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Abstract

A graph G is weakly 4-connected if it is 3-connected, has at least five vertices, and for every
pair (A, B) such that AU B = V(G), |AN B| = 3 and no edge has one end in A — B and the
other in B — A, one of the induced subgraphs G[A], G[B] has at most four edges. We describe
a set of constructions that starting from a weakly 4-connected planar graph G produce a finite
list of non-planar weakly 4-connected graphs, each having a minor isomorphic to G, such that
every non-planar weakly 4-connected graph H that has a minor isomorphic to G has a minor
isomorphic to one of the graphs in the list. Our main result is more general and applies in
particular to polyhedral embeddings in any surface.

1 Introduction

We begin with some basic notation and ingredients needed to state the main result of this paper.
Graphs are finite and simple (i.e., they have no loops or multiple edges). Paths and cycles have no
“repeated” vertices. A graph is a minor of another if the first can be obtained from a subgraph of
the second by contracting edges. For a graph G and an edge e in G, G\e an G/e are the graphs
obtained from G by respectively deleting and contracting the edge e. A graph is a subdivision of
another if the first can be obtained from the second by replacing each edge by a non-zero length path
with the same ends, where the paths are disjoint, except possibly for shared ends. The replacement
paths are called segments, and their ends are called branch-vertices. A graph is a topological minor
of another if a subdivision of the first is a subgraph of the second.

Let a non-planar graph H have a subgraph isomorphic to a subdivision of a planar graph G.
For various problems in Graph Structure Theory it is useful to know the minimal subgraphs of H
that have a subgraph isomorphic to a subdivision of G and are non-planar. In other words, one
wants to know what more does H contain on account of its non-planarity. In [7] it is shown that
under some mild connectivity assumptions these “minimal non-planar enlargements” of G are quite
nice. In the applications of the result, G is explicitly known, whereas H is not, and the enlargement
operations would furnish an explicit list of graphs such that (i) H has a subgraph isomorphic to a

subdivision of one of the graphs on the list, and (ii) each graph on the list is a witness both to the
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fact that G is a topological minor of H, and that H is, in addition, non-planar. (The minimality
of the graphs in the list is required to avoid redundancy.) Before we state that result, we need a
few definitions.

For Z C V(G), G[Z] denotes the subgraph induced by Z, that is, the subgraph consisting of Z
and all edges with both ends in Z. A subgraph of G is said to be induced if it is induced by its
vertex set.

A separation of a graph G is a pair (A, B) of subsets of V(G) such that AU B = V(G), and
there is no edge between A — B and B — A. The order of (A, B) is |AN B|. The separation is called
non-trivial if both A and B are proper subsets of V(G). A graph G is weakly 4-connected if G is
3-connected, has at least five vertices, and for every separation (A, B) of G of order at most three,
one of the graphs G[A], G[B] has at most four edges.

A cycle C in a graph G is called peripheral if it is induced and G\V(C) is connected. It is
well-known [9, 10] that the peripheral cycles in a 3-connected planar graph are precisely the cycles
that bound faces in some (or, equivalently, every) planar embedding of G.

Let S be a subgraph of a graph H, and let S be a subdivision of a graph with no vertex of
degree two. Thus we may speak of segments of S without any ambiguity. An S-path in H is a path
with both ends in S, and otherwise disjoint from S. Let C' be a cycle in S, and let P, and P> be
two disjoint S-paths in H with ends wy,v; and us, ve, respectively, such that uq,ue,v1,v9 belong
to V(C) and occur on C in the order listed. In those circumstances we say that the pair P;, P» is
an S-cross in H. We also say that it is an S-cross on C'. We say that uq, vy, uo, vo are the feet of

the cross. We say that the cross Pj, P» is free if

(F1) for ¢ = 1,2 no segment of S includes both ends of P;, and

(F2) no two segments of S that share a vertex include all the feet of the cross.
The following was proved in [7, Theorem (1.1)].

Theorem 1.1. Let G be a weakly 4-connected planar graph on at least seven vertices, and let H
be a weakly 4-connected non-planar graph such that a subdivision of G is isomorphic to a subgraph
of H. Then there exists a subgraph S of H isomorphic to a subdivision of G such that one of the

following conditions holds:
1. there exists an S-path in H such that its ends belong to no common peripheral cycle in S, or

2. there exists a free S-cross in H on some peripheral cycle of S.



This theorem has been used in [3, 8], and its extension has been used in [6]. However, in more
complicated applications it is more efficient to work with minors, rather than topological minors.
We sketch one such application in Section 8. For any fixed graph G, there exists a finite and
explicitly constructible set {G1,Ga,..., G} of graphs such that a graph H has a minor isomorphic
to G if and only if it has a topological minor isomorphic to one of the graphs ;. Thus one can
apply Theorem 1.1 ¢ times to deduce the desired conclusion about G, but it would be nicer to
have a more direct route to the result that involves less potential duplication. Furthermore, if the
outcome is allowed to be a minor of H rather than a topological minor, then the outcomes (i) and
(ii) above can be strengthened to require that the ends of the paths involved are branch-vertices of
S, as we shall see.

It turns out that Theorem 1.1 is not exclusively about face boundaries of planar graphs, but that
an appropriate generalization holds under more general circumstances. Thus rather than working
with peripheral cycles in planar graphs we will introduce an appropriate set of axioms for a set of
cycles of a general graph. We do so now in order to avoid having to restate our definitions later
when we present the more general form of our results.

A segment in a graph G is a maximal path such that its internal vertices all have degree in
G exactly two. If a graph G has no vertices of degree two, then the segments of a subdivision of
G defined earlier coincide with the notion just defined. Since we will not consider subdivisions of
graphs with vertices of degree two there is no danger of confusion. A cycle double cover in a graph

G is a set D of distinct cycles of GG, called disks, such that
(D1) each edge of G belongs to precisely two members of D.
A cycle double cover D is called a disk system in G if

(D2) for every vertex v of G, the edges incident with v can be arranged in a cyclic order such that
for every pair of consecutive edges in this order, there is precisely one disk in D containing

that pair of edges, and
(D3) the intersection of any two distinct disks in D either has at most one vertex or is a segment.

A cycle double cover satisfying (D3) is called a weak disk system. It is easy to see that if a
connected graph has a disk system, then it is a subdivision of a 3-connected graph. Also, note
that in a 3-connected graph, Axiom (D3) is equivalent to the requirement that every two distinct
disks intersect in a complete subgraph on at most two vertices. The peripheral cycles of a 3-
connected planar graph form a disk system. More generally, if G is a subdivision of a 3-connected

graph embedded in a surface ¥ in such a way that every homotopically nontrivial closed curve



intersects the graph at least three times (a “polyhedral embedding”), then the face boundaries of
this embedding form a disk system in G. Conversely, it can be shown that a disk system in a graph
is the set of face boundaries of a polyhedral embedding of the graph in some surface. Weak disk
systems correspond to face boundaries of embeddings into pseudosurfaces (surfaces with “pinched”
points).

Let G be a graph with a cycle double cover D. Two vertices or edges of G are said to be
confluent if there is a disk containing both of them. If D is a cycle double cover in a graph G and
S is a subdivision of G, then D induces a cycle double cover D’ in S in the obvious way, and vice
versa. We say that D’ is the cycle double cover induced in S by D.

Let v be a vertex of a graph G with degree at least 4. Partition the set of its neighbors into
two disjoint sets N1 and N, with at least two vertices in each set. Let G’ be obtained from G by
replacing the vertex v with two adjacent vertices vi,ve, with v; adjacent to the vertices in V; for
i = 1,2. The graph G’ is said to be obtained from G by splitting the vertex v. It is easy to see that
if G is 3-connected, then so is G’. The vertices v; and vy are called the new vertices of G’ and the
edge vivy of G’ is called the new edge of G'.

Suppose a graph G has a cycle double cover D. The above splitting operation on a vertex v of

G is said to be a conforming split (with respect to D) if

(S1) among the disks that use the vertex v, there are exactly two, say D; and Do, that use one

vertex each from N7 and Vo, and
(S2) D; and Dy intersect precisely in the vertex v.

The split is then said to be along Dy (and along Ds). A split that is not conforming as above is
said to be a non-conforming split.

Let G, G’ be as in the above paragraph. If G is a 3-connected planar graph, then G’ is planar
if and only if the split is conforming with respect to the disk system of peripheral cycles of G.
More generally, to each cycle C of G there corresponds a unique cycle C’ of G, and so to D there
corresponds a uniquely defined set of cycles D’ of G'. If D is a weak disk system, then so is D/,
and if D is a disk system, then so is D'. We call D’ the (weak) disk system induced in G’ by D.
This is the purpose of conditions (S1) and (S2). If D is a disk system, then an equivalent way to
define a conforming split of a vertex v is to say that both N; and Ny form contiguous intervals in
the cyclic order induced on the neighborhood of v by D. Similarly, an equivalent condition for a
split to be non-conforming with respect to a disk system is the existence of vertices a,c € N; and
b,d € Ny such that a,b,c and d appear in the cyclic order listed around v (as given by D in (D2)).

The reason we use the definition above is that it applies more generally to weak disk systems.



A graph G’ obtained from a graph G by repeatedly splitting vertices of degree at least four is
said to be an expansion of G. In particular, each graph is an expansion of itself. Each split leading
to an expansion of G has exactly one new edge; the set of these edges are the new edges of the
expansion of G. The new edges form a forest in G’. If G has a cycle double cover D, the expansion
is called a conforming expansion if each of the splits involved in it is conforming (with respect to
the cycle double cover induced by D in the graph obtained by performing the previous splits). If
at least one of the splits involved is not conforming, then the expansion is called non-conforming.
From the above discussion, it is clear that a disk system in G induces a unique disk system in a
conforming expansion. In Lemma 4.9 we show that if D is a disk system, and one of the splits
in the expansion sequence is non-conforming, then we can make the first split in the sequence be
non-conforming.

We now describe seven enlargement operations. Let G be a graph with a cycle double cover D,

and let GT be the graph obtained from G by applying one of the operations described below.

1. (non-conforming jump) G is obtained from G by adding an edge uv where u and v are

non-confluent vertices of G.

2. (cross) Let a, b, ¢, d be vertices appearing on a disk of G in that cyclic order. Add the edges
ac and bd to obtain G™T.

3. (non-conforming split) G* is obtained from G by performing a non-conforming split of a

vertex of G.

4. (split + non-conforming jump) Let u, v be non-adjacent vertices on some disk C' € D. Perform
a conforming split of v into v1, v9 such that u and v are non-confluent vertices. (In particular,

the split is not along C.) Now add the edge uvy to obtain G*.

5. (double split 4+ non-conforming jump) Let u, v be adjacent vertices and Cy, Co be the two disks
containing the edge uv. Make a conforming split of u into u,us along C; and a conforming
split of v into vy, v9 along Cy such that both splits are conforming and u; and vy are adjacent

in the resulting graph. Now add the edge usvs to obtain G™T.

6. (split 4+ cross) Let u,v,w be vertices on a disk C' such that u is not adjacent to v or w.
Perform a conforming split of u into uq, ug, along C, with w1, uo, v, w in that cyclic order on

the new disk corresponding to C'. Now add the edges ujv and usw to obtain G.

7. (double split + cross) Let u,v be non-adjacent vertices on a disk C'. Perform conforming

splits of u and v, into uy,us and vy, ve, respectively such that both splits are along C. Let



u1, U2, V1, vy appear in that cyclic order on the new disk corresponding to C'. Now add the

edges uivy and ugve to obtain G™T.

If G is obtained as in paragraph i above, then we say that G is an i-enlargement of G with respect
to D. When the disk system D is implied by context, we may simply refer to an i-enlargement of
G. We are now ready to state a preliminary form of our main result, a counterpart of Theorem 1.1,
with minors instead of topological minors. A graph is a prism if it has exactly six vertices and its

complement is a cycle on six vertices.

Theorem 1.2. Let G be a weakly 4-connected planar graph that is not a prism, let H be a weakly
4-connected non-planar graph such that G is isomorphic to a minor of H, and let D be the disk
system in G consisting of all peripheral cycles. Then there exists an integer i € {1,2,...,7} such

that H has a minor isomorphic to an i-enlargement of G with respect to D.

Theorem 1.1 is definitely easier to state than Theorem 1.2. So what are the advantages of the
latter result? First, in the applications one is usually concerned with minors rather than topological
minors, and so Theorem 1.2 gives a more direct route to the desired results. Second, while the
number of types of outcome is larger in Theorem 1.2, in most cases the actual number of cases
needed to examine will be smaller. (Notice that, for instance, in Theorem 1.1 one must examine
all S-paths between non-confluent ends, whereas in Theorem 1.2 one is only concerned with those
between non-confluent branch-vertices.)

Third, Theorem 1.1 allows as an outcome an S-cross on a cycle consisting of three segments.
That is a drawback, which essentially means that in order for the theorem to be useful the graph
G should have no triangles. On the other hand, Theorem 1.2 does not suffer from this shortcoming
and gives useful information even when G has triangles.

Fourth, while a graph listed as an outcome of Theorem 1.1 may fail to be weakly 4-connected
(and may do so in a substantial way), as we show in Theorem 4.8, an i-enlargement of a weakly
4-connected graph is again weakly 4-connected. This has two advantages. In the applications we
are often seeking to prove that weakly 4-connected graphs, with a minor isomorphic to some weakly
4-connected graph embeddable in a surface ¥, that themselves do not embed into ¥ have a minor
isomorphic to a member of a specified list £ of graphs. In order to get a meaningful result we would
like each member of £ to satisfy the same connectivity requirement imposed on the input graphs.

From a more practical viewpoint, the advantage of maintaining the same connectivity in the
outcome graph is that the theorem can then be applied repeatedly. That will become important
when we consider a generalization to arbitrary surfaces (that is, in the context of theorems 2.1 and

7.5). While a weakly 4-connected graph G has at most one planar embedding, it may have several



embeddings in a non-planar surface . Now one application of the generalization of Theorem 1.2
will dispose of one embedding into ¥, but some other embedding might extend naturally to those
outcome graphs. So it may be necessary to apply the theorem in turn to those outcome graphs in
place of G. It will be important that the outcomes of (the generalization of) Theorem 1.2 satisfy
the same requirement as the input graph. We can then apply such a theorem repeatedly till we
get a list of graphs that no longer embed in ¥ — in other words, we would have obtained the

non-embeddable extensions of GG. This will be illustrated in Section 8.

2 Main Theorem

Our main theorem applies to arbitrary disks systems, at the expense of having to add two outcomes.
We also add a third additional outcome in order to allow G to be a prism. The extra outcomes are
the following. As before, let G be a graph with a cycle double cover D, and let G be obtained by

one of the operations below.

8. (non-separating triad) Let x1,x2,x3 be three vertices of G such that (i) they are pairwise
confluent, but not all contained in any single disk, and (ii) {x1,x2, 23} is independent, and

does not separate G. To obtain G, add a new vertex to G adjacent to x1,z2 and x3.

9. (non-conforming T-edge) Let a vertex u and an edge zy be such that (i) u is not confluent
with the edge xy, but is confluent with both x and y, (ii) u is not adjacent to either z or y,
and (iii) {u,z,y} does not separate G. Subdivide the edge xy and join u to the new vertex,

to obtain GT.

10. (enlargement of a prism) Let G be a prism, and let G be obtained from G by selecting two
edges of G that do not belong to a common peripheral cycle but both belong to a triangle,

subdividing them, and joining the two new vertices by an edge.

As before, if GT is obtained as in paragraph i above, then we say that G is an i-enlargement of
G with respect to D. Thus if G is not a prism, then it has no 10-enlargement, and if G is a prism,
then its 10-enlargement is unique, up to isomorphism. The unique 10-enlargement of the prism is
known as V3.

We also need to define an appropriate analogue of being non-planar in the context of cycle
double covers. That is the objective of this paragraph and the next. Let S be a subgraph of a
graph H. An S-bridge of H is a subgraph B of H such that either B consists of a unique edge of
E(H)— E(S) and its ends, where the ends belong to S, or B consists of a component J of H\V(S)
together with all edges from V(J) to V(S) and all their ends. For an S-bridge B, the vertices of



BN S are called the attachments of B. Let D be a cycle double cover in S. We say that D is locally

planar in H if the following conditions are satisfied:

(i) for every S-bridge B of H there exists a disk Cp € D such that all the attachments of B lie

on Cpg, and

(ii) for every disk C € D the subgraph |J B U C of H has a planar drawing with C' bounding the
unbounded face, where the big union is taken over all S-bridges B of H with Cp = C.

Let G have a weak disk system D and H have a minor isomorphic to G. It is easy to see that
there is an expansion G’ of G, such that G’ is a topological minor of H. We say that D has a locally

planar extension into H if:

(i) there exists a conforming expansion G’ of G such that a subdivision of G’ is a isomorphic to
a subgraph S of H, and

(ii) the weak disk system D’ induced in S by D is locally planar in H.
We are now ready to state the main result.

Theorem 2.1. Let G and H be weakly 4-connected graphs such that H has a minor isomorphic to
G. Let G have a disk system D that has no locally planar extension into H. Then H has a minor

isomorphic to an i-enlargement of G, for some i € {1,...,10}.

Let us deduce Theorem 1.2 from Theorem 2.1.

Proof of Theorem 1.2, assuming Theorem 2.1. Let G be as in Theorem 1.2, and let 7 €
{8,9,10}. By Theorem 2.1 it suffices to show that G has no i-enlargement with respect to the disk
system consisting of all peripheral cycles of G. This is clear when ¢ = 10, because G is not a prism.
Thus we may assume for a contradiction that ¢ € {8,9} and that such an i-enlargement exists. Let
u,x,y be the three vertices of G as in the definition of i-enlargement. Since every pair of vertices

among u, z,y are confluent, it follows that G\{u,z,y} is disconnected, a contradiction. O

3 Outline of Proof

The purpose of this section is to outline the proof of the main theorem. Our main tool for the
proof of Theorem 2.1 will be its counterpart for subdivisions, proved in [7]. Before we can state
it we need one more definition. Let S be a subgraph of a graph H, and let D be a cycle double
cover in S. Let x € V(H) — V(S) and let x1,x2, z3 be distinct vertices of S such that every two



of them are confluent, but no disk of S contains all three. Let L1, Lo, L3 be three paths such that
(i) they share a common end =z, (ii) they share no internal vertex among themselves or with S, and
(iii) the other end of L; is x;, for i = 1,2,3. The paths Ly, Lo, L3 are then said to form an S-triad.
The vertices x1, x2, 3 are called the feet of the triad. We are now ready to state our tool. It is an

immediate corollary of [7, Theorem (4.6)].

Theorem 3.1 ([7]). Let G be a graph with no vertices of degree two that is not the complete graph
on four vertices, let H be a weakly 4-connected graph, let D be a disk system in G, and let a
subdivision of G be isomorphic to a subgraph of H. Then there exists a subgraph S of H isomorphic
to a subdivision of G such that, letting D' denote the disk system induced in S by D, one of the

following conditions holds:

1. there exists an S-path in H such that its ends are not confluent in S, or
2. there exists a free S-cross in H on some disk of S, or
3. the graph H has an S-triad, or

4. the disk system D' is locally planar in H.

Now let G, D and H be as in Theorem 2.1. It is easy to see that there exists an expansion G’
of G such that a subdivision of G’ is isomorphic to a subgraph S of H. (If G itself is a topological
minor of H, then G’ = G.) In Lemma 4.9 we prove that if G’ is a nonconforming expansion,
then there exists a 3-enlargement of G that is isomorphic to a minor of H. Thus from now on
we may assume that G’ is a conforming expansion of G. By Theorem 3.1 applied to S and H
we deduce that one of the outcomes of that lemma holds. Notice that those outcomes correspond
to l-enlargement, 2-enlargement and 8-enlargement, respectively, except that in the enlargements
the vertices in question are required to be branch-vertices of S, whereas in Theorem 3.1 they are
allowed to be interior vertices of segments. We deal with this in Section 5 by showing that each
of the outcomes mentioned leads to a suitable enlargement of G’. To be precise, at this point we
settle for what we call weak 8- and weak 9-enlargements, and in Section 6 show that these weak
enlargements can be replaced by ordinary enlargements, possibly of a different expansion of G and
of a different kind. Finally, in Section 7 we complete the proof of Theorem 2.1 by showing that the

expansion G’ can be chosen to be equal to G.

4 Preliminaries

Let G’ be an expansion of a graph G. Then every vertex v of G corresponds to a connected subgraph

T, of G'. We call V(T,) the branch-set corresponding to v.



Lemma 4.1. Let G’ be an expansion of a graph G, let u,v € V(G) be distinct, and let T, T, be
the corresponding subgraphs of G'. Then T, and T, are induced subtrees of G'. If u is adjacent to v
then ezactly one edge of G' has one end in V(T,) and the other in V(T,), and if u is not adjacent

to v, then no such edge exists.

An expansion of a weakly 4-connected graph may fail to be weakly 4-connected, but only in
a limited way. The next definition and lemma make that precise. Let (A, B) be a nontrivial
separation of order three in a graph G. We say that (A, B) is degenerate if the vertices in AN B

can be numbered vy, vo, v3 such that either
(1) |JA—B|=1and AN B is an independent set, or

(2) there exists a triangle ujugus in G[A] such that for i = 1,2, 3 the vertices u; and v; are either
adjacent or equal, A C {u,u9,us,vi,ve,vs}, and each edge of G[A] is of the form w;v; for

1 <i<3oruu;forl <i<j<3.
The following two lemmas are routine, and we omit the straightforward proofs.

Lemma 4.2. Let G be an expansion of a weakly 4-connected graph. Then G is 3-connected, and
if it is not a prism, then for every nontrivial separation (A, B) of G of order three, exactly one of
(A, B), (B, A) is degenerate.

Lemma 4.3. Let G' be expansion of a weakly 4-connected graph G, let (A, B) be a degenerate
separation of G of order three satisfying condition (2) of the definition of degenerate separation,
and let uy, ug, ug, v1,v2,v3 be as in that condition. Then for at least two integers i € {1,2,3} either

u; = v; or ww; 18 a new edge of G'.

We now show that an i-enlargement of a weakly 4-connected graph is weakly 4-connected. We

begin with four lemmas.

Lemma 4.4. Let G’ be an 1-enlargement of a weakly 4-connected graph G with a disk system D.
Then G’ is weakly 4-connected.

Proof: Let G’ be obtained from G by adding an edge uv. The only way for G’ to fail to be
weakly 4-connected is for v and v to have a common neighbor of degree three, but in that case u

and v are confluent, a contradiction. O

Lemma 4.5. Let G be a graph with a disk system D, and let C' be a cycle in G such that at least
one vertex of C' has degree three in G. Then C € D.
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Proof: Let V(C) = {x,y, z}, where x has degree three. Since x has degree three, it follows from
(D1) that some disk D € D includes the edges xy and zz. Since y is adjacent to z in G, we deduce
from (D3) applied to D and a disk containing the edge yz that D = C, as desired. O

Lemma 4.6. Let G' be obtained from a weakly 4-connected graph G with a disk system D by
splitting a vertex v into vertices v1 and vy. If (A, B) is a separation of G’ violating the definition of
weak 4-connectivity, then there exists i € {1,2} such that v; has degree three, one of A— B, B— A

consists of v; and another vertex w of degree three such that v; and w have a common neighbor.
Proof: This follows from Lemma 4.3. O

Lemma 4.7. Let G’ be obtained from a weakly 4-connected graph G with a disk system D by

splitting a vertex. If G' is not weakly 4-connected, then the split is conforming.

Proof: Since G’ is not weakly 4-connected, by Lemmas 4.2 and 4.3 the graph G’ has a sepa-
ration (A, B) of order three satisfying (2) of the definition of degenerate separation, where letting
u1, U2, U3, V1, V2, v3 be as in that condition we have that uqvy is the new edge, us = vo and ug # vs.
Let w be the vertex of G' that was split into u; and vy to create G’. Since uz has degree three, it
follows from Lemma 4.5 that the cycle D with V(D) = {us,w,v2} is a disk. Let D; € D be the
other disk containing the edge wvs and let Dy € D be the other disk containing the edge wus. It
follows from (D3) that D; # Ds, and from (D2) and (D3) that D; and Dy intersect in w. Thus

the split of w is conforming. O

Theorem 4.8. Leti € {1,2,...,10}, and let G’ be an i-enlargement of a weakly 4-connected graph
G with a disk system D. Then G’ is weakly 4-connected.

Proof: If i = 1, then the theorem follows from Lemma 4.4. Let ¢ = 2, and let a, b, ¢, d be vertices
appearing on a disk of G in that cyclic order, and let G’ be obtained from G by adding the edges
ac and bd. If adding the edge ac alone stops the graph from being weakly 4-connected, then one
of b, d has degree three and is a common neighbor of a¢ and ¢, in which case adding the edge bd
restores weak 4-connectivity. If ¢ = 3, then the theorem follows from Lemma 4.7.

Let @ = 4, and let u,v,v1,v2,C be as in the definition of 4-enlargement. If the graph G”
obtained from G by performing the split of v is weakly 4-connected, then the theorem follows from
Lemma 4.4, and so we may assume not. It follows from Lemma 4.6 that v has a neighbor w of
degree three, v and w have a common neighbor z, and the split of v splits off 2 and w against the
other neighbors of v. Since the cycle D with vertex-set {v,w, z} is a disk by Lemma 4.5 and the
vertices u and v are non-adjacent, we deduce that C' # D. It follows that vo is adjacent to z and w

in G’, and hence adding the edge uvy “repairs” a separation that violates the weak 4-connectivity
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of G”. In principle there could be another separation violating the weak 4-connectivity of G” if vy
has degree three, is adjacent to a vertex w’ of degree three and v; and w’ have a common neighbor
2. But then the cycle with vertex-set {v,w’, 2’} is a disk by Lemma 4.5, and it contains u, because
it is the only disk in D containing v and not z or w, contrary to the fact that u and v are not
adjacent. This completes the case when i = 4.

Let ¢ = 5 and let u, v, Cq, Cy, uq,uo, v1,v2 be as in the definition of 5-enlargement. If the graph
G" obtained from G by performing the splits of v and v is weakly 4-connected, then the theorem
follows from Lemma 4.4, and so we may assume not. Thus from the symmetry between u and v
we may assume, by Lemma 4.6, that there exists j € {1,2} such that v; has degree three and there
exist adjacent neighbors w,z # v3_; of v; such that w has degree three, where these notions are
interpreted in the graph G obtained from G by performing the split of v into v; and ve. We may
assume that j = 1, for otherwise adding the edge usve “repairs” the resulting separation. Since u
has degree at least four (because it is capable of being split), we deduce that u = z. It follows from
Lemma 4.5 that V(C) = {v,w, 2}, and hence the split of u “repairs” the resulting separation. The
same argument applies with u and v interchanged. This completes the case when ¢ = 5.

When ¢ = 6 let u,v,w,C,,u;,us be as in the definition of 6-enlargement. If the graph G”
obtained from G by splitting w into u; and s is weakly 4-connected, then so is G/, as is easily seen.
So we may assume that G” is not weakly 4-connected. From the symmetry we may assume that
u1 has degree three and there exist adjacent neighbors w’, 2z # wus of u; such that w’ has degree
three, where these notions are interpreted in the graph G”. But now adding the edge ujv “repairs”
this separation, unless v is equal to the third neighbor of w’ other than w; and z, but in that case
w = w’, which means that w is adjacent to u in G, a contradiction. The same argument applies to
ug. This completes the case when i = 6.

The case i = 7 is analogous, and the cases 1 = 8, ¢ = 9 and 7 = 10 are straightforward. O

We now show that a non-conforming expansion of G must have a minor isomorphic to a 3-

enlargement of G.

Lemma 4.9. Let D be a disk system in a graph G, and let G’ be a non-conforming expansion of

G. Then G’ has a minor isomorphic to a 3-enlargement of G.

Proof: We may assume that the number of expansions used to create G’ is minimum. We shall
refer to this as the minimality of G'. We will prove that G’ is a 3-enlargement of G.

Let G be an expansion of G such that G’ is obtained from G by splitting a vertex v into v; and
v9. By the minimality of G’ this split is non-conforming, and Gisa conforming expansion of G. If

G= é, then G’ is a 3-enlargement of GG, and so we may assume that G # G. Let e be a new edge
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of G. If e is not incident with v, then G’ /e is a non-conforming expansion of G /e, contrary to the
minimality of G’. Now let us consider e as an edge of G’. From the symmetry between v; and vy
we may assume that e is incident with vo in G’; let vz be its other end. The split of the vertex v
of the graph G into v; and vy violates (S1) or (S2). But it does not violate (S1), for otherwise the
same violation occurs in the analogous split of G /e, contrary to the minimality of G’. Thus the
split of the vertex v of the graph G into vy and ve satisfies (S1); let Dy and D3 be the corresponding
disks. It follows that the disks violate (S2), but they do not do so for the corresponding split in
G/e. Tt follows that e € E(Dy) N E(Dy). Thus the split that creates G from G/e is also along D;
and Ds. Let f be an edge incident with v9 in G’ that is not e or the new edge vivo of G'. It follows
from (D2) by considering the edge f that either the split that creates G from G /e or the split that

creates G’ /e from G /e is non-conforming, contrary to the minimality of G'. O

The following lemma will be useful.

Lemma 4.10. Let G’ be a conforming expansion of a graph G with respect to a weak disk system
D, and let D' be the weak disk system induced in G' by D. Let qr be a new edge of G', and let the
vertex p € V(G') — {q,r} share distinct disks Dq, D, of G' with q and r, respectively, such that D,
does not contain q. Then p is adjacent to r and the disks Dy, D, both contain the edge pr.

Proof: The disks of G/qr that correspond to Dy and D, share p and the new vertex of G/qr,
say w. By (D3) p is adjacent to w in G/qr and the edge pw belongs to both those disks. By
Lemma 4.1 the vertex p is adjacent to exactly one of ¢,r. But ¢ ¢ V(D,), and hence p is adjacent
to r and Dy, D, both contain the edge pr, as desired. O

We end this section with a lemma about fixing separations in weakly 4-connected graphs, a
special case of a lemma from [5]. First some additional notation: when a graph G is a minor of
a graph H, we say that an embedding n of G into H is a mapping with domain V(G) U E(G) as
follows. 7 maps vertices v € G to connected subgraphs n(v) of H, with distinct vertices being
mapped to disjoint vertex-disjoint subgraphs. Further, n maps edges uv of G to paths n(uv) in H
with one end in 7(u) and the other in 7(v), and otherwise disjoint from n(w) for any vertex w of
G. Also, for edges e # €’ of G, if n(e) and n(e’) share a vertex, then it must be an end of both the
paths.

Lemma 4.11. Let Gy be a graph isomorphic to a minor of a weakly 4-connected graph H. Let
P ={p1,p2}, Q@ ={q1,q2,q93} and R be such that (P,Q, R) is a partition of V(G1), and Gy has all
possible edges between P and @), and no edge with both ends in Q). Further, suppose R has at least
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two vertices, and that (P UQ,Q U R) is a (non-trivial) 3-separation of G1. Then H has a minor
isomorphic to a graph Gf that is obtained from G1 by

1. adding an edge between p; and r for some i € {1,2} and r € R, or

2. splitting q; for some j € {1,2,3} into vertices qjl- and qJZ such that qjl- s adjacent to p1 and qu

s adjacent to po

Proof: Call an embedding 7 of G into H minimal if for every embedding i’ of G into H,
3 3
D IEM@)] <Y 1B (g9)]
j=1 j=1

In particular, if 7 is minimal, 7(g;) is a tree for every j. Further, we say that a vertex g; is good
for n if the paths n(p1¢;) and 7(p2g;) are vertex-disjoint (in other words, their ends in 7(g;) are
distinct).

Consider a minimal embedding 7 of G into H. Suppose there exists a ¢; that is good for 7.
For i = 1,2, let p} be the endpoint of n(p;q;) in n(g;). Let e be an edge in the unique path between
py and pf in n(g;), and let 11,15 be the two subtrees obtained by deleting e from 7(g;), such that
p; € T; for i = 1,2. For i = 1,2, define N; to be the set of neighbors r € R of ¢; in G that 7(rg;)
has an endpoint in 7;. Now N7, Ny are non-empty by the minimality of n. (If, say, N1 were empty,
then we could replace 7(g;) by T> and modify 7(p1g;) accordingly to get a better embedding 7', a
contradiction.) It is easy to see that conclusion 2 of the lemma is satisfied, with the neighborhoods
of qjl- and qu being N1 U {p1} and No U {pa}, respectively.

Hence we may assume that there is no minimal embedding of G into H with a vertex in @
being good for it. Let n be an embedding of G into H. For j = 1,2, 3, there exist vertices t; such
that both 7(p1g;) and n(p2g;) have t; as an end. Define J; as the union of n(p;), ¢ = 1,2 and of
n(e) for all edges e with at least one end in P. Define J as the union of n(v) for v € QU R and of
n(e) for every edge e of G with both ends in Q U R. Now V' (J1) NV (J2) = {t1,t2,t3}. Since H is
weakly 4-connected, there is a path in H with ends a € V/(J1) \ V(J2) and b € V(J2) \ V(J1), and
otherwise disjoint from J; U Jy. If b belongs to 1(g;) \ t; for some j, then we can modify 7 to get a
minimal embedding where ¢; is a good vertex, which is a contradiction. Thus b belongs to 7(r) for
some r € R or b is an internal vertex of n(e) for an edge e of G that has an end in R (recall that

@ is an independent set). In either case, it is easy to see that conclusion 1 holds. O
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5 The Enlargements of an Expansion of G

Let G and H be as in Theorem 2.1. In order to apply Theorem 3.1 we select an expansion G’ of G
such that a subdivision of G’ is isomorphic to a subgraph of H. By Lemma 4.9 we may assume that
G’ is a conforming expansion. In this section we prove three lemmas, one corresponding to each of
the first three outcomes of Theorem 3.1. The lemmas together almost imply that the conclusion
of Theorem 2.1 holds for G’. The reason for the word almost is that for convenience we allow a
weaker form of 8-enlargements and 9-enlargements.

The weaker form of 9-enlargements is defined as follows. Let G be a graph with a cycle double
cover D, and let u,z,y € V(G), where x and y are adjacent and u is not confluent with the edge
xy. Let G be obtained from G by subdividing the edge zy and adding an edge joining the new
vertex to u. We say that G is a weak 9-enlargement of G. Later, in Lemma 6.3, we show how to
move from a weak 9-enlargement to a 9-enlargement or another useful outcome. Our first lemma

deals with the first outcome of Theorem 3.1.

Lemma 5.1. Let G, H be graphs such that G is connected, has at least five vertices and no vertices
of degree two. Let D be a weak disk system in G, let S be a subgraph of H isomorphic to a subdivision
of G, and let P be an S-path in H such that its ends are not confluent in the weak disk system D’
induced in S by D. Then H has a minor isomorphic to a 1-enlargement, 3-enlargement or a weak

9-enlargement of G.

Proof: Let s,t be the ends of P. If both s and ¢t are branch-vertices in S, then H has a
minor isomorphic to a l-enlargement of GG, and we are done. If one of s and t is a branch-vertex
and the other is an internal vertex of a segment of S, then H has a minor isomorphic to a weak
9-enlargement of GG, as desired.

Thus we may assume that s and ¢ are internal vertices of two different segments (1 and Q-
of S, respectively. Let @1 correspond to an edge uv € E(G), and let Q2 correspond to an edge
xy € E(G). Now, if u is not confluent with the edge xy, then H has a minor isomorphic to a weak
9-enlargement of GG, and the lemma holds. Thus, we may assume that u shares a disk D; with the
edge xy. By symmetry, we get a disk Dy shared by v and the edge zy, and disks D3, D4 that the
edge uv shares with vertices x and y respectively. (The disks D; may not be pairwise distinct.)

The disks Dy and D3, however, must be distinct, since the vertices s, t are not confluent. Notice,
however, that they share the vertices uw and x. It follows that u, v, x,y are pairwise distinct, for if
v =y, say, then u,v = y, z all belong to V(D1 N D3), and hence D; = D3 by (D3), a contradiction.
By (D3) this implies that u is adjacent to x in G and the intersection of Dy and Ds is precisely the

edge uz. In other words, the vertices u and = must be adjacent in G, and D1, D3 are precisely the
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two disks containing the edge uxz. By a similar argument, it follows that u and y are adjacent, and
Dy, Dy are precisely the two disks containing the edge uy. Thus u is adjacent to each of v, z,y in
G, and the edges uv, uz, uy are pairwise confluent.

By symmetry, we get similar conclusions about the vertices v, z,y. Thus Gu,v,x,y] is a de-
tached K, subgraph of G. Since G has at least five vertices and is connected, we may assume,
without loss of generality, that v has a neighbor in G outside of the set {v,z,y}. Let N be the
set of all such neighbors of u. But then delete the edges of the segment of S corresponding to the
edge ux and contract the edges of the subpath of ()2 between ¢ and the end corresponding to x. It
follows that H has a minor isomorphic to a graph obtained from G by splitting u« corresponding to
the partition {{v,z}, NU{y}} of its neighbors. This split is non-conforming since the disks D; and
D, violate condition (S2) in the definition of a conforming split. Hence H has a minor isomorphic

to a 3-enlargement of G. O

Lemma 5.2. Let G, H be graphs such that H is weakly 4-connected, and G is connected, has at
least & vertices and has no vertices of degree two. Let D be a weak disk system in G, let S be a
subgraph of H isomorphic to a subdivision of G, such that D induces the weak disk system D' in
S. Further, let there exist a free S-cross on some disk of S. Then H has a minor isomorphic to a

2-enlargement or a 3-enlargement or a weak 9-enlargement of G.

Proof: Let the free cross consist of paths Pp, P», in a disk C’ of S, that corresponds to a disk C
of G. We shall call the paths P, P» the legs of the cross. Recall that the ends of P;, P, are called
the feet of the cross.

If C has at least four vertices, then we claim that H has a minor isomorphic to a 2-enlargement
of G. We define an auxiliary bipartite graph B, with the vertex set being the set of feet of the cross
and the set of branch-vertices of S that belong to C’. A foot f and a branch-vertex b are adjacent
if one of the subpaths of C’ with ends f and b includes no feet or branch-vertices in its interior.
Since the cross is free, it follows from Hall’s bipartite matching theorem that B has a complete
matching from the set of feet to the set of branch vertices (in other words, one that matches each
of the feet). By contracting the edges of the paths that correspond to this matching, we deduce
that H has a minor isomorphic to a 2-enlargement of G, as desired.

Hence we may assume that C' is in fact a triangle on vertices w1, us and us, say. For ¢ =1,2,3,
if u; has degree 3 in G, then define v; to be its third neighbor (that is, the neighbor not in C).
Otherwise, define v; = w;. Let uf, u, uf, v}, vy, v4 be the corresponding vertices of S. Let @; denote
the segment of S corresponding to the edge u;v; if u; # v; and let @; be the null graph otherwise,
and let A=V (C'UP,UP,) and B = (V(S) - V(C'"UQ1UQR2UQ3)) U {v],vh vh}. There exist
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three vertex-disjoint paths in H linking {u}, uf, u5} to {v}, v}, v5}. Since H is weakly 4-connected, it
follows that there is no 3-cut in H separating A from B. Hence, by a variant of Menger’s theorem, H
contains four vertex-disjoint paths Ly, ... Ly linking {v], vh, v5, y} to {u], ub, us, x} (not necessarily
in that order), where z € A and y € B. We assume the numbering of the paths is such that for
i=1,2 and 3, L; has end v, € B. (The remaining path L, then has end y € B.) We wish to define
a suitable vertex w € V(G). If y is a branch-vertex, then let w be the corresponding vertex of G;
otherwise y is an internal vertex of a segment of H. By Lemmas 4.1 and 4.3 at least one end of that
segment, say w’, does not belong to {v1,v2,v3}, and we let w be the vertex of G that corresponds
to w'.

We may assume that z € V(C"). If not, then we may contract edges suitably in P; or P, such
that the vertex corresponding to z, after the contraction, lies on C’. (Note that this contraction
does not affect the graph S, neither does it destroy the cross.)

Relabel the vertices u}, ub,us, z as a,b, ¢, d, in the order in which they appear on C’ (in some
orientation), such that L4 joins d to y. (Note that d need not be the same as x.) Let (d, a,b) denote
the interior vertices of the subpath of C’ with ends d and b that includes a in its interior, and let
(d,c,b) be defined analogously.

We claim that there is a leg of the cross with feet f, g such that f € (d,a,b) and g € (d, ¢, b).
Since the cross is free, there exists a leg with foot in (d, a,b). We may assume the other foot of this
leg does not belong to (d, ¢, b), but then the other leg of the cross satisfies the claim.

Choose a leg as above such that there is no foot between f and a, and no foot between g and
c¢. (Such a choice must be possible, due to the freeness of the cross.) Let the other leg of the cross
have feet h, i, such that b and h are joined by a subpath of the cycle C’ that is disjoint from {f, g}.
By contracting disjoint subpaths of C’ with ends (a, f), (¢, g), and (b, h) respectively, it follows that
H has a minor isomorphic to the graph G’ obtained from G by adding a new vertex z adjacent to
uy, U, uz and w.

If w is not confluent with the edge ujug then G'\ujus\ zus is isomorphic to a weak 9-enlargement
of G, and we are done. Thus we may assume that w is confluent with the edge ujuo, and by
symmetry, with the edges usus and ujus as well. It follows similarly as in the proof of Lemma 5.1
that Gluy,ug, us, w| is a detached Ky subgraph of G. Since G is connected, and |V (G)| > 5, we
may assume, without loss of generality, that u; has a neighbor in G outside that set. It follows

that a graph obtained from G by a non-conforming split of u; is isomorphic to a minor of H. [

We now define the weaker form of 8-enlargements. Let G be a graph with a cycle double cover
D, and let x1, w2, 23 be vertices of G such that no disks contains all three. Let G* be obtained from

G by adding a vertex with neighborhood {z1,x2,z3}. We say that G is a weak 8-enlargement of
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G. Our third lemma deals with the third outcome of Theorem 3.1.

Lemma 5.3. Let G, H be graphs such that G is connected, has at least five vertices and no vertices
of degree two. Let D be a weak disk system in G, let S be a subgraph of H isomorphic to a subdivision
of G, and let there exist an S-triad in H. Then H has a minor isomorphic to an i-enlargement of

G fori=1 or 3, or a weak i-enlargement of G for i =28 or 9.

Proof: We proceed by induction of |E(H)|. Let the S-triad be Li, Lo, L3, and let its feet be
1,22, x3. If each x; is a branch-vertex of S, then S U Ly U Ly U L3 gives rise to a minor of H
isomorphic to a weak 8-enlargement, as desired. We may therefore assume that zs is an internal
vertex of a segment Q3 of S with ends us and v3. Let f be an edge of (3. By induction applied to
G, H/f, and S/f, we may assume that f is incident with x3 and one end of Q3, say us, and that
there exists a disk Dy in G containing x1, 9, us. Similarly, we may assume that there exists a disk
Dy in G containing x1,x9,v3. Then Dy # Dy, because otherwise D1 = Dy includes the segment
Q@3 by (D3), and hence each of x1,x9, z3, a contradiction. Since x; and x5 belong to Dy N Dy, it
follows from (D3) that x; and z2 belong to a common segment @) of S.

Let S be obtained from S by replacing Q[x1, 23] by L1 U Ly. Applying Lemma 5.1 to G, H, S’
and the S’-path L3, the lemma now follows. O

Using Theorem 3.1 we can summarize Lemmas 5.1-5.3 as follows.

Lemma 5.4. Let G, H be weakly 4-connected graphs, let G have a disk system D with no locally
planar extension into H, and let a subdivision of G be isomorphic to a subgraph of H. Then H has

a minor isomorphic to
(i) an i-enlargement of G for some i € {1,2,3}, or
(ii) a weak i-enlargement of G for some i € {8,9}.

Proof: Let G, H and D be as stated. By Theorem 3.1 we deduce that there exists a subgraph
S of H isomorphic to a subdivision of G such that the induced disk system in S satisfies one of the

outcomes of Theorem 3.1. But then (i) or (ii) of this lemma holds by Lemmas 5.1-5.3. O

6 From Weak Enlargements to Enlargements

The purpose of this section is to replace weak enlargements by enlargements in Lemma 5.4(ii). We

start with a special case of weak 9-enlargements.
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Lemma 6.1. Let G be a graph with a cycle double cover D, let G be a weak 9-enlargement of G,
and let u,x,y be as in the definition of weak 9-enlargement. If G\{u,z,y} is connected, then G*

has a minor isomorphic to an i-enlargement of G for some i € {1,3,9}.

Proof: Let z be the new vertex of GT that resulted from the subdivision of the edge xy. If u
and z are not confluent, then contracting the edge xz of G* produces a l-enlargement of G, and
so the lemma holds. Thus we may assume that v and x are confluent, and, by symmetry, we may
assume that u and y are confluent. If u is not adjacent to x or y, then G is a 9-enlargement of
G, and the lemma holds. Thus, from the symmetry, we may assume that « is adjacent to . The
edges xy and xu are not confluent, for otherwise u is confluent with the edge zy, contrary to what
a weak 9-enlargement stipulates. But then deleting the edge zu from G yields a graph isomorphic
to a 3-enlargement of G — more specifically, a graph obtained by a non-conforming split of the

vertex x. ]

Lemma 6.2. Let G be an expansion of a weakly 4-connected graph, let H be a weakly 4-connected
graph, let D be a weak disk system in G, let v be a vertex of G of degree three and let u,x,y be the
neighbors of v. Let Gt be the graph obtained from G by adding a new vertexr z adjacent to u,x,y
and deleting all edges with both ends in {u,z,y}. If H has a minor isomorphic to G, then H has

a minor isomorphic to an i-enlargement of G for some i € {1,2,3,4,9,10}.

Proof: Since G is an expansion of a weakly 4-connected graph, Lemma 4.2 implies that at most
one edge of G has both ends in {u,z,y}. Thus we may assume that u is not adjacent to x or y.
Since v has degree three, it follows from (D1) and (D3) that if z is adjacent to y, then the triangle
vy is a disk in G. We can apply Lemma 4.11 to Gt = G and H, with P = {v, 2z}, Q = {u,z,y}
and R = V(GT) — (P UQ). From the lemma, using the symmetry between z and y, and the
symmetry among x, y and u if x is not adjacent to y, we get the following three cases:

Case 1: H has a minor isomorphic to a graph G** that is obtained from G by adding an
edge between a vertex p € P and a vertex r € R. Note that the vertices v and z are symmetric for
the application of Lemma 4.11. Hence we may assume that p = v. Now if r is not confluent with
v in G, then G** above has a minor isomorphic to a 1-enlargement of G. Thus we may assume
that r is confluent with v in G. Furthermore, we may assume, without loss of generality, that the
disk D3 shared by r and v contains the edges vu and vy. (Note that v has degree 3 in G.) On the
disk Ds, the vertices u, v,y and r occur in that cyclic order. Now in G**, contracting the edge yz
gives a cross in the disk D3 with arms uy and rv. In other words, G**, and hence H, has a minor
isomorphic to a 2-enlargement of G, as desired.

Case 2: The vertices x and y are adjacent in G and H has a minor isomorphic to a graph G*+
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that is obtained from G by splitting the vertex z into x; and xs, with z; adjacent to v and z3
adjacent to z. Let IV; be the neighbors of x; in G™t other than v, z,x1,z2. The neighborhood of
z in G is thus Ny U Ny U {v,y}. In G, let D4 be the disk that contains the edge zy, other than
the triangle vxy. The disk D4 must contain a vertex in either N; or No, and from the symmetry
between v and z we may assume that it contains a vertex in Ny. Then, in G™*, delete the edge uz
and contract the edge x2z. This gives a graph that is a 3-enlargement of G' (non-conforming split
of z, with the disks vaxy and Dy violating condition (S2) in the definition of a conforming split), as
desired.

Case 3: H has a minor isomorphic to a graph G** that is obtained from G by splitting the
vertex w into wq and wue, with w1 adjacent to v and ue adjacent to z. Let N; be the set of neighbors
of u; other than v, z, u1, ug. Thus in G, the neighborhood of u is N3 U Ny U {v}.

Let D1 be the disk in G shared by the edges zv and vu, and Dy be the disk in GG shared by the
edges yv and vu. The disks D1 and D9 both contain exactly one vertex each from N7 U Ns. Let us
assume first that |[No| > 2. Contract the edge zz in G**, and if x is not adjacent to y in G, then
delete also the resulting edge zy to obtain a graph G1, and let G2 be the graph obtained from G,
by further deleting the edge uox. Now G3 is isomorphic to a graph obtained from G by splitting
the vertex u into w; and wg. If this split is non-conforming, then Gs is a 3-enlargement of G, and
we are done. Otherwise, the split is not along D; or Ds, and from the symmetry we may assume
it is not along D;. Thus G; is a 4-enlargement of G. (Note that in G, u and = are non-adjacent,
and hence non-consecutive on D;.) This completes the case when |Na| > 2.

From the symmetry we may therefore assume that |N;| = |N2| = 1. Thus the degree of u in G
is three. For i = 1,2 let N; = {n;}. We may assume that the edge un; belongs to the disk D;. It
follows that the vertex x and edge uno are not confluent in G, for if some disk D contained both
of them, then the intersection D N D; would violate (D3), because u is not adjacent to x. The
graph G from the previous paragraph is a weak 9-enlargement of G, and so by Lemma 6.1 we
may assume that G\{z,u,na} is disconnected. Since u has degree three, the weak 4-connectivity
of G implies that n; has degree three and its neighbors are x, u, ng. Since G\{ng,y} is connected,
we deduce that G is isomorphic to the prism, and G** is isomorphic to a 10-enlargement of G, as

desired. O

Now we are ready to eliminate weak 9-enlargements.

Lemma 6.3. Let G be an expansion of a weakly 4-connected graph, let D be a weak disk system
in G, and let G be a weak 9-enlargement of G such that G is isomorphic to a minor of a

weakly 4-connected graph H. Then H has a minor isomorphic to an i-enlargement of G for some
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i €{1,2,3,4,9,10}.

Proof: Let u, x,y be as in the definition of weak 9-enlargement. By Lemma 6.1 we may assume
that G\{u,z,y} is disconnected. Since x is adjacent to y and G is an expansion of a weakly
4-connected graph, Lemma 4.2 implies that the neighborhood of some vertex v of G is precisely
the set {u,z,y}. Thus G7 is as described in Lemma 6.2, and the conclusion follows from that

lemma. O

We now turn to weak 8-enlargements. In order to save effort we prove a weaker analogue of

Lemma 6.3, the following.

Lemma 6.4. Let Gy be an expansion of a weakly 4-connected graph G, let D be a weak disk system
in G, and let G be a weak 8-enlargement of Gy such that G is isomorphic to a minor of a weakly
4-connected graph H. Then there exists an expansion Gao of G obtained from G1 by contracting a
possibly empty set of new edges such that H has a minor isomorphic to an i-enlargement of Go for

some i € {1,2,3,4,8,9,10}.

Proof: We proceed by induction on |E(Gq)|. Let GT be obtained from G by adding a vertex
joined to vy, vy, v3. If some edge of G; has both ends in the set {v1,v2,v3}, then by deleting that
edge we obtain a graph isomorphic to a weak 9-enlargement of G, and the lemma follows from
Lemma 6.3. Thus we may assume that {v;,ve,v3} is an independent set in G;. We may also assume
that every pair of vertices in {v1, v, v3} is confluent, for otherwise G* has a minor isomorphic to a
I-enlargement of G, and the lemma holds. Thus we may assume that G\{vy, v, v3} is disconnected,
for otherwise G is an 8-enlargement of G1.

Let (A, B) be a non-trivial separation of G with AN B = {vj,v2,v3}. By Lemma 4.2 we may
assume that (A, B) is degenerate. If |[A — B| = 1, then the lemma follows from Lemma 6.2. Thus
we may assume that |A — B| > 2. Let vy, v2,vs,u1,u2,us3 be as in the definition of degenerate.
Since {v1,v2,v3} is independent, we may assume from the symmetry that u; # v1 and ug # vs.
Now one of ujv1, ugvs is a new edge of GG1, and so we may assume the former is. Thus G+/u17)1 is a
weak 8-enlargement of G1/ujvy, and hence the lemma follows by the induction hypothesis applied

to the graph G1/uqv;. O

The lemmas of this section allow us to upgrade Lemma 5.4 to the following.

Lemma 6.5. Let G, H be weakly 4-connected graphs, let G have a disk system D with no locally
planar extension into H, and let G’ be a conforming expansion of G such that a subdivision of G’

is 1somorphic to a subgraph of H. Then there exists a conforming expansion G" of G obtained
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from G’ by contracting a possibly empty set of new edges such that, letting D" denote the weak disk
system induced in G by D, the graph H has a minor isomorphic to an i-enlargement of G" with

respect to D" for some i € {1,2,3,4,8,9,10}.

Proof: By Lemma 5.4 we may assume that a weak 8-enlargement or a weak 9-enlargement of
G’ is isomorphic to a minor of H. By Lemmas 6.3 and 6.4 there exists a required conforming
expansion G” of G such that H has a minor isomorphic to an i-enlargement of G” for some
i€{1,2,3,4,8,9,10}. O

7 Proof of the Main Theorem

Lemma 6.5 gives an i-enlargement of an expansion G” of G. Our final objective is to show that we

can choose G = G. We break the proof into several lemmas depending on the value of i.

Lemma 7.1. Let G and H be weakly 4-connected graphs, and let D be a weak disk system in G
with no locally planar extension into H. Let G’ be a conforming expansion of G such that H has a
minor isomorphic to a 1-enlargement of G'. Then H has a minor isomorphic to an i-enlargement
of G for some i € {1,3,4,5}.

Proof: We may assume that G’ is as stated in the lemma, and subject to that, it is minor-
minimal. By hypothesis, H has a minor isomorphic to GT, a graph obtained from G’ by adding
an edge between two vertices z and y that are not confluent. Let e be a new edge of G’. By the

minimality of G’, it follows that
(i) one end of e must be in {z,y}, and
(ii) the other end of e must be confluent with the vertex in {z,y} other than the one above.

Recall that branch-sets of an expansion were defined at the beginning of Section 4. Thus all branch
sets that are disjoint from {z, y} are singleton sets. Let T}, and Tj, be the branch sets corresponding
to vertices p,q € V(G) such that they contain z and y respectively (p and ¢ may be identical). We
claim that the degree of x in the branch set containing it is at most one (that is, x is a leaf of the
tree G'[T}]). Suppose not; hence z has (at least) two neighbors z; and z9 in 7). By (ii) above,
y shares disks Dy and Dy of G’ with 21 and x5 respectively. Then = ¢ V(D1 U Dy), for z,y are
not confluent. It follows that Dy # Ds, for otherwise D is not a cycle in G’ /x12/x9x, and yet Dy
corresponds to a disk in G. Also, y is not adjacent to both x; and z9, by Lemma 4.1. But then
contracting edges xx1 and xxs violates Axiom (D3) in G. This proves the claim. Thus x, and by

symmetry y, are leaf vertices in G'[T},] and G'[T,] respectively.
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If p = g, then it follows that T}, = T, must be a path of length 2, with a middle vertex z. Let

1, D5 be the two disks in G’ that include the edge zz, and let Dj, D)) be the two disks that include
the edge yz. Note that, since z and y are not confluent in G’, all four disks above are distinct. Let
D1, Do, D3, Dy be the corresponding disks in G. Let N7, Ny be the partition of the set of neighbors
of p in G, corresponding to the partition {z,y}, {2} of V(T},). Clearly, N; has at least two vertices,
but so does N3, by Axiom (D3) applied to Dy,Dy. In GF (which has the edge xy), contract the
edge xy. This gives a graph G™* that can be obtained from G by splitting p with respect to the
partition Ni, No of its neighbors. This split is non-conforming, since the disks Dy, ..., Dy violate
condition (S1) in the definition of a conforming split. Thus G* is a 3-enlargement of G, as desired.

If p # ¢, then from (i) and (ii) above, T}, is either {z} or {x,z;}. By symmetry, T} is either {y}
or {y,y1}. If T, and T are both singletons, then clearly G’ = G and we are done.

Suppose exactly one of the two branch sets, say Ty, is a singleton, and T}, consists of {x,z1},
where 1 shares a disk D with y in G’. If 21 and y are not adjacent, then G is a 4-enlargement of
G, and we are done. Thus we may assume that z; and y are adjacent, and hence by Axiom (D3),
they are consecutive in D. Let Dj, Do be the two disks in G’ containing the edge zx;. They are
both distinct from D, since x and y are not confluent in G’. By Axiom (D3) applied to D; and
Dy, the vertex xy has at least two neighbors in G’ other z and y. Now in Gt (which contains the
edge xy), delete the edge z1y. This gives a graph G obtained from G by splitting p in the same
way as in G’, except that y is adjacent to x rather than x;. Further, it is a non-conforming split,
as the disks D, Dy and Dy violate condition (S1) in the definition of a conforming split. Thus é,
which is isomorphic to a minor of H, is a 3-enlargement of GG, and we are done.

Finally, suppose T}, = {x, 21} and T, = {y,y1}, where x shares a disk D} with y; and y shares
a disk D] with z1. Let Dy, Dy be the corresponding disks in G. Since x and y are not confluent
in G', D} does not contain y and D/, does not contain z. (In particular, D] and D) are distinct.)
Apply Lemma 4.10 to G = G’ /xx1, with the vertices p,y,y; in that graph corresponding to p, q,r
in the lemma. Thus the (conforming) split of the vertex ¢ in G that produces G is along Do, and
D5 is one of the disks containing the edge pg in G. Also, since x and y are not confluent in G’,
the (conforming) split of p in G that produces G’ must be along Di, and D; is the other disk in
G containing pq. It now follows that G is a 5-enlargement of G. This finishes the proof of the

lemma. O

Lemma 7.2. Let G and H be weakly 4-connected graphs, and let D be a weak disk system in G
with no locally planar extension into H. Let G’ be a conforming expansion of G such that H has a
minor isomorphic to a 2-enlargement of G'. If G' # G, then there exists a conforming expansion

G" of G obtained from G’ by contracting at least one new edge such that H has a minor isomorphic
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to an i-enlargement or a weak 9-enlargement of G" for some i € {2,6,7}.

Proof: We may assume that G’ is as stated in the lemma, and subject to that, it is minor-
minimal. By hypothesis, there are vertices u,v,z,y appearing on a disk C’ in G’, in that cyclic
order, such that H has a minor isomorphic to a graph obtained from G’ by adding the edges ux and
vy. Let C be the cycle in G corresponding to C’. The minimality of G’ implies that every new edge
of G’ has both ends in {u, v, x,y}, and hence it belongs to C’ by (D3). We may therefore assume
that uv is a new edge of G'. We claim that if v is adjacent to z, then the lemma holds. To prove
this claim suppose that v and x are adjacent in G’, and let G; = GT\vz. If v has degree three
in G/, then G is isomorphic to a weak 9-enlargement of G’/uv (the new edge is yv; notice that y
is not confluent with the edge of G'/uv that is being subdivided by (D3)), and hence the lemma
holds. Thus we may assume that v has degree at least four in G’. In that case G is isomorphic to
a 4-enlargement of G'/uv, for a graph isomorphic to G; can be obtained by a conforming split of
the new vertex of G'/uv, not along C’, and joining one of the new vertices to y. This proves our
claim, and hence we may assume that v is not adjacent to x. By symmetry we may also assume
that u is not adjacent to y.

If uv is the only new edge of G', then G’ is a 6-enlargement of G, and the lemma holds. Thus
we may assume that G’ has another new edge, and so that edge must be zy and there are no other

new edges. It follows that G’ is a 7-enlargement of G, and so the lemma holds. O

Lemma 7.3. Let G and H be graphs, let D be a weak disk system in G, and let G’ be a conforming
expansion of G such that H has a minor isomorphic to a 9-enlargement G* of G'. If G' # G, then
there exists a conforming expansion G” obtained from G’ by contracting at least one new edge such

that H has a minor isomorphic to a 3-enlargement or a weak 9-enlargement of G”.

Proof: Let u,x,y € V(G') be such that G* is obtained from G’ by subdividing the edge xy and
joining the new vertex to u, and let f be a new edge of G’. Then f # xy, for otherwise Lemma 4.10
implies that u is confluent with the edge xy, a contradiction. We may assume that f is incident
with u, and that contracting f makes the new vertex confluent with the edge xy, for otherwise
G*/f is a weak 9-enlargement of G’/f, and the lemma holds. Hence the other end v of f must
share a disk D; with the edge xy. Since u is not confluent with zy, D; does not contain u. Let Dy
and D3 be disks shared by v and z, and by w and y, respectively. These three disks are pairwise
distinct, since u is not confluent with the edge zy in G’. Now apply Lemma 4.10 with x as the
vertex p, and u,v as the vertices g, r respectively. It follows that v and = are adjacent, and that

Dy and D5 are the two disks containing the edge vx. Apply Lemma 4.10 again, this time with y in
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place of x. It follows that the edges vu, vx and vy are covered twice each by the three disks Dy, Do
and Ds. In particular, D; is a triangle.

If f # f is a new edge of G’, then by what we have shown about f it follows that f’ is incident
with u and its other end belongs to a disk D) that contains the edge zy. Since D; is a triangle
consisting of z,y and an end of f, we see that D} # D;. But the disks that correspond to D; and
D} in G'/f/f" have three vertices in common, contrary to (D3). Thus f is the only new edge of
G’, and hence G = G'/f. Let p be the new vertex of G = G'/f.

Since GT is a 9-enlargement of G’, the graph G'\{u,x,y} is connected, and hence v has a
neighbor outside {u, z,y}. (In fact, it must then have at least three neighbors outside {u, x,y}.) Let
2 be the new vertex of GT created by subdividing the edge xy. The graph G™\vz/xz is isomorphic
to a graph obtained from G by splitting p into two vertices. This split is non-conforming, since the
two disks in G that contain py violate condition (S2) in the definition of a conforming split. Thus

H has a minor isomorphic to a 3-enlargement of G. This finishes the proof of the lemma. O

Lemma 7.4. Let G and H be graphs, let D be a disk system in G, and let G' be a conforming
expansion of G such that H has a minor isomorphic to an 8-enlargement G* of G'. If G’ # G,
then there exists a conforming expansion G" obtained from G' by contracting at least one new edge

such that H has a minor isomorphic to a 3-enlargement or a weak 8-enlargement of G”.

Proof: Let GT be obtained from G’ by adding a vertex adjacent to x1, 2,23, and let f be a
new edge of G’. We may assume that upon contracting f the vertices that correspond to z1, z2, 3
belong to a common disk, for otherwise G /f is a weak 8-enlargement of G’/ f, and the lemma
holds. Thus f is incident with at least one of x1, zo, x3, say x1, and there exists a disk D in G’ that
includes y, 2, x3, where y is the other end of f.

Apply Lemma 4.10 twice, once with x5 as the vertex p, and next with x3 as the vertex p. In
both applications, let 1 and y be the vertices ¢ and r respectively. It follows that y is adjacent to
x9 and x3, and that yz; € E(Dy N D3), yro € E(D N D3) and yzs € E(D N Ds). Since GT is a
8-enlargement of G’ the graph G'\{z1,z2,x3} is connected, and hence y has degree at least four.
Let N be the neighbors of y in G’ other than x1, x9, x3. Let G’ be obtained from G by splitting x;
in such a way that the neighborhood of one of the new vertices is N. Then G’ is isomorphic to a

minor of GT, and it is a 3-enlargement of G’. Thus the lemma follows from Lemma 4.9. O

We are finally ready to state and prove Theorem 2.1, which we restate.

Theorem 7.5. Let G and H be weakly 4-connected graphs such that H has a minor isomorphic to
G. Let G have a disk system D that has no locally planar extension into H. Then H has a minor

isomorphic to an i-enlargement of G, for some i € {1,2,...,10}.
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Proof: There exists an expansion of G whose subdivision is isomorphic to a subgraph of H. If
this expansion is not conforming, then the theorem holds by Lemma 4.9, and so we may assume
that the expansion is conforming. By Lemma 6.5 there exists a conforming expansion G’ of G such
that H has a minor isomorphic to an i-enlargement G of G’ for some i € {1,2,3,4,8,9,10}. We
may choose G’ and G such that |E(G’)| is minimum. If i € {1,4}, then G is isomorphic to a
I-enlargement of a conforming expansion of G’, and the theorem holds by Lemma 7.1. If i = 3,
then the theorem holds by Lemma 4.9. If 4 = 10, then the minimality of G’ implies that G = G/,
and if i € {2,8,9}, then the same conclusion follows from Lemmas 7.2, 7.4 and 7.3, respectively,

using Lemmas 6.3 and 6.4. Thus the theorem holds. O

8 An Application

In this section, we illustrate an application of Theorem 2.1. Archdeacon [1, 2] proved that a graph
H does not embed in the projective plane if and only if it has a minor isomorphic to some graph in
an explicitly constructed list of 35 graphs. One might hope that if we assume that H is sufficiently
connected, then the list may be shortened. Mohar and Thomas (work in progress) developed a
strategy for a proof, but it will be a lengthy project with several intermediate steps. Here we
complete one such step: under the assumptions that H is weakly 4-connected and has a minor
isomorphic to the Petersen graph, Theorem 8.1 below gives a list of eight forbidden minors, each
of which are weakly 4-connected.

Figure 1 shows these eight graphs (with a vertex-labeling for each of them). All of these graphs,
with the exception of Fi and Dj, appear in the list of 35 forbidden minors for the projective plane.
F{ and D}, however, are obtained from two graphs in that list (£} and D3, respectively) by splitting
exactly one vertex. (The reason we list F}, D instead of Fy, D3 is that the latter two graphs are

not weakly 4-connected.)

Theorem 8.1. Let H be a weakly 4-connected graph that has a minor isomorphic to the Petersen
graph. Then H does not embed in the projective plane if and only if it has a minor isomorphic to

one o e €l rapns 4 29 20 3 2, OT L8 snown wn riqure 1.
f the eight graphs Fy, Fy, D}, Es, Es, Cs, Es, or Eig sh m Figure 1

Before we derive Theorem 8.1 from Theorem 2.1, we describe some notation that will be con-
venient in the proof.

Let Pjg denote a labeling of the Petersen graph as shown in Figure 2. In fact, Figure 2 shows
an embedding of Pjg in the projective plane. The disk system D associated with this embedding
consists of the 5-cycles 6-9-7-10-8, 1-5-10-7-2, 4-3-8-10-5, 2-1-6-8-3, 5-4-9-6-1, and 3-2-7-9-4.
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Figure 2: One of the two projective-planar embeddings of the Petersen graph

P has exactly one other embedding in the projective plane. This embedding is distinct from
the above embedding, but is isomorphic to it. (An isomorphism of embeddings is an isomorphism 7
of the underlying graphs such that a cycle C' is facial in one embedding if and only if 7(C') is facial
in the other.) The disk system D’ associated with the second embedding consists of the 5-cycles
1-2-3-4-5, 6-9-4-3-8, 7-10-5-4-9, 8-6-1-5-10, 9-7-2-1-6, and 10-8-3-2-7.

We now describe notation that will let us denote specific enlargements of a (labeled) graph
as given by Theorem 2.1. Recall the operations 1-9 and the definition of a split, as described in
Sections 1 and 2.

Let G be a graph whose vertices are labeled 1,...,n. For vertices u,v, the graph G+ (u,v)
denotes the graph obtained from G by adding an edge joining u and v (if none existed before).
Also, the graph G x v(NN1) denotes the graph obtained by splitting the vertex v, where N; is as in
the definition of a split. We follow the convention that the vertex vy retains the same label as v,
while v9 is assigned the label n + 1.

Since operations 1-7 are defined in terms of vertex splits and edge additions, the above notation
lets us specify i-enlargements for ¢ = 1,...,7. An 8-enlargement of G is specified as G+(z1, 22, z3),
where the vertices z; are as in the definition of operation 8. The new vertex x gets the label n + 1.

Finally, a 9-enlargement of G is specified as G+ (u, z—y), where u,x,y are as in the definition

of operation 9. The new vertex obtained by subdividing the edge xy gets the label n + 1.
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8.1 Proof of Theorem 8.1.

For the backward implication of Theorem 8.1, recall that each of the eight graphs specified is either
isomorphic to one of the 35 forbidden minors of [2] or is obtained from one of them by splitting a
vertex. In particular, none of these eight graphs embed in the projective plane, and so H does not
embed either.

For the forward implication, H, by hypothesis, does not embed in the projective plane, and has
a minor isomorphic to Pjg. Clearly, the disk system D of Py has no locally planar extension to H.
Applying Theorem 2.1 to Pig, D and H, it is easy to check that H has a minor isomorphic to one

of three enlargements, up to isomorphism:
1. a 2-enlargement Q1 = Pio + (7,8) + (9, 10)
2. an 8-enlargement Q2 = Pio + (2,4,6)
3. a 9-enlargement Q3 = Pig + (1,3 —4)

()2 has a minor isomorphic to Eig, as witnessed by the branch sets {1,5}, {3,8}, {7,9}, {2},
{4}, {6}, {10}, and {11}. (The order of the branch sets follows that of the corresponding vertex
labels in Eg, as shown in Figure 1.)

Thus we may assume that H has a minor isomorphic to @1 or Q3. The disk system D’ of Py
extends in a natural way to disk systems D;,Ds in the enlargements ()1, Q3. Thus @1, Q3 each

embed (uniquely) in the projective plane. The embeddings are shown in Figure 3.

Y K

Q1 Q3
Figure 3: The graphs @1 and Q3
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We now apply Theorem 2.1 to Q1, D1, H and Q3, D3, H and deduce Theorem 8.1. This involves
a fair amount of case-checking, which is summarized in Tables 1 and 2. Each row in the tables lists
an enlargement of Q)1 or (Y3, along with one of the eight graphs from the list that is a minor of the
enlargement. The branch sets in the rightmost column follow the order of the vertex labels of the
corresponding graph in the preceding column. For clarity, singleton sets are not enclosed in braces.

Tables 1 and 2 respectively list all possible enlargements of (1 and @3 up to isomorphism,
with the exception of 8-enlargements and 9-enlargements of @)1, and 8-enlargements of (J3. Every
8-enlargement of (1 with respect to D; has a subgraph isomorphic to ()2, and thus has a minor
isomorphic to F1g. Every 8-enlargement of ()3 with respect to D3 either has a minor isomorphic
to @2, or is isomorphic to the 8-enlargement listed in Table 2. Finally, every 9-enlargement of (1
with respect to D; is either isomorphic to the 9-enlargement listed in Table 1 or is isomorphic to
a 2-enlargement of Q3 with respect to D3 (and is thus listed in Table 2 instead). This finishes the
proof of Theorem 8.1. O
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Table 1: Applying Theorem 2.1 to @

Type Enlargement Minor Branch sets of the minor
Q1+(2,10) Dj {2,3},7,9,8,10,1,5,4,6

! Q1+(3,10) F| 8,7,2,3,10,1,9,4,5,6
Q1+(2,8)+(3,7) Eso 2,7,3,8,{1,6},9,4,10,5
Q1+(2,4)+(3,5) Ess 2,3,5,4,7,8,10,9,{1,6}
Q1+(1,4)+(3,5) Fy 2,4,5,1,7,9,10,6,8,3
Q1+(1,4)+(2,5) Fy 1,3,5,2,6,8,10,7,9,4
Q1+(3,9)+(4,8) Cs 3,4,1,10,7,9,2,5,{6, 8}
Q1+(3,9)+(4,6) Cs 3,4,1,10,7,9,2,5, {6, 8}

2 Q1+(4,6)+(8,9) Eno 8,7,10,9,3, {1,2},5,6, 4
Q1+(2,9)+(6,7) D {1,2},7,10,6,9,3,4,5,8
Q1+(1,9)+(6,7) F| 1,5,4,9,10,3,7,6,8,2
Q1+(1,9)+(2,6) Fy 1,10,4,9,6,8,3,7,2,5
Q1+(1,7)4+(2,9) Dj 9,7,8,2,{1,6},4,5,10,3
Q1+(1,7)4+(2,6) Cs 1,2,4,8,10,7,5,3,{6,9}

‘ Q1%7(2,10) F| {1,6},5,4,9,10,3,7,11,8,2

3 Q1 %8(3,10) F 2,7,11,{1,6},9.8,4,5,10,3
Q1+7(2,9)+(1,11) F| 2,7,11,{1,6},9,8,4,5,10, 3
Q1%7(2,9)+(6,11) F| 3,4,5,{8,10},9,1,7,11,6,2
Q1+7(2,8)+(3,11) F| 8,7,2,3,11,1,9,4,{5,10},6
Q1%8(3,7)+(2,11) F| {5,10},1,6,11,2,9,3,8,7,4

4 Q1%8(3,7)+(1,8) F{ {5,10},11,6,1,8,9,3,2,7,4
Q1%8(3,7)+(5,8) F| {1,2},3,4,5,8,9,11,10,7,6
Q1%8(3,6)+(4,11) F| 8,3,{2,7},11,4,1,9,10,5,6
Q1+8(3,6)+(9,11) Esg 7,10,9,11,2,{1,5,6},4,8,3

Q1+7(8,10)%8(3,7)+(11,12) F| {1,2},6,9,11,12,{3,4},10,7,8,5
Q1%7(2,8)*8(7,10)+(11,12) F{ {3,4},9,6,12,11,{1,2},10,8,7,5
) Q1%7(2,9)%9(4, 6)+(9, 11) F! | {3,4},8,6,9,11,{1,2},10,12,7,5
X Q1%7(2,8)%9(4,10)+(7,9) F| 8,{3,4},5,10,9,{1,2},12,11,7,6
Q1%7(2,9)%10(9,11)+(7,12) F| {1,6},2,3,{8,11},7,4,12,10,9,5
Q1%7(2,8)%10(5,9)+(7, 10) F! |3,{1,2},6,8,7,9,10,12,11, {4,5}
Q1%7(2,8)+(1,11)+(6,7) F| 2,7,6,1,11,8,{4,9},5,10,3
6 Q1%8(3,7)+(4,11)+(8,9) F| {1,6},5,10,11,4,7,3,8,9,2
Q1%8(3,6)+(1,11)+(8,10) F| 2,7,11,{1,6},9,8,4,5,10,3
7 Q1+8(3,7)%9(4,10)+(8,12)+(9,11) F| {2,7},10,5,{1,6},11,4,8,12,9,3
9 Q1+(1,7-8) F| 2,7,11,{1,6},9,8,4,5,10, 3
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Table 2: Applying Theorem 2.1 to Q3

Type Enlargement Minor Branch sets of the minor
Q3+(2,4) F| 1,11,3,2,{4,5},8,9,7,10,6
! Qs+(2,5) F! 1,11,4,5,{2,3},9,8,10,7,6
Q3+(1,7)+(2,6) Dy {3,8,11},2,7,6,1,4,5,10,9
Q3+(1,9)+(2,6) F| 9,4,5,1,{3,11},10,2,6,8,7
Q3+(1,9)+(6,7) Fy 5,11,9,1,10,{3,8},6,2,7,4
Q3+(2,9)+(6,7) FEg 1,{3,8},{4,9},2,{5,10},6,11,7
Qs+(1,7)4(2,9) D 1,2,{3,8},7,{6,9},5,4,11,10
Q3+(2,8)+(3,7) Fy 11,9,5,{1,6},3,7,10,2,8,4
Qs3+(2,10)+(3,7) Eoo 1,2,3,11,5,10,7,{4,9},{6,8}
Qs3+(2,10)+(7,8) Fy 3,7,10,8,11,{4,9},5,6,1,2
Q3+(3,10)+(7,8) Fy 5,11,6,1,10,3,8,2,7,{4,9}
Qs3+(2,8)+(3,10) F| 2,8,6,1,{3,11},9,10,5,4,7
2 Q3+(3,9)+(4,8) FEyo {1,6},2,3,11,5,{7,10},8,4,9
Q3+(3,9)+(8,11) F{ 11,4,5,{1,6},9,10,3,2,7,8
Q3+(3,4)+(8,11) Dj {4,5},11,8,1,{2,3},9,7,10,6
Q3+(6,11)4+(8,9) F{ 10,7,2,{3,8},9,1,4,11,6,5
Q3+(3,9)+(6,11) F| 10,7,2,{3,8},9,1,4,11,6,5
Qs3+(3,4)+(6,11) D {1,2},11,4,6,{3,8},7,10,5,9
Q3+(4,6)+(8,9) Fy 5,11,6,1,10,{3,8},9,2,7,4
Q3+(3,9)+(4,6) Fy 5,11,6,1,10,{3,8},9,2,7,4
Q3+(3,6)+(8,11) Esy 2,1,3,11,7,{6,9},8,{4,5},10
Qs+(1,3)+(2,11) F| 2,3,6,1,11,9,{8,10},5,4,7
3 Q3+1(2,5) F/ | 7,10,5,{1,2},{3,8},4,6,12,11,9
Q3x1(5,6)4(10,12) F| 12,1,5,10,{6,8},4,{2,3},7,9,11
4 Q3+1(5,6)+(8,12) F| 9,{1,6},5,{4,11},12,10,2,3,8,7
Q3+1(5,6)+(1,3) Fl | 10,8,6,{1,5},3,{4,9},2,12,11,7
6 Q3%1(5,6)+(1,7)4+(9,12) F| 8,10,5,{1,6},7,4,2,12,9,{3,11}
8 Qs+ (2,9,11) Fy 1,12,3,2,{4,5},9,{6,8},7,10,11
Q3+(8,1—11) F| 1,12,11,{2,3},4{6,8},4,10,7,9,5
Q3+(8,1-2) F! | 9,4,5{1,6},{3,11},10,2,12,8,7
Q3+(10,1-2) Fy 11,5,9,{1,6},{3,8},10,7,12,2,4
Q3+(6,2—3) Fl | 2,12,6,1,{3,8,11},9,10,5,4,7
Q3+(9,2-3) F{ 5,4,11,{1,6},9,{3,8},7,2,12,10
Q3+(3,1-6) Fy 2,11,12,1,7,{4,9},{6,8},5,10,3
9 Q3+(1,3—-8) Fy 2,11,12,1,7,{4,6,9},8,5,10,3
Q3+(2,6—8) Fy | 3,7,12,{8,10},11,{4,9},6,5,1,2
Q3+(7,6—8) Fy | 11,9,5,{1,6},{2,3},7,10,12,8,4
Q3+(3,7-9) Fy | 5,11,9,{1,6},10,{3,8},12,2,7,4
Q3+(8,7-9) Fy | 5,11,9,{1,6},10,{3,8},12,2,7,4
Qs3+(1,7—-10) Es 2,9,12,11,5,8,{1,6},3,7,4,10
Q3+(6,7—10) By | 2,9,12,11,5,8,{1,6},3,7,4,10
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