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Abstract—Block-based programming languages have become
increasingly prominent in both the educational and end-user
communities. As the block-based codebase is growing rapidly, its
quality remains poorly understood, even though the awareness of
recurring quality problems in this domain can benefit educators
and end-user programmers alike. To address this problem, we
report on the results of a large-scale assessment of recurring
quality problems in block-based software. Our work identifies
quality problems endemic of block-based software, as well as
applies program analysis to assess the prevalence and severity of
quality problems in close to 600K representative Scratch projects.
Our empirical evidence shows how certain recurring quality
problems hinder code sharing for popular Scratch projects.
These results indicate that the quality of block-based software
warrants the attention of CS educators, end-user programmers,
and tool builders. Our study’s results can help programmers
avoid introducing the quality problems, while guiding tools
builders in supporting the systematic quality improvement of
block-based software.

Index Terms—end-user programming; empirical study; soft-
ware quality; program analysis; code smells; block-based soft-
ware; Scratch; software refactoring

I. INTRODUCTION

The key functions of modern society critically depend on

software-based systems. Finance, transportation, communica-

tion, government, defense—all rely on software to manage and

carry out day-to-day operations. A key factor that determines

the utility and safety of any software-based system is software

quality. In this respect, poor software quality is known not

only to increase the development and maintenance costs,

but also be conducive to causing software defects [1], [2].

Block-based languages have become an important entryway

to the world of software development for CS learners and

end-user programmers alike. Although one may argue that

block-based programs are too simple to warrant any quality

concerns, the issue at hand is the formation of good habits that

promote solid software engineering practices, as block-based

programmers move forward in their computing journeys. In

any case, software quality is known to be inversely correlated

with the effort required to understand, modify, and evolve

a software system [3], [4]. In that light, improving software

quality is an important process, with the assessment of quality

problems being the critical first step in this process.

In addition to the societal impact, poor software quality can

hinder learning enabled by code sharing, an important learning

activity for novice programmers. For example, Scratch, the

language we focus on here, has a large and engaging on-

line community, whose slogan is “Imagine, Program, Share.”

This slogan reflects a vision of sharing—called remixing in

Scratch—being a central tenet of this learning community [5].

Yet, the majority of Scratch projects we studied have had a

limited success in allowing others to extend them, rendering

these projects less “remixable.” As we have discovered, soft-

ware quality can be an important factor affecting whether a

project is remixable.

In this work, we document recurring quality problems in

block-based programs written in Scratch by leveraging the

well-recognized software quality assessment methodology of

code smells [6]. In essence, a code smell documents a recurring

pattern of design and/or implementation choices that indicate

the symptoms of software quality problems. We study how the

presence of code smells affects remixed projects in terms of

their “remixability.” In fact, some code smells that we studied

have shown statistically significant effects on how remixable

a project is. The intuition behind this insight is simple: for

a project to be inviting for other programmers to remix and

extend, it has to be easy to understand and modify, a property

hindered by the presence of some code smells.

To establish a practical benchmark for the thresholds at

which the presence of code smells starts hindering remix-

ing, our study focuses on popular remixed projects, whose

remixes have been substantially extended. We then use these

benchmark-based thresholds to determine the severity of the

discovered code smells in our subject dataset, which comprises

close to 600K projects.

The low-risk category of smell severity indicates the level

of quality at which a project is likely to be remixed and

extended. As our results show, some code smells with high

prevalence have a larger percentage of projects in the very high

risk category compared to the benchmark projects. Conversely,

successful remixed projects exemplify how high software

quality can help uphold the fundamental sharing principle of

the learning community of novice programmers.
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The goal of our study is to answer the following research

questions:

• RQ1: What known code smells described in the literature

are applicable in the context of Scratch?

Motivation: The incidence of code smells is commonly

influenced by certain programming language features.

Although block-based languages share many similarities,

they tend to differ with respect to their feature-sets. As

a result, recurring quality problems afflict programs in

these languages in dissimilar ways. This work contributes

a catalog of code smells specific to Scratch, thus far

not thoroughly compiled and documented, benefiting all

the stakeholders in Scratch and giving insights to the

stakeholders in other block-based languages.

• RQ2: What can the analysis of popular Scratch projects

teach us about the state of software quality in this

programming domain?

Motivation: Popular projects can strongly impact the

software development practices of novice programmers,

who commonly remix these projects, thus using them as

an active learning resource. Understanding the software

quality of popular projects can provide insights about how

quality affects code remixing and also make it possible

to derive practical software quality benchmarks.

• RQ3: How prevalent and severe are different code smells

in the general Scratch code base?

Motivation: Knowing how prevalent each type of code

smell is in a large population of Scratch programs can

provide helpful hints for the tool builders, whose aim is to

enable block-based developers to improve the quality of

their projects. When providing refactoring tools support,

one should pay special attention to the code smells with

high prevalence and severity.

This paper makes the following contributions:

1) A catalog of code smells for Scratch We present

a catalog of code smells for Scratch, drawn from the

research literature on recurring software quality problems.

2) An assessment of how the presence and density of

code smells affect the likelihood of a popular Scratch

project being remixed and extended We propose the

Script Addition metric as a simple heuristic to identify

Scratch projects that are likely to exhibit high comprehen-

sibility and extensibility. We statistically evaluate whether

the proposed metric can be relied on to predict the rate

of incidence of code smells.

3) A large-scale assessment of the prevalence and severity

of code smells in Scratch projects We present our

findings on the prevalence and severity of code smells

in a large dataset of close to 600K Scratch projects by

using the percentile-based risk thresholds derived from

the subset of popular projects whose Script Addition

metric is ranked in the top 25%.

Paper Organization: The remainder of the paper is organized

as follows: Section II presents background information on the

Scratch language. Section III compares this work with the

related state of the art. Section IV presents our approach to

cataloging smells, and the identified catalog as well as explains

how we designed our quality assessment study. Section V

explains the results of our study. Section VI points out the

threats to validity of our results. Finally, Section VII presents

future work direction and concluding remarks.

II. BACKGROUND

This section gives an overview of block-based programming

languages and the characteristics of Scratch, the language we

focus on in this study.

A. Block-based programming languages

In recent years, block-based programming languages have

become increasingly important both in educational pursuits

and the computational empowerment of non-CS profession-

als. The appeal of block-based languages ranges from the

pedagogical effectiveness, with which they can introduce

computing concepts to introductory computing learners, to the

intuitiveness, with which they can represent complex domain-

specific computing environments for areas including robotics,

multimedia computation, and mobile computing.

B. Scratch

Scratch [7] allows programmers to apply computing con-

cepts to create a wide range of interactive and media rich

projects such as games, animation, and storytelling. The

Scratch language is specifically designed to support multi-

media computing (e.g., interactive stories, games, animations,

etc.).

Each Scratch project contains one stage object that acts

as the global scope for the whole project. The stage can

contain zero or more graphic objects called sprites. Both

the Stage and sprite objects can be programmed; they are

commonly referred to collectively as scriptables. A scriptable

comprises a collection of scripts as well as a set of multimedia

elements (i.e., graphics called costumes, and sounds) that

can be referenced by the scripts. Each script is a unit of

functionality composed of a series of connected blocks. Hence,

a block is a key Scratch construct.

Scratch is an event-based programming language. Each

script starts with a special block that is triggered by an event

and acts as an entry point of the script. Events comprise

user events (e.g.,“a mouse click”) and internal events that are

created by programmers using a broadcast/receive mechanism

used for inter-script communication. Variables can be declared

to be globally accessible or private to each sprite. Programmers

can create custom blocks which are similar to functions or

methods. However, custom blocks cannot be shared between

scriptables, and they cannot return values.

III. RELATED WORK

In this section, we describe the research work on code

smells in the context of end-user programming languages. The

research literature describing code smells mainly focuses on

object-oriented languages. Only recently, the research com-

munity has started to also include end-user programming
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languages. The study of code smells in the context of end-

user software development has received growing attention,

with notable works studying Yahoo! Pipes web mashups[8]

and spreadsheet formulas [9]. Previous experimental results

encourage code smell research in the context of end-user

software development, suggesting that end-users are aware of

code smells and prefer smell-free software [10], [11], [9]

The growing popularity of block-based programming lan-

guages as a tool for educational and end-user programming

pursuits prompts the research community to take a closer

look at the software quality of block-based software. We next

describe closely related previous research efforts and explain

how our work differs:

a) Identifying potential code smells in block-based

projects: We build upon the previous research efforts in

identifying code smells in block-based projects. Hermans et

al. [12] identify a catalog of 11 code smells in block-based

programs written in Kodu and Lego Mindstorms EV3. Our

work focuses on the code smells found in Scratch projects,

which thus far have not been comprehensively explored. We

specifically focus on Scratch due to its enormous success as

a tool for introductory computing education. We survey the

existing research literature, which serves as the basis of our

catalog of 12 Scratch code smells. We define the studied code

smells, develop an automated analysis tool, and apply the tool

to a large dataset of close to 600K Scratch projects to assess

the prevalence and severity of the code smells.

b) Understanding the effects of code smells: Hermans

and Aivaloglou [13] conducted a controlled experiment to

study how code smells impact novice Scratch programmers.

Their results reinforce a shared understanding among com-

puting educators that code smells indeed negatively affect the

programmers trying to understand and extend existing code.

We derive further empirical evidence of the negative effects

of code smells by showing how the high presence of code

smells in some popular projects reduces the likelihood of these

projects being remixed and extended.

c) Assessing the prevalence of code smells: Prior efforts

also focused on assessing the software quality of block-based

projects in general and Scratch in particular. Aivaloglou and

Hermans[14] analyzed a moderately large dataset of over

250,000 Scratch programs for three code smells: large scripts,

dead code, and duplicate block codes. Our work broadens the

scope of this prior work on Scratch by considering additional

code smells over a larger sample size of Scratch projects.

We additionally assess the severity of code smells based on

the percentile-based thresholds calculated from the dataset of

popular projects, ranked by means of our proposed Script

Addition heuristic in the top 25%.

IV. METHODOLOGY

A. Identifying code smells for Scratch

We derive our catalog of code smells for block-based

software by examining the research literature on this topic,

considering smells in different types of programming domains.

In particular, the code smells we consider in this work are

derived from the following categories:

• Classic code smells: These language independent code

smells have been identified and documented a long time

ago, as they universally occur in all types of software

domains. The smells in this category include Duplicated

Code and Long Script.

• Object-oriented code smells: Scratch supports a lim-

ited form of the object-oriented programming style with

scriptable objects. In a way, each scriptable embodies an

object with an encapsulated private state that can only

be modified in response to receiving external events. In

essence, scriptables can be seen as single-instance ob-

jects, whose interactions with each other are also subject

to the kinds of smells usually found in object-oriented

software. In fact, some of the smells in this category have

already been identified in the literature. For example, OO-

inspired block-based smells, such as Feature Envy and

Inappropriate Intimacy have been identified in reference

[12]. The smells in this category include Middle Man.

• End-user code smells: Some end-user code smells in

the literature [8] are also applicable to Scratch. The

smells in this category include Duplicated String and

Uncommunicative Name.

• Block-based code smells: Some of the smells are unique

to block-based software. Although many of these smells

share similarities with ones in other categories, certain

aspects of Scratch design make these smells unique for

this domain. For example, the IDE support for naming

sprites is partly responsible for introducing one of these

smells, Uncommunicative Name [15]. The smells in this

category include No-op, Broad Variable Scope, and Un-

defined Block.

Designating a recurring software quality problem as a smell

is a subjective decision. Software domains are known to have

unique quality problems [16]. Informed by this insight, we

take a conservative approach to introducing new smells, rather

preferring to focus on the known smells, identified earlier in

each of the categories listed above. In other words, we deliber-

ately disregard potential code smells that are domain-specific,

instead focusing on the general smells that commonly occur in

Scratch programs. We also disregard those code smells that are

unavoidable, possibly due to the limitations of the language.

For example, Duplicated Code across scriptable objects is

not considered because scripts and custom blocks cannot be

shared among scriptables. Long Parameter is another example

deemed irrelevant, as Scratch provides no way to construct

data objects as object-oriented languages do to address this

problem.

B. Datasets

Scratch currently has over 17.3 million users and over 21

million projects shared1. We study Scratch because of its

popularity and the accessibility of a large set of projects

1https://scratch.mit.edu/statistics/ (accessed March 2017)
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that this educational / end-user programming community has

made publicly available. Our analysis relies on two datasets of

Scratch projects, which serve different purposes in our study

as described next.

a) A Large dataset of Scratch projects: The first dataset

consists of 1,066,308 shared Scratch projects randomly col-

lected during April-July 2016. This dataset will be used in the

assessment of the prevalence and severity of code smells in

Scratch programs in Section V-B. Out of these projects, we

were able to successfully parse and analyze 1,009,192 projects.

The disregarded projects were the ones that our parser and

analyzer could not handle.

Data exclusion: For the large dataset, the summary statistics

in Table I suggests the majority of projects are very small and

may not exhibit code smells that we are interested in. To yield

meaningful results, we consider projects of sufficient size (20

blocks or more) when assessing the prevalence of code smells.

Based on this criteria, we parsed and filtered the initial

project dataset, identifying 594,988 projects deemed as worthy

to be analyzed for the presence of smells. In effect, excluding

projects on this principle also disregards non-programming

projects that contain little interesting programming logic;

Dasgupta et al.[17] refer to projects like that as “coloring-

contests.”

b) Top popular Scratch projects: For the second dataset,

we consider 620 popular projects, hosted on the Scratch

website2, as the initial dataset. Out of this dataset, we select

the parse-able projects with at least 80 remixes, resulting in

519 projects used for the study. Our reasoning behind this

selection procedure is that for a project to get remixed, it has

to enjoy popularity.

Table II shows the basic summary statistics of this dataset.

As seen, popular projects have a high number of views, marked

as “favorite” and “loved” by others, with many remixes. These

projects come from a wide range of sizes, based on the number

of blocks used (comparable to the lines of code metric).

C. Computing code smell metrics

Next, we describe how the code smell metrics used in this

study are computed.

1) Automated smell analysis: We develop an automated

code smell analysis tool for Scratch. We leverage a widely

used parser generator, Java Compiler Compiler (JavaCC), that

takes a grammar as input and automatically generates a parser.

As input to JavaCC, we pass the grammar describing the

internal representation of Scratch programs. The resulting

parser reconstructs the abstract syntax tree (AST) objects from

the source code of Scratch projects, already structured using

an AST-like representation in the JSON format. We leverage

JastAdd [18], a Java-based system for compiler construction

that supports the development of analysis tools. Because of the

excellent tooling support for compiler-based projects in Java,

we used this language to write all our analysis routines.

2https://scratch.mit.edu/explore/projects/all/popular (as of March 2017)

2) Calculating code smells metrics: There are three pos-

sible options for calculating code smells metrics: (1) density

per 100 blocks, (2) percentage of smell instance relative to

program elements of interest, and (3) instance counts. We

make use of all these options, depending on the code smell

under study. For example, we use density to adjust for the

project size in certain code smells whose incidence tends

to increase with the size of the source code. For instance,

Duplicated Code with the density of 3 means an average of 3

Duplicated Code instances per hundred blocks in the project.

We use percentage for those code smells whose incidence

tends to grow proportionately to the number of the program

elements that can be afflicted by the smell. For example, Long

Script with 25% means that, on average, 1 out of 4 scripts in

the project suffers from the smell. For other code smells with

a rare incidence rate expected, we use smell instance counts.

We occasionally refer to the three types of smell metrics

collectively in the rest of the paper as code smell incidence

rate. Section V-A defines the studied code smells as well as

the options used for calculating them.

3) Code smell analysis parameters: Certain code smells

require specifying parameters. Changing these parameter will

lead to different results, thus affecting the reproducibility of

this work. Although the analysis routines for the majority

of analyzed smells require no parameterization, the routines

that search for the presence of DC, DS, LS, and II3 can be

parameterized with different sensitivity levels.

For DC, our analysis implementation is based on [19]. The

analysis disregards duplicated code segments if they happen to

be parts of larger duplicated segments. Our assumption is that

the size of a duplicated segment is directly proportional to how

harmful the impact of this smell is. Hence, smaller duplicated

segments within the larger duplicated segments can be safely

ignored without compromising the accuracy of the insights

derived from our analysis. This consideration is referred to in

the clone detection literature as “clone quality” [19].

Specifically, we consider subtree clones that include nested

blocks (e.g., the while-loop statement, etc.) and fragment

clones (i.e., varying sequences of simple blocks and subtrees),

whose minimum size is 8 AST nodes. The analysis considers

sequences of up to 10 blocks, which can comprise both simple

blocks and subtrees.

For other code smells, we mitigate such subjectivity in

choosing the thresholds by relying on a data-driven approach.

The two passes of the analysis are required with the first pass

extracting the necessary software metrics in the large dataset to

determine the appropriate threshold values (e.g., string length

and script length across all projects in the large analysis

dataset in the case of DS and LS, respectively). We obtain the

threshold values similarly to the approach introduced by Lanza

and Marinescu [20]. Specifically, we consider the threshold

values at the 70th percentile as extreme. Table III presents the

thresholds derived from the large analysis dataset.

3Please, refer to Section V-A for the explanation of smell abbreviations.
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for counting a code pattern as a smell, we make use of the

statistical thresholds presented and explained in Section V. We

derive our statistics-based thresholds from a large dataset of

Scratch projects following the approach first presented by [20].

Catalog of code smells in Scratch:

SMELL 1 Broad Variable Scope (BV) A variable is marked

as broad scope when the variable is made visible to all

sprites, but is only used in one sprite. By following commonly

accepted design practices, variables should be made local to

the scope that uses it. Proper variable scope helps improve

comprehensibility as it tells to which sprite the variable

belongs. Too many global variables can also be confusing

for programmers trying to find the right variable in the script

palette and the drop-down menus. Example of smells in other

contexts: [23]

SMELL 2 Duplicate String (DS)

String values are considered duplicate if the same string values

of length at least 18 is used in at least 4 different places. Other

contexts: [8]

SMELL 3 Duplicate Code (DC)

A fragment of code is duplicated as a way to reuse existing

functionality of code at multiple locations in the program.

Other contexts: [8]

SMELL 4 Feature Envy (FE)

A data producing script is in a different sprite from the one

that uses the data. If there is a 1-to-1 relationship between

such sprites, they should not be separated, having to talk to

each other via a global variable. A better design would have a

single sprite, with scripts communicating with each other via

a local variable. Other contexts: [6], [12]

SMELL 5 Inappropriate Intimacy (II)

A sprite can check on other sprites’ attributes through sensor

blocks. However, excessively reading of other sprite’s private

variables (at least 4) can lead to high coupling between sprites.

Other contexts: [6], [12]

SMELL 6 Long Script (LS)

An unreasonably long script can suggest inadequate decom-

position and hinder code readability. A script is considered

too long if there are more than 11 blocks measured vertically.

Other contexts: [6], [12]

SMELL 7 Middle Man (MM)

A long chain of broadcast-receive can be used to pass a

message from one script to another. However, using this ab-

straction to simply delegate work without actions is considered

a code smell. Other contexts: [6]

SMELL 8 No-op (NO)

A user event-based script that performs nothing can be re-

moved. A common occurrence is event-handling code with no

action associated with it. Other contexts: [12]

SMELL 9 Uncommunicative Name (UN)

Although other programming entities could suffer a similar

effect, this smell focuses particularly on a problematic naming

of a sprite —“Sprite” which is highly common name since it

is the default name that the IDE gives to generic sprites at the

creation time. The evidence of this smell is presented in the

work by Moreno and Robles[15]. Other contexts: [6]

SMELL 10 Undefined Block (UB)

Scripts can be copied from different projects using the Scratch

programming environment feature called “backpack”. The

scripts with calls to a custom block without its definition will

be rendered as undefined blocks, thus ceasing to contribute

any useful functionality to the project. This smell is commonly

introduced when custom block definitions are not copied and

placed first. The rationale of this code smell is similar to No-

op.

SMELL 11 Unreachable Code (UC)

An unreachable script can be safely removed without affecting

the program behavior. A script is considered unreachable if it

is the receiver of a nonexistent message. This particular case is

often caused by removing only the broadcast blocks without

adjusting their corresponding receiver blocks. Note that our

analysis disregards the fragment scripts not beginning with

event blocks, as they are commonly used by Scratch program-

mers to experiment with code and to initialize persistent data.

Other contexts: [12], [8]

SMELL 12 Unused Variable (UV)

The Scratch programming environment lets a programmer

declare variables in the data palette before they can be used

in the scripting area. However, the programming environment

provides no support to check if the declared variables are

unused and can be safely removed. The rationale of this code

smell is similar to that of Unreachable Code.

B. RQ2: What can the analysis of popular Scratch projects

teach us about the state of software quality in this program-

ming domain?

Scratch projects can be cloned, referred to as “remixed”

in the Scratch terminology. The remixes can be traced back

to their original projects. In this study, we examine whether

popular projects with high code changes in their remixes tend

to exhibit higher software quality.

1) RQ2.1: Do projects with a higher Script Addition metric

value exhibit higher software quality?: We consider popular

projects of medium sizes, as defined as being in the range of

between the 25th and the 75th percentiles (200-1,400 blocks)

of all project sizes. We consider two project subsets that we

refer to as:

1) high-change projects: 59 popular remixed projects whose

script Addition metric is ranked in the top 25;

2) low-change projects: 87 popular remixed projects whose

script Addition metric is ranked in the bottom 25;

Table V reports on the medians of the studied code smell

metric values for each of these subsets.

We visualize the smell incidence in the two subsets using

boxplots, and test if they are drawn from the same distribution
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N Stdv Min Median Max Pctl.70. Pctl.80. Pctl.90.

BV 51.00 14.60 0.00 15.48 50.00 24.70 32.86 38.57
UC 59.00 0.93 0.00 0.00 5.68 0.00 0.15 0.42
DC 59.00 0.46 0.00 0.44 1.98 0.70 0.87 1.08
DS 25.00 23.09 0.00 0.00 100.00 0.00 0.00 28.57
FE 59.00 5.36 0.00 0.00 27.00 0.00 0.00 6.37

II 59.00 0.25 0.00 0.00 1.00 0.00 0.00 0.00
LS 59.00 10.33 0.00 9.18 40.00 14.40 18.90 29.21

MM 59.00 9.50 0.00 0.83 36.00 6.20 11.20 21.20
NO 59.00 20.38 0.00 2.79 101.00 7.77 19.20 37.70
UN 59.00 34.95 0.00 6.51 100.00 38.25 61.61 89.38
UB 59.00 4.09 0.00 0.00 21.00 0.00 0.73 4.20
UV 51.00 25.24 0.00 14.64 95.24 30.83 44.95 61.25

TABLE IV
SUMMARY STATISTICS OF CODE SMELL OF PROJECTS IN THE BENCHMARKS AND THEIR 70

th , 80th , AND 90
th PERCENTILE VALUES
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0
2
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Low−change vs. High−change remixed projects

L
S

low−change hi−change

0
.0

0
.5

1
.0

1
.5

2
.0

DC metric values for 
Low−change vs. High−change remixed projects
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UN metric values for 
Low−change vs. High−change remixed projects

U
N

Fig. 2. Incidence rate of code smells LS, DC, and UN in the two subsets (High-change vs. Low-change) of popular Scratch projects

Low changes (25%) High changes (Top 25%)

Median SD Median SD P-values
BV 16.67 33.94 15.48 14.54 0.323
UC 0.00 0.99 0.00 0.92 0.997
DC 0.54 0.48 0.44 0.46 0.044

DS 0.00 28.62 0.00 22.69 0.202
FE 0.00 4.53 0.00 5.32 0.795
II 0.00 0.21 0.00 0.25 0.707
LS 15.38 17.58 9.18 10.29 0.003

MM 0.00 13.64 1.00 9.46 0.980
NO 2.00 18.89 3.00 20.94 0.968
UN 27.78 44.50 6.51 34.84 0.011

UB 0.00 3.77 0.00 4.77 0.847
UV 5.56 24.41 15.28 25.02 0.999

TABLE V
THE COMPARISON OF STUDIED CODE SMELL METRICS BETWEEN

PROJECTS WITH REMIXED CODE CHANGES IN THE BOTTOM 25% ( < 0.1 )
VS. TOP 25% (> 0.82)

(null hypothesis) using a one-tailed Wilcoxon rank sum test4.

The null hypothesis is that both of these distributions should

be the same. Figure 2 shows boxplots of the LS, DC, and UN

smell metrics for the remixed projects, whose Script Addition

metrics are in the bottom 25% and the remixed projects whose

Script Addition metrics are in the top 25%. The boxplots show

the trends of a lower smell incidence rate in the high-change

4The Wilcoxon rank sum test is a non-parametric test that is not sensitive
to outliers, as it does not assume any distribution of sample data.

subset. We omitted the boxplots comparing other code smells

in the two subsets for brevity, as they do not show any clear

trends and their test values are not statistically significant.

The non-parametric Wilcoxon rank sum test (with continuity

correction) for LS, DC, and UN conclusively rejects the null

hypothesis that the two subsets (low-change remixed projects

and high-change remixed projects) are drawn from the same

distribution. Table V presents the corresponding effect size

(difference of medians) and p-values. As can be observed, the

medians of UN and LS smell incidence rates in the high-

change subset are dramatically lower than that of the low-

change subset. DC has a significant but smaller effect size,

based on the median difference of the smell incidence rate.

Takeaway: The low-change projects exhibit software quality

that is noticeably worse than their high-change counterparts

in the presence of a high incidence rate of Long Script,

Uncommunicative Name, and Duplicated Code, known to

hinder code comprehensibility and extensibility. Being hard

to understand and extend, these projects tend to discourage

high-change remixes.

C. RQ3: How prevalent and severe is each studied code smell

in Scratch projects?

We study the prevalence of code smells in the dataset of

594,988 projects, selected from the initial 1,009,192 projects
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Smell N %Prevalence %Low risk %Moderate risk %High risk %Very high risk

LS 594,988 51.00 71.13 5.03 8.55 15.30
UN 591,621 48.00 67.36 8.57 5.97 18.10
DC 594,988 35.00 75.86 3.11 3.26 17.77
BV 328,016 30.00 54.86 3.09 3.85 38.20
NO 594,988 28.00 93.71 3.24 1.09 1.96
UV 328,016 20.00 77.51 5.25 6.73 10.50

MM 594,988 17.00 94.02 2.17 1.75 2.06
DS 276,891 13.00 71.71 0.00 14.00 14.29
UC 594,988 9.00 91.30 1.51 1.42 5.77
UB 594,988 8.00 92.29 0.00 5.60 2.11
FE 594,988 5.00 94.63 0.00 2.89 2.48

II 594,988 4.00 95.88 0.00 0.00 4.12

TABLE VI
PREVALENCE AND SEVERITY OF CODE SMELLS IN THE LARGE DATASET

as containing more than 20 blocks as described in IV-B. For

each code smell, we count the number of projects as being

afflicted by the smell if at least one code smell instance

is found. We report on the prevalence of smells as the

percentage of the smell afflicted projects over the total number

of projects analyzed for the smell of interest. Please note that

the number of projects considered for each code smell can

vary since certain code smells may not be applicable in some

projects and thus we exclude them from the calculation. For

example, variable-related code smells (e.g., BV and UV) are

not applicable for projects that declare no variables.
Based on our analysis, LS, UN, DC, and BV show high

prevalence (> 30%); NO, UV, and MM show moderate

prevalence [10%, 30%]; and DS, UC, UB, FE, and II show

low prevalence (< 10%). Additionally, we assess the severity

of quality problems by categorizing the projects into increasing

risk levels. Code smells with low incidence rate may not be

harmful. Hence, one must determine the thresholds exceed-

ing which should classify a project as being at risk. Since

choosing threshold values can be subjective, we rely on the

approach first introduced by [24] that establishes benchmarks

for deriving thresholds. Having shown high Script Addition

metrics associated with likely high quality projects, we use

the high-change subset consisting of 59 projects, described in

V-B, as the benchmark for deriving practical threshold values

of different smell risks.
The summary statistics of the high-change subset as well

as the 70, 80 and 90th percentiles, used as the basis for

determining the risk intervals are presented in Table IV. We

base our intervals on [24] to categorize the severity of quality

problems using their percentile values: low (0–70%), moderate

risk (70-80%), high risk (80-90%), and very-high risk (>

90%). Table VI presents the prevalence and the severity of

the analyzed code smells.
If the quality of an average block-based project is similar

to that of popular projects, we expect to see about 10% of

the population distributed into each of the moderate, high,

and very high risk categories. However, our results show that

average projects have been afflicted by code smells differently.

That is, BV–38.2%, UN–18.1%, DC–17.8%, LS–15.3%, and

DS–14.3% are clearly in the very high risk category. Scratch

programmers may be simply unaware or indifferent of these

code smells and their harmful effect on program quality. The

remaining smells afflict the analyzed projects less commonly.
Takeaway: For the smells with high prevalence—BV, UN,

DC, LS and DS—a larger percentage of average projects is

in the very high risk category, which is at odds with the

software quality exhibited by the popular projects with high

remixability.

VI. THREATS TO VALIDITY

The validity of our analysis results may be threatened

by several factors. The documented code smells may not

cover all code smells, which are known to be subjective,

while additional code smells can appear as new language

features and development tools are being introduced. The

selection of the benchmark projects may not be appropriate

for all types of projects (e.g., long scripts are a common

feature of storytelling projects). Our benchmark and its derived

thresholds aim at representing a broad category of projects, so

as to avoid the manual inspection required to include all types

of projects. We establish thresholds by observing the impact

on the comprehensibility and extensibility, as guided by our

Script Addition metric. In other words, these thresholds may

not be applicable for studying other aspects of software quality

(e.g., reusability, maintainability, etc.). To mitigate the risk of

the analyzer producing erroneous results, we manually sample

if their subsets adhere to the specified analysis metrics.

VII. CONCLUSIONS AND FUTURE WORK

This work sheds light on the state of quality in block-based

software. We provide empirical evidence of quality problems

negatively affecting the likelihood of Scratch projects to be

remixed and extended. Our large-scale study assesses not only

the prevalence of Scratch code smells, but also their severity,

presenting conclusive evidence of recurring quality problems

in this domain. The results of this work can inform future

efforts to support quality improvement practices in block-

based programming environments that are aligned with the

actual needs of this community.
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