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Abstract

A graph G is weakly 4-connected if it is 3-connected, has at least five vertices, and for every
pair (A,B) such that A ∪ B = V (G), |A ∩ B| = 3 and no edge has one end in A − B and the
other in B − A, one of the induced subgraphs G[A], G[B] has at most four edges. We describe
a set of constructions that starting from a weakly 4-connected planar graph G produce a finite
list of non-planar weakly 4-connected graphs, each having a minor isomorphic to G, such that
every non-planar weakly 4-connected graph H that has a minor isomorphic to G has a minor
isomorphic to one of the graphs in the list. Our main result is more general and applies in
particular to polyhedral embeddings in any surface.

1 Introduction

We begin with some basic notation and ingredients needed to state the main result of this paper.

Graphs are finite and simple (i.e., they have no loops or multiple edges). Paths and cycles have no

“repeated” vertices. A graph is a minor of another if the first can be obtained from a subgraph of

the second by contracting edges. For a graph G and an edge e in G, G\e an G/e are the graphs

obtained from G by respectively deleting and contracting the edge e. A graph is a subdivision of

another if the first can be obtained from the second by replacing each edge by a non-zero length path

with the same ends, where the paths are disjoint, except possibly for shared ends. The replacement

paths are called segments, and their ends are called branch-vertices. A graph is a topological minor

of another if a subdivision of the first is a subgraph of the second.

Let a non-planar graph H have a subgraph isomorphic to a subdivision of a planar graph G.

For various problems in Graph Structure Theory it is useful to know the minimal subgraphs of H

that have a subgraph isomorphic to a subdivision of G and are non-planar. In other words, one

wants to know what more does H contain on account of its non-planarity. In [7] it is shown that

under some mild connectivity assumptions these “minimal non-planar enlargements” of G are quite

nice. In the applications of the result, G is explicitly known, whereas H is not, and the enlargement

operations would furnish an explicit list of graphs such that (i) H has a subgraph isomorphic to a

subdivision of one of the graphs on the list, and (ii) each graph on the list is a witness both to the
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fact that G is a topological minor of H, and that H is, in addition, non-planar. (The minimality

of the graphs in the list is required to avoid redundancy.) Before we state that result, we need a

few definitions.

For Z ⊆ V (G), G[Z] denotes the subgraph induced by Z, that is, the subgraph consisting of Z

and all edges with both ends in Z. A subgraph of G is said to be induced if it is induced by its

vertex set.

A separation of a graph G is a pair (A,B) of subsets of V (G) such that A ∪ B = V (G), and

there is no edge between A−B and B−A. The order of (A,B) is |A∩B|. The separation is called

non-trivial if both A and B are proper subsets of V (G). A graph G is weakly 4-connected if G is

3-connected, has at least five vertices, and for every separation (A,B) of G of order at most three,

one of the graphs G[A], G[B] has at most four edges.

A cycle C in a graph G is called peripheral if it is induced and G\V (C) is connected. It is

well-known [9, 10] that the peripheral cycles in a 3-connected planar graph are precisely the cycles

that bound faces in some (or, equivalently, every) planar embedding of G.

Let S be a subgraph of a graph H, and let S be a subdivision of a graph with no vertex of

degree two. Thus we may speak of segments of S without any ambiguity. An S-path in H is a path

with both ends in S, and otherwise disjoint from S. Let C be a cycle in S, and let P1 and P2 be

two disjoint S-paths in H with ends u1, v1 and u2, v2, respectively, such that u1, u2, v1, v2 belong

to V (C) and occur on C in the order listed. In those circumstances we say that the pair P1, P2 is

an S-cross in H. We also say that it is an S-cross on C. We say that u1, v1, u2, v2 are the feet of

the cross. We say that the cross P1, P2 is free if

(F1) for i = 1, 2 no segment of S includes both ends of Pi, and

(F2) no two segments of S that share a vertex include all the feet of the cross.

The following was proved in [7, Theorem (1.1)].

Theorem 1.1. Let G be a weakly 4-connected planar graph on at least seven vertices, and let H

be a weakly 4-connected non-planar graph such that a subdivision of G is isomorphic to a subgraph

of H. Then there exists a subgraph S of H isomorphic to a subdivision of G such that one of the

following conditions holds:

1. there exists an S-path in H such that its ends belong to no common peripheral cycle in S, or

2. there exists a free S-cross in H on some peripheral cycle of S.
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This theorem has been used in [3, 8], and its extension has been used in [6]. However, in more

complicated applications it is more efficient to work with minors, rather than topological minors.

We sketch one such application in Section 8. For any fixed graph G, there exists a finite and

explicitly constructible set {G1, G2, . . . , Gt} of graphs such that a graph H has a minor isomorphic

to G if and only if it has a topological minor isomorphic to one of the graphs Gi. Thus one can

apply Theorem 1.1 t times to deduce the desired conclusion about G, but it would be nicer to

have a more direct route to the result that involves less potential duplication. Furthermore, if the

outcome is allowed to be a minor of H rather than a topological minor, then the outcomes (i) and

(ii) above can be strengthened to require that the ends of the paths involved are branch-vertices of

S, as we shall see.

It turns out that Theorem 1.1 is not exclusively about face boundaries of planar graphs, but that

an appropriate generalization holds under more general circumstances. Thus rather than working

with peripheral cycles in planar graphs we will introduce an appropriate set of axioms for a set of

cycles of a general graph. We do so now in order to avoid having to restate our definitions later

when we present the more general form of our results.

A segment in a graph G is a maximal path such that its internal vertices all have degree in

G exactly two. If a graph G has no vertices of degree two, then the segments of a subdivision of

G defined earlier coincide with the notion just defined. Since we will not consider subdivisions of

graphs with vertices of degree two there is no danger of confusion. A cycle double cover in a graph

G is a set D of distinct cycles of G, called disks, such that

(D1) each edge of G belongs to precisely two members of D.

A cycle double cover D is called a disk system in G if

(D2) for every vertex v of G, the edges incident with v can be arranged in a cyclic order such that

for every pair of consecutive edges in this order, there is precisely one disk in D containing

that pair of edges, and

(D3) the intersection of any two distinct disks in D either has at most one vertex or is a segment.

A cycle double cover satisfying (D3) is called a weak disk system. It is easy to see that if a

connected graph has a disk system, then it is a subdivision of a 3-connected graph. Also, note

that in a 3-connected graph, Axiom (D3) is equivalent to the requirement that every two distinct

disks intersect in a complete subgraph on at most two vertices. The peripheral cycles of a 3-

connected planar graph form a disk system. More generally, if G is a subdivision of a 3-connected

graph embedded in a surface Σ in such a way that every homotopically nontrivial closed curve
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intersects the graph at least three times (a “polyhedral embedding”), then the face boundaries of

this embedding form a disk system in G. Conversely, it can be shown that a disk system in a graph

is the set of face boundaries of a polyhedral embedding of the graph in some surface. Weak disk

systems correspond to face boundaries of embeddings into pseudosurfaces (surfaces with “pinched”

points).

Let G be a graph with a cycle double cover D. Two vertices or edges of G are said to be

confluent if there is a disk containing both of them. If D is a cycle double cover in a graph G and

S is a subdivision of G, then D induces a cycle double cover D′ in S in the obvious way, and vice

versa. We say that D′ is the cycle double cover induced in S by D.

Let v be a vertex of a graph G with degree at least 4. Partition the set of its neighbors into

two disjoint sets N1 and N2, with at least two vertices in each set. Let G′ be obtained from G by

replacing the vertex v with two adjacent vertices v1, v2, with vi adjacent to the vertices in Ni for

i = 1, 2. The graph G′ is said to be obtained from G by splitting the vertex v. It is easy to see that

if G is 3-connected, then so is G′. The vertices v1 and v2 are called the new vertices of G′ and the

edge v1v2 of G′ is called the new edge of G′.

Suppose a graph G has a cycle double cover D. The above splitting operation on a vertex v of

G is said to be a conforming split (with respect to D) if

(S1) among the disks that use the vertex v, there are exactly two, say D1 and D2, that use one

vertex each from N1 and N2, and

(S2) D1 and D2 intersect precisely in the vertex v.

The split is then said to be along D1 (and along D2). A split that is not conforming as above is

said to be a non-conforming split.

Let G,G′ be as in the above paragraph. If G is a 3-connected planar graph, then G′ is planar

if and only if the split is conforming with respect to the disk system of peripheral cycles of G.

More generally, to each cycle C of G there corresponds a unique cycle C ′ of G′, and so to D there

corresponds a uniquely defined set of cycles D′ of G′. If D is a weak disk system, then so is D′,

and if D is a disk system, then so is D′. We call D′ the (weak) disk system induced in G′ by D.

This is the purpose of conditions (S1) and (S2). If D is a disk system, then an equivalent way to

define a conforming split of a vertex v is to say that both N1 and N2 form contiguous intervals in

the cyclic order induced on the neighborhood of v by D. Similarly, an equivalent condition for a

split to be non-conforming with respect to a disk system is the existence of vertices a, c ∈ N1 and

b, d ∈ N2 such that a, b, c and d appear in the cyclic order listed around v (as given by D in (D2)).

The reason we use the definition above is that it applies more generally to weak disk systems.
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A graph G′ obtained from a graph G by repeatedly splitting vertices of degree at least four is

said to be an expansion of G. In particular, each graph is an expansion of itself. Each split leading

to an expansion of G has exactly one new edge; the set of these edges are the new edges of the

expansion of G. The new edges form a forest in G′. If G has a cycle double cover D, the expansion

is called a conforming expansion if each of the splits involved in it is conforming (with respect to

the cycle double cover induced by D in the graph obtained by performing the previous splits). If

at least one of the splits involved is not conforming, then the expansion is called non-conforming.

From the above discussion, it is clear that a disk system in G induces a unique disk system in a

conforming expansion. In Lemma 4.9 we show that if D is a disk system, and one of the splits

in the expansion sequence is non-conforming, then we can make the first split in the sequence be

non-conforming.

We now describe seven enlargement operations. Let G be a graph with a cycle double cover D,

and let G+ be the graph obtained from G by applying one of the operations described below.

1. (non-conforming jump) G+ is obtained from G by adding an edge uv where u and v are

non-confluent vertices of G.

2. (cross) Let a, b, c, d be vertices appearing on a disk of G in that cyclic order. Add the edges

ac and bd to obtain G+.

3. (non-conforming split) G+ is obtained from G by performing a non-conforming split of a

vertex of G.

4. (split + non-conforming jump) Let u, v be non-adjacent vertices on some disk C ∈ D. Perform

a conforming split of v into v1, v2 such that u and v2 are non-confluent vertices. (In particular,

the split is not along C.) Now add the edge uv2 to obtain G+.

5. (double split + non-conforming jump) Let u, v be adjacent vertices and C1, C2 be the two disks

containing the edge uv. Make a conforming split of u into u1, u2 along C1 and a conforming

split of v into v1, v2 along C2 such that both splits are conforming and u1 and v1 are adjacent

in the resulting graph. Now add the edge u2v2 to obtain G+.

6. (split + cross) Let u, v, w be vertices on a disk C such that u is not adjacent to v or w.

Perform a conforming split of u into u1, u2, along C, with u1, u2, v, w in that cyclic order on

the new disk corresponding to C. Now add the edges u1v and u2w to obtain G+.

7. (double split + cross) Let u, v be non-adjacent vertices on a disk C. Perform conforming

splits of u and v, into u1, u2 and v1, v2, respectively such that both splits are along C. Let
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u1, u2, v1, v2 appear in that cyclic order on the new disk corresponding to C. Now add the

edges u1v1 and u2v2 to obtain G+.

If G+ is obtained as in paragraph i above, then we say that G+ is an i-enlargement of G with respect

to D. When the disk system D is implied by context, we may simply refer to an i-enlargement of

G. We are now ready to state a preliminary form of our main result, a counterpart of Theorem 1.1,

with minors instead of topological minors. A graph is a prism if it has exactly six vertices and its

complement is a cycle on six vertices.

Theorem 1.2. Let G be a weakly 4-connected planar graph that is not a prism, let H be a weakly

4-connected non-planar graph such that G is isomorphic to a minor of H, and let D be the disk

system in G consisting of all peripheral cycles. Then there exists an integer i ∈ {1, 2, . . . , 7} such

that H has a minor isomorphic to an i-enlargement of G with respect to D.

Theorem 1.1 is definitely easier to state than Theorem 1.2. So what are the advantages of the

latter result? First, in the applications one is usually concerned with minors rather than topological

minors, and so Theorem 1.2 gives a more direct route to the desired results. Second, while the

number of types of outcome is larger in Theorem 1.2, in most cases the actual number of cases

needed to examine will be smaller. (Notice that, for instance, in Theorem 1.1 one must examine

all S-paths between non-confluent ends, whereas in Theorem 1.2 one is only concerned with those

between non-confluent branch-vertices.)

Third, Theorem 1.1 allows as an outcome an S-cross on a cycle consisting of three segments.

That is a drawback, which essentially means that in order for the theorem to be useful the graph

G should have no triangles. On the other hand, Theorem 1.2 does not suffer from this shortcoming

and gives useful information even when G has triangles.

Fourth, while a graph listed as an outcome of Theorem 1.1 may fail to be weakly 4-connected

(and may do so in a substantial way), as we show in Theorem 4.8, an i-enlargement of a weakly

4-connected graph is again weakly 4-connected. This has two advantages. In the applications we

are often seeking to prove that weakly 4-connected graphs, with a minor isomorphic to some weakly

4-connected graph embeddable in a surface Σ, that themselves do not embed into Σ have a minor

isomorphic to a member of a specified list L of graphs. In order to get a meaningful result we would

like each member of L to satisfy the same connectivity requirement imposed on the input graphs.

From a more practical viewpoint, the advantage of maintaining the same connectivity in the

outcome graph is that the theorem can then be applied repeatedly. That will become important

when we consider a generalization to arbitrary surfaces (that is, in the context of theorems 2.1 and

7.5). While a weakly 4-connected graph G has at most one planar embedding, it may have several
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embeddings in a non-planar surface Σ. Now one application of the generalization of Theorem 1.2

will dispose of one embedding into Σ, but some other embedding might extend naturally to those

outcome graphs. So it may be necessary to apply the theorem in turn to those outcome graphs in

place of G. It will be important that the outcomes of (the generalization of) Theorem 1.2 satisfy

the same requirement as the input graph. We can then apply such a theorem repeatedly till we

get a list of graphs that no longer embed in Σ — in other words, we would have obtained the

non-embeddable extensions of G. This will be illustrated in Section 8.

2 Main Theorem

Our main theorem applies to arbitrary disks systems, at the expense of having to add two outcomes.

We also add a third additional outcome in order to allow G to be a prism. The extra outcomes are

the following. As before, let G be a graph with a cycle double cover D, and let G+ be obtained by

one of the operations below.

8. (non-separating triad) Let x1, x2, x3 be three vertices of G such that (i) they are pairwise

confluent, but not all contained in any single disk, and (ii) {x1, x2, x3} is independent, and

does not separate G. To obtain G+, add a new vertex to G adjacent to x1, x2 and x3.

9. (non-conforming T-edge) Let a vertex u and an edge xy be such that (i) u is not confluent

with the edge xy, but is confluent with both x and y, (ii) u is not adjacent to either x or y,

and (iii) {u, x, y} does not separate G. Subdivide the edge xy and join u to the new vertex,

to obtain G+.

10. (enlargement of a prism) Let G be a prism, and let G+ be obtained from G by selecting two

edges of G that do not belong to a common peripheral cycle but both belong to a triangle,

subdividing them, and joining the two new vertices by an edge.

As before, if G+ is obtained as in paragraph i above, then we say that G+ is an i-enlargement of

G with respect to D. Thus if G is not a prism, then it has no 10-enlargement, and if G is a prism,

then its 10-enlargement is unique, up to isomorphism. The unique 10-enlargement of the prism is

known as V8.

We also need to define an appropriate analogue of being non-planar in the context of cycle

double covers. That is the objective of this paragraph and the next. Let S be a subgraph of a

graph H. An S-bridge of H is a subgraph B of H such that either B consists of a unique edge of

E(H)−E(S) and its ends, where the ends belong to S, or B consists of a component J of H\V (S)

together with all edges from V (J) to V (S) and all their ends. For an S-bridge B, the vertices of
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B∩S are called the attachments of B. Let D be a cycle double cover in S. We say that D is locally

planar in H if the following conditions are satisfied:

(i) for every S-bridge B of H there exists a disk CB ∈ D such that all the attachments of B lie

on CB, and

(ii) for every disk C ∈ D the subgraph
⋃
B ∪C of H has a planar drawing with C bounding the

unbounded face, where the big union is taken over all S-bridges B of H with CB = C.

Let G have a weak disk system D and H have a minor isomorphic to G. It is easy to see that

there is an expansion G′ of G, such that G′ is a topological minor of H. We say that D has a locally

planar extension into H if:

(i) there exists a conforming expansion G′ of G such that a subdivision of G′ is a isomorphic to

a subgraph S of H, and

(ii) the weak disk system D′ induced in S by D is locally planar in H.

We are now ready to state the main result.

Theorem 2.1. Let G and H be weakly 4-connected graphs such that H has a minor isomorphic to

G. Let G have a disk system D that has no locally planar extension into H. Then H has a minor

isomorphic to an i-enlargement of G, for some i ∈ {1, . . . , 10}.

Let us deduce Theorem 1.2 from Theorem 2.1.

Proof of Theorem 1.2, assuming Theorem 2.1. Let G be as in Theorem 1.2, and let i ∈

{8, 9, 10}. By Theorem 2.1 it suffices to show that G has no i-enlargement with respect to the disk

system consisting of all peripheral cycles of G. This is clear when i = 10, because G is not a prism.

Thus we may assume for a contradiction that i ∈ {8, 9} and that such an i-enlargement exists. Let

u, x, y be the three vertices of G as in the definition of i-enlargement. Since every pair of vertices

among u, x, y are confluent, it follows that G\{u, x, y} is disconnected, a contradiction.

3 Outline of Proof

The purpose of this section is to outline the proof of the main theorem. Our main tool for the

proof of Theorem 2.1 will be its counterpart for subdivisions, proved in [7]. Before we can state

it we need one more definition. Let S be a subgraph of a graph H, and let D be a cycle double

cover in S. Let x ∈ V (H) − V (S) and let x1, x2, x3 be distinct vertices of S such that every two
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of them are confluent, but no disk of S contains all three. Let L1, L2, L3 be three paths such that

(i) they share a common end x, (ii) they share no internal vertex among themselves or with S, and

(iii) the other end of Li is xi, for i = 1, 2, 3. The paths L1, L2, L3 are then said to form an S-triad.

The vertices x1, x2, x3 are called the feet of the triad. We are now ready to state our tool. It is an

immediate corollary of [7, Theorem (4.6)].

Theorem 3.1 ([7]). Let G be a graph with no vertices of degree two that is not the complete graph

on four vertices, let H be a weakly 4-connected graph, let D be a disk system in G, and let a

subdivision of G be isomorphic to a subgraph of H. Then there exists a subgraph S of H isomorphic

to a subdivision of G such that, letting D′ denote the disk system induced in S by D, one of the

following conditions holds:

1. there exists an S-path in H such that its ends are not confluent in S, or

2. there exists a free S-cross in H on some disk of S, or

3. the graph H has an S-triad, or

4. the disk system D′ is locally planar in H.

Now let G, D and H be as in Theorem 2.1. It is easy to see that there exists an expansion G′

of G such that a subdivision of G′ is isomorphic to a subgraph S of H. (If G itself is a topological

minor of H, then G′ = G.) In Lemma 4.9 we prove that if G′ is a nonconforming expansion,

then there exists a 3-enlargement of G that is isomorphic to a minor of H. Thus from now on

we may assume that G′ is a conforming expansion of G. By Theorem 3.1 applied to S and H

we deduce that one of the outcomes of that lemma holds. Notice that those outcomes correspond

to 1-enlargement, 2-enlargement and 8-enlargement, respectively, except that in the enlargements

the vertices in question are required to be branch-vertices of S, whereas in Theorem 3.1 they are

allowed to be interior vertices of segments. We deal with this in Section 5 by showing that each

of the outcomes mentioned leads to a suitable enlargement of G′. To be precise, at this point we

settle for what we call weak 8- and weak 9-enlargements, and in Section 6 show that these weak

enlargements can be replaced by ordinary enlargements, possibly of a different expansion of G and

of a different kind. Finally, in Section 7 we complete the proof of Theorem 2.1 by showing that the

expansion G′ can be chosen to be equal to G.

4 Preliminaries

Let G′ be an expansion of a graph G. Then every vertex v of G corresponds to a connected subgraph

Tv of G′. We call V (Tv) the branch-set corresponding to v.
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Lemma 4.1. Let G′ be an expansion of a graph G, let u, v ∈ V (G) be distinct, and let Tu, Tv be

the corresponding subgraphs of G′. Then Tu and Tv are induced subtrees of G′. If u is adjacent to v

then exactly one edge of G′ has one end in V (Tu) and the other in V (Tv), and if u is not adjacent

to v, then no such edge exists.

An expansion of a weakly 4-connected graph may fail to be weakly 4-connected, but only in

a limited way. The next definition and lemma make that precise. Let (A,B) be a nontrivial

separation of order three in a graph G. We say that (A,B) is degenerate if the vertices in A ∩ B

can be numbered v1, v2, v3 such that either

(1) |A−B| = 1 and A ∩B is an independent set, or

(2) there exists a triangle u1u2u3 in G[A] such that for i = 1, 2, 3 the vertices ui and vi are either

adjacent or equal, A ⊆ {u1, u2, u3, v1, v2, v3}, and each edge of G[A] is of the form uivi for

1 ≤ i ≤ 3 or uiuj for 1 ≤ i < j ≤ 3.

The following two lemmas are routine, and we omit the straightforward proofs.

Lemma 4.2. Let G be an expansion of a weakly 4-connected graph. Then G is 3-connected, and

if it is not a prism, then for every nontrivial separation (A,B) of G of order three, exactly one of

(A,B), (B,A) is degenerate.

Lemma 4.3. Let G′ be expansion of a weakly 4-connected graph G, let (A,B) be a degenerate

separation of G of order three satisfying condition (2) of the definition of degenerate separation,

and let u1, u2, u3, v1, v2, v3 be as in that condition. Then for at least two integers i ∈ {1, 2, 3} either

ui = vi or uivi is a new edge of G′.

We now show that an i-enlargement of a weakly 4-connected graph is weakly 4-connected. We

begin with four lemmas.

Lemma 4.4. Let G′ be an 1-enlargement of a weakly 4-connected graph G with a disk system D.

Then G′ is weakly 4-connected.

Proof: Let G′ be obtained from G by adding an edge uv. The only way for G′ to fail to be

weakly 4-connected is for u and v to have a common neighbor of degree three, but in that case u

and v are confluent, a contradiction.

Lemma 4.5. Let G be a graph with a disk system D, and let C be a cycle in G such that at least

one vertex of C has degree three in G. Then C ∈ D.
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Proof: Let V (C) = {x, y, z}, where x has degree three. Since x has degree three, it follows from

(D1) that some disk D ∈ D includes the edges xy and xz. Since y is adjacent to z in G, we deduce

from (D3) applied to D and a disk containing the edge yz that D = C, as desired.

Lemma 4.6. Let G′ be obtained from a weakly 4-connected graph G with a disk system D by

splitting a vertex v into vertices v1 and v2. If (A,B) is a separation of G′ violating the definition of

weak 4-connectivity, then there exists i ∈ {1, 2} such that vi has degree three, one of A−B, B −A

consists of vi and another vertex w of degree three such that vi and w have a common neighbor.

Proof: This follows from Lemma 4.3.

Lemma 4.7. Let G′ be obtained from a weakly 4-connected graph G with a disk system D by

splitting a vertex. If G′ is not weakly 4-connected, then the split is conforming.

Proof: Since G′ is not weakly 4-connected, by Lemmas 4.2 and 4.3 the graph G′ has a sepa-

ration (A,B) of order three satisfying (2) of the definition of degenerate separation, where letting

u1, u2, u3, v1, v2, v3 be as in that condition we have that u1v1 is the new edge, u2 = v2 and u3 6= v3.

Let w be the vertex of G that was split into u1 and v1 to create G′. Since u3 has degree three, it

follows from Lemma 4.5 that the cycle D with V (D) = {u3, w, v2} is a disk. Let D1 ∈ D be the

other disk containing the edge wv2 and let D2 ∈ D be the other disk containing the edge wu3. It

follows from (D3) that D1 6= D2, and from (D2) and (D3) that D1 and D2 intersect in w. Thus

the split of w is conforming.

Theorem 4.8. Let i ∈ {1, 2, . . . , 10}, and let G′ be an i-enlargement of a weakly 4-connected graph

G with a disk system D. Then G′ is weakly 4-connected.

Proof: If i = 1, then the theorem follows from Lemma 4.4. Let i = 2, and let a, b, c, d be vertices

appearing on a disk of G in that cyclic order, and let G′ be obtained from G by adding the edges

ac and bd. If adding the edge ac alone stops the graph from being weakly 4-connected, then one

of b, d has degree three and is a common neighbor of a and c, in which case adding the edge bd

restores weak 4-connectivity. If i = 3, then the theorem follows from Lemma 4.7.

Let i = 4, and let u, v, v1, v2, C be as in the definition of 4-enlargement. If the graph G′′

obtained from G by performing the split of v is weakly 4-connected, then the theorem follows from

Lemma 4.4, and so we may assume not. It follows from Lemma 4.6 that v has a neighbor w of

degree three, v and w have a common neighbor z, and the split of v splits off z and w against the

other neighbors of v. Since the cycle D with vertex-set {v, w, z} is a disk by Lemma 4.5 and the

vertices u and v are non-adjacent, we deduce that C 6= D. It follows that v2 is adjacent to z and w

in G′, and hence adding the edge uv2 “repairs” a separation that violates the weak 4-connectivity
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of G′′. In principle there could be another separation violating the weak 4-connectivity of G′′ if v1

has degree three, is adjacent to a vertex w′ of degree three and v1 and w′ have a common neighbor

z′. But then the cycle with vertex-set {v, w′, z′} is a disk by Lemma 4.5, and it contains u, because

it is the only disk in D containing v and not z or w, contrary to the fact that u and v are not

adjacent. This completes the case when i = 4.

Let i = 5 and let u, v, C1, C2, u1, u2, v1, v2 be as in the definition of 5-enlargement. If the graph

G′′ obtained from G by performing the splits of u and v is weakly 4-connected, then the theorem

follows from Lemma 4.4, and so we may assume not. Thus from the symmetry between u and v

we may assume, by Lemma 4.6, that there exists j ∈ {1, 2} such that vj has degree three and there

exist adjacent neighbors w, z 6= v3−j of vj such that w has degree three, where these notions are

interpreted in the graph G1 obtained from G by performing the split of v into v1 and v2. We may

assume that j = 1, for otherwise adding the edge u2v2 “repairs” the resulting separation. Since u

has degree at least four (because it is capable of being split), we deduce that u = z. It follows from

Lemma 4.5 that V (C1) = {v, w, z}, and hence the split of u “repairs” the resulting separation. The

same argument applies with u and v interchanged. This completes the case when i = 5.

When i = 6 let u, v, w,C, , u1, u2 be as in the definition of 6-enlargement. If the graph G′′

obtained from G by splitting u into u1 and u2 is weakly 4-connected, then so is G′, as is easily seen.

So we may assume that G′′ is not weakly 4-connected. From the symmetry we may assume that

u1 has degree three and there exist adjacent neighbors w′, z 6= u2 of u1 such that w′ has degree

three, where these notions are interpreted in the graph G′′. But now adding the edge u1v “repairs”

this separation, unless v is equal to the third neighbor of w′ other than u1 and z, but in that case

w = w′, which means that w is adjacent to u in G, a contradiction. The same argument applies to

u2. This completes the case when i = 6.

The case i = 7 is analogous, and the cases i = 8, i = 9 and i = 10 are straightforward.

We now show that a non-conforming expansion of G must have a minor isomorphic to a 3-

enlargement of G.

Lemma 4.9. Let D be a disk system in a graph G, and let G′ be a non-conforming expansion of

G. Then G′ has a minor isomorphic to a 3-enlargement of G.

Proof: We may assume that the number of expansions used to create G′ is minimum. We shall

refer to this as the minimality of G′. We will prove that G′ is a 3-enlargement of G.

Let Ĝ be an expansion of G such that G′ is obtained from Ĝ by splitting a vertex v into v1 and

v2. By the minimality of G′ this split is non-conforming, and Ĝ is a conforming expansion of G. If

G = Ĝ, then G′ is a 3-enlargement of G, and so we may assume that G 6= Ĝ. Let e be a new edge

12



of Ĝ. If e is not incident with v, then G′/e is a non-conforming expansion of Ĝ/e, contrary to the

minimality of G′. Now let us consider e as an edge of G′. From the symmetry between v1 and v2

we may assume that e is incident with v2 in G′; let v3 be its other end. The split of the vertex v

of the graph Ĝ into v1 and v2 violates (S1) or (S2). But it does not violate (S1), for otherwise the

same violation occurs in the analogous split of Ĝ/e, contrary to the minimality of G′. Thus the

split of the vertex v of the graph Ĝ into v1 and v2 satisfies (S1); let D1 and D2 be the corresponding

disks. It follows that the disks violate (S2), but they do not do so for the corresponding split in

Ĝ/e. It follows that e ∈ E(D1) ∩ E(D2). Thus the split that creates Ĝ from Ĝ/e is also along D1

and D2. Let f be an edge incident with v2 in G′ that is not e or the new edge v1v2 of G′. It follows

from (D2) by considering the edge f that either the split that creates Ĝ from Ĝ/e or the split that

creates G′/e from Ĝ/e is non-conforming, contrary to the minimality of G′.

The following lemma will be useful.

Lemma 4.10. Let G′ be a conforming expansion of a graph G with respect to a weak disk system

D, and let D′ be the weak disk system induced in G′ by D. Let qr be a new edge of G′, and let the

vertex p ∈ V (G′)− {q, r} share distinct disks Dq, Dr of G′ with q and r, respectively, such that Dr

does not contain q. Then p is adjacent to r and the disks Dq, Dr both contain the edge pr.

Proof: The disks of G/qr that correspond to Dq and Dr share p and the new vertex of G/qr,

say w. By (D3) p is adjacent to w in G/qr and the edge pw belongs to both those disks. By

Lemma 4.1 the vertex p is adjacent to exactly one of q, r. But q /∈ V (Dr), and hence p is adjacent

to r and Dq, Dr both contain the edge pr, as desired.

We end this section with a lemma about fixing separations in weakly 4-connected graphs, a

special case of a lemma from [5]. First some additional notation: when a graph G is a minor of

a graph H, we say that an embedding η of G into H is a mapping with domain V (G) ∪ E(G) as

follows. η maps vertices v ∈ G to connected subgraphs η(v) of H, with distinct vertices being

mapped to disjoint vertex-disjoint subgraphs. Further, η maps edges uv of G to paths η(uv) in H

with one end in η(u) and the other in η(v), and otherwise disjoint from η(w) for any vertex w of

G. Also, for edges e 6= e′ of G, if η(e) and η(e′) share a vertex, then it must be an end of both the

paths.

Lemma 4.11. Let G1 be a graph isomorphic to a minor of a weakly 4-connected graph H. Let

P = {p1, p2}, Q = {q1, q2, q3} and R be such that (P,Q,R) is a partition of V (G1), and G1 has all

possible edges between P and Q, and no edge with both ends in Q. Further, suppose R has at least
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two vertices, and that (P ∪ Q,Q ∪ R) is a (non-trivial) 3-separation of G1. Then H has a minor

isomorphic to a graph G+
1

that is obtained from G1 by

1. adding an edge between pi and r for some i ∈ {1, 2} and r ∈ R, or

2. splitting qj for some j ∈ {1, 2, 3} into vertices q1j and q2j such that q1j is adjacent to p1 and q2j

is adjacent to p2

Proof: Call an embedding η of G1 into H minimal if for every embedding η′ of G into H,

3∑

j=1

|E(η(qj))| ≤
3∑

j=1

|E(η′(qj))|

In particular, if η is minimal, η(qj) is a tree for every j. Further, we say that a vertex qj is good

for η if the paths η(p1qj) and η(p2qj) are vertex-disjoint (in other words, their ends in η(qj) are

distinct).

Consider a minimal embedding η of G1 into H. Suppose there exists a qj that is good for η.

For i = 1, 2, let p′i be the endpoint of η(piqj) in η(qj). Let e be an edge in the unique path between

p′1 and p′2 in η(qj), and let T1, T2 be the two subtrees obtained by deleting e from η(qj), such that

p′i ∈ Ti for i = 1, 2. For i = 1, 2, define Ni to be the set of neighbors r ∈ R of qj in G that η(rqj)

has an endpoint in Ti. Now N1, N2 are non-empty by the minimality of η. (If, say, N1 were empty,

then we could replace η(qj) by T2 and modify η(p1qj) accordingly to get a better embedding η′, a

contradiction.) It is easy to see that conclusion 2 of the lemma is satisfied, with the neighborhoods

of q1j and q2j being N1 ∪ {p1} and N2 ∪ {p2}, respectively.

Hence we may assume that there is no minimal embedding of G into H with a vertex in Q

being good for it. Let η be an embedding of G into H. For j = 1, 2, 3, there exist vertices tj such

that both η(p1qj) and η(p2qj) have tj as an end. Define J1 as the union of η(pi), i = 1, 2 and of

η(e) for all edges e with at least one end in P . Define J2 as the union of η(v) for v ∈ Q∪R and of

η(e) for every edge e of G with both ends in Q ∪ R. Now V (J1) ∩ V (J2) = {t1, t2, t3}. Since H is

weakly 4-connected, there is a path in H with ends a ∈ V (J1) \ V (J2) and b ∈ V (J2) \ V (J1), and

otherwise disjoint from J1 ∪ J2. If b belongs to η(qj) \ tj for some j, then we can modify η to get a

minimal embedding where qj is a good vertex, which is a contradiction. Thus b belongs to η(r) for

some r ∈ R or b is an internal vertex of η(e) for an edge e of G that has an end in R (recall that

Q is an independent set). In either case, it is easy to see that conclusion 1 holds.
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5 The Enlargements of an Expansion of G

Let G and H be as in Theorem 2.1. In order to apply Theorem 3.1 we select an expansion G′ of G

such that a subdivision of G′ is isomorphic to a subgraph of H. By Lemma 4.9 we may assume that

G′ is a conforming expansion. In this section we prove three lemmas, one corresponding to each of

the first three outcomes of Theorem 3.1. The lemmas together almost imply that the conclusion

of Theorem 2.1 holds for G′. The reason for the word almost is that for convenience we allow a

weaker form of 8-enlargements and 9-enlargements.

The weaker form of 9-enlargements is defined as follows. Let G be a graph with a cycle double

cover D, and let u, x, y ∈ V (G), where x and y are adjacent and u is not confluent with the edge

xy. Let G+ be obtained from G by subdividing the edge xy and adding an edge joining the new

vertex to u. We say that G+ is a weak 9-enlargement of G. Later, in Lemma 6.3, we show how to

move from a weak 9-enlargement to a 9-enlargement or another useful outcome. Our first lemma

deals with the first outcome of Theorem 3.1.

Lemma 5.1. Let G,H be graphs such that G is connected, has at least five vertices and no vertices

of degree two. Let D be a weak disk system in G, let S be a subgraph of H isomorphic to a subdivision

of G, and let P be an S-path in H such that its ends are not confluent in the weak disk system D′

induced in S by D. Then H has a minor isomorphic to a 1-enlargement, 3-enlargement or a weak

9-enlargement of G.

Proof: Let s, t be the ends of P . If both s and t are branch-vertices in S, then H has a

minor isomorphic to a 1-enlargement of G, and we are done. If one of s and t is a branch-vertex

and the other is an internal vertex of a segment of S, then H has a minor isomorphic to a weak

9-enlargement of G, as desired.

Thus we may assume that s and t are internal vertices of two different segments Q1 and Q2

of S, respectively. Let Q1 correspond to an edge uv ∈ E(G), and let Q2 correspond to an edge

xy ∈ E(G). Now, if u is not confluent with the edge xy, then H has a minor isomorphic to a weak

9-enlargement of G, and the lemma holds. Thus, we may assume that u shares a disk D1 with the

edge xy. By symmetry, we get a disk D2 shared by v and the edge xy, and disks D3, D4 that the

edge uv shares with vertices x and y respectively. (The disks Di may not be pairwise distinct.)

The disks D1 and D3, however, must be distinct, since the vertices s, t are not confluent. Notice,

however, that they share the vertices u and x. It follows that u, v, x, y are pairwise distinct, for if

v = y, say, then u, v = y, x all belong to V (D1 ∩D3), and hence D1 = D3 by (D3), a contradiction.

By (D3) this implies that u is adjacent to x in G and the intersection of D1 and D3 is precisely the

edge ux. In other words, the vertices u and x must be adjacent in G, and D1, D3 are precisely the
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two disks containing the edge ux. By a similar argument, it follows that u and y are adjacent, and

D1, D4 are precisely the two disks containing the edge uy. Thus u is adjacent to each of v, x, y in

G, and the edges uv, ux, uy are pairwise confluent.

By symmetry, we get similar conclusions about the vertices v, x, y. Thus G[u, v, x, y] is a de-

tached K4 subgraph of G. Since G has at least five vertices and is connected, we may assume,

without loss of generality, that u has a neighbor in G outside of the set {v, x, y}. Let N be the

set of all such neighbors of u. But then delete the edges of the segment of S corresponding to the

edge ux and contract the edges of the subpath of Q2 between t and the end corresponding to x. It

follows that H has a minor isomorphic to a graph obtained from G by splitting u corresponding to

the partition {{v, x}, N ∪{y}} of its neighbors. This split is non-conforming since the disks D1 and

D4 violate condition (S2) in the definition of a conforming split. Hence H has a minor isomorphic

to a 3-enlargement of G.

Lemma 5.2. Let G,H be graphs such that H is weakly 4-connected, and G is connected, has at

least 5 vertices and has no vertices of degree two. Let D be a weak disk system in G, let S be a

subgraph of H isomorphic to a subdivision of G, such that D induces the weak disk system D′ in

S. Further, let there exist a free S-cross on some disk of S. Then H has a minor isomorphic to a

2-enlargement or a 3-enlargement or a weak 9-enlargement of G.

Proof: Let the free cross consist of paths P1, P2, in a disk C ′ of S, that corresponds to a disk C

of G. We shall call the paths P1, P2 the legs of the cross. Recall that the ends of P1, P2 are called

the feet of the cross.

If C has at least four vertices, then we claim that H has a minor isomorphic to a 2-enlargement

of G. We define an auxiliary bipartite graph B, with the vertex set being the set of feet of the cross

and the set of branch-vertices of S that belong to C ′. A foot f and a branch-vertex b are adjacent

if one of the subpaths of C ′ with ends f and b includes no feet or branch-vertices in its interior.

Since the cross is free, it follows from Hall’s bipartite matching theorem that B has a complete

matching from the set of feet to the set of branch vertices (in other words, one that matches each

of the feet). By contracting the edges of the paths that correspond to this matching, we deduce

that H has a minor isomorphic to a 2-enlargement of G, as desired.

Hence we may assume that C is in fact a triangle on vertices u1, u2 and u3, say. For i = 1, 2, 3,

if ui has degree 3 in G, then define vi to be its third neighbor (that is, the neighbor not in C).

Otherwise, define vi = ui. Let u
′

1, u
′

2, u
′

3, v
′

1, v
′

2, v
′

3 be the corresponding vertices of S. Let Qi denote

the segment of S corresponding to the edge uivi if ui 6= vi and let Qi be the null graph otherwise,

and let A = V (C ′ ∪ P1 ∪ P2) and B = (V (S) − V (C ′ ∪ Q1 ∪ Q2 ∪ Q3)) ∪ {v′1, v
′

2, v
′

3}. There exist
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three vertex-disjoint paths inH linking {u′1, u
′

2, u
′

3} to {v
′

1, v
′

2, v
′

3}. SinceH is weakly 4-connected, it

follows that there is no 3-cut inH separating A from B. Hence, by a variant of Menger’s theorem, H

contains four vertex-disjoint paths L1, . . . L4 linking {v′1, v
′

2, v
′

3, y} to {u′1, u
′

2, u
′

3, x} (not necessarily

in that order), where x ∈ A and y ∈ B. We assume the numbering of the paths is such that for

i = 1, 2 and 3, Li has end v′i ∈ B. (The remaining path L4 then has end y ∈ B.) We wish to define

a suitable vertex w ∈ V (G). If y is a branch-vertex, then let w be the corresponding vertex of G;

otherwise y is an internal vertex of a segment of H. By Lemmas 4.1 and 4.3 at least one end of that

segment, say w′, does not belong to {v1, v2, v3}, and we let w be the vertex of G that corresponds

to w′.

We may assume that x ∈ V (C ′). If not, then we may contract edges suitably in P1 or P2 such

that the vertex corresponding to x, after the contraction, lies on C ′. (Note that this contraction

does not affect the graph S, neither does it destroy the cross.)

Relabel the vertices u′1, u
′

2, u
′

3, x as a, b, c, d, in the order in which they appear on C ′ (in some

orientation), such that L4 joins d to y. (Note that d need not be the same as x.) Let (d, a, b) denote

the interior vertices of the subpath of C ′ with ends d and b that includes a in its interior, and let

(d, c, b) be defined analogously.

We claim that there is a leg of the cross with feet f, g such that f ∈ (d, a, b) and g ∈ (d, c, b).

Since the cross is free, there exists a leg with foot in (d, a, b). We may assume the other foot of this

leg does not belong to (d, c, b), but then the other leg of the cross satisfies the claim.

Choose a leg as above such that there is no foot between f and a, and no foot between g and

c. (Such a choice must be possible, due to the freeness of the cross.) Let the other leg of the cross

have feet h, i, such that b and h are joined by a subpath of the cycle C ′ that is disjoint from {f, g}.

By contracting disjoint subpaths of C ′ with ends (a, f), (c, g), and (b, h) respectively, it follows that

H has a minor isomorphic to the graph G′ obtained from G by adding a new vertex z adjacent to

u1, u2, u3 and w.

If w is not confluent with the edge u1u2 then G′\u1u2\zu3 is isomorphic to a weak 9-enlargement

of G, and we are done. Thus we may assume that w is confluent with the edge u1u2, and by

symmetry, with the edges u2u3 and u1u3 as well. It follows similarly as in the proof of Lemma 5.1

that G[u1, u2, u3, w] is a detached K4 subgraph of G. Since G is connected, and |V (G)| ≥ 5, we

may assume, without loss of generality, that u1 has a neighbor in G outside that set. It follows

that a graph obtained from G by a non-conforming split of u1 is isomorphic to a minor of H.

We now define the weaker form of 8-enlargements. Let G be a graph with a cycle double cover

D, and let x1, x2, x3 be vertices of G such that no disks contains all three. Let G+ be obtained from

G by adding a vertex with neighborhood {x1, x2, x3}. We say that G+ is a weak 8-enlargement of
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G. Our third lemma deals with the third outcome of Theorem 3.1.

Lemma 5.3. Let G,H be graphs such that G is connected, has at least five vertices and no vertices

of degree two. Let D be a weak disk system in G, let S be a subgraph of H isomorphic to a subdivision

of G, and let there exist an S-triad in H. Then H has a minor isomorphic to an i-enlargement of

G for i = 1 or 3, or a weak i-enlargement of G for i = 8 or 9.

Proof: We proceed by induction of |E(H)|. Let the S-triad be L1, L2, L3, and let its feet be

x1, x2, x3. If each xi is a branch-vertex of S, then S ∪ L1 ∪ L2 ∪ L3 gives rise to a minor of H

isomorphic to a weak 8-enlargement, as desired. We may therefore assume that x3 is an internal

vertex of a segment Q3 of S with ends u3 and v3. Let f be an edge of Q3. By induction applied to

G, H/f , and S/f , we may assume that f is incident with x3 and one end of Q3, say u3, and that

there exists a disk D1 in G containing x1, x2, u3. Similarly, we may assume that there exists a disk

D2 in G containing x1, x2, v3. Then D1 6= D2, because otherwise D1 = D2 includes the segment

Q3 by (D3), and hence each of x1, x2, x3, a contradiction. Since x1 and x2 belong to D1 ∩ D2, it

follows from (D3) that x1 and x2 belong to a common segment Q of S.

Let S′ be obtained from S by replacing Q[x1, x2] by L1 ∪L2. Applying Lemma 5.1 to G, H, S′

and the S′-path L3, the lemma now follows.

Using Theorem 3.1 we can summarize Lemmas 5.1–5.3 as follows.

Lemma 5.4. Let G,H be weakly 4-connected graphs, let G have a disk system D with no locally

planar extension into H, and let a subdivision of G be isomorphic to a subgraph of H. Then H has

a minor isomorphic to

(i) an i-enlargement of G for some i ∈ {1, 2, 3}, or

(ii) a weak i-enlargement of G for some i ∈ {8, 9}.

Proof: Let G,H and D be as stated. By Theorem 3.1 we deduce that there exists a subgraph

S of H isomorphic to a subdivision of G such that the induced disk system in S satisfies one of the

outcomes of Theorem 3.1. But then (i) or (ii) of this lemma holds by Lemmas 5.1–5.3.

6 From Weak Enlargements to Enlargements

The purpose of this section is to replace weak enlargements by enlargements in Lemma 5.4(ii). We

start with a special case of weak 9-enlargements.
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Lemma 6.1. Let G be a graph with a cycle double cover D, let G+ be a weak 9-enlargement of G,

and let u, x, y be as in the definition of weak 9-enlargement. If G\{u, x, y} is connected, then G+

has a minor isomorphic to an i-enlargement of G for some i ∈ {1, 3, 9}.

Proof: Let z be the new vertex of G+ that resulted from the subdivision of the edge xy. If u

and x are not confluent, then contracting the edge xz of G+ produces a 1-enlargement of G, and

so the lemma holds. Thus we may assume that u and x are confluent, and, by symmetry, we may

assume that u and y are confluent. If u is not adjacent to x or y, then G+ is a 9-enlargement of

G, and the lemma holds. Thus, from the symmetry, we may assume that u is adjacent to x. The

edges xy and xu are not confluent, for otherwise u is confluent with the edge xy, contrary to what

a weak 9-enlargement stipulates. But then deleting the edge xu from G+ yields a graph isomorphic

to a 3-enlargement of G — more specifically, a graph obtained by a non-conforming split of the

vertex x.

Lemma 6.2. Let G be an expansion of a weakly 4-connected graph, let H be a weakly 4-connected

graph, let D be a weak disk system in G, let v be a vertex of G of degree three and let u, x, y be the

neighbors of v. Let G+ be the graph obtained from G by adding a new vertex z adjacent to u, x, y

and deleting all edges with both ends in {u, x, y}. If H has a minor isomorphic to G+, then H has

a minor isomorphic to an i-enlargement of G for some i ∈ {1, 2, 3, 4, 9, 10}.

Proof: Since G is an expansion of a weakly 4-connected graph, Lemma 4.2 implies that at most

one edge of G has both ends in {u, x, y}. Thus we may assume that u is not adjacent to x or y.

Since v has degree three, it follows from (D1) and (D3) that if x is adjacent to y, then the triangle

vxy is a disk in G. We can apply Lemma 4.11 to G+ = G1 and H, with P = {v, z}, Q = {u, x, y}

and R = V (G+) − (P ∪ Q). From the lemma, using the symmetry between x and y, and the

symmetry among x, y and u if x is not adjacent to y, we get the following three cases:

Case 1: H has a minor isomorphic to a graph G++ that is obtained from G+ by adding an

edge between a vertex p ∈ P and a vertex r ∈ R. Note that the vertices v and z are symmetric for

the application of Lemma 4.11. Hence we may assume that p = v. Now if r is not confluent with

v in G, then G++ above has a minor isomorphic to a 1-enlargement of G. Thus we may assume

that r is confluent with v in G. Furthermore, we may assume, without loss of generality, that the

disk D3 shared by r and v contains the edges vu and vy. (Note that v has degree 3 in G.) On the

disk D3, the vertices u, v, y and r occur in that cyclic order. Now in G++, contracting the edge yz

gives a cross in the disk D3 with arms uy and rv. In other words, G++, and hence H, has a minor

isomorphic to a 2-enlargement of G, as desired.

Case 2: The vertices x and y are adjacent in G and H has a minor isomorphic to a graph G++
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that is obtained from G+ by splitting the vertex x into x1 and x2, with x1 adjacent to v and x2

adjacent to z. Let Ni be the neighbors of xi in G++ other than v, z, x1, x2. The neighborhood of

x in G is thus N1 ∪ N2 ∪ {v, y}. In G, let D4 be the disk that contains the edge xy, other than

the triangle vxy. The disk D4 must contain a vertex in either N1 or N2, and from the symmetry

between v and z we may assume that it contains a vertex in N1. Then, in G++, delete the edge uz

and contract the edge x2z. This gives a graph that is a 3-enlargement of G (non-conforming split

of x, with the disks vxy and D4 violating condition (S2) in the definition of a conforming split), as

desired.

Case 3: H has a minor isomorphic to a graph G++ that is obtained from G+ by splitting the

vertex u into u1 and u2, with u1 adjacent to v and u2 adjacent to z. Let Ni be the set of neighbors

of ui other than v, z, u1, u2. Thus in G, the neighborhood of u is N1 ∪N2 ∪ {v}.

Let D1 be the disk in G shared by the edges xv and vu, and D2 be the disk in G shared by the

edges yv and vu. The disks D1 and D2 both contain exactly one vertex each from N1 ∪N2. Let us

assume first that |N2| ≥ 2. Contract the edge xz in G++, and if x is not adjacent to y in G, then

delete also the resulting edge xy to obtain a graph G1, and let G2 be the graph obtained from G1

by further deleting the edge u2x. Now G2 is isomorphic to a graph obtained from G by splitting

the vertex u into u1 and u2. If this split is non-conforming, then G2 is a 3-enlargement of G, and

we are done. Otherwise, the split is not along D1 or D2, and from the symmetry we may assume

it is not along D1. Thus G1 is a 4-enlargement of G. (Note that in G, u and x are non-adjacent,

and hence non-consecutive on D1.) This completes the case when |N2| ≥ 2.

From the symmetry we may therefore assume that |N1| = |N2| = 1. Thus the degree of u in G

is three. For i = 1, 2 let Ni = {ni}. We may assume that the edge uni belongs to the disk Di. It

follows that the vertex x and edge un2 are not confluent in G, for if some disk D contained both

of them, then the intersection D ∩ D1 would violate (D3), because u is not adjacent to x. The

graph G1 from the previous paragraph is a weak 9-enlargement of G, and so by Lemma 6.1 we

may assume that G\{x, u, n2} is disconnected. Since u has degree three, the weak 4-connectivity

of G implies that n1 has degree three and its neighbors are x, u, n2. Since G\{n2, y} is connected,

we deduce that G is isomorphic to the prism, and G++ is isomorphic to a 10-enlargement of G, as

desired.

Now we are ready to eliminate weak 9-enlargements.

Lemma 6.3. Let G be an expansion of a weakly 4-connected graph, let D be a weak disk system

in G, and let G+ be a weak 9-enlargement of G such that G+ is isomorphic to a minor of a

weakly 4-connected graph H. Then H has a minor isomorphic to an i-enlargement of G for some
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i ∈ {1, 2, 3, 4, 9, 10}.

Proof: Let u, x, y be as in the definition of weak 9-enlargement. By Lemma 6.1 we may assume

that G\{u, x, y} is disconnected. Since x is adjacent to y and G is an expansion of a weakly

4-connected graph, Lemma 4.2 implies that the neighborhood of some vertex v of G is precisely

the set {u, x, y}. Thus G+ is as described in Lemma 6.2, and the conclusion follows from that

lemma.

We now turn to weak 8-enlargements. In order to save effort we prove a weaker analogue of

Lemma 6.3, the following.

Lemma 6.4. Let G1 be an expansion of a weakly 4-connected graph G, let D be a weak disk system

in G, and let G+ be a weak 8-enlargement of G1 such that G+ is isomorphic to a minor of a weakly

4-connected graph H. Then there exists an expansion G2 of G obtained from G1 by contracting a

possibly empty set of new edges such that H has a minor isomorphic to an i-enlargement of G2 for

some i ∈ {1, 2, 3, 4, 8, 9, 10}.

Proof: We proceed by induction on |E(G1)|. Let G+ be obtained from G1 by adding a vertex

joined to v1, v2, v3. If some edge of G1 has both ends in the set {v1, v2, v3}, then by deleting that

edge we obtain a graph isomorphic to a weak 9-enlargement of G1, and the lemma follows from

Lemma 6.3. Thus we may assume that {v1, v2, v3} is an independent set in G1. We may also assume

that every pair of vertices in {v1, v2, v3} is confluent, for otherwise G+ has a minor isomorphic to a

1-enlargement of G, and the lemma holds. Thus we may assume that G\{v1, v2, v3} is disconnected,

for otherwise G+ is an 8-enlargement of G1.

Let (A,B) be a non-trivial separation of G with A ∩ B = {v1, v2, v3}. By Lemma 4.2 we may

assume that (A,B) is degenerate. If |A− B| = 1, then the lemma follows from Lemma 6.2. Thus

we may assume that |A − B| ≥ 2. Let v1, v2, v3, u1, u2, u3 be as in the definition of degenerate.

Since {v1, v2, v3} is independent, we may assume from the symmetry that u1 6= v1 and u2 6= v2.

Now one of u1v1, u2v2 is a new edge of G1, and so we may assume the former is. Thus G+/u1v1 is a

weak 8-enlargement of G1/u1v1, and hence the lemma follows by the induction hypothesis applied

to the graph G1/u1v1.

The lemmas of this section allow us to upgrade Lemma 5.4 to the following.

Lemma 6.5. Let G,H be weakly 4-connected graphs, let G have a disk system D with no locally

planar extension into H, and let G′ be a conforming expansion of G such that a subdivision of G′

is isomorphic to a subgraph of H. Then there exists a conforming expansion G′′ of G obtained
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from G′ by contracting a possibly empty set of new edges such that, letting D′′ denote the weak disk

system induced in G′′ by D, the graph H has a minor isomorphic to an i-enlargement of G′′ with

respect to D′′ for some i ∈ {1, 2, 3, 4, 8, 9, 10}.

Proof: By Lemma 5.4 we may assume that a weak 8-enlargement or a weak 9-enlargement of

G′ is isomorphic to a minor of H. By Lemmas 6.3 and 6.4 there exists a required conforming

expansion G′′ of G such that H has a minor isomorphic to an i-enlargement of G′′ for some

i ∈ {1, 2, 3, 4, 8, 9, 10}.

7 Proof of the Main Theorem

Lemma 6.5 gives an i-enlargement of an expansion G′′ of G. Our final objective is to show that we

can choose G′′ = G. We break the proof into several lemmas depending on the value of i.

Lemma 7.1. Let G and H be weakly 4-connected graphs, and let D be a weak disk system in G

with no locally planar extension into H. Let G′ be a conforming expansion of G such that H has a

minor isomorphic to a 1-enlargement of G′. Then H has a minor isomorphic to an i-enlargement

of G for some i ∈ {1, 3, 4, 5}.

Proof: We may assume that G′ is as stated in the lemma, and subject to that, it is minor-

minimal. By hypothesis, H has a minor isomorphic to G+, a graph obtained from G′ by adding

an edge between two vertices x and y that are not confluent. Let e be a new edge of G′. By the

minimality of G′, it follows that

(i) one end of e must be in {x, y}, and

(ii) the other end of e must be confluent with the vertex in {x, y} other than the one above.

Recall that branch-sets of an expansion were defined at the beginning of Section 4. Thus all branch

sets that are disjoint from {x, y} are singleton sets. Let Tp and Tq be the branch sets corresponding

to vertices p, q ∈ V (G) such that they contain x and y respectively (p and q may be identical). We

claim that the degree of x in the branch set containing it is at most one (that is, x is a leaf of the

tree G′[Tp]). Suppose not; hence x has (at least) two neighbors x1 and x2 in Tp. By (ii) above,

y shares disks D1 and D2 of G′ with x1 and x2 respectively. Then x /∈ V (D1 ∪ D2), for x, y are

not confluent. It follows that D1 6= D2, for otherwise D1 is not a cycle in G′/x1x/x2x, and yet D1

corresponds to a disk in G. Also, y is not adjacent to both x1 and x2, by Lemma 4.1. But then

contracting edges xx1 and xx2 violates Axiom (D3) in G. This proves the claim. Thus x, and by

symmetry y, are leaf vertices in G′[Tp] and G′[Tq] respectively.
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If p = q, then it follows that Tp = Tq must be a path of length 2, with a middle vertex z. Let

D′

1,D
′

2 be the two disks in G′ that include the edge xz, and let D′

3, D
′

4 be the two disks that include

the edge yz. Note that, since x and y are not confluent in G′, all four disks above are distinct. Let

D1, D2, D3, D4 be the corresponding disks in G. Let N1, N2 be the partition of the set of neighbors

of p in G, corresponding to the partition {x, y}, {z} of V (Tp). Clearly, N1 has at least two vertices,

but so does N2, by Axiom (D3) applied to D̃1, D̃2. In G+ (which has the edge xy), contract the

edge xy. This gives a graph G++ that can be obtained from G by splitting p with respect to the

partition N1, N2 of its neighbors. This split is non-conforming, since the disks D1, . . . , D4 violate

condition (S1) in the definition of a conforming split. Thus G++ is a 3-enlargement of G, as desired.

If p 6= q, then from (i) and (ii) above, Tp is either {x} or {x, x1}. By symmetry, Tq is either {y}

or {y, y1}. If Tp and Tq are both singletons, then clearly G′ = G and we are done.

Suppose exactly one of the two branch sets, say Tq, is a singleton, and Tp consists of {x, x1},

where x1 shares a disk D with y in G′. If x1 and y are not adjacent, then G+ is a 4-enlargement of

G, and we are done. Thus we may assume that x1 and y are adjacent, and hence by Axiom (D3),

they are consecutive in D. Let D1, D2 be the two disks in G′ containing the edge xx1. They are

both distinct from D, since x and y are not confluent in G′. By Axiom (D3) applied to D1 and

D2, the vertex x1 has at least two neighbors in G′ other x and y. Now in G+ (which contains the

edge xy), delete the edge x1y. This gives a graph G̃ obtained from G by splitting p in the same

way as in G′, except that y is adjacent to x rather than x1. Further, it is a non-conforming split,

as the disks D, D1 and D2 violate condition (S1) in the definition of a conforming split. Thus G̃,

which is isomorphic to a minor of H, is a 3-enlargement of G, and we are done.

Finally, suppose Tp = {x, x1} and Tq = {y, y1}, where x shares a disk D′

1 with y1 and y shares

a disk D′

1 with x1. Let D1, D2 be the corresponding disks in G. Since x and y are not confluent

in G′, D′

1 does not contain y and D′

2 does not contain x. (In particular, D′

1 and D′

2 are distinct.)

Apply Lemma 4.10 to Ĝ = G′/xx1, with the vertices p, y, y1 in that graph corresponding to p, q, r

in the lemma. Thus the (conforming) split of the vertex q in G that produces Ĝ is along D2, and

D2 is one of the disks containing the edge pq in G. Also, since x and y are not confluent in G′,

the (conforming) split of p in Ĝ that produces G′ must be along D1, and D1 is the other disk in

G containing pq. It now follows that G+ is a 5-enlargement of G. This finishes the proof of the

lemma.

Lemma 7.2. Let G and H be weakly 4-connected graphs, and let D be a weak disk system in G

with no locally planar extension into H. Let G′ be a conforming expansion of G such that H has a

minor isomorphic to a 2-enlargement of G′. If G′ 6= G, then there exists a conforming expansion

G′′ of G obtained from G′ by contracting at least one new edge such that H has a minor isomorphic
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to an i-enlargement or a weak 9-enlargement of G′′ for some i ∈ {2, 6, 7}.

Proof: We may assume that G′ is as stated in the lemma, and subject to that, it is minor-

minimal. By hypothesis, there are vertices u, v, x, y appearing on a disk C ′ in G′, in that cyclic

order, such that H has a minor isomorphic to a graph obtained from G′ by adding the edges ux and

vy. Let C be the cycle in G corresponding to C ′. The minimality of G′ implies that every new edge

of G′ has both ends in {u, v, x, y}, and hence it belongs to C ′ by (D3). We may therefore assume

that uv is a new edge of G′. We claim that if v is adjacent to x, then the lemma holds. To prove

this claim suppose that v and x are adjacent in G′, and let G1 = G+\vx. If v has degree three

in G′, then G1 is isomorphic to a weak 9-enlargement of G′/uv (the new edge is yv; notice that y

is not confluent with the edge of G′/uv that is being subdivided by (D3)), and hence the lemma

holds. Thus we may assume that v has degree at least four in G′. In that case G1 is isomorphic to

a 4-enlargement of G′/uv, for a graph isomorphic to G1 can be obtained by a conforming split of

the new vertex of G′/uv, not along C ′, and joining one of the new vertices to y. This proves our

claim, and hence we may assume that v is not adjacent to x. By symmetry we may also assume

that u is not adjacent to y.

If uv is the only new edge of G′, then G′ is a 6-enlargement of G, and the lemma holds. Thus

we may assume that G′ has another new edge, and so that edge must be xy and there are no other

new edges. It follows that G′ is a 7-enlargement of G, and so the lemma holds.

Lemma 7.3. Let G and H be graphs, let D be a weak disk system in G, and let G′ be a conforming

expansion of G such that H has a minor isomorphic to a 9-enlargement G+ of G′. If G′ 6= G, then

there exists a conforming expansion G′′ obtained from G′ by contracting at least one new edge such

that H has a minor isomorphic to a 3-enlargement or a weak 9-enlargement of G′′.

Proof: Let u, x, y ∈ V (G′) be such that G+ is obtained from G′ by subdividing the edge xy and

joining the new vertex to u, and let f be a new edge of G′. Then f 6= xy, for otherwise Lemma 4.10

implies that u is confluent with the edge xy, a contradiction. We may assume that f is incident

with u, and that contracting f makes the new vertex confluent with the edge xy, for otherwise

G+/f is a weak 9-enlargement of G′/f , and the lemma holds. Hence the other end v of f must

share a disk D1 with the edge xy. Since u is not confluent with xy, D1 does not contain u. Let D2

and D3 be disks shared by u and x, and by u and y, respectively. These three disks are pairwise

distinct, since u is not confluent with the edge xy in G′. Now apply Lemma 4.10 with x as the

vertex p, and u, v as the vertices q, r respectively. It follows that v and x are adjacent, and that

D1 and D2 are the two disks containing the edge vx. Apply Lemma 4.10 again, this time with y in
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place of x. It follows that the edges vu, vx and vy are covered twice each by the three disks D1, D2

and D3. In particular, D1 is a triangle.

If f ′ 6= f is a new edge of G′, then by what we have shown about f it follows that f ′ is incident

with u and its other end belongs to a disk D′

1 that contains the edge xy. Since D1 is a triangle

consisting of x, y and an end of f , we see that D′

1 6= D1. But the disks that correspond to D1 and

D′

1 in G′/f/f ′ have three vertices in common, contrary to (D3). Thus f is the only new edge of

G′, and hence G = G′/f . Let p be the new vertex of G = G′/f .

Since G+ is a 9-enlargement of G′, the graph G′\{u, x, y} is connected, and hence v has a

neighbor outside {u, x, y}. (In fact, it must then have at least three neighbors outside {u, x, y}.) Let

z be the new vertex of G+ created by subdividing the edge xy. The graph G+\vx/xz is isomorphic

to a graph obtained from G by splitting p into two vertices. This split is non-conforming, since the

two disks in G that contain py violate condition (S2) in the definition of a conforming split. Thus

H has a minor isomorphic to a 3-enlargement of G. This finishes the proof of the lemma.

Lemma 7.4. Let G and H be graphs, let D be a disk system in G, and let G′ be a conforming

expansion of G such that H has a minor isomorphic to an 8-enlargement G+ of G′. If G′ 6= G,

then there exists a conforming expansion G′′ obtained from G′ by contracting at least one new edge

such that H has a minor isomorphic to a 3-enlargement or a weak 8-enlargement of G′′.

Proof: Let G+ be obtained from G′ by adding a vertex adjacent to x1, x2, x3, and let f be a

new edge of G′. We may assume that upon contracting f the vertices that correspond to x1, x2, x3

belong to a common disk, for otherwise G+/f is a weak 8-enlargement of G′/f , and the lemma

holds. Thus f is incident with at least one of x1, x2, x3, say x1, and there exists a disk D in G′ that

includes y, x2, x3, where y is the other end of f .

Apply Lemma 4.10 twice, once with x2 as the vertex p, and next with x3 as the vertex p. In

both applications, let x1 and y be the vertices q and r respectively. It follows that y is adjacent to

x2 and x3, and that yx1 ∈ E(D2 ∩ D3), yx2 ∈ E(D ∩ D3) and yx3 ∈ E(D ∩ D2). Since G+ is a

8-enlargement of G′ the graph G′\{x1, x2, x3} is connected, and hence y has degree at least four.

Let N be the neighbors of y in G′ other than x1, x2, x3. Let G
′ be obtained from G by splitting x1

in such a way that the neighborhood of one of the new vertices is N . Then G′ is isomorphic to a

minor of G+, and it is a 3-enlargement of G′. Thus the lemma follows from Lemma 4.9.

We are finally ready to state and prove Theorem 2.1, which we restate.

Theorem 7.5. Let G and H be weakly 4-connected graphs such that H has a minor isomorphic to

G. Let G have a disk system D that has no locally planar extension into H. Then H has a minor

isomorphic to an i-enlargement of G, for some i ∈ {1, 2, . . . , 10}.
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Proof: There exists an expansion of G whose subdivision is isomorphic to a subgraph of H. If

this expansion is not conforming, then the theorem holds by Lemma 4.9, and so we may assume

that the expansion is conforming. By Lemma 6.5 there exists a conforming expansion G′ of G such

that H has a minor isomorphic to an i-enlargement G+ of G′ for some i ∈ {1, 2, 3, 4, 8, 9, 10}. We

may choose G′ and G+ such that |E(G′)| is minimum. If i ∈ {1, 4}, then G+ is isomorphic to a

1-enlargement of a conforming expansion of G′, and the theorem holds by Lemma 7.1. If i = 3,

then the theorem holds by Lemma 4.9. If i = 10, then the minimality of G′ implies that G = G′,

and if i ∈ {2, 8, 9}, then the same conclusion follows from Lemmas 7.2, 7.4 and 7.3, respectively,

using Lemmas 6.3 and 6.4. Thus the theorem holds.

8 An Application

In this section, we illustrate an application of Theorem 2.1. Archdeacon [1, 2] proved that a graph

H does not embed in the projective plane if and only if it has a minor isomorphic to some graph in

an explicitly constructed list of 35 graphs. One might hope that if we assume that H is sufficiently

connected, then the list may be shortened. Mohar and Thomas (work in progress) developed a

strategy for a proof, but it will be a lengthy project with several intermediate steps. Here we

complete one such step: under the assumptions that H is weakly 4-connected and has a minor

isomorphic to the Petersen graph, Theorem 8.1 below gives a list of eight forbidden minors, each

of which are weakly 4-connected.

Figure 1 shows these eight graphs (with a vertex-labeling for each of them). All of these graphs,

with the exception of F ′

1 and D′

3, appear in the list of 35 forbidden minors for the projective plane.

F ′

1 and D′

3, however, are obtained from two graphs in that list (F1 and D3, respectively) by splitting

exactly one vertex. (The reason we list F ′

1, D
′

3 instead of F1, D3 is that the latter two graphs are

not weakly 4-connected.)

Theorem 8.1. Let H be a weakly 4-connected graph that has a minor isomorphic to the Petersen

graph. Then H does not embed in the projective plane if and only if it has a minor isomorphic to

one of the eight graphs F ′

1, F4, D
′

3, E22, E20, C3, E2, or E18 shown in Figure 1.

Before we derive Theorem 8.1 from Theorem 2.1, we describe some notation that will be con-

venient in the proof.

Let P10 denote a labeling of the Petersen graph as shown in Figure 2. In fact, Figure 2 shows

an embedding of P10 in the projective plane. The disk system D associated with this embedding

consists of the 5-cycles 6-9-7-10-8, 1-5-10-7-2, 4-3-8-10-5, 2-1-6-8-3, 5-4-9-6-1, and 3-2-7-9-4.
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Figure 1: The eight graphs of Theorem 8.1
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Figure 2: One of the two projective-planar embeddings of the Petersen graph

P10 has exactly one other embedding in the projective plane. This embedding is distinct from

the above embedding, but is isomorphic to it. (An isomorphism of embeddings is an isomorphism τ

of the underlying graphs such that a cycle C is facial in one embedding if and only if τ(C) is facial

in the other.) The disk system D′ associated with the second embedding consists of the 5-cycles

1-2-3-4-5, 6-9-4-3-8, 7-10-5-4-9, 8-6-1-5-10, 9-7-2-1-6, and 10-8-3-2-7.

We now describe notation that will let us denote specific enlargements of a (labeled) graph

as given by Theorem 2.1. Recall the operations 1–9 and the definition of a split, as described in

Sections 1 and 2.

Let G be a graph whose vertices are labeled 1, . . . , n. For vertices u, v, the graph G+(u, v)

denotes the graph obtained from G by adding an edge joining u and v (if none existed before).

Also, the graph G ∗ v(N1) denotes the graph obtained by splitting the vertex v, where N1 is as in

the definition of a split. We follow the convention that the vertex v1 retains the same label as v,

while v2 is assigned the label n+ 1.

Since operations 1–7 are defined in terms of vertex splits and edge additions, the above notation

lets us specify i-enlargements for i = 1, . . . , 7. An 8-enlargement of G is specified as G+(x1, x2, x3),

where the vertices xi are as in the definition of operation 8. The new vertex x gets the label n+1.

Finally, a 9-enlargement of G is specified as G+(u, x−y), where u, x, y are as in the definition

of operation 9. The new vertex obtained by subdividing the edge xy gets the label n+ 1.
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8.1 Proof of Theorem 8.1.

For the backward implication of Theorem 8.1, recall that each of the eight graphs specified is either

isomorphic to one of the 35 forbidden minors of [2] or is obtained from one of them by splitting a

vertex. In particular, none of these eight graphs embed in the projective plane, and so H does not

embed either.

For the forward implication, H, by hypothesis, does not embed in the projective plane, and has

a minor isomorphic to P10. Clearly, the disk system D of P10 has no locally planar extension to H.

Applying Theorem 2.1 to P10,D and H, it is easy to check that H has a minor isomorphic to one

of three enlargements, up to isomorphism:

1. a 2-enlargement Q1 = P10 + (7, 8) + (9, 10)

2. an 8-enlargement Q2 = P10 + (2, 4, 6)

3. a 9-enlargement Q3 = P10 + (1, 3− 4)

Q2 has a minor isomorphic to E18, as witnessed by the branch sets {1, 5}, {3, 8}, {7, 9}, {2},

{4}, {6}, {10}, and {11}. (The order of the branch sets follows that of the corresponding vertex

labels in E18, as shown in Figure 1.)

Thus we may assume that H has a minor isomorphic to Q1 or Q3. The disk system D′ of P10

extends in a natural way to disk systems D1,D3 in the enlargements Q1, Q3. Thus Q1, Q3 each

embed (uniquely) in the projective plane. The embeddings are shown in Figure 3.

6

89
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34

5

1 1

89

10 7

2

34

5

6

11

Q1 Q3

Figure 3: The graphs Q1 and Q3

29



We now apply Theorem 2.1 to Q1,D1, H and Q3,D3, H and deduce Theorem 8.1. This involves

a fair amount of case-checking, which is summarized in Tables 1 and 2. Each row in the tables lists

an enlargement of Q1 or Q3, along with one of the eight graphs from the list that is a minor of the

enlargement. The branch sets in the rightmost column follow the order of the vertex labels of the

corresponding graph in the preceding column. For clarity, singleton sets are not enclosed in braces.

Tables 1 and 2 respectively list all possible enlargements of Q1 and Q3 up to isomorphism,

with the exception of 8-enlargements and 9-enlargements of Q1, and 8-enlargements of Q3. Every

8-enlargement of Q1 with respect to D1 has a subgraph isomorphic to Q2, and thus has a minor

isomorphic to E18. Every 8-enlargement of Q3 with respect to D3 either has a minor isomorphic

to Q2, or is isomorphic to the 8-enlargement listed in Table 2. Finally, every 9-enlargement of Q1

with respect to D1 is either isomorphic to the 9-enlargement listed in Table 1 or is isomorphic to

a 2-enlargement of Q3 with respect to D3 (and is thus listed in Table 2 instead). This finishes the

proof of Theorem 8.1.
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Table 1: Applying Theorem 2.1 to Q1

Type Enlargement Minor Branch sets of the minor

Q1+(2, 10) D′

3 {2, 3}, 7, 9, 8, 10, 1, 5, 4, 6
1

Q1+(3, 10) F ′

1 8, 7, 2, 3, 10, 1, 9, 4, 5, 6

Q1+(2, 8)+(3, 7) E20 2, 7, 3, 8, {1, 6}, 9, 4, 10, 5
Q1+(2, 4)+(3, 5) E22 2, 3, 5, 4, 7, 8, 10, 9, {1, 6}
Q1+(1, 4)+(3, 5) F4 2, 4, 5, 1, 7, 9, 10, 6, 8, 3
Q1+(1, 4)+(2, 5) F4 1, 3, 5, 2, 6, 8, 10, 7, 9, 4
Q1+(3, 9)+(4, 8) C3 3, 4, 1, 10, 7, 9, 2, 5, {6, 8}
Q1+(3, 9)+(4, 6) C3 3, 4, 1, 10, 7, 9, 2, 5, {6, 8}

2
Q1+(4, 6)+(8, 9) E20 8, 7, 10, 9, 3, {1, 2}, 5, 6, 4
Q1+(2, 9)+(6, 7) D′

3 {1, 2}, 7, 10, 6, 9, 3, 4, 5, 8
Q1+(1, 9)+(6, 7) F ′

1 1, 5, 4, 9, 10, 3, 7, 6, 8, 2
Q1+(1, 9)+(2, 6) F4 1, 10, 4, 9, 6, 8, 3, 7, 2, 5
Q1+(1, 7)+(2, 9) D′

3 9, 7, 8, 2, {1, 6}, 4, 5, 10, 3
Q1+(1, 7)+(2, 6) C3 1, 2, 4, 8, 10, 7, 5, 3, {6, 9}

Q1∗7(2, 10) F ′

1 {1, 6}, 5, 4, 9, 10, 3, 7, 11, 8, 2
3

Q1∗8(3, 10) F ′

1 2, 7, 11, {1, 6}, 9, 8, 4, 5, 10, 3

Q1∗7(2, 9)+(1, 11) F ′

1 2, 7, 11, {1, 6}, 9, 8, 4, 5, 10, 3
Q1∗7(2, 9)+(6, 11) F ′

1 3, 4, 5, {8, 10}, 9, 1, 7, 11, 6, 2
Q1∗7(2, 8)+(3, 11) F ′

1 8, 7, 2, 3, 11, 1, 9, 4, {5, 10}, 6
Q1∗8(3, 7)+(2, 11) F ′

1 {5, 10}, 1, 6, 11, 2, 9, 3, 8, 7, 4
4

Q1∗8(3, 7)+(1, 8) F ′

1 {5, 10}, 11, 6, 1, 8, 9, 3, 2, 7, 4
Q1∗8(3, 7)+(5, 8) F ′

1 {1, 2}, 3, 4, 5, 8, 9, 11, 10, 7, 6
Q1∗8(3, 6)+(4, 11) F ′

1 8, 3, {2, 7}, 11, 4, 1, 9, 10, 5, 6
Q1∗8(3, 6)+(9, 11) E20 7, 10, 9, 11, 2, {1, 5, 6}, 4, 8, 3

Q1∗7(8, 10)∗8(3, 7)+(11, 12) F ′

1 {1, 2}, 6, 9, 11, 12, {3, 4}, 10, 7, 8, 5
Q1∗7(2, 8)∗8(7, 10)+(11, 12) F ′

1 {3, 4}, 9, 6, 12, 11, {1, 2}, 10, 8, 7, 5
Q1∗7(2, 9)∗9(4, 6)+(9, 11) F ′

1 {3, 4}, 8, 6, 9, 11, {1, 2}, 10, 12, 7, 5
5

Q1∗7(2, 8)∗9(4, 10)+(7, 9) F ′

1 8, {3, 4}, 5, 10, 9, {1, 2}, 12, 11, 7, 6
Q1∗7(2, 9)∗10(9, 11)+(7, 12) F ′

1 {1, 6}, 2, 3, {8, 11}, 7, 4, 12, 10, 9, 5
Q1∗7(2, 8)∗10(5, 9)+(7, 10) F ′

1 3, {1, 2}, 6, 8, 7, 9, 10, 12, 11, {4, 5}

Q1∗7(2, 8)+(1, 11)+(6, 7) F ′

1 2, 7, 6, 1, 11, 8, {4, 9}, 5, 10, 3
6 Q1∗8(3, 7)+(4, 11)+(8, 9) F ′

1 {1, 6}, 5, 10, 11, 4, 7, 3, 8, 9, 2
Q1∗8(3, 6)+(1, 11)+(8, 10) F ′

1 2, 7, 11, {1, 6}, 9, 8, 4, 5, 10, 3

7 Q1∗8(3, 7)∗9(4, 10)+(8, 12)+(9, 11) F ′

1 {2, 7}, 10, 5, {1, 6}, 11, 4, 8, 12, 9, 3

9 Q1+(1, 7−8) F ′

1 2, 7, 11, {1, 6}, 9, 8, 4, 5, 10, 3
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Table 2: Applying Theorem 2.1 to Q3

Type Enlargement Minor Branch sets of the minor

Q3+(2, 4) F ′

1 1, 11, 3, 2, {4, 5}, 8, 9, 7, 10, 6
1

Q3+(2, 5) F ′

1 1, 11, 4, 5, {2, 3}, 9, 8, 10, 7, 6

Q3+(1, 7)+(2, 6) D′

3 {3, 8, 11}, 2, 7, 6, 1, 4, 5, 10, 9
Q3+(1, 9)+(2, 6) F ′

1 9, 4, 5, 1, {3, 11}, 10, 2, 6, 8, 7
Q3+(1, 9)+(6, 7) F4 5, 11, 9, 1, 10, {3, 8}, 6, 2, 7, 4
Q3+(2, 9)+(6, 7) E18 1, {3, 8}, {4, 9}, 2, {5, 10}, 6, 11, 7
Q3+(1, 7)+(2, 9) D′

3 1, 2, {3, 8}, 7, {6, 9}, 5, 4, 11, 10
Q3+(2, 8)+(3, 7) F4 11, 9, 5, {1, 6}, 3, 7, 10, 2, 8, 4
Q3+(2, 10)+(3, 7) E22 1, 2, 3, 11, 5, 10, 7, {4, 9}, {6, 8}
Q3+(2, 10)+(7, 8) F4 3, 7, 10, 8, 11, {4, 9}, 5, 6, 1, 2
Q3+(3, 10)+(7, 8) F4 5, 11, 6, 1, 10, 3, 8, 2, 7, {4, 9}
Q3+(2, 8)+(3, 10) F ′

1 2, 8, 6, 1, {3, 11}, 9, 10, 5, 4, 7
2

Q3+(3, 9)+(4, 8) E22 {1, 6}, 2, 3, 11, 5, {7, 10}, 8, 4, 9
Q3+(3, 9)+(8, 11) F ′

1 11, 4, 5, {1, 6}, 9, 10, 3, 2, 7, 8
Q3+(3, 4)+(8, 11) D′

3 {4, 5}, 11, 8, 1, {2, 3}, 9, 7, 10, 6
Q3+(6, 11)+(8, 9) F ′

1 10, 7, 2, {3, 8}, 9, 1, 4, 11, 6, 5
Q3+(3, 9)+(6, 11) F ′

1 10, 7, 2, {3, 8}, 9, 1, 4, 11, 6, 5
Q3+(3, 4)+(6, 11) D′

3 {1, 2}, 11, 4, 6, {3, 8}, 7, 10, 5, 9
Q3+(4, 6)+(8, 9) F4 5, 11, 6, 1, 10, {3, 8}, 9, 2, 7, 4
Q3+(3, 9)+(4, 6) F4 5, 11, 6, 1, 10, {3, 8}, 9, 2, 7, 4
Q3+(3, 6)+(8, 11) E20 2, 1, 3, 11, 7, {6, 9}, 8, {4, 5}, 10
Q3+(1, 3)+(2, 11) F ′

1 2, 3, 6, 1, 11, 9, {8, 10}, 5, 4, 7

3 Q3∗1(2, 5) F ′

1 7, 10, 5, {1, 2}, {3, 8}, 4, 6, 12, 11, 9

Q3∗1(5, 6)+(10, 12) F ′

1 12, 1, 5, 10, {6, 8}, 4, {2, 3}, 7, 9, 11
4 Q3∗1(5, 6)+(8, 12) F ′

1 9, {1, 6}, 5, {4, 11}, 12, 10, 2, 3, 8, 7
Q3∗1(5, 6)+(1, 3) F ′

1 10, 8, 6, {1, 5}, 3, {4, 9}, 2, 12, 11, 7

6 Q3∗1(5, 6)+(1, 7)+(9, 12) F ′

1 8, 10, 5, {1, 6}, 7, 4, 2, 12, 9, {3, 11}

8 Q3 + (2, 9, 11) F4 1, 12, 3, 2, {4, 5}, 9, {6, 8}, 7, 10, 11

Q3+(8, 1−11) F ′

1 1, 12, 11, {2, 3}, {6, 8}, 4, 10, 7, 9, 5
Q3+(8, 1−2) F ′

1 9, 4, 5, {1, 6}, {3, 11}, 10, 2, 12, 8, 7
Q3+(10, 1−2) F4 11, 5, 9, {1, 6}, {3, 8}, 10, 7, 12, 2, 4
Q3+(6, 2−3) F ′

1 2, 12, 6, 1, {3, 8, 11}, 9, 10, 5, 4, 7
Q3+(9, 2−3) F ′

1 5, 4, 11, {1, 6}, 9, {3, 8}, 7, 2, 12, 10
Q3+(3, 1−6) F4 2, 11, 12, 1, 7, {4, 9}, {6, 8}, 5, 10, 3

9 Q3+(1, 3−8) F4 2, 11, 12, 1, 7, {4, 6, 9}, 8, 5, 10, 3
Q3+(2, 6−8) F4 3, 7, 12, {8, 10}, 11, {4, 9}, 6, 5, 1, 2
Q3+(7, 6−8) F4 11, 9, 5, {1, 6}, {2, 3}, 7, 10, 12, 8, 4
Q3+(3, 7−9) F4 5, 11, 9, {1, 6}, 10, {3, 8}, 12, 2, 7, 4
Q3+(8, 7−9) F4 5, 11, 9, {1, 6}, 10, {3, 8}, 12, 2, 7, 4
Q3+(1, 7−10) E2 2, 9, 12, 11, 5, 8, {1, 6}, 3, 7, 4, 10
Q3+(6, 7−10) E2 2, 9, 12, 11, 5, 8, {1, 6}, 3, 7, 4, 10
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