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Abstract

The solar cycle dependence of various turbulence quantities and cosmic-ray (CR) diffusion coefficients is
investigated by using OMNI1 minute resolution data over 22 years. We employ Elsässer variables z± to calculate
the magnetic field turbulence energy and correlation lengths for both the inwardly and outwardly directed
interplanetary magnetic field (IMF). We present the temporal evolution of both large-scale solar wind (SW) plasma
variables and small-scale magnetic fluctuations. Based on these observed quantities, we study the influence of solar
activity on CR parallel and perpendicular diffusion using quasi-linear theory and nonlinear guiding center theory,
respectively. We also evaluate the radial evolution of the CR diffusion coefficients by using the boundary
conditions for different solar activity levels. We find that in the ecliptic plane at 1 au (1), the large-scale SW
temperature T, velocity Vsw, Alfvén speed VA, and IMF magnitude B0 are positively related to solar activity; (2) the
fluctuating magnetic energy density á ñz 2 , residual energy ED, and corresponding correlation functions all have an
obvious solar cycle dependence. The residual energy ED is always negative, which indicates that the energy in
magnetic fluctuations is larger than the energy in kinetic fluctuations, especially at solar maximum; (3) the
correlation length λ for magnetic fluctuations does not show significant solar cycle variation; (4) the temporally
varying shear source of turbulence, which is most important in the inner heliosphere, depends on the solar cycle;
(5) small-scale fluctuations may not depend on the direction of the background magnetic field; and (6) high levels
of SW fluctuations will increase CR perpendicular diffusion and decrease CR parallel diffusion, but this trend can
be masked if the background IMF changes in concert with turbulence in response to solar activity. These results
provide quantitative inputs for both turbulence transport models and CR diffusion models, and also provide
valuable insight into the long-term modulation of CRs in the heliosphere.
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1. Introduction

The transport of cosmic rays (CRs) throughout the helio-
sphere is determined by the large-scale solar wind (SW) flow
and the turbulent fluctuations embedded in it. The background
solar interplanetary magnetic field (IMF) periodically changes
from solar maximum to minimum (∼11 years), leading to
variations in the different transport processes responsible for
CR propagation, such as diffusion through the irregular IMF,
outward convection by the SW, adiabatic deceleration, and
gradient and curvature drifts (Potgieter 1998, 2013; Zhang
1999; Jokipii & Kóta 2000). As such, we can subsequently
observe that CR intensities correlate inversely with solar
activity due to solar-cycle-related changes in the modulation
environment (Zhao & Zhang 2015, 2016). Numerical modeling
describing time-dependent CR modulation in the heliosphere
has progressed significantly over the past several decades (e.g.,
Le Roux & Potgieter 1995; Giacalone & Jokipii 1999; Ferreira
& Potgieter 2004). For instance, 2D or 3D models based on
solving the Parker transport equation (Parker 1965) are
remarkably successful in simulating the observed temporal
and spatial variations in the spectra from various spacecraft,
ground-based neutron monitors, and balloon experiments
(Manuel et al. 2011; Strauss et al. 2012; Zhao & Qin 2013;
Zhao et al. 2014; Potgieter et al. 2015; Adriani et al. 2016).
However, in the absence of a clear theory of how diffusion
coefficients change with solar activity, most CR modulation

models use empirical and phenomenological time-dependent
diffusion coefficients based on observations of the magnetic
field magnitude and variance. To understand the physical origin
of the variation of the CR diffusion coefficients with solar
activity, one needs to know how the diffusion coefficients
depend on basic turbulence quantities (Bieber et al. 1995; Zank
et al. 1998; Shalchi et al. 2004; Minnie et al. 2007; Burger et al.
2008; Shalchi 2009), such as the magnetic field turbulence
energy and the correlation length scale, which may change with
solar activity.
Energetic charged CR particles are scattered by small-scale

magnetic field fluctuations in the IMF (Jokipii 1966). Thus,
both turbulence and the large-scale SW flow control CR
propagation within the heliosphere, implying a solar cycle
dependence. Currently, there are several numerical models that
couple CR transport with magnetic turbulence models and the
evolving large-scale background throughout the heliosphere
(e.g., Florinski et al. 2003; Engelbrecht & Burger 2013a,
2013b; Guo & Florinski 2016). Spacecraft observations show
that local properties of the large-scale SW flow at 1 au are
modulated by the solar cycle. There is evidence that greater
mixing of fast and slow SW plasma typically occurs at
solar maximum (e.g., Bame et al. 1976), and is more likely to
depend on the latitude during solar minimum (Burger et al.
2000). It is, of course, also well established that the background
IMF changes with solar cycle. However, a detailed under-
standing of the dependence of the turbulence quantities on
solar activity, which is an important component of modeling
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the time-dependent modulation of CR particles in the helio-
sphere, is not yet well understood.

The evolution of low-frequency turbulent fluctuations in the
large-scale radially expanding SW plasma can be interpreted in
terms of magnetohydrodynamic (MHD) theory (Zhou &
Matthaeus 1990a, 1990b). The WKB Alfvén wave model is
the accepted paradigm for magnetized fluctuations in the SW
flow, and describes the radial evolution of linear Alfvén waves
in a slowly varying background (Matthaeus et al. 1994; Zank
et al. 1996). It has been used to study the heliocentric and
rigidity dependence of the CR diffusion tensor in the inner
heliosphere (Völk et al. 1974; Morfill & Völk 1979; Chhiber
et al. 2017). The WKB theory has several problems that make it
inconsistent with a variety of different spacecraft observations
(Zank et al. 2012). Two of the more notable deficiencies of the
WKB theory are that (1) it cannot explain the changing Alfvén
ratio rA with heliocentric distance. In the inner heliosphere, the
Alfvén ratio (the ratio of the kinetic to magnetic energy in
fluctuations) rA;1 (i.e., equipartition between kinetic and
magnetic energy fluctuations). However, observations (Zank
et al. 2012, 2017; Adhikari et al. 2015, 2017a, and references
therein) indicate that the Alfvén ratio initially decreases slightly
with heliocentric radial distance until about 4 au, after which it
begins to increase significantly because of the presence of
pickup-ion-driven turbulence in the outer heliosphere. Thus,
the Alfvén ratio is not always approximately equal to 1
throughout the heliosphere. (2) Because it describes the
propagation of linearized Alfvénic fluctuations, WKB theory
cannot explain the observed non-adiabatic expansion of SW
plasma in both the inner and outer heliospheres. Within 1 au,
the heliocentric plasma temperature profile decays according to
∼r−1.1 (Verma et al. 1995; Marino et al. 2008), which is slower
than the adiabatic prediction T(r)∝r−4/3. Voyager and
Pioneer observations (Gazis et al. 1995; Richardson & Smith
2003) show that, indeed, the temperature continues to decay at
a rate slower than adiabatic, and even begins to increase slowly
after ∼20–30 au. The non-adiabatic evolution of the SW
temperature with heliocentric distance requires an extended
in situ heating source. This source has been ascribed to the
decay of SW turbulence, both pre-existing and that generated
in situ by processes such as stream–stream interactions,
interplanetary shock waves, streaming energetic particles, and
the creation of pickup ions in the distant heliosphere. In situ
heating by turbulent dissipation can supply the energy to slow
the temperature decay (Williams et al. 1995; Matthaeus et al.
1999; Smith et al. 2001, 2006; Isenberg 2005; Marino et al.
2008; Zank et al. 2012, 2017). Despite these and other
limitations, WKB theory is remarkably accurate in describing
the evolution of the magnetic energy density in SW fluctuations
(∝r−3) within several astronomical units, consistent with the
observed heliocentric evolution of magnetic power. The
reconciliation of the successful but apparently mutually distinct
WKB and turbulence descriptions was provided initially in
Zank et al. (1996), who developed a turbulence transport
model, restricted to a highly super-Alfvénic large-scale flow
(i.e., U?VA, with U the large-scale flow speed and VA the
Alfvén speed) and zero cross-helicity, to describe the radial
decay of the magnetic fluctuation variance dá ñB2 from 1 to
40 au, and found close agreement between Voyager1 and 2
and Pioneer11 data. In addition, the Zank et al. (1996)
turbulence transport model reduces to the WKB model in
the limit of no dissipation, driving, or nonlinear terms, or

alternatively, if the rate of dissipation of turbulent fluctuations
is balanced by the rate at which turbulent fluctuations are
generated locally. Extensions of the Zank et al. (1996) model
(e.g., Oughton et al. 2006, 2011; Zank et al. 2012, 2017;
Wiengarten et al. 2016; Adhikari et al. 2017a) show that
despite the decrease in fluctuating magnetic energy in the
distant heliosphere, the increasing contribution by pickup-ion
driving, especially beyond ∼4 au, leads to an increase in the
slab turbulence energy. With regard to the second problem,
Williams et al. (1995) first estimated the heating of the SW due
to the dissipation of turbulence, including that driven by pickup
ions. Subsequently, Matthaeus et al. (1999) and Smith et al.
(2001) extended the results of Zank et al. (1996) to nearly 80 au
for the fluctuating magnetic energy and correlation length, and
solved the SW temperature equation in which the dissipation of
turbulence is included, successfully reproducing the observed
SW temperature from 1 to 80 au. The evolution of the SW
temperature due to the turbulent decay of fluctuations has since
been invoked successfully in several turbulence models to
reproduce the observed non-adiabatic SW temperature (e.g.,
Breech et al. 2008; Isenberg et al. 2010; Usmanov et al. 2011,
2014; Kryukov et al. 2012; Zank et al. 2012, 2017). Recently,
Zank et al. (2017) have derived a coupled 2D and slab
turbulence model that describes both components based on the
theory of nearly incompressible (NI) MHD both in the context
of homogeneous (Zank & Matthaeus 1992, 1993) and
inhomogeneous (Hunana et al. 2008; Hunana & Zank 2010)
flows. The model includes all basic turbulence variables, such
as the fluctuation energy in forward and backward propagating
modes, residual energy, cross-helicity, and correlation lengths,
and shows extensive agreement with Voyager 2observations
(Adhikari et al. 2017a). In addition, such a turbulence model
with a dominant 2D component was also supported by the
recent observational analysis of Zheng & Hu (2018), which
confirmed the self-generation of inertial range structures in SW
turbulence.
Once the turbulence model is determined, the CR diffusion

coefficients can be derived from an appropriate energetic
particle diffusion theory (Zank et al. 1998; Pei et al. 2010;
Engelbrecht & Burger 2013a, 2013b, 2015; Chhiber et al.
2017; Engelbrecht 2017). Zhao et al. (2017) present a detailed
analysis of the radial and rigidity dependence of the CR
diffusion tensor using the Zank et al. (2017) two-component
turbulence model, but consider only steady-state solutions with
an assumed constant SW speed. Adhikari et al. (2014) studied
solar cycle effects on the evolution of various turbulence
quantities based on the Zank et al. (1996, 2012) model. The
SW velocity, source terms, and inner boundary conditions are
treated as time dependent. They find that the temporal SW
introduces a periodic variability in the magnetic energy
fluctuations and correlation length beyond 1 au. Chhiber et al.
(2017) examine the effect of solar activity on CR parallel and
perpendicular diffusion by varying the turbulence energy
amplitude only (normal, half, and double turbulence energy)
at the inner boundary, and find that solar activity increases
perpendicular diffusion and reduces parallel diffusion.
Prior studies describing the evolution of turbulence variables

and the related CR diffusion coefficients in the heliosphere use
steady-state solutions or time-dependent empirical formula. In
this paper, we use OMNI1 minute resolution data to study the
effect of solar cycle on the evolution of forward and backward
turbulence energies, residual energy, and the corresponding
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correlation functions at 1 au, which are essential to determine
the CR diffusion coefficients. It is thought that SW fluctuations
are highly anisotropic with respect to the direction of the large-
scale mean magnetic field. Two-dimensional and slab modes
provide a useful parameterization of anisotropy in SW
turbulence (Duffy & Blundell 2005). Anisotropy is a local
property of turbulence and depends on many factors, such as
fast or slow SW, and high or low heliographic latitude, and it
may also be affected by solar cycle. Several simulations and
phenomenological studies have addressed the anisotropy of
IMF fluctuations (e.g., Matthaeus et al. 2005; Osman &
Horbury 2007; Weygand et al. 2009; Ruiz et al. 2011; Adhikari
et al. 2017b). Dasso et al. (2005) suggest that SW fluctuations
in the fast and slow SW exhibit different anisotropy properties,
based on a statistical analysis of proton densities and magnetic
and bulk velocity fields. They found that fast streams
(Vsw>500 km s−1) were dominated by fluctuations with
quasi-parallel wave vectors, whereas for slow wind
(Vsw<400 km s−1), quasi-perpendicular modes were more
dominant. Smith (2003) examined 530 intervals of Ulysses
data, and found that the distribution of energy between slab and
2D wave vectors is approximately equal at high latitude during
solar minimum. Oughton et al. (2015) concluded that most of
the fluctuation energy resides in the vector components
transverse to the mean field for the inertial range, whereas
the variance anisotropy tends to become more isotropic in the
dissipation range. A summary of the observed anisotropy
results are listed in Table1 of Oughton et al. (2015). For slow
and intermediate SWs in the ecliptic plane at 1 au as used in our
study, perpendicular (2D) wave vectors are a more dominant
component (50%–85%) in the inertial range (see also Oughton
et al. 2015, their Table 1). The 2D and slab energy ratio 80:20
is usually used in theoretical works based on the assumption of
a plasma beta ∼1 or =1 in the SW or solar corona (e.g., Zank
& Matthaeus 1992, 1993; Bieber et al. 2004; Hunana & Zank
2010; Zank et al. 2018). Adhikari et al. (2017b) investigated
anisotropy in magnetic field fluctuations by assuming 80:20,
70:30, 60:40, and 55:45 initial energy ratios between 2D and
slab turbulence at 1 au. They found that the evolving anisotropy
ratios in both the energy-containing and inertial range are
ordered by the inner boundary ratios, and exhibit similar trends
for each initial anisotropy ratio. Here, we employ 2D and slab
energy ratios of 80:20 and 60:40, respectively, to study the
effect of this ratio on CR mean free paths. For the correlation
scale variability in the IMF fluctuations, Osman & Horbury
(2007) obtained a mean value of 1.79±0.36 (with 0.36 the
uncertainty) for the ratio of slab to 2D correlation lengths using
4 s resolution spin-averaged magnetic field data in a slow SW
interval from the four Cluster spacecraft. Weygand et al. (2009,
2011) used 11 spacecraft data sets and found that the ratio of
the slab to 2D correlation scales is 2.55±0.76 (with 0.76 the
uncertainty) for the slow SW, 2.15±0.18 (with 0.18 the
uncertainty) for the intermediate SW, and 0.71±0.29 (with
0.29 the uncertainty) in the fast stream. Following prior studies
(Pei et al. 2010; Dosch et al. 2013; Chhiber et al. 2017; Zhao
et al. 2017), we assume that the ratio of the slab to 2D
correlation scale is 2.0 because we consider slow and
intermediate SW in the ecliptic plane at 1 au. Based on time-
dependent 2D and slab turbulence quantities, we evaluate the
CR parallel diffusion and perpendicular diffusion at 1 au for the
two recent consecutive solar cycles according to quasi-linear
theory (QLT; Jokipii 1966) and nonlinear guiding center

(NLGC; Matthaeus et al. 2003) theory, respectively. More
sophisticated CR diffusion theories have since been developed
(e.g., Shalchi 2005, 2009; Shalchi et al. 2010; Ruffolo et al.
2012), but QLT and NLGC provide simple, reasonably
tractable expressions that have been employed in many
energetic particle transport studies (e.g., Zank et al. 1998,
2004; Pei et al. 2010; Effenberger et al. 2012; Zhao et al. 2017).
For our purpose, they are sufficiently accurate. We also show
the radial dependence of the CR diffusion coefficients derived
from the Zank et al. (2017) NI MHD turbulence model for
different solar activity levels. The inner boundary conditions
and shear-driving source term are derived from observational
data, and we then solve a system of 12 coupled 2D and slab
turbulence equations that describes the radial evolution of
several turbulence quantities. A detailed comparison between
the turbulence solutions from the Zank et al. (2017) model
using initial conditions that depend on solar activity levels and
Voyager 2observations is in preparation (L. Adhikari et al.
2018, in preparation).
The organization of this paper is as follows: Section 2

presents briefly the minimum variance analysis (MVA)
technique (Sonnerup & Scheible 1998) that enables us to
decide the direction of the large-scale background IMF at 1 au,
and thus the direction of a transverse fluctuation can be fixed.
Section 3 presents the time-dependent evolution of various
turbulence quantities using OMNI1 minute resolution data,
which are the input parameters for the Zank et al. (2017) NI
MHD turbulence model. Section 4 illustrates the effect of solar
activity on the evolution of the CR diffusion coefficients. The
last section provides a summary and our conclusions.

2. Data Analysis

Numerous CR modulation studies have focused on solar
minimum conditions (e.g., Zhao et al. 2014; Potgieter & Vos
2016). Since the CR diffusion coefficients require a number of
turbulence quantities such as the 2D and slab variances of
magnetic field fluctuations and the corresponding correlation
lengths as input, long-term CR modulation requires knowledge
of turbulence quantities over at least one solar cycle.
Furthermore, turbulence transport models describing the radial
evolution of such quantities in turn need the observed
turbulence parameters in the inner heliosphere as input
boundary conditions (Burger et al. 2014). Here, we use
OMNI1 minute resolution data sets from 1995 through 2017,
covering about two consecutive solar cycles to calculate such
turbulence quantities at 1 au. The method to find these
quantities is similar to that of Zank et al. (1996) and Adhikari
et al. (2015, 2017a). The various quantities are calculated for
the inwardly and outwardly directed magnetic field separately,
because the orientation of the IMF determines whether a mode
is forward or backward propagating (Adhikari et al. 2017a;
Zank et al. 2017). First, these turbulence quantities are
calculated corresponding to the outwardly directed magnetic
field only. For this case, all X components of the magnetic field
(GSE coordinate system) in each interval should be negative.
Otherwise, we discard the interval and then move to the next
interval. Two criteria are used in each interval: (i) the mean
square fluctuations of the velocity and magnetic field should be
smaller than the square of the corresponding mean fields, and
(ii) the intervals should contain at least N/2 good data points
(N is the total number of data points in one interval). The
process of calculating various turbulence quantities is as
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follows: 2 hr interval data (N=120) containing the X, Y, and
Z components of the magnetic field and the SW velocity, the
proton density, and temperature are taken. The missing data
within an interval are discarded, then we check whether criteria
(i) and (ii) are satisfied. Criterion (i) is used for all three
components of the magnetic field and SW velocity, since it
excludes intervals with irregular magnetic and velocity
fluctuations. If one component does not meet criterion (i), the
interval is discarded. Second, by following the same process,
intervals corresponding to the inwardly directed magnetic field
(BX>0) are selected. Various features of the SW plasma are
speed related. For example, Dasso et al. (2005) found that the
anisotropy of MHD-scale SW fluctuations differs in fast and
slow SW. Observations show that the slab model corresponds
predominantly to fast streams, and the 2D model corresponds
predominantly to slow streams. Weygand et al. (2011)
examined the correlation scales as a function of angle relative
to the mean magnetic field direction for SW of different speeds.
They found a monotonic transition from large anisotropy in
slow SW to almost isotropy in fast SW. Since magnetic
correlation scales are important to solar and galactic CR
scattering, additional binning of data intervals by SW speed
should be employed in future studies in CR diffusion. In this
manuscript, we do not consider SW speed bins because more
than 92% of the SW velocity is lower than 450 km s−1 after
classification by criteria (i) and (ii) (see Figures 2(c) and 3(c)).

The next step in the analysis is to calculate the Elsässer
variables (Elsässer 1950) in each retained interval corresp-
onding to the inwardly and outwardly directed IMF, respec-
tively. Before doing so, we need to find the direction of the
background IMF, which is neither along the radial nor
the azimuthal direction in the ecliptic plane at 1 au. We
employ the MVA technique to find the direction of the
background IMF, and then project the magnetic field and SW
velocity vectors onto the two directions that are perpendicular
to the background IMF direction, since we consider transverse
fluctuations. This assumption allows us to regard the turbulent
quantities as a superposition of 2D and slab fluctuations.

2.1. Minimum Variance Analysis

The MVA technique, applied to the observed magnetic field
vector data, is used to find the direction normal to a transition
layer in a plasma (Sonnerup & Scheible 1998). Here, we
employ the MVA method to determine the unit vector of the
background IMF in each interval from the measured magnetic
field vector data. The detailed theory and derivation of the
technique can be found in the references. We briefly introduce
the basic equations that will be used in our data analysis. The
fundamental MVA equation can be written in matrix form as

å h=
t

st t s
=

( )M n n , 1B

1

3

where the subscripts σ, τ=1, 2, 3 denote the three
components along a Cartesian coordinate system X, Y, and Z
(e.g., GSE) in which the magnetic field vector data are given.
nσ and nτ represent the components of a unit vector, η are scalar
values, and the elements of a symmetric, 3 ´ 3 “magnetic
variance matrix” are defined as

º á ñ - á ñá ñst s t s t ( )M B B B B , 2B

where the brackets represent the mean values from any number
of magnetic field measurements during an interval. This
constitutes an eigenvalue problem for stMB . Therefore, as
described in Sonnerup & Scheible (1998), the allowed η values
are the eigenvalues η1, η2, and η3 (given in descending order
here) of the matrix stMB . Since stMB is symmetric, the
eigenvalues are all real and represent the actual variances in
those field components. The corresponding eigenvectors, x1,
x2, and x3, are orthogonal, and respectively represent the
directions of maximum, intermediate, and minimum variation
of the field components along each vector. The eigenvector x3,
which corresponds to the smallest eigenvalue η3, is in the
direction of minimum variance and is assumed to be the
direction of the background IMF. We use one criterion for
rejecting degenerate solutions: the ratio of the intermediate to
minimum eigenvalues needs to be greater than 2, i.e.,
η2/η3>2. The variance ellipsoid, as shown in the left panel of
Figure 1 (see also Sonnerup & Scheible 1998), defines the
variance along an arbitrarily chosen direction in the GSE
coordinate system (X, Y, Z). Here, for example, η1, η2, and η3
represent the variance of the magnetic field components along
the eigenvectors x1, x2, and x3 respectively. We have selected a
2 hr interval (the 14th and 15th hours on 5/7/2009) as an
example, which contains 120 good magnetic field component
data corresponding to the inwardly directed IMF mode
(BX>0). The calculated eigenvalues ηi (i=1, 2, 3) (nT)2 of
this interval are as follows: η1=1.7×10−2, η2=6.5×
10−3, and η3=9.72×10−5. The corresponding eigenvectors
in the GSE coordinate system are x1=(−0.61, −0.52, 0.59),
x2=(−0.60, −0.18, −0.78), and x3=(0.51, −0.83, −0.21).
The mean magnetic field á ñ = - -( )B 2.25, 3.50, 0.72 (red line
with arrow in Figure 1). From Figure 1, the direction with
minimum variance is estimated to be along x3, which is very
close to the mean magnetic field direction, and serves as an
estimator for the direction of the background magnetic field.
The right panel of Figure 1 shows the probability distribution
of the angle between the direction of minimum variance and the
mean field for the two solar cycles considered here. The angle
mostly lies within 10°, which indicates that the mean magnetic
field direction has the minimum variance in each interval. In
addition, Burlaga et al. (2002) have compared the yearly
averages of the magnetic field strength with the time-dependent
Parkerʼs model (Parker 1958) along the Voyager 1 trajectory,
and found consistency between the observed mean magnetic
field and Parker spiral field. The minimum variance direction
employed here may not necessarily agree with the direction of
the Parker IMF since our value was calculated over a relatively
short interval. Burlaga et al. (2002) also point out that Parkerʼs
spiral magnetic field model makes many assumptions, such as
the SW moving radially away from some inner surface at a
constant speed and being azimuthally symmetric about the
solar rotation axis. These assumptions may not be valid for the
variable solar wind speed on short timescales. The minimum
variance direction we employed can coincide with the local
mean field, but may not agree with the global large-scale field
direction. We note that Cho & Vishniac (2000) and Milano
et al. (2001) found that anisotropy in SW turbulence is more
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pronounced when the mean magnetic field is computed over a
smaller region. Chen et al. (2011) and Matthaeus et al. (2012)
also confirmed that Alfvénic fluctuations in SW turbulence
reflect the local mean field more than the global large-scale
field, and suggested a larger anisotropy when the mean field is
computed locally. Therefore, our assumption of the 2D and
slab energy ratio (80:20 and 60:40, respectively) seems
reasonable based on the use of two hourly averaged bins.

In the following calculations, we first compute the
orthonormal basis (x1, x2, x3) using the MVA method in each
interval, and x3 (denoted as X′ in the following for brevity)
represents the minimum variance direction, which coincides
with the local mean field direction. Second, the observed
magnetic field and velocity field components in each interval
are mapped into x1 and x2 (denoted as Y′ and Z′) directions,
since we consider transverse turbulent fluctuations. The MVA
method can easily determine three directions in each interval:
one represents the mean field direction, and the other two
represent the direction perpendicular to the mean field.

2.2. Fluctuation Energy and Correlation Lengths

Fluctuating magnetic and velocity fields can be separated
from their mean fields as = +B B b; = +U U u. Here, B is
the mean magnetic field, U is the mean velocity field, and b and
u are the fluctuating fields. Here, á ñ =B B and á ñ =b 0, and so
too with the velocity field. Zank et al. (2017) rewrote the NI
MHD system to describe the transport of the majority of the 2D
and minority slab turbulence in terms of Elsässer variables
throughout the heliosphere, which provides a more refined
framework to investigate turbulence in sub- and super-Alfvénic
SW flow. Here, we investigate the solar-cycle-related input
parameters for the Zank et al. (2017) two-component
turbulence model from which we study the influence of solar
activity on the CR diffusion tensor. We first introduce the

definition of the Elsässer variables:

m r
=  ( )z u

b
, 3

0

where μ0 is the magnetic permeability and ρ is the mass
density. The Elsässer variables z± are functions of both large-
scale spatial coordinates and small-scale coordinates, in which
z+ (z−) represents the forward (backward) propagating modes
with respect to the IMF orientation. The background plasma
variables U (mean velocity field), VA (Alfvén velocity), T (SW
temperature), and N (SW density) depend on the large-scale
coordinates. We further introduce the following moments of the
Elsässer variables z± (Zank et al. 2012):

m r m rá ñ º á ñ = á ñ + á ñ + á ñ+ + +· ·
( )

z z u bz u b 2 ,

4

2 2 2
0 0

m r m rá ñ º á ñ = á ñ + á ñ - á ñ- - -· ·
( )

z z u bz u b 2 ,

5

2 2 2
0 0

m rº á ñ = á ñ - á ñ+ -· ( )z zE u b . 6D
2 2

0

Here, á ñ+z 2 and á ñ-z 2 respectively represent the energy density
in the forward and backward propagating modes. ED is the
energy difference in the fluctuation energy (also called the
residual energy). According to CR diffusion theory, we need to
calculate the 2D and slab turbulence magnetic energies as input
for the CR diffusion coefficients. Here, we first calculate the
total fluctuating magnetic energy á ñb2 using

m rá ñ =
á ñ + á ñ -+ -

( )b
z z E2

4
. 7D2

2 2

0

Then, we assume that the total energy in fluctuations can be
divided into majority 2D and minority slab energies with two sets
of fixed ratios, 80:20 (Zank & Matthaeus 1992, 1993; Bieber
et al. 1996) and 60:40 (Oughton et al. 2015; Adhikari et al. 2017b),

Figure 1. Left: the variance ellipsoid. η1, η2, and η3 represent the variance of the magnetic field components along the eigenvectors x1, x2, and x3, respectively.
Eigenvectors are shown relative to the GSE coordinate system (X, Y, Z) in which the magnetic field vector data are given. The direction of the background field is
estimated to be along x3. The red line with an arrow represents the direction of the mean magnetic field á ñB . Right: the probability of the angle between the direction
with minimum variance and the mean field during 1995–2017.
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respectively. To calculate the correlation lengths of the 2D and slab
fluctuations, 2 hr interval data sets are considered, provided each
interval contains 120 good data points (N=120). First, the Y′and
Z′components of the Elsässer variables z+ and z−are calculated in
each interval. Then, for the Elsässer variables z± and the lagged
variables ¢z , the correlation functions can be defined using a
spatial lag r with r=Vswt, where Vsw is the averaged SW speed in
each interval and t is the time lag, and are given by

ò l lº á ¢ñ º á ñ = á ñ+ + + + + + + +· · ( )z z z zL dr z , 82

ò l lº á ¢ñ º á ñ = á ñ- - - - - - - -· · ( )z z z zL dr z , 92

ò lº á ¢ + ¢ ñ º+ - + -· · ( )z z z zL dr E . 10D D D

Here, L± and λ± are the correlation functions and correlation
lengths corresponding to the energy density of the forward/
backward propagating model á ñz 2 , respectively. LD and λD are
the correlation function and correlation length corresponding to
the residual energy ED, respectively. Note that we directly
calculate the three correlation functions L+, L−, and LD instead
of the correlation lengths λ+, λ−, and λD for the Elsässer
variables. After calculating the correlation functions through
the above integral form, we can obtain the fluctuating magnetic
field variance correlation length λ as follows (Equation(76) in
Zank et al. 2017):

l =
+ -

á ñ + á ñ -

+ -

+ -
( )L L L

z z E2
. 11D

D
2 2

As with previous studies, the slab correlation length λs is
assumed to be twice the 2D correlation scale λ2D, thus
λs=2λ2D=2λ (Pei et al. 2010; Dosch et al. 2013; Chhiber
et al. 2017).

3. Results

In this section, we present observations of both the large-
scale background plasma variables and small-scale fluctuation
quantities at 1 au from 1995 to 2017, which will be used as
input boundary conditions for the Zank et al. (2017) turbulence
model. In L. Adhikari et al. (2018, in preparation), we show the
radial evolution of these quantities using different solar-
activity-related boundary conditions, and compare the numer-
ical results with observations from Voyager 2. Here, we
evaluate the CR parallel and perpendicular diffusion coeffi-
cients based on the above 2D and slab turbulence magnetic
energy and correlation lengths at 1 au for two solar cycles
according to QLT and NLGC theory, respectively. Finally, we
present the radial evolution of the parallel and perpendicular
diffusion coefficients for different solar activity levels using the
turbulence solutions from L. Adhikari et al. (2018, in
preparation).

3.1. Input Parameters for Turbulence Models

Figures 2 and 3 show the temporal evolution of the SW
temperature T, density N, velocity Vsw, Alfvén velocity VA, and
heliospheric magnetic field magnitude B at 1 au as recorded by
OMNI during 1995–2017. Mean values of each parameter in
each interval are calculated for the inwardly and outwardly
directed IMF, respectively. Red circles represent yearly

averaged values of these large-scale parameters, and the solid
circles represent three epochs (year 2003, 2009, and 2015) with
different solar activity levels. We present the radial evolution of
CR diffusion coefficients for these three years below. As a
reference, we present the monthly averaged sunspot number
(SSN) to evaluate the level of solar activity. The SW
temperature T, velocity Vsw, Alfvén speed VA, and heliospheric
magnetic field magnitude B exhibit a similar variable trend to
the solar cycle distribution of the SSN. However, the SW
density N shows little correlation with solar activity. There is
some anti-correlation between temperature and density, but it is
not clear in solar cycle 24. Remarkably, T, Vsw, VA, and B all
reached a maximum value in 2003 during solar cycle 23 and a
weak peak in 2015 during solar cycle 24, and have a lag of
∼1 year with respect to the corresponding peak of the SSN.
Note that we do not focus on the specific peak time in this
study since there are some other estimators of solar activity,
e.g., coronal mass ejection, which is a striking manifestation of
solar activity seen in the solar corona and also has a delay
timescale of ∼11 months with respect to the SSN (Wheatland
& Litvinenko 2001; Du 2012).
Figures 4 and 5 show the temporal evolution of the energy

density in the forward and backward propagating modes á ñz 2

and the corresponding correlation functions L±, the residual
energy ED, and the corresponding correlation function LD.
Figure 4 shows the data sets for two solar cycles for the
inwardly directed IMF, and Figure 5 is for the outwardly
directed IMF. All of the small-scale turbulence quantities
of Figures 4 and 5 are derived from Equations (4)–(6) and
(8)–(10). The red circles represent yearly averaged values for
these quantities, and years 2003, 2009, 2015 are also selected
as representative of the three special periods (red solid circles).
From Figures 4 and 5, we can see that all turbulence quantities
vary with solar activity and show solar cycle dependence. It is
interesting to see that the values of the residual energy ED and
the corresponding correlation function LD are always negative,
which illustrates that the energy in magnetic fluctuations is
larger than the energy in kinetic fluctuations, especially at solar
maximum. ED and LD are both anti-correlated with solar
activity while the other two energy densities and associated
correlation functions are positively correlated with solar cycle.
á ñ+z 2 , á ñ-z 2 , ED, L

+, L−, and LD are all calculated using two-
hour intervals (N=120). In addition, Shiota et al. (2017) have
analyzed extensively the effect on correlation lengths when
using longer intervals. They found that a longer interval data
set may not be helpful in determining correlations within the
inertial range of turbulence in the SW. This is because a longer
interval may introduce some structures associated with large-
scale flows into the analysis, which then leads to an increase in
the correlation functions and correlation lengths. For our
analysis, 2 hr is the most suitable length of interval that yields
reasonable correlation lengths when compared with Voyager
2observations (L. Adhikari et al. 2018, in preparation). We
assume that the maximum time lag t is 1 hr (N/2 data points)
when calculating the correlation functions in Equation (8)–(10).
Most previous studies use the spatial lag r, where the auto-
correlation function of the Elsässer variable becomes 1/e of the
maximum values, to determine the correlation length. Since the
auto-correlation function of the Elsässer variable drops rapidly,
a spatial lag at 1/e of the maximum value is closer to zero lag.
Therefore, limiting our analysis to a maximum time lag seems
reasonable. Besides, the temporal evolution of the energy
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density (also the residual energy) and the corresponding
correlation functions looks similar, which illustrates that the
Elsässer variables z± and the lagged Elsässer variables ¢z are
quite well correlated when using the above maximum time lag.

Figure 6 depicts the influence of solar activity on a critical
term in the shear source expression of the 2D and slab
turbulence transport equations. The monthly mean SSN is also
given as a reference. The complete form of the shear source
terms that we consider is given by Zank et al. (2017) as

=
D

=
D

á ñ



∣ ∣ ∣ ∣ ( )S C

r U V

r
S C

r U V

r
; , 12z

A
E

E A
sh

0
2

2 sh
0

2

2D
D2

where the parameters Csh and CE
sh
D are the parameterized

strengths of the shear source of energy in the forward and
backward modes and the residual energy, respectively.

¹+ -C C 0,sh sh and CE
sh
D can be 0, positive, or negative. r0 is

a reference location. ΔU is the difference between fast and
slow SW speeds, and VA is the background Alfv ́en speed. In
Figure 6, we calculate the productDUVA

2 in each 96 hr interval
to include the structure of streams. The red circles are the
yearly averaged values ofDUVA

2, and the solid circles represent
the years 2003, 2009, and 2015, respectively. The green line is
calculated in the time interval determined by start and end
times of each stream interaction region (SIR) event during
1995–2009, which were compiled by Jian et al. (2006, 2011).

Our result agrees well with the SIR list for 1995–2009, and
shows a rather clear solar cycle dependence, which indicates
that the shear source term of turbulence is also correlated with
solar activity.
Figures 2–6 show all the quantities that are needed in our

turbulence model. All quantities exhibit either a correlation or
anti-correlation with solar activity. For inwardly and outwardly
directed IMF, all of the quantities have similar evolution
properties, which indicate that small-scale fluctuations exhibit
at best a weak dependence on the direction of the background
magnetic field. For the shear source term, we do not need to
distinguish the direction of the IMF. The values of all these
quantities in the years 2003, 2009, and 2015 are shown in
Tables 1 and 2 for the inwardly and outwardly directed IMF,
respectively. These will be used as input parameters for the
inner boundary condition in our turbulence model. In the
following section, we use these solar-cycle-related turbulence
quantities to investigate their effects on CR diffusion.

3.2. The Effects of Solar Activity on CR Diffusion

Figure 7 shows the monthly averaged 2D and slab turbulence
magnetic energies and the corresponding correlation lengths
calculated, respectively, from Equations (7) and (11). The red
dashed lines are for inwardly directed IMF, and the blue lines
for outwardly directed IMF. We can see that there is little

Figure 2. Temporal evolution of (a) proton temperature T, (b) density N, (c) solar wind velocity Vsw, (d) Alfv ́en velocity VA, and (e) heliospheric magnetic field
magnitude B at 1 au for the inwardly directed IMF. Red circles represent the yearly averaged values of each parameter with three solid circles representing years 2003,
2009, and 2015, respectively. The green line in the bottom panel shows the monthly averaged sunspot number (SSN).
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difference in the temporal evolution of these quantities between
the inwardly and outwardly directed IMF modes. á ñb :2D

2

á ñ =b 80%: 20%s
2 and λs=2λ2D=2λ have been assumed

in this figure. We can see a clear solar cycle dependence in the
turbulence energy. Solar maximum carries more turbulent
energy than solar minimum, which is caused by the frequent
generation of shocks that generate turbulence (Zank et al. 1996;
Adhikari et al. 2016). In contrast, the correlation lengths show
no discernible solar cycle variation; in other words, the
variation is very small. Wicks et al. (2009) studied the spatial
correlation properties of the SW in the ecliptic at 1 au using
ACE and Wind measurements, and found that the correlation
length for components of the magnetic field does not show an
obvious solar cycle dependence, which is consistent with our
results. From Figure 7, we notice that the slab turbulence
energy á ñbs

2 in year 2003 is four times larger than that in year
2009, and the correlation length λs in 2003 is two times larger
than in 2009. The averaged value of λs is about 0.88×106 km.
This value is a little smaller than previous studies of correlation
lengths for magnetic field fluctuations in the SW. For example,
Tu & Marsch (1995) gave a value of the correlation length for
the Elsässer variables as λ≈265RE≈1.7×106 km using
single-spacecraft measurements. Matthaeus et al. (2005)
investigated the value of λ using multiple-spacecraft measure-
ments, and suggested a value of λ≈1.3×106 km. Matthaeus
et al. (2008) discussed the difference between multiple- and
single-spacecraft measurements of the correlation length.

However, these previous results did not consider the effect of
solar activity levels on correlation lengths.
Figures 8 and 9 show the effects of solar activity on the CR

parallel λP (blue line), perpendicular λ⊥ (red line), and radial
mean free path λrr (gray line) for a proton with rigidity 445MV
(corresponding to a 100MeV proton) for the inwardly and
outwardly directed IMF, respectively. As described in Zank
et al. (1998), the parallel mean free path (mfp) based on
standard QLT and assuming magnetostatic turbulence is
approximated by

l l=
á ñ

+
+ +

 ⎜ ⎟⎛
⎝

⎞
⎠

⎡
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⎤
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q s

s s

5 3
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2

2 2 1 6 , = + -( )A s1 12 5 6 , and =s

lR0.746834 L s. RL is the particle Larmor radius, P is the
particle rigidity, and B0 is the mean magnetic field strength.
The analytic form of the perpendicular mfp based on NLGC
theory is given by (Zank et al. 2004; Shalchi et al. 2010)

l p l l=
á ñ

^ 

⎡
⎣⎢

⎤
⎦⎥ ( )a C

b

B
3 , 142 2D

2

0
2 2D

2 3
1 3

where a2=1/3 is a factor related to the gyrocenter velocity.
n p n= G G -( ) [ ( )]/ /C 2 1 2 is a constant such that ν=5/6

yields a Kolmogorov (1941) spectrum. Note that Equation (14)

Figure 3. Same as Figure 2, but now for the outwardly directed IMF.
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was derived under the assumption of a specific form of 2D
wave spectrum, which is a constant at large turbulence scales. It
means that the 2D turbulence spectrum is independent of
wavenumber in the energy range in Equation (14). Observation
of magnetic fluctuations in the SW indicates that omnidirec-
tional power spectra approach a k−1 wavenumber dependence
and that low-frequency turbulence exhibits some sunspot cycle
variability (Bieber et al. 1991). Based on this, Engelbrecht &
Burger (2015) derived the perpendicular mfp by specifying the
energy range spectral index of 2D turbulence power spectra as
−1. A more general form of the 2D power spectrum with an
energy range spectral index q was proposed by Shalchi et al.
(2010). They show that the spectral index has a strong
influence on the perpendicular diffusion coefficient. In their
model, negative values of q correspond to a decreasing
spectrum in the energy range, q=0 corresponds to the
constant spectrum we use here, and positive values of q
correspond to an increasing spectrum. Matthaeus et al. (2007)
presented a similar spectrum in different regimes: energy range,
inertial range, and intermediate regime where the spectrum is
proportional to k−1 to coincide with observations (Bieber

et al. 1991; Goldstein & Roberts 1999). However, Shalchi
(2013) argues that a spectrum that behaves like k−1 does not
provide a different perpendicular diffusion coefficient (see also
Shalchi et al. 2010), since the field lines for such length scales
behave superdiffusively as in the inertial range (Shalchi &
Kourakis 2007). In view of this uncertainty, we do not take into
account a more elaborate spectrum in the present paper. The
behavior of the 2D wave spectrum in the energy range, which
may also be correlated with the sunspot cycle, is an important
factor in deriving the CR perpendicular mfp. A general form
(e.g., Shalchi et al. 2010; Shalchi 2013) should be employed in
future studies of CR diffusion.
The radial mfp, λrr, can be expressed as a function of the

heliospheric magnetic field winding angle ψ,

l l y l y= + ^ ( )cos sin , 15rr
2 2

where y = /B Btan Y X , and BX (BY) is the average X (Y)
component of the magnetic field in each interval. The winding
angle therefore is not a constant in our calculation, but varies
with time. In Figures 8 and 9, we employ the monthly averaged
2D and slab turbulence energy and corresponding correlation

Figure 4. Temporal evolution of (a) the energy density in forward propagating modes á ñ+z 2 and (b) the corresponding correlation function L+; (c) the energy density in
backward propagating modes á ñ-z 2 and (d) the corresponding correlation function L−; and (e) the residual energy ED and (f) the corresponding correlation function LD
for the inwardly directed IMF. Red circles represent the yearly averaged values of each parameter. Red solid circles represent years 2003, 2009, and 2015,
respectively.
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lengths shown in Figure 7 to calculate CR mfp’s in the ecliptic
plane at 1 au. In these two figures, we use a mean value of
B0=5.5 nT at 1 au to focus on the effects of the small-scale
turbulence quantities on the CR diffusion coefficients. From
Figures 8 and 9, we can clearly see the solar cycle dependence of
λP, λ⊥, and λrr. The parallel mfp λP during solar maximum (i.e.,
2003) is lower than that during solar minimum (i.e., 2009). In
contrast, the perpendicular mfp λ⊥ in the solar maximum is
higher than that in the solar minimum. λP is nearly three orders of
magnitude larger than the perpendicular mfp λ⊥ at 1 au. The
radial mfp λrr is dominated by parallel diffusion λP in the inner
heliosphere (Zhao et al. 2017) and also has a positive correlation
with solar activity. Chhiber et al. (2017) studied the influence of
solar activity on the CR parallel and perpendicular diffusion in
the inner heliosphere. They found that increasing the turbulence
magnitude leads to a decrease in parallel mfp and an increase in
perpendicular mfp, which is in agreement with Figures 8 and 9,
where we assumed a fixed value of B0.

In Figure 10, we use the solar-cycle-dependent background
IMF magnitude obtained from Figure 3(e) to calculate the
parallel λP (blue lines), perpendicular λ⊥ (red lines), and radial
λrr (cyan lines) mfp’s for the outwardly directed IMF. Two-
dimensional and slab fluctuation magnetic energies and the

corresponding correlation lengths are the same as in Figures 8
and 9. By considering the variation of both turbulence
quantities and the background IMF magnitude, we find that
the solar cycle dependence of the CR mfp’s is reduced, since
the background IMF magnitude B0 and turbulence energy á ñbs

2

(or á ñb2D
2 ) each have the opposite effect on λP (or λ⊥), as shown

by Equations (13) and (14). For example, for a fixed value of
the background IMF, an increase in á ñbs

2 leads to a decrease in
λP as shown in Figure 9, while for a fixed á ñbs

2 , an increase in B0

leads to an increase in λP. Therefore, when we take into
account both effects, the solar cycle dependence of λP is
somewhat masked but still identifiable. It is interesting to see
that there is an anti-correlation between the parallel mfp λP and
the perpendicular mfp λ⊥. For this á ñ á ñ =b b: 80: 20s2D

2 2 case,
the averaged value of λP is about 0.9 au, and the averaged value
of λ⊥ is about 1.6×10−3 au.
In Figure 11, we assume the ratio á ñ á ñ =b b: 60: 40s2D

2 2 to
examine the effect of turbulence anisotropy on CR mfp’s. All
other quantities are the same as in Figure 10, including
the observed solar-cycle-dependent IMF magnitude B0. For the
60:40 2D and slab energy ratio, there is little difference in the
temporal tendency of each mfp. There is again a reduced solar
cycle dependence of the CR mfp’s when the variations of the
turbulence quantities and IMF magnitude are both considered.

Figure 5. Same as Figure 4, but now for the outwardly directed IMF.
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However, a clear decrease in the length of each mfp is found. In
the 60:40 case, the averaged λP is about 0.45 au, and the
averaged λ⊥ is about 1.07×10−3 au. Through analysis of
intensity and anisotropy profiles of prompt solar bursts and
non-impulsive events, Palmer (1982) finds an mfp consensus:
at 1 au, λP is about 0.08–0.3 au for particles in the rigidity range
0.5–5000 MV. However, the values for mfp’s obtained by
fitting observational data may depend on the model used
(Chhiber et al. 2017). Reames (1999) reviews various events
and suggests a higher value of λP∼1 au at 1 au. For the
á ñ á ñ =b b: 60: 40s2D

2 2 case, λP in our study is closer to the
Palmer consensus range. For the á ñ á ñ =b b: 80: 20s2D

2 2 case,
our λP is closer to Reames’ suggested value.

Figure 12 shows the radial evolution of the parallel mfp λP
(blue lines), perpendicular λ⊥ (red lines), radial λrr (cyan lines)
mfp, and λ⊥/λP (green lines) for the years 2003 (solid lines),
2009 (dashed lines), and 2015 (dotted–dashed lines), respectively.
Here, we present the radial evolution of the various mfp’s for the
á ñ á ñ =b b: 80: 20s2D

2 2 outwardly directed IMF mode case only.
We solved the coupled 2D and perpendicular slab turbulence
transport equations from 1 to 75 au (Adhikari et al. 2017a; Zank
et al. 2017; Zhao et al. 2017), using the observed initial conditions
for these three years given in Table 2. At 1 au, we use the
observed IMF magnitude from Figure 3(e). Beyond 1 au, we
employ the Parker spiral magnetic field with a constant SW speed,
just as Zhao et al. (2017) assumed. The observed IMF magnitude

Figure 6. Top panel (a) shows the monthly averaged sunspot number (SSN). Panel (b) shows the temporal evolution of the shear source termDUVA
2 at 1 au. The black

line represents the result calculated in each 96 hr interval, and the red circles represent the yearly averaged values. The green line represents the result calculated in the
time interval determined by start and end times of each shear interaction region (SIR) event during 1995–2009. The red solid circles represent years 2003, 2009, and
2015, respectively.

Table 1
Initial Conditions at 1 au for the Inwardly Directed IMF

Year 2003 Year 2009 Year 2015

á ñ+z 2 1500.31 km2 s−2 363.99 km2 s−2 635.72 km2 s−2

á ñ-z 2 629.98 km2 s−2 198.01 km2 s−2 326.57 km2 s−2

ED −387.01 km2 s−2 −110.83 km2 s−2 −208.52 km2 s−2

L+ 9.17×108 km3 s−2 1.13×108 km3 s−2 3.31×108 km3 s−2

L− 2.98×108 km3 s−2 6.38×107 km3 s−2 1.25×108 km3 s−2

LD −5.08×108 km3 s−2 −1.04×108 km3 s−2 −1.94×108 km3 s−2

T 98071 K 52699 K 60811 K
N 5.69 cm−3 5.66 cm−3 7.43 cm−3

Vsw 470.13 km s−1 376.06 km s−1 437.26 km s−1

VA 91.73 km s−1 47.84 km s−1 69.03 km s−1

∣ ∣B 8.61 nT 4.71 nT 7.65 nT
ΔUVA

2 1.93×106 km3 s−3 2.29×105 km3 s−3 8.25×105 km3 s−3
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beyond 1 au may be needed in a future study. The radial evolution
of the CR diffusion tensor has been described in detail in Zhao
et al. (2017). Here, we focus on the effect of solar activity on CR
diffusion only. Since the current solar cycle is the weakest of the
century, as known so far, the solar activity level for the years 2003
(solar maximum), 2015 (weaker solar maximum), and 2009 (solar
minimum) is gradually weakening. Because of this, the parallel
mfp λP increases and the perpendicular mfp λ⊥ decreases
accordingly for 2003 (solid line), 2015 (dotted–dashed line),
and 2009 (dashed line). Beyond ∼10 au, such an anti-correlation
with solar activity for λP becomes less clear.

4. Summary and Conclusions

We present a detailed analysis of both large-scale back-
ground plasma variables and small-scale Elsässer variables to
investigate the effect of solar cycle on SW turbulence
parameters and the related CR diffusion coefficients. Compared

to previous empirical time-dependent solutions (e.g., Adhikari
et al. 2014), we use the OMNI1 minute resolution data over the
last two solar cycles to study the temporal evolution of various
turbulence quantities at 1 au for the inwardly and outwardly
directed IMF, respectively. The SW proton temperature,
velocity, Alfvén speed, and IMF magnitude are all positively
related to solar activity. There is some anti-correlation between
SW temperature and density, but it is not clear in the current
solar cycle 24. The fluctuating magnetic energy densities á ñz 2

and the residual energy ED all exhibit an obvious solar cycle
dependence. This is consistent with previous studies (Hnat
et al. 2007; Kiyani et al. 2007) that show a solar cycle
dependence for magnetic energy density fluctuations within the
inertial range, using Wind and ACE measurements. The value
of á ñ+z 2 for the inwardly directed IMF mode is approximately
equal to á ñ-z 2 for the outwardly directed IMF mode, and
vice versa, which can be explained through their definition

Table 2
Initial Conditions at 1 au for the Outwardly Directed IMF

Year 2003 Year 2009 Year 2015

á ñ+z 2 593.73 km2 s−2 221.01 km2 s−2 379.15 km2 s−2

á ñ-z 2 1524.17 km2 s−2 363.08 km2 s−2 629.82 km2 s−2

ED −432.79 km2 s−2 −113.61 km2 s−2 −201.17 km2 s−2

L+ 2.41×108 km3 s−2 4.92×107 km3 s−2 1.15×108 km3 s−2

L− 8.70×108 km3 s−2 1.16×108 km3 s−2 3.25×108 km3 s−2

LD −5.38×108 km3 s−2 −8.98×107 km3 s−2 −1.88×108 km3 s−2

T 109,546 K 42,216 K 67,720 K
N 5.33 cm−3 6.02 cm−3 6.96 cm−3

Vsw 493.31 km s−1 359.48 km s−1 412.25 km s−1

VA 88.10 km s−1 43.21 km s−1 66.86 km s−1

∣ ∣B 8.14 nT 4.41 nT 7.42 nT
ΔUVA

2 1.93×106 km3 s−3 2.29×105 km3 s−3 8.25×105 km3 s−3

Figure 7. Temporal evolution of the monthly averaged 2D turbulence magnetic energy á ñb2D
2 (top left) and the corresponding correlation length l2D (bottom left), and

the slab turbulence magnetic energy á ñbs
2 (top right) and the corresponding correlation length λs (right bottom). The red dashed lines depict the results calculated for the

inwardly directed IMF, and the blue lines for the outwardly directed IMF. A ratio of 2D and slab energy of 80:20 and λs=2λ2D=2λ have been assumed.

12

The Astrophysical Journal, 856:94 (16pp), 2018 April 1 Zhao et al.



(Equations (4) and (5)). The residual energy ED, which
represents the energy difference between the velocity fluctua-
tions and magnetic field fluctuations (Equation (6)), is always
negative for both inwardly and outwardly directed IMF modes.
This illustrates that the energy in magnetic fluctuations is larger
than the energy in kinetic fluctuations, especially at solar
maximum (Figures 4(e) and 5(e)). We introduce the correlation
function L+, L−, and LD for the Elsässer variables z± and the
lagged variables ¢z to calculate the correlation length λ of the
magnetic field fluctuations through Equation (11). We find that
the correlation functions evolve similarly to the corresponding
energy densities á ñz 2 or the residual energy ED, and are also
correlated or anti-correlated with solar cycle. It indicates that
the correlation length λ for magnetic fluctuations may not be

sensitive to solar cycle. As shown in Figure 7, the correlation
length for slab turbulence λs (assuming λs=2λ2D=2λ), of
which the average value is about 0.88×106 km, does not
show a significant variation with the solar cycle. One can
increase the value of the correlation length by using a longer
interval length, but it may introduce some structures associated
with large-scale flows (Shiota et al. 2017). The magnetic
turbulence energy in 2D á ñb2D

2 and slab á ñbs
2

fluctuations is
positively correlated with the solar cycle. The magnetic
turbulence energy á ñb2 in the year 2003 (solar maximum) is
almost four times larger than in 2009 (solar minimum), and
also 1.5 times larger than in 2015 (weak solar maximum).
There is little difference between the inwardly and outwardly
directed IMF modes in the evolution of these turbulence

Figure 8. Temporal evolution of CR parallel λP (blue line), perpendicular λ⊥ (red line), and radial λrr (gray line) mean free paths for a proton with rigidity 445 MV
(corresponding to a 100 MeV proton) in the ecliptic plane at 1 au for inwardly directed IMF. A ratio of 2D and slab energy of 80:20 and λs=2λ2D=2λ have been
assumed. For this example, we have assumed that the background IMF magnitude is constant, B0 = 5.5 nT.

Figure 9. Same as Figure 8, but now for the outwardly directed IMF.
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quantities, which illustrates that the small-scale fluctuations
may not depend on the direction of the background magnetic
field. Finally, the temporally varying shear source of
turbulence, which is most important in the inner heliosphere,
also depends on solar cycle.

The above solar-cycle-dependent turbulence quantities at
1 au can be used as input for both turbulence transport models,
which in turn describe the radial evolution of such quantities
and CR diffusion models. To investigate the solar cycle
variation of CR parallel and perpendicular diffusion, one
should consider the variation of both turbulence quantities and
background large-scale IMF magnitude. We employ QLT and
NLGC theory to model the CR parallel mfp λP and the
perpendicular mfp λ⊥, respectively. The temporal evolution of
λP, λ⊥, and λrr in the ecliptic plane at 1 au over the two recent
solar cycles is calculated. The parallel mfp λP is about three

orders of magnitude larger than the perpendicular mfp λ⊥, and
dominates the radial mfp λrr. When we use a fixed value of the
IMF, the CR mfp’s all have a clear solar cycle dependence.
The parallel mfp λP and radial mfp λrr are anti-correlated with
the solar cycle while the perpendicular mfp λ⊥ is positively
correlated with the solar cycle. This illustrates that high levels
of SW fluctuations will increase CR perpendicular diffusion
and decrease parallel diffusion if the background IMF strength
remains unchanged. However, if the background IMF changes
in concert with the turbulence levels in response to solar
activity, this trend can be masked. We also show the effect of
using different 2D and slab energy ratios, such as 80%:20%
and 60%:40%, which are reasonable according to the observed
anisotropy in slow and intermediate SW turbulence. We find
that the 60:40 case can yield a much smaller CR parallel mfp,
which is closer to the Palmer (1982) consensus. Finally, based

Figure 10. Same as Figure 9, but now for a solar-cycle-dependent background IMF magnitude obtained from Figure 3(e).

Figure 11. Same as Figure 10, but now for a 60:40 energy ratio between 2D and slab fluctuations.
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on the Zank et al. (2017) NI MHD turbulence model, we
present the radial evolution of the CR diffusion coefficients
from 1 to 75 au. The values of the input parameters needed for
the inner boundary conditions for the 2D and slab turbulence
models are obtained from observational data at 1 au. The
detailed radial properties for the various CR mfp’s are given in
Zhao et al. (2017). Here, we choose 2003 (strong solar
maximum), 2015 (weak solar maximum), and 2009 (solar
minimum) to represent three particular epochs of solar activity.
With the gradual weakening of the level of solar activity, the
value of the parallel mfp λP increases until ∼10 au while the
perpendicular mfp λ⊥ decreases throughout the heliosphere.
Solar-cycle-dependent boundary conditions lead to solar cycle-
related changes in the turbulence quantities and hence in the
CR diffusion coefficients. L. Adhikari et al. (2018, in
preparation) will present the radial evolution of the turbulence
quantities using different boundary conditions related to solar
activity at 1 au.

In this study, we present the effect of solar activity cycle on
various turbulence quantities and the related CR diffusion
coefficients using OMNI observations over 22 years. These
results provide quantitative input for both CR propagation
models and turbulence transport models, and also provide
useful insight for time-dependent turbulence modeling to
understand the long-term CR modulation which requires
turbulence quantities over at least one solar cycle. The solar
cycle influence on the global properties of turbulence beyond
1 au still needs further investigation.
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