 1}, write K = (ky, ..., ky), and let

q
wu(K) =m Y (=D vy (K\kj) + (=DK1, on\K).
j=1

Then as in the previous case,

q
wy(K) = (=DITIEN —p Zzgu(kj, (,....,n\K)) 4+ ou(1,...,n\K) | =0.
j=1

We again decompose F, into a direct sum of M" ™4 =2 linear subspaces, each of which is M-

HO,n—q—2

dimensional. Since dim ( r (D)) < M anddw, (K) = 0, there exists a non-zero form

u in each of these subspaces such that 9v, (K) = w, (K) for some v, (K) € L{O,n7q72) (D).
Since wy, (K) is skew-symmetric with respect to indices K, we may choose v, (K) to be
skew-symmetric with respect to K as well. The subspace F, | of 7 is then the linear span
of all such u’s.

Note that dim(F,—_1) = 1. Let u be any non-zero form in F,,_; and let

nn—1)

n—1
Fi) =w,(1,....,n—=1) :mZvau(l,...,n— ) = (=D" "7 un).
j=1
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Then F € LP(D) and dF = 0. Therefore, F is holomorphic on D and hence has a holomor-
phic extension to D. Restricting to z,-plane, by Lemma 5.2, we have

M

, _ n+n(n—l) o!
um)(0', z,) = (—1)"+"3 ZCaW
n

a=1

nn—1)
2

F(0',2,) = =(=)""

where the ¢,’s are constants, not all zeros. This contradicts the analyticity of F' near the
origin. We therefore conclude the proof of Theorem 5.1. O

Corollary 5.3 Let D CC Q be two relatively compact open subsets of C", n > 2, such that
both C"\ Q2 and Q\ D are connected. Assume D has Lipschitz boundary. Then H;)V’;’ (Q\D) =

oc

0, forall 1 < q <n—2, and H;)V’TL_I(SNZ\D) is Hausdorff if and only if Q and D are

loc

pseudoconvex.

Proof The necessary condition is a direct consequence of Corollary 4.9 and Theorem 5.1.
The sufficient condition follows from Hormander vanishing L>-theory and Corollary 4.9. 0

Next we give a characterisation of the annulus domain by its L? Dolbeault cohomology
when the inner hole D has C? boundary.

Corollary 5.4 Let D CC Q be two relatively compact open subsets of C"', n > 2, such
that both (C"\§~2 and §\D are connected. Assume D has C* boundary and  has Lipschitz
boundary. Then HB’;’ (ﬁ\D) =0,foralll <g <n-—2,and HE’Z"_I (ﬁ\D) is Hausdorff if
and only if Q and D are pseudoconvex.
Proof We first prove sufficiency. If D has C* boundary and n > 3, this follows directly
from [26]. If the boundary is only C2, it follows from Theorem 3 in Harrington [10] that
Hy (D) =0, forall 1 <g <n—1.(When the boundary is C*°, this follows from the work
of Kohn [15].) The sufficiency then follows from Corollary 4.9.

The necessary condition is a direct consequence of Corollary 4.9 and Theorem 5.1. O

Next we will set up the spectral theory for the 3-Neumann operator. Let X be a complex
manifold of dimension n equipped with a hermitian metric. Let 2 be a bounded domain in
X. Let

Q = = o o
0, v) = (3M”’ 3p,q”>9 + <8p,qfl“* ap’q71U>Q

be the sesquilinear form on L3 (2) with domain of definition dom (Q;Z’ q> = dom (d,,4)N
*

dom (3 pg—1
theory (see [7]) that Qg, q uniquely determines a densely defined, non-negative, self-adjoint
operator ng: L%ﬁq(Q) — L%ﬁq(Q) such that dom ((Dﬁq)l/z) = dom (ng) and

Q;z’q(u, v) = <(D§f’q)l/2u, (Dg’q)l/z v>, for u, v € dom (Q;Z,q) .

Moreover,

dom (Di}’q) = {u € dom (Q;z’q> | 9pqu € dom (5;(1),5;4_114 € dom (5,,#,1)}.

). Then Qi,z’ q is densely defined and closed. It then follows from general operator

The operator D%’ q is the 9-Neumann Laplacian on L%,’ q (2). (We refer the reader to [9, §2]
for a spectral theoretic setup for the 3-Neumann Laplacian.) We will drop the superscript
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and/or subscript from Dlg,z, 4 When their appearances are either inconsequential or clear from
the context.

Leto (Cp,q4) be the spectrum of [, . Recall that o (Dp,q) is the complement in C of the
resolvent set which consists of all A € C such that A/ — 0, ,: dom (Dp,q) — L%yq(Q) is
one-to-one, onto, and has bounded inverse. (See [7] for relevant material on spectral theory of
differential operators.) Since [, ; is a non-negative self-adjoint operator on a Hilbert space,
o (Op,q) is a non-empty closed subset of the interval [0, 00). Let o, (J,,4) be the essential
spectrum of [, ,; namely, points in o (D p,q) that are either isolated points of the spectrum
but eigenvalues of infinity multiplicity; or limit points of the spectrum. By definition, the
essential spectrum o, (0 4 ) is also a closed subset and the set of limit points of o, ((p,4) is
the same as that of o (D p,q). We summarize the following spectral theoretic interpretations
for positivity of the d-Neumann Laplacian (] p.q in the following proposition:

Proposition 5.5 Let U, , be the d-Neumann Laplacian on (p, q)-forms.

(1) O is not a limit point of o (Dp,q) if and only if both R (5%[,,1) and R (5,,#) are closed.

(2) 0 ¢ o, (Dp,q) if and only if R (51,7(1_1) and R (5[,,4) are closed, and Hfz’q (R2) is finite
dimensional. B B

(3) 0¢ o (Dp,q) ifand only if R (0,4q—1) and R (3 4) are closed, and Hfz’q () is trivial.

We refer the reader to [13, § 1.1] (see also [14, Appendix A]) for proofs of (1) and (3) and
to [8, § 2] (see also [9, § 2]) for a proof of (2).

Recall that, for a bounded domain 2 in a complex, hermitian, n-dimensional manifold, the
top degree L2-cohomology groups H (), 0 < p < n, always vanish, hence R (9 pon—1)
is closed in this case. So, in top degree the first assertion of Proposition 5.5 becomes: 0 is not
a limit point of o (1, ,—1) if and only if R (51,,,,_2) is closed. Combining Proposition 5.5
with Theorems 4.8 and 5.1, we then have:

Theorem 5.6 Let X be a Stein manifold of dimension n > 3, equipped with a hermitian
metric. Let Q2 = Q\D where Q is a relatively compact domain wzth connected complement
in X and D CC Qisan open set with connected complement in Q and with C2- -boundary.
If both Q and D are pseudoconvex, then there exists a constant C > 0 such that

inf o (D;{q) >C (5.3)
forall0 < p<nandl <qg <n-—2and
o (02,.1) N0 ) =0. (5.4)

The converse of the above theorem also holds. We summarize the results in a slight more
general form as follows:

Theorem 5.7 Let Q be a bounded domain with connected complement in a hermitian Stein
manifold and let D be a relatively compact open subset of Q with connected complement.
Let Q = 5\5. Suppose Q and D have Lipschitz boundary. Fix0 < p <n. If0 ¢ o, (Dp,q)
forl < g <n—2whenn = 3 orif0is not a limit point for o, (Dp,l) when n = 2, then
both Q and D are pseudoconvex.

The above theorem is a consequence of Proposition 5.5 and the characterization of pseu-
doconvexity by L?-cohomology groups in Sect. 4. Note that when n > 3, one only need to
assume the positivity of o, (Dp,q) for 1 < g <n —2.Forn = 2, we use, as noted above,
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that R (3p,,—1) is always closed. For completeness, we provide the proof of Theorem 5.7.
We first establish the following spectral theoretic version of the Hartogs phenomenon, as in
Theorem 4.3. Without loss of generality, we will deal only with (0, g)-forms.

Lemma 5.8 Let Q bea domain in a Stein manifold X equipped with a hermitian metric and
let K be a compact subset of Q2. Let Q = Q\K. Then

(1) inf o, (D?) > 0 provided inf o, (Dgz) > 0.

Q) info (Df?) > 0 provided inf (Dg) =0
Proof To prove (1), from Lemma 4.1 and Proposition 5.5, it suffices to show that HI(‘)’zq (SNZ) is
finite dimensional provided HB’;’ (€2) is finite dimensional. Let R: N (53) - N (5;2) be

the restriction map 8 — B|q. Repeating arguments used in Lemma 4.1 (with 9 f replaced by
B) yields that R induces an injective homomorphism from H(L)’Zq () into Hg’zq (). Therefore,
dim HI(‘)’zq (€) < dim Hg’zq (£2). This concludes the proof of (1) and hence that of (2) . O
The following lemma is a spectral theoretic interpretation of Theorem 4.8 (in a slightly
more general form).
Lemma 5.9 Let D be a relatively compact open set in a Stein manifold X of dimensionn > 2
with connected complement and Lipschitz boundary. Let @ = X\D. Then 0 ¢ o, (Dg) for
1 < g <n—2andO0 is not a limit point for o, (Df}_]) if and only if dim H;,’? (D) < oo,
1 <q <n—2 anddimH};~" (D) =0.
Proof Note that by Proposition 5.5, as already mentioned above, 0 is not a limit point of
UE(DEE_I) is equivalent to R (5”72) is closed, which is equivalent to HB;"_I(Q) is Haus-
dorff. By [20, Proposition 4.7], this is also equivalent to H™"~'(D) = {0}. In light of

wl
Proposition 5.5 and by L2-Serre duality, dim Hz)’zq () = dim H%";q (X)forl <g <n—1.
So it remains to show that for 1 < ¢ < n — 2, dim H;’V’f’(D) = dim H%:‘Z;H(X), provided

one of these quantities is finite.
Suppose dim Hg’gl(X) =N <oo.Letgj, 1 < j < N, bed-closed (n, g + 1)-forms

n,g+1
Hy 1

forms i ; with leoc—coefﬁcients such that 3/ j = gj- (Here, we identify g; with its extension
to X by setting g; = 0 outside D.) Since g; is supported on X\D, dh; = 0 on D. Now
let f € Wnl’ ¢(D) be any d-closed form. Since D has Lipschitz boundary, there exists an

supported on Q such that {[g i1} j=1 spans (X). Since X is Stein, there exists (n, g)-

extension f € W,}, ¢(X) of fto X. Since 3 f = 0 on D, under the assumption, there exists a
g€ L,%’q(X), supported on X\ D, such that

5];: g+ Zc‘jgj :5g+26j5hj,
j=1 j=1
for some constants ¢; € C, 1 < j < N. Therefore, there exists (n,q — 1)-form u with
Lfoc-coefﬁcients such that

N
f:g+chhj+5u.
Jj=1
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Note that using the interior ellipticity of 3 & 3", we may choose the forms /; and u to have
W !-coefficients on D. Restricting to D, we then have f = Zﬁvz 1¢jhj+ du, which implies
that dim H 7 (D) < N.

Conversely, suppose dim Hy{ (D) = N < oo. Let {gj}¥i; C W, (D) be d-closed
forms such that {[g]~]}§V:1 spans H;lv’f](D). Let f € Lﬁ,q+1(X) be a d-closed form with
compact support in X\ D. Since X is a Stein manifold, there exists an (n, ¢)-form u with
L%oc-coefﬁcients such that du = f. Using the interior ellipticity of 9 & 3", we may choose

u sothatu € W,}y q (D). Since f is supported on X\ D, du = 0 on D. Under the assumption,
there exists i € Wr:, g1 (D) such that

N
u =5h+2bjgj,
=1

for some constants b; € C,1 < j < N.Let g, he W,%’q (X) be any extensions of g; and h

respectively from D to X with compact supports in X. Let g = u — oh — Zﬁ-v:l bjg;. Then
g is compactly supported on X\ D and

which implies that dim H’éfgl (X) < N. O

We are now in a position to prove Theorem 5.7. By Lemma 5.8, Lemma 4.1 and Theo-
rem 4.3(ii), we know that Hz)‘zq (S~2), 1 < g < n — 2, are finite dimensional and HB’Z"_] (EZ)
is trivial. By Theorem 5.1, Qis pseudoconvex.

Applying Lemma 5.9 with X = €, we then have dim H‘(})V’?(D) <o00,1 <qg<n-2,and
H‘(})V’f’fl (D) = {0}. Applying Theorem 5.1 again, we then conclude that D is pseudoconvex.

Remark 5.10 In Corollary 5.3, we only need to assume that the boundary is Lipschitz when
we use Dolbeault cohomology with W' coefficients. But in Corollary 5.4, the boundary D
needs to be C? smooth. Note that the necessary condition in Corollary 5.4 still holds if the
boundary of D is only Lipschitz. We do not know if we can replace the C? assumption by
the Lipschitz condition in Corollary 5.4 or Theorem 5.6. We conjecture that they still hold
if the boundary of D is only Lipschitz. This has been verified when the inner domain D
is a product domain or piecewise smooth pseudoconvex domain (see the results in [5]). In
particular, when the domain €2 is the annulus between a ball and a bidisc in C2, one has that
Hz)‘zl () is Hausdorff. This yields the W! estimates for 3 on bidisc using Corollary 4.9. The
general case with Lipschitz holes is still an open problem.

Remark 5.11 Suppose that the number of holes in Q\Q = Dis infinite and each component
is pseudoconvex, the boundary € is not Lipschitz. But one still can have interiorQ = Q.
We do not know if the 3-Neumann operator [J p.q has closed range for 1 < g <n —1.In
fact, one does not even know if the classical Neumann operator has closed range.
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