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Abstract. We prove an ear-decomposition theorem for 4-edge-connected graphs and use it to
prove that for every 4-edge-connected graph G and every r € V(G), there is a set of four spanning
trees of G with the following property. For every vertex in GG, the unique paths back to r in each
tree are edge-disjoint. Our proof implies a polynomial-time algorithm for constructing the trees.
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1. Introduction. If r is a vertex of a graph G, two subtrees T7,7T» of G are
edge-independent with root r if each tree contains r, and for each v € V(11) NV (T3),
the unique path in 77 between r and v is edge-disjoint from the unique path in Tb
between r and v. Larger sets of trees are called edge-independent with root r if they
are pairwise edge-independent with root r.

Itai and Rodeh [6] posed the Edge-Independent Tree Conjecture, which is that
for every k-edge-connected graph G and every r € V(G), there is a set of k edge-
independent spanning trees of G rooted at r. Here, we prove the case k = 4 of the
Edge-Independent Tree Conjecture. That is, we prove the following.

THEOREM 1.1. If G is a 4-edge-connected graph and r € V(G), then there exists
a set of four edge-independent spanning trees of G rooted at r.

There is a similar conjecture which has been studied in parallel, concerning ver-
tices rather than edges. If r is a vertex of GG, two subtrees 11,715 of G are independent
with root r if each tree contains r, and for each v € V(T1) NV (T%), the unique path in
T1 between r and v is internally vertex-disjoint from the unique path in 75 between
r and v. Larger sets of trees are called independent with root r if they are pairwise
independent with root r.

Itai and Rodeh [6] also posed the Independent Tree Conjecture, which is that for
every k-connected graph G and for every r € V(G), there is a set of k independent
spanning trees of G rooted at r.

The case k = 2 of each conjecture was proven by Itai and Rodeh [6]. The case
k = 3 of the Independent Tree Conjecture was proven by Cheriyan and Maheshwari [1]
and then independently by Zehavi and Itai [11]. Huck [5] proved the Independent
Tree Conjecture for planar graphs (with any k). Building on this work and that of
Kawarabayashi, Lee, and Yu [7], the case k = 4 of the Independent Tree Conjecture
was proven by Curran, Lee, and Yu across two papers [2, 3]. The Independent Tree
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Conjecture is open for nonplanar graphs with k& > 4.

In 1992, Khuller and Schieber [8] published a later-disproven argument that
the Independent Tree Conjecture implies the Edge-Independent Tree Conjecture.
Gopalan and Ramasubramanian [4] demonstrated that Khuller and Schieber’s proof
fails, but salvaged the technique, and proved the case k = 3 of the Edge-Independent
Tree Conjecture by reducing it to the case k = 3 of the Independent Tree Conjec-
ture. Schlipf and Schmidt [10] provided an alternate proof of the case k = 3 of
the Edge-Independent Tree Conjecture, which does not rely on the Independent Tree
Conjecture. The case k = 4 of the Edge-Independent Tree Conjecture is proven here,
while the case k > 4 remains open.

By adapting the technique of Schlipf and Schmidt [10], we prove an edge analogue
of the planar chain decomposition of Curran, Lee, and Yu [2]. We then use this
decomposition to create two edge numberings which define the required trees.

The conjectures are related to network communication with redundancy. If G
represents a communication network, one can wonder whether information can be
broadcast through the entire network with resistance to edge failures (i.e., it would
require k simultaneous edge failures to disconnect a client from every broadcast).
The Edge-Independent Tree Conjecture implies that the absence of edge bottlenecks
of size less than k is necessary and sufficient for a redundant broadcast to be possible
from any source r. The Independent Tree Conjecture answers the analogous problem
where vertex failures are the concern, rather than edge failures.

2. The chain decomposition. In this paper, a graph will refer to what is
commonly called a multigraph. That is, there may be multiple edges between the
same pair of vertices (“parallel edges”) and an edge may connect a vertex to itself (a
“loop”). All paths and cycles are simple, meaning they have no repeated vertices or
edges. We consider a loop to induce a cycle of length one and a pair of parallel edges
to induce a cycle of length two. Also, the presence of a loop increases the degree of a
vertex by two. We will use the overline notation H to name specific subgraphs, rather
than for the graph complement.

Throughout this section, fix a graph G with |[V(G)| > 1 and a vertex r € V(G).
We begin by defining a decomposition analogous to the planar chain decomposition
in [2].

DEFINITION 2.1. An up chain of G with respect to a pair of edge-disjoint subgraphs
(H, H) is a subgraph of G, edge-disjoint from H and H, which is either

1. a path with at least one edge such that every vertex either is r or has degree
at least two in H, and the ends are either r or in H, or
2. a cycle such that every vertez either is r or has degree at least two in H, and
some vertex v either is r or has degree at least two in H; we will consider v
to be both ends of the chain and all other vertices in the chain to be internal
vertices.
Chains which are paths will be called open and chains which are cycles will be called
closed, analogous to the standard ear decomposition.

DEFINITION 2.2. A down chain of G with respect to a pair of edge-disjoint sub-
graphs (H, H) is an up chain with respect to (H, H ).

DEFINITION 2.3. A one-way chain of G with respect to the pair of edge-disjoint
subgraphs (H, H) is a subgraph of G, induced by an edge e ¢ H U H with ends u and
v, such that u either is v or has degree at least two in H, and v either is r or has
degree at least two in H. We call u the tail of the chain and v the head.
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DEFINITION 2.4. Let Gy, G1,...,Gy be a sequence of subgraphs of G. Denote
H;, =GoUGLU---UG,;_1 and H; = Git1UGi42U - UGy, so that Hy and H,, are
the null graph. We say that the sequence Go, G1,...,Gy, is a chain decomposition of
G rooted at r if the following hold:
1. The sets E(Go), E(G1),...,E(Gp) partition E(G).
2. Fori=0,...,m, the subgraph G; is either an up chain, a down chain, or a
one-way chain with respect to the subgraphs (H;, H;).

Up Chain

One-Way Chain

Fia. 1. An ilustration of an up chain of length 4, a down chain of length 3, and a one-way
chain. The red/dashed edges are in earlier chains, while the blue/dotted edges are in later chains.
See Figure 1 for an illustration of each chain type.

DEFINITION 2.5. The chain index of e € E(G), denoted by CI(e), is the index of
the chain containing e.

DEFINITION 2.6. An up chain G; is minimal if no internal vertex of G; is in
{’f'} uv (Hz)

DEFINITION 2.7. A down chain G; is minimal if no internal vertex of G; is in
{T} uv (Hz)

DEFINITION 2.8. A chain decomposition is minimal if all of its up chains and
down chains are minimal.

Remarks.
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1. A minimal up chain is a special case of an ear in the standard ear decompo-

sition.
2. The chain decomposition is symmetric in the following sense. If Gy, Gy, ...,
G, is a chain decomposition rooted at r, then G,,,Gp—1,...,Go is a chain

decomposition rooted at r, with the up and down chains switched and the
heads and tails of one-way chains switched. Throughout this paper, we will
refer to this fact as “symmetry.”

3. Gy is either a closed up chain ending at r or a one-way chain with r as the
tail, and G,, is either a closed down chain ending at r or a one-way chain
with r as the head.

4. In the planar chain decomposition in [2], up chains and down chains are anal-
ogous to the corresponding open chains. The elementary chain is analogous
to a one-way chain.

Remark 2.9. An up chain or down chain may be subdivided into several minimal
chains by breaking at the offending internal vertices. These minimal chains may
then be inserted consecutively into the decomposition at the index of the old chain.
In this way, one can easily obtain a minimal chain decomposition from any chain
decomposition.

We will prove Theorem 1.1 by combining the following results.

THEOREM 2.10. If G is a 4-edge-connected graph and r € V(G), then G has a
chain decomposition rooted at r.

THEOREM 2.11. Suppose G is a graph with no isolated vertices. If G has a
chain decomposition rooted at some r € V(G), then there exists a set of four edge-
independent spanning trees of G rooted at r.

3. Preliminary results. While not needed for our main results, the follow-
ing proposition demonstrates how the chain decomposition fits in with the various
decompositions used in other cases of the Independent Tree Conjecture and Edge-
Independent Tree Conjecture. A partial chain decomposition and its complement are
“almost 2-edge-connected” in the following sense.

PropoSITION 3.1. Suppose Gy, G1,...,Gy is a chain decomposition of a graph
G rooted at r. Then fori=1,...,m, H; and H;_1 are connected. Further, if e is a
cut edge of H; (resp., H;_1), then e induces a one-way chain and one component of
H; —e (resp., H;_1 — e) contains one vertex and no edges.

Proof. By symmetry, we need only prove the result for the H;’s. The connectivity
follows from the fact that every type of chain is connected and contains at least one
vertex in an earlier chain.

Suppose e is a cut edge of some H;. Since e is an edge in H;, we have CI(e) < i
and Hepey C H;. We also know that Hep ey is connected from the previous argument
that each H; is connected. Then e cannot be part of an up chain, or else e would be
part of a cycle formed by the chain Ggp(.) and a path in Hgp(e) between the ends of
Gercey (if Gege) is open; else the chain itself is a cycle). Also, e cannot be part of
a down chain, or else ¢ would be part of a cycle formed by e and a path in Hgpe)
between the ends of e. Therefore, e induces a one-way chain.

Let C be the component of H; — e not containing r, and suppose for the sake of
contradiction that C contains an edge. Let ¢’ be an edge of C with minimal chain
index. Consider G¢y(ery, the chain containing e’. Regardless of the chain type, some
vertices in V/(Gep(ery) are incident to at least two edges in Heop(ery C H; since r ¢ C,
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so one of these edges is not e. This contradicts the minimality of CI(e’). |

The next lemma and its corollary will allow us to ignore the possibility of loops
in the graph when convenient.

LEMMA 3.2. Suppose Gg,G1,...,Gpn is a chain decomposition of G rooted at r.
Ifv # risin H; (resp., H;), then v is incident to a nonloop edge in H; (resp., H;). If
v has degree at least two in H; (resp., H;), then v is incident to two distinct nonloop
edges in H; (resp., H;).

Proof. Note that the second claim in the lemma implies the first, since a loop
increases the degree of a vertex by 2, so it suffices to prove the second claim in the
lemma.

Suppose v is incident to a loop, which by symmetry we may assume is in H;. Of
all loops incident to v, choose the one with minimal chain index j < i. Consider the
chain classification of G;. The chain definitions all coincide for a loop and require
that v(# r) have degree at least two in H;. By the minimality of j, v is not incident
to any loops in Hj. It follows that v is incident to two distinct nonloop edges in
H; C H;. |

COROLLARY 3.3. Suppose Go,G1,...,Gpy is a chain decomposition of G rooted
at r and e € E(G;) is a loop. Then Gy, G1,...,Gi—1,Git1,...,Gn is a chain decom-
position of G — e rooted at r. Further, if G has no isolated vertices, then G — e has
no isolated vertices.

Proof. The first claim follows from the preceding lemma. For the second, observe
that if e is the only edge incident to its end, then it fails the conditions for every chain
definition. d

Next, we prove the following useful fact about minimal chain decompositions.

LEMMA 3.4. Suppose G is a graph with no isolated vertices, Gy, G1,...,Gp is a
minimal chain decomposition of G rooted at v, and v € V(G) with v # r. Then there
are indices i,j so that v has degree exactly 2 in H; and H;.

Proof. By symmetry, we need only find i. Since G has no isolated vertices, v is
in some chain. Consider the chain G;, containing v so that i is minimal. Note that
v ¢ V(H).

If G;, is an up chain, then v is an internal vertex of G;, since v ¢ V(H;,), so
v has degree 2 in G;, and degree at least two in H;,. Therefore H;, is not null, so
ig < m. Then i = iy + 1 completes the proof.

The chain G, is not a down chain since v ¢ V(H;,).

So we may assume that G, is a one-way chain, and v must be the head since
v ¢ V(H;,). Therefore v has degree at least 2 in H;,, so we may consider the next
chain to contain v, say G;,. Note that v has degree one in H;, by the definition of ;.

If Gy, is an up chain, then it is open and v is an end of the chain, since the chain
decomposition is minimal and v has degree one in H;,. The chain G;, is not a down
chain since v has degree one in H;,. If GG, is a one-way chain, then v is the head since
v(# r) does not have degree at least two in H;,. In all cases, v has degree one in G,
and degree at least 2 in H;,. Therefore H;, is not null, so iy < m. Then ¢ =3 + 1
completes the proof. ]

Finally, we show that the chain decomposition implies a minimum degree result.

LEMMA 3.5. Suppose G is a graph with no isolated vertices, Gy, G1,...,Gp is a
chain decomposition of G rooted at r, and v € V(G) with v # r. Then v has degree
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at least 4.

Proof. By Corollary 3.3, we may assume that there are no loops in G. If v is in
an up chain G, then v has degree at least 2 in H;, and either degree 2 in G; (if v is
internal) or degree at least 1 in G; and degree at least 1 in H; (if v is an end). Either
way, v has degree at least 4 in G. By symmetry, the same is true if v is in a down
chain.

So we may assume that the only chains containing v are one-way chains. Since G
has no isolated vertices, there is at least one such chain G;. Then v has degree 1 in
G; and degree at least 2 in H; (if v is the tail) or H; (if v is the head). We conclude
that v has degree at least 3 in G.

Assume for the sake of contradiction that v does not have degree at least 4.
Then v has degree 3 and is in exactly three one-way chains, say Gy,, Gy,, G, With
{1 < ly < {l3. Consider Gy,. Since we know all of the chains containing v, we can
say that v has degree 1 in Hy, and degree 1 in Hy,. This contradicts the definition
of a one-way chain, as v can be neither the head nor the tail of the chain Gy,. We
conclude that v has degree at least 4 as desired. ]

Remark 3.6. If |[V(G)| > 2 in addition to G having a chain decomposition and
no isolated vertices, then G is 4-edge-connected so r has degree at least 4 as well.
However, we will not need this result, and it will follow from Corollary 7.1.

4. The Mader construction. We adapt the strategy of Schlipf and Schmidt
[10] in order to construct a chain decomposition. In particular, we will use a construc-
tion method for k-edge-connected graphs due to Mader [9]. We limit our description
of the construction to the needed case k = 4 since the method is more complicated
for odd k.

DEFINITION 4.1. A Mader operation is one of the following operations:
1. Add an edge between two (not necessarily distinct) vertices.
2. Consider two distinct edges, say e, with ends x, y and ey with ends z, w,
and “pinch” them as follows. Delete the edges e; and e, add a new vertex
v, and then add the new edges ey, ey, €, €, with one end v and the other end
x,y, z,w, respectively. While ey and es must be distinct, the ends x,y, z,w
need not be. In this case, v will have parallel edges to any repeated vertex.

THEOREM 4.2 (see [9, Corollary 14]). A graph G is 4-edge-connected if and only
if, for any r € V(G), one can construct G in the following way. Begin with a graph
GO consisting of  and one other vertex of G, connected by four parallel edges. Then
repeatedly perform Mader operations to obtain G.

Remark 4.3. Mader does not explicitly state that one can include a fixed vertex r
in G, but it follows from his work. His proof starts with G, and then reverses one of
the Mader operations while maintaining 4-edge-connectivity. An edge can be deleted
unless G is minimally 4-edge-connected, in which case he finds two vertices of degree
4 in his Lemma 13. He then shows that any degree 4 vertex can be “split off” (the
reverse of a pinch) in his Lemma 9, so we can always split off a vertex not equal to .

5. Proof of Theorem 2.10. Due to Theorem 4.2, it suffices to prove that a
chain decomposition can be maintained through a Mader operation. The decomposi-
tion in the starting graph GO is as follows. Two of the edges form a closed up chain.
The remaining two edges form a closed down chain.

Suppose the graph G’ is obtained from the graph G by a Mader operation,
with both graphs 4-edge-connected. Assume that we have a chain decomposition
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Go,G1,...,Gp, of G. By Remark 2.9, we may assume that we have a minimal chain
decomposition. We wish to create a new chain decomposition of G'.

5.1. Adding an edge. Suppose G’ is obtained from G by adding an edge with
ends u, v. If one of the ends is the root r, we can classify the new edge as a one-way
chain with tail r at, say, the very beginning of the chain decomposition. The head
must have at least two incident edges in later chains since all chains are later.

If neither end is r, choose the minimal index ¢ such that u or v has degree exactly
two in H,;, guaranteed to exist by Lemma 3.4. Note that ¢ > 1 since Hy is null.
Without loss of generality, u has degree exactly two in H;. By the definition of ¢, v
has degree at most two in H; and therefore degree at least two in H;_1. We classify
the new edge as a one-way chain with tail v and head v between the chains G;_1
and Gi-

We consider the impact of these changes on other chains in the graph. A new
chain was added, but none of the other chains changed index relative to each other.
Vertices may have increased degree in the H;’s or the H;’s due to the new edge, but
increasing degree does not invalidate any chain types. Note that some chains may no
longer be minimal, so the new chain decomposition in G’ is not necessarily minimal.

5.2. Pinching edges. Suppose G’ is obtained from G by pinching the edges e;
with ends z, y and ey with ends z, w, replacing them with edges e, ey, €., e,,. We will
use the notation J; = GC[(el) = P,e1 P, for the chain containing e;, where P, is the
subpath between x and an end of J; so that e; ¢ F(P,), and P, is defined similarly.
Note that P, (resp., P,) may have no edges if  (resp., y) is an end of J;. In the same
way, we will use the notation Jo = Ggy(e,) = Poe2P,, for the chain containing es.

We now prove several claims to deal with all possible chain classification and
chain index combinations for J; and Js.

Cram 1. If ClI(ey) = Cl(ez), then G’ has a chain decomposition rooted at .

Proof. If CI(e1) = ClI(ez), then J; = Jy. Without loss of generality, e; € E(P;)
and ey € E(P,), so that the chain can be written as J; = Jo = Pye1 (P, N P;)ea P,
(where P, N P, may have no edges if y = z). Recall that e; and e, are distinct, so
J1 = J2 is not a one-way chain.

By symmetry, we may assume J; = J5 is an up chain. In G’, we replace the chain
J1 = Jy with the following chains (in the listed order); see Figure 2 for an illustration:

1. PyegewPy. This is an up chain. Since the edges e, and e, have not yet been
used, the new vertex v is incident to two edges in later chains.

2. ey. This is a one-way chain with tail v and head y. The tail v is incident
to two edges in earlier chains, namely e, and e,. The head y is incident to
two edges in later chains since it was an internal vertex in the old up chain
Jl == JQ.

3. e,. This is a one-way chain with tail v and head z. The tail v is incident
to two edges in earlier chains, namely e, and e,. The head z is incident to
two edges in later chains since it was an internal vertex in the old up chain
Ji = Jo.

4. (PyN P,). Only add this chain if P, N P, contains an edge. This is an up
chain. The new ends y, z are each incident to an edge in an earlier chain (e,
and e, respectively) and are each incident to two edges in later chains since
they were interior vertices of the old up chain J; = Js.

We consider the impact of these replacements on other chains in the graph. We
inserted most of the edges of the old chain J; = Jo at the same chain index CI(e1) =

(© 2018 Alexander Hoyer and Robin Thomas



Downloaded 02/10/18 to 143.215.137.43. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

240 ALEXANDER HOYER AND ROBIN THOMAS
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FiG. 2. An illustration of the procedure in Claim 1. The original up chain J1 = Ja is on the
left, while its replacements in G’ are on the right. The red/dashed edges are in earlier chains than
J1 = Ja, while the blue/dotted edges are in later chains than Ji = Jo. The black/dashed-and-dotted
segments represent paths which may have any length (including 0).

C1I(es), preventing any changes. The exception is the pinched edges e; and ey which
were deleted, but the ends each received new incident edges e, ey, e., e, inserted
at the same chain index CI(e;) = ClI(e3). Thus, we have maintained the chain
decomposition. This proves Claim 1. O

Without loss of generality, we assume the following for the remainder of the proof:
o Cl(e1) < CI(ez).
e If J; is a one-way chain, then x is the tail and y the head.
e If J5 is a one-way chain, then z is the tail and w the head.

CLAIM 2. Suppose that either Jy is a one-way chain whose head y has degree one
in Hop(ey), or J2 is a one-way chain whose tail z has degree one in Hoye,). Then
G’ has a chain decomposition rooted at r.

Proof. By symmetry, we may assume J; is a one-way chain whose head y has
degree one in Hoy(e,)-

First, we replace J; with e,. This is a one-way chain with tail  and head v. The
tail  was the tail of the old one-way chain J;. The head v has two (in fact three)
incident edges in later chains, namely ey, e, €.

e Case 1: Jp is an up chain. Since y has degree one in Hop(e,), if J2 is closed,
then y is not the end of J5. By swapping z and w if necessary, we may assume
that y is not the end of J5 in P,. Thus, the end of J5 in P, is still either r or
incident to an edge in an earlier chain, despite having not placed e, yet. We
use the edges of J; and ey, e, e, to construct chains at the index CI(ez) as
follows:

1. P,e,. This is an up chain. The new end, v, has one incident edge in
an earlier chain (e,) and two incident edges in later chains (ey, e,). By
assumption, the old end in P, is still either r or incident to an edge in
an earlier chain.

2. ey. This is a one-way chain with tail v and head y. The tail v is
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incident to two edges in earlier chains (e, e,). The head y is either r or
incident to two edges in later chains since y has degree one in Hgy(c,)
by assumption.

3. ey. This is a one-way chain with tail v and head w. The tail v has two
(in fact three) incident edges in earlier chains (ey, e, €,). The head w
is either r or incident to two edges in later chains since it was part of
the old up chain Js.

4. P,. Only add this if P,, contains an edge. This is an up chain. The new
end, w, has one incident edge in an earlier chain (e,,) and two incident
edges in later chains since it was an internal vertex of the old up chain
Ja. Since we placed e, above, the end of J, in P, is either r or incident
to an end in an earlier chain, even if the end is y.

e Case 2: Jy is a down chain. Since y has degree one in Heoy(e,), ¥y & V(J2),
so each vertex of Js is still either  or incident to two edges in earlier chains,
despite having not placed e, yet. We use the edges of J, and ey, €., e, to
construct chains at the index CI(es) as follows:

1. P,. Only add this if P, contains an edge. This is a down chain. The
new end, w, has one incident edge in a later chain (e,,) and two incident
edges in earlier chains since it was an internal vertex of the old down
chain Jj.

2. ey. This is a one-way chain with tail w and head v. The tail w is either
r or incident to two edges in earlier chains since it was part of the old
down chain J,. The head v is incident to two edges in later chains (e,,
€:).

3. P,e,. This is a down chain. The new end, v, has one incident edge in a
later chain (e,) and two incident edges in earlier chains (e, €q).

4. ey. This is a one-way chain with tail v and head y. The tail v has two
(in fact three) incident edges in earlier chains (e, €., e,). The head y
is either r or incident to two edges in later chains since y has degree one
in Hop(e,) and y ¢ V(J2) by assumption, so y has degree at least three
in Heyp(e,) unless it is 7.

e Case 3: Jz is a one-way chain. Since y has degree one in Hgy(e,), ¥ # 2, SO
the tail z is still either r or incident to two edges in earlier chains, despite
having not placed e, yet. We use the edges ey, e, e, to construct chains at
the index CI(e3) as follows:

1. e,. This is a one-way chain with tail z and head v. The tail z is either r
or incident to two edges in earlier chains as discussed above. The head
v is incident to two edges in later chains (ey, ey).

2. ey. This is a one-way chain with tail v and head w. The tail v is incident
to two edges in earlier chains (e, e,). The head w is either r or incident
to two edges in later chains since it was the head of Js.

3. ey. This is a one-way chain with tail v and head y. The tail v has two
(in fact three) incident edges in earlier chains (e, €., e,). The head y
is either r or incident to two edges in later chains since y has degree one
in Hop(e,) and y ¢ V(J2) by assumption, so y has degree at least three
in Hoyp(e,) unless it is r.

We consider the impact of these replacements on other chains in the graph. As
before, most of the edges of the old chains J; and Jy were inserted at the same chain
indices CI(e1) and CI(ez), respectively, preventing any changes. The pinched edges
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e; and es were deleted, but the ends z, z, w each received new incident edges e,
€z, €y inserted at the same chain indices (C1(ey), Cl(ez2), and CI(es), respectively).
However, e, was inserted at a chain index different from the deleted edge e; since
e1 was at CI(e;) while e, was at CI(ez). By the claim assumptions, y has degree
one in Hey(e,), s0 there are no chains containing y between CI(e1) and Cl(es),
and so no chains were affected by the change. Thus, we have maintained the chain
decomposition. This proves Claim 2. O

We may now assume the following for the remaining cases:
e If J; is a one-way chain, then y has degree at least two in Hgy(e,)-
e If J; is a one-way chain, then z has degree at least two in Hej(e,)-
We also make the following conditional definitions, which will aid in distinguishing
the remaining cases:
e If J; is a one-way chain and y is not in Hcy(c,), then define the minimal index
i such that y € V(G;) and CI(e1) < i < CI(ez). Since 4 is minimal, y has
degree one in H; (incident only to the pinched edge e;). From this and the
fact that GG; is a minimal chain, it follows that either y is one of two distinct
ends of the up chain G;, or y is the head of the one-way chain G; which is
not a loop.
o If Jy is a one-way chain and z is not in Heyj(e,), then define the maximal
index j such that z € V(G;) and CI(e;) < j < CI(ez). Since j is maximal,
z has degree one in Fj (incident only to the pinched edge e3). From this
and the fact that G; is a minimal chain, it follows that either z is one of two
distinct ends of the down chain G}, or z is the tail of the one-way chain G;
which is not a loop.

CLAIM 3. Suppose that either one of 1,7 is not defined, or i < j. Then G’ has a
chain decomposition rooted at r.

Proof. The chains replacing J; will have indices adjacent to CI(ey) and ¢ (if it is
defined). Likewise, the chains replacing Jo will have indices adjacent to CI(e2) and j
(if it is defined). Thus, by the assumptions of this claim, the chains replacing J; will
have lower chain index than the chains replacing J>. This fact will be needed when
confirming that the new chains are valid. We begin by replacing .J; as follows:

e Case 1: J is an up chain. We replace it with P e e, P,. This is an up chain.
The new vertex v has two incident edges in later chains, namely e, and e,,.
e Case 2: J; is a down chain. We replace it with the following chains (in the
listed order):
1. P,. Only add this chain if P, contains an edge. This is a down chain.
The new end x has an incident edge in a later chain, namely e,.
2. P,. Only add this chain if P, contains an edge. This is a down chain.
The new end y has an incident edge in a later chain, namely e,.
3. eg. This is a one-way chain with tail x and head v. The tail z is either
r or incident to two edges in earlier chains since it was in the old down
chain J;. The head v has two incident edges in later chains, namely e,
and ey,.
4. ey. This is a one-way chain with tail y and head v. The tail y is either
r or incident to two edges in earlier chains since it was in the old down
chain Jj. The head v has two incident edges in later chains, namely e,
and e,,.
e Case 3: Ji is a one-way chain whose head y is in Hcy(e,). We replace it with
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the following chains (in the listed order):

1. e,. This is a one-way chain with tail x and head v. The tail z was the
tail of the old one-way chain J;. The head v has two (in fact three)
incident edges in later chains, namely e, e, e,.

2. ey. This is an up chain. The vertex y is either  or incident to two edges
in later chains since it was the head of the old one-way chain J;, and
it has an incident edge in an earlier chain by assumption. The vertex v
has two incident edges in later chains, namely e, and e,,, and is incident
to e, from the previous chain.

e Case 4: J; is a one-way chain whose head y is not in Hep
defined as above.
First, we replace J; with e,. This is a one-way chain with tail z and head v.
The tail = was the tail of the old one-way chain J;. The head v has two (in
fact three) incident edges in later chains, namely ey, e., €.

— Subcase 1: y is one of two distinct ends of the up chain G;. Replace G;
with G,e,. This is an up chain. Since G; was a path and v is a new
vertex, this new chain is a path. The new end v is adjacent to one edge
in an earlier chain (e;) and two edges in later chains (e, and e,).

— Subcase 2: y is the head of the one-way chain G; which is not a loop.
Then y is not required to be in H; for G; to be a valid chain. In fact,
y is not required to be in any of Hy, Hy,..., H; by the definition of i
and the assumptions of this case. Thus, we can leave (G; as is and insert
the chain e, immediately after G;. This is an up chain. The vertex y is
incident to an edge in the previous chain G;, and is either r or incident
to two edges in later chains since it is the head of G;. The vertex v
is adjacent to one edge in an earlier chain (e;) and two edges in later
chains (e, and e,).

The procedure for replacing Jo is symmetric by following the above steps in the
reversed chain decomposition.

We consider the impact of these replacements on other chains in the graph. In
most cases, we replaced the old chain J; with new chains inserted at the same chain
index CI(ey), preventing any changes. The pinched edge e; was deleted, but the end
x received a new incident edge e, at the same chain index CI(e;). In Cases 1-3,
the same is true for y. In Case 4, y received a new incident edge e, either at or
immediately after the chain index ¢. However, by the definition of i and the claim
assumptions, no chains were affected by the new chain index except G;, which was
specifically considered and shown to be valid in Case 4. By similar arguments, the
changes caused by replacing Jy also did not invalidate any chains. Thus, we have
maintained the chain decomposition. This proves Claim 3. O

e1)- Then 7 is

CLAIM 4. Suppose that both of i,j are defined and i = j. Then G’ has a chain
decomposition rooted at r.

Proof. Recall that G, is either an up chain or a one-way chain with head y, and

G is either a down chain or a one-way chain with tail z. Since ¢ = j, we conclude

that G; = G; must be a one-way chain with tail z and head y, and y # z since %

and j are defined. We can replace J; and Jo with the following chains in the listed

order. The first two will be placed immediately before index i = j and the last two
immediately after index i = j; see Figure 3 for an illustration:

1. e,. This is a one-way chain with tail z and head v. The tail z was the tail of

the old one-way chain Jj, and we are placing this chain after index CI(ey).
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The head v has two (in fact three) incident edges in later chains, namely
B @z oy

2. e,. This is a one-way chain with tail z and head v. By the definition of j,
the tail 2 is either r or incident to two edges in earlier chains than G, and
we are placing this chain immediately before index j. The head v has two
incident edges in later chains, namely e, and e,,.

3. ey. This is a one-way chain with tail v and head y. The tail v has two incident
edges in earlier chains, namely e, and e,. By the definition of i, the head y is
either r or incident to two edges in later chains than G;, and we are placing
this chain immediately after index 4.

4. ey. This is a one-way chain with tail v and head w. The tail v has two (in
fact three) incident edges in earlier chains, namely ey, e,, e.. The head w was
the head of the old one-way chain J5, and we are placing this chain before

01(62).
(Later than i=j) G (Earlier than i=j) (Later than i=j) G' (Earlier than i=j)
' [} 2 '
s .,k / 4
Gi=Gj I//, 03 Gi=Gj }l//
y z Y
Chain 3 (OW) Chain 2 (OW)
after i=j before i=j
e e,
Chain 1 (OW) Chain 4 (OW)
at CI(e,) at CI(e;)
X w
* 4 'w al
‘A O ’ L
7 . 21
2] ’ I
7 3 A ,_
(Earlier than CI(e;)) (Later than CI(e,)) (Earlier than CI(e;)) (Later than CI(e;))

Fia. 3. An illustration of the procedure in Claim 4. The original chains J1 and Ja are on the
left, while their replacements in G’ are on the right. The red/dashed edges are in earlier chains,
while the blue/dotted edges are in later chains, with the particular meanings of “earlier” and “later”
in the corresponding labels.

We consider the impact of these replacements on other chains in the graph. The
deleted edge e; was replaced by two edges with chain index greater than CI(ey), so
we must be careful. The edge e, was inserted before index ¢, but x had degree at
least two in Hgre,), S0 losing a degree in later H subgraphs will not invalidate any
chains. The edge e, was inserted immediately after index 4, so by the definition of i,
the only chain affected is G;. Since G; has y as a head, losing a degree in H; will not
invalidate the chain. By a symmetric argument, the changes caused by e, and e, do
not invalidate any chains. This proves Claim 4. O

CLAIM 5. Suppose that both of i,j are defined, and ¢ > j. Then G’ has a chain
decomposition rooted at .

Proof. We can replace J; and J with the following chains at the indicated chain
indices; see Figure 4 for an illustration:
1. eyz. Add this chain at index CI(e;). This is a one-way chain with tail x and
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head v. The tail z was the tail of the old one-way chain J;, and we are placing
this chain at index CI(ey). The head v has two (in fact three) incident edges
in later chains, namely ey, €., €.

2. e,. Add this chain immediately after G;. This is a one-way chain with tail
z and head v. By the definition of j, the tail z is either r or incident to two
edges in earlier chains than G, and we are placing this chain after index j.
The head v has two incident edges in later chains, namely e, and e.

3. ey. Add this chain immediately before G;. This is a one-way chain with tail
v and head y. The tail v has two incident edges in earlier chains, namely e,
and e,. By the definition of 4, the head y is either 7 or incident to two edges
in later chains than G;, and we are placing this chain before index 3.

4. ey. Add this chain at index CI(ez). This is a one-way chain with tail v and
head w. The tail v has two (in fact three) incident edges in earlier chains,
namely e;, ey, e.. The head w was the head of the old one-way chain Js, and
we are placing this chain at index CI(e3).

(Later than i) G (Earlier than j) (Later than i) G' (Earlier than j)
. —— . 3 — !
- —_ Il . . [
L A - N, ,
y ' z Y z
Chain 3 (OW) Chain 2 (OW)
before i after j
e e,
Chain 1 (OW) Chain 4 (OW)
at CI(e;) at Cl(e,)
X w
X % ’-w 71
71 Ee 7 2 0
7 RO A .
S / "
o ) i 2
( . )
(Earlier than CI(e,)) (Later than CI(e,)) (Earlier than Cl(e,)) (Later than CI(e,))

Fic. 4. An illustration of the procedure in Claim 5. The original chains J1 and Jo are on the
left, while their replacements in G’ are on the right. The red/dashed edges are in earlier chains,
while the blue/dotted edges are in later chains, with the particular meanings of “earlier” and “later”
in the corresponding labels. The black/dashed-and-dotted segments represent paths which may have
any length (including 0).

We consider the impact of these replacements on other chains in the graph. The
edge e; was deleted, but = received a new incident edge e, at the same chain in-
dex CI(eq). The edge e, was inserted before index ¢, but the index is still smaller
than 7, so by the definition of 4, no chains are affected. By a symmetric argument,
the changes caused by e, and e, also do not invalidate any chains. This proves Claim
5. O

The claims cover all possibilities of pinching edges. The proof of Theorem 2.10
is complete. The proof also implies a polynomial-time algorithm to construct a chain
decomposition.

6. Proof of Theorem 2.11. Assume we have a chain decomposition Gg, G1, .. .,
G, of G. By Remark 2.9, we may assume that the chain decomposition is minimal.
We will adapt the strategy of Curran, Lee, and Yu [3] to prove Theorem 2.11. In
particular, we will construct two partial numberings of the edges of G using the chain
decomposition. We will then construct four spanning trees in two pairs, with one pair
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associated with each numbering. Within each pair, paths back to the root r will be
monotonic in the associated numbering to ensure independence. Between pairs, paths
back to the root r will be monotonic in chain index to ensure independence.

Using Corollary 3.3, we may assume that there are no loops in G. By Lemma
3.4, for each vertex v # r, there are two distinct nonloop edges incident to v whose
chain indices are strictly smaller than the chain index of any other edge incident to
v. Likewise, there are two distinct edges whose chain indices are strictly larger than
the chain index of any other edge adjacent to v. We will name these edges as follows.

DEFINITION 6.1. For each vertexr v # r, the two f-edges of v are the two incident
edges with the lowest chain index. Similarly, the two g-edges of v are the two incident
edges with the highest chain index.

Remark 6.2. By the definition of a down chain, the edges of down chains are
never f-edges. Likewise, by the definition of an up chain, the edges of up chains are
never g-edges.

Next, we will iteratively define a numbering f, which will assign distinct values
in R to all edges in up chains and one-way chains. Here, two “consecutive” edges in
a chain will refer to two edges in the chain which are incident to an internal vertex of
the chain, so the two edges incident to the end of a closed chain are not consecutive,
despite being adjacent.

We begin by numbering the edges in E(Gy), and then number the edges of each
up chain and one-way chain in order of chain index. When we reach a chain Gj,
we may assume that all edges in F(H;) belonging to up chains and one-way chains
have been numbered, which includes all f-edges in F(H;) by Remark 6.2. We use the
following procedure to number the edges in E(G;):

e If G; is a closed up chain containing r, then number the edges in E(G;) so
that the values change monotonically between consecutive edges in the chain.
The particular numbers used are arbitrary.

e If GG; is a closed up chain not containing r, then both f-edges of the common
end have already been numbered. Call these two f-edges numbering edges of
G;. Say the numbering edges of G; have f-values a and b. Number the edges
in F(G;) so that the values change monotonically between consecutive edges
in the chain, and all values are between a and b.

e If (G; is an open up chain containing r, then r is an end and the other end
is some u # 7. At least one f-edge of u has already been numbered. Choose
an f-edge which has already been numbered and call it a numbering edge
of G;. Say that a is the f-value of the numbering edge. Number the edges
in E(G;) so that the values increase between consecutive edges in the chain
when moving from u to r, and all values are larger than a.

e If G; is an open up chain not containing r, then at least one f-edge of each
end has been numbered. If the ends are u and v, we can choose two distinct
edges ey, e, € E(H;) so that e, is an f-edge of u and e, is an f-edge of v.
We can choose these two distinct edges because otherwise, the only f-edge of
uw or v in E(H;) would be a single edge between u and v, and then H; would
not be connected. Call the edges e,, e, numbering edges of G;. Without loss
of generality, f(e,) =a < b= f(e,). Number the edges in F(G;) so that the
values increase between consecutive edges in the chain when moving from u
to v, and all values are between a and b.

e If G; is a one-way chain whose tail is r, then number the edge of G; arbitrarily.

e If G, is a one-way chain whose tail is not r, then both f-edges of the tail
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are already numbered, say with f-values a and b. Number the edge of G;
between a and b.

We symmetrically define a numbering g, which assigns distinct values in R to
the edges of down chains and one-way chains, by using the above procedure in the
reversed chain decomposition.

We are finally ready to construct the trees. Define the subgraphs T3,7T5,7T5,T)
as follows. For each v # 7, consider the two f-edges of v. Assign the edge with the
lower f-value to 717 and the edge with the higher f-value to T,. Similarly, consider
the two g-edges of v. Assign the edge with the lower g-value to T3 and the edge with
the higher g-value to Tj.

Several properties of 11,75, T3, T, will follow from the following claim.

CLAIM 6. For any v # r, consider the edge e1 assigned to Ty at v. Let v' be the
other end of ey. Ifv' # r, let €| be the edge assigned to Ty at v'. Then CI(e}) <
ClI(eyr) and f(e}) < f(e1).

Proof. Let e be the edge assigned to T at v. The edge e; is not in a down chain
by Remark 6.2. We break the proof into two cases.

e Suppose e; is in an up chain G;. Since the chain decomposition is minimal

and v’ € V(G;), its f-edges either are in E(G;) or else have chain index less
than 4. In either case, CI(e}) <i = CI(e;1) as desired.
Note that ey either is in E(G;) or else is the numbering edge of G; at the
end v. By the numbering procedure, we know that f(e1) is between f(e2)
and the f-value of one of the f-edges of v/, say e*. By the definition of 77,
f(e1) < f(ea), so it follows that f(e*) < f(e1). Again by the definition of T7,
fley) < f(e*), so f(e}) < f(e1) as desired.

e Suppose e; induces a one-way chain G;. Since e; is an f-edge, v has degree
at most one in H;, so v must be the head of G;. Then v’ is the tail of G;, so
the f-edges of v’ have chain indices smaller than ¢, which means €] # e; and
CI(e}) < CI(ey) as desired.

From the numbering procedure, we know that f(e;) is between the f-values
of the two f-edges of v/, with f(e}) being the smaller by the definition of T;.
So, f(e}) < f(e1) as desired.
In both cases we have CI(e}) < ClI(e1) and f(e}]) < f(e1). This proves the
claim. O

With the claim proven, it follows that the edges assigned to 13 are all distinct,
there are no cycles in T7, and following consecutive edges assigned to T} produces a
path which is decreasing in chain index and strictly decreasing in f-value, and can
only end at r. Thus, T7 is connected and is a spanning tree of G. A similar argument
shows that T3 is a spanning tree of G where paths to r are decreasing in chain index
and strictly increasing in f-value. Due to the opposite trends in f-values, T and T5
are edge-independent with root r.

By symmetry, we obtain analogous results for 75 and Ty. It remains to show that
a tree from {717, T»} and a tree from {73, Ty} are edge-independent. The paths back to
r from a vertex v # r are decreasing in chain index in one tree and increasing in chain
index in the other tree, but not strictly. The first edges in these paths are an f-edge
and a g-edge of v, respectively. By Lemmas 3.4 and 3.5, there is a positive difference
in chain index between these initial edges, so the paths are in fact edge-disjoint.
The proof of Theorem 2.11 is complete. The proof also implies a polynomial-time
algorithm to construct the edge-independent spanning trees.
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7. Summary of results. With Theorems 2.10 and 2.11 proven, we obtain The-
orem 1.1. In fact, we can examine the argument more carefully to extract a stronger,
summarizing result.

COROLLARY 7.1. Suppose G is a graph with no isolated vertices and |V (G)| > 2.
Then the following statements are equivalent:
1. G is 4-edge-connected.
2. There exists 1 € V(Q) so that G has a chain decomposition rooted at .
3. For allr € V(G), G has a chain decomposition rooted at .
4. There exists r € V(G) so that G has four edge-independent spanning trees
rooted at r.
5. For allr € V(G), G has four edge-independent spanning trees rooted at r.

Proof. Theorem 2.10 gives us (1) = (3). Theorem 2.11 gives us (2) = (4) and
(3) = (5). Trivially, we have (3) = (2) and (5) = (4). Therefore, we need only show
(4) = (1).

Assume for the sake of contradiction that G has four edge-independent spanning
trees rooted at some r € V(G) but is not 4-edge-connected. Suppose S C E(G) is an
edge cut with |S| < 4. Consider a vertex v in a component of G — S not containing
r. Using the paths in each of the edge-independent spanning trees, we find that
there exist four edge-disjoint paths between v and r. This contradicts the existence
of S. |
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