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FOUR EDGE-INDEPENDENT SPANNING TREES 
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Abstract. We prove an ear-decomposition theorem for 4-edge-connected graphs and use it to
prove that for every 4-edge-connected graph G and every r ∈ V (G), there is a set of four spanning
trees of G with the following property. For every vertex in G, the unique paths back to r in each
tree are edge-disjoint. Our proof implies a polynomial-time algorithm for constructing the trees.
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1. Introduction. If r is a vertex of a graph G, two subtrees T1, T2 of G are
edge-independent with root r if each tree contains r, and for each v  V (T1)  V (T2),
the unique path in T1 between r and v is edge-disjoint from the unique path in T2

between r and v. Larger sets of trees are called edge-independent with root r if they
are pairwise edge-independent with root r.

Itai and Rodeh [6] posed the Edge-Independent Tree Conjecture, which is that
for every k-edge-connected graph G and every r  V (G), there is a set of k edge-
independent spanning trees of G rooted at r. Here, we prove the case k = 4 of the
Edge-Independent Tree Conjecture. That is, we prove the following.

Theorem 1.1. If G is a 4-edge-connected graph and r  V (G), then there exists
a set of four edge-independent spanning trees of G rooted at r.

There is a similar conjecture which has been studied in parallel, concerning ver-
tices rather than edges. If r is a vertex of G, two subtrees T1, T2 of G are independent
with root r if each tree contains r, and for each v  V (T1) V (T2), the unique path in
T1 between r and v is internally vertex-disjoint from the unique path in T2 between
r and v. Larger sets of trees are called independent with root r if they are pairwise
independent with root r.

Itai and Rodeh [6] also posed the Independent Tree Conjecture, which is that for
every k-connected graph G and for every r  V (G), there is a set of k independent
spanning trees of G rooted at r.

The case k = 2 of each conjecture was proven by Itai and Rodeh [6]. The case
k = 3 of the Independent Tree Conjecture was proven by Cheriyan and Maheshwari [1]
and then independently by Zehavi and Itai [11]. Huck [5] proved the Independent
Tree Conjecture for planar graphs (with any k). Building on this work and that of
Kawarabayashi, Lee, and Yu [7], the case k = 4 of the Independent Tree Conjecture
was proven by Curran, Lee, and Yu across two papers [2, 3]. The Independent Tree
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234 ALEXANDER HOYER AND ROBIN THOMAS

Conjecture is open for nonplanar graphs with k > 4.
In 1992, Khuller and Schieber [8] published a later-disproven argument that

the Independent Tree Conjecture implies the Edge-Independent Tree Conjecture.
Gopalan and Ramasubramanian [4] demonstrated that Khuller and Schieber’s proof
fails, but salvaged the technique, and proved the case k = 3 of the Edge-Independent
Tree Conjecture by reducing it to the case k = 3 of the Independent Tree Conjec-
ture. Schlipf and Schmidt [10] provided an alternate proof of the case k = 3 of
the Edge-Independent Tree Conjecture, which does not rely on the Independent Tree
Conjecture. The case k = 4 of the Edge-Independent Tree Conjecture is proven here,
while the case k > 4 remains open.

By adapting the technique of Schlipf and Schmidt [10], we prove an edge analogue
of the planar chain decomposition of Curran, Lee, and Yu [2]. We then use this
decomposition to create two edge numberings which define the required trees.

The conjectures are related to network communication with redundancy. If G
represents a communication network, one can wonder whether information can be
broadcast through the entire network with resistance to edge failures (i.e., it would
require k simultaneous edge failures to disconnect a client from every broadcast).
The Edge-Independent Tree Conjecture implies that the absence of edge bottlenecks
of size less than k is necessary and sufficient for a redundant broadcast to be possible
from any source r. The Independent Tree Conjecture answers the analogous problem
where vertex failures are the concern, rather than edge failures.

2. The chain decomposition. In this paper, a graph will refer to what is
commonly called a multigraph. That is, there may be multiple edges between the
same pair of vertices (“parallel edges”) and an edge may connect a vertex to itself (a
“loop”). All paths and cycles are simple, meaning they have no repeated vertices or
edges. We consider a loop to induce a cycle of length one and a pair of parallel edges
to induce a cycle of length two. Also, the presence of a loop increases the degree of a
vertex by two. We will use the overline notation H to name specific subgraphs, rather
than for the graph complement.

Throughout this section, fix a graph G with  V (G)  1 and a vertex r  V (G).
We begin by defining a decomposition analogous to the planar chain decomposition
in [2].

Definition 2.1. An up chain of G with respect to a pair of edge-disjoint subgraphs
(H, H) is a subgraph of G, edge-disjoint from H and H, which is either

1. a path with at least one edge such that every vertex either is r or has degree
at least two in H, and the ends are either r or in H, or

2. a cycle such that every vertex either is r or has degree at least two in H, and
some vertex v either is r or has degree at least two in H; we will consider v
to be both ends of the chain and all other vertices in the chain to be internal
vertices.

Chains which are paths will be called open and chains which are cycles will be called
closed, analogous to the standard ear decomposition.

Definition 2.2. A down chain of G with respect to a pair of edge-disjoint sub-
graphs (H, H) is an up chain with respect to (H, H).

Definition 2.3. A one-way chain of G with respect to the pair of edge-disjoint
subgraphs (H, H) is a subgraph of G, induced by an edge e / H  H with ends u and
v, such that u either is r or has degree at least two in H, and v either is r or has
degree at least two in H. We call u the tail of the chain and v the head.
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236 ALEXANDER HOYER AND ROBIN THOMAS

1. A minimal up chain is a special case of an ear in the standard ear decompo-
sition.

2. The chain decomposition is symmetric in the following sense. If G0, G1, . . . ,
Gm is a chain decomposition rooted at r, then Gm, Gm 1, . . . , G0 is a chain
decomposition rooted at r, with the up and down chains switched and the
heads and tails of one-way chains switched. Throughout this paper, we will
refer to this fact as “symmetry.”

3. G0 is either a closed up chain ending at r or a one-way chain with r as the
tail, and Gm is either a closed down chain ending at r or a one-way chain
with r as the head.

4. In the planar chain decomposition in [2], up chains and down chains are anal-
ogous to the corresponding open chains. The elementary chain is analogous
to a one-way chain.

Remark 2.9. An up chain or down chain may be subdivided into several minimal
chains by breaking at the offending internal vertices. These minimal chains may
then be inserted consecutively into the decomposition at the index of the old chain.
In this way, one can easily obtain a minimal chain decomposition from any chain
decomposition.

We will prove Theorem 1.1 by combining the following results.

Theorem 2.10. If G is a 4-edge-connected graph and r  V (G), then G has a
chain decomposition rooted at r.

Theorem 2.11. Suppose G is a graph with no isolated vertices. If G has a
chain decomposition rooted at some r  V (G), then there exists a set of four edge-
independent spanning trees of G rooted at r.

3. Preliminary results. While not needed for our main results, the follow-
ing proposition demonstrates how the chain decomposition fits in with the various
decompositions used in other cases of the Independent Tree Conjecture and Edge-
Independent Tree Conjecture. A partial chain decomposition and its complement are
“almost 2-edge-connected” in the following sense.

Proposition 3.1. Suppose G0, G1, . . . , Gm is a chain decomposition of a graph
G rooted at r. Then for i = 1, . . . ,m, Hi and Hi 1 are connected. Further, if e is a
cut edge of Hi (resp., Hi 1), then e induces a one-way chain and one component of
Hi  e (resp., Hi 1  e) contains one vertex and no edges.

Proof. By symmetry, we need only prove the result for the Hi’s. The connectivity
follows from the fact that every type of chain is connected and contains at least one
vertex in an earlier chain.

Suppose e is a cut edge of some Hi. Since e is an edge in Hi, we have CI(e) < i
and HCI(e)  Hi. We also know that HCI(e) is connected from the previous argument
that each Hi is connected. Then e cannot be part of an up chain, or else e would be
part of a cycle formed by the chain GCI(e) and a path in HCI(e) between the ends of
GCI(e) (if GCI(e) is open; else the chain itself is a cycle). Also, e cannot be part of
a down chain, or else e would be part of a cycle formed by e and a path in HCI(e)

between the ends of e. Therefore, e induces a one-way chain.
Let C be the component of Hi  e not containing r, and suppose for the sake of

contradiction that C contains an edge. Let e be an edge of C with minimal chain
index. Consider GCI(e ), the chain containing e . Regardless of the chain type, some
vertices in V (GCI(e )) are incident to at least two edges in HCI(e )  Hi since r / C,
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FOUR EDGE-INDEPENDENT SPANNING TREES 237

so one of these edges is not e. This contradicts the minimality of CI(e ).

The next lemma and its corollary will allow us to ignore the possibility of loops
in the graph when convenient.

Lemma 3.2. Suppose G0, G1, . . . , Gm is a chain decomposition of G rooted at r.
If v  = r is in Hi (resp., Hi), then v is incident to a nonloop edge in Hi (resp., Hi). If
v has degree at least two in Hi (resp., Hi), then v is incident to two distinct nonloop
edges in Hi (resp., Hi).

Proof. Note that the second claim in the lemma implies the first, since a loop
increases the degree of a vertex by 2, so it suffices to prove the second claim in the
lemma.

Suppose v is incident to a loop, which by symmetry we may assume is in Hi. Of
all loops incident to v, choose the one with minimal chain index j < i. Consider the
chain classification of Gj . The chain definitions all coincide for a loop and require
that v( = r) have degree at least two in Hj . By the minimality of j, v is not incident
to any loops in Hj . It follows that v is incident to two distinct nonloop edges in
Hj  Hi.

Corollary 3.3. Suppose G0, G1, . . . , Gm is a chain decomposition of G rooted
at r and e  E(Gi) is a loop. Then G0, G1, . . . , Gi 1, Gi+1, . . . , Gm is a chain decom-
position of G  e rooted at r. Further, if G has no isolated vertices, then G  e has
no isolated vertices.

Proof. The first claim follows from the preceding lemma. For the second, observe
that if e is the only edge incident to its end, then it fails the conditions for every chain
definition.

Next, we prove the following useful fact about minimal chain decompositions.

Lemma 3.4. Suppose G is a graph with no isolated vertices, G0, G1, . . . , Gm is a
minimal chain decomposition of G rooted at r, and v  V (G) with v  = r. Then there
are indices i, j so that v has degree exactly 2 in Hi and Hj.

Proof. By symmetry, we need only find i. Since G has no isolated vertices, v is
in some chain. Consider the chain Gi0 containing v so that i0 is minimal. Note that
v / V (Hi0).

If Gi0 is an up chain, then v is an internal vertex of Gi0 since v / V (Hi0), so
v has degree 2 in Gi0 and degree at least two in Hi0 . Therefore Hi0 is not null, so
i0 < m. Then i = i0 + 1 completes the proof.

The chain Gi0 is not a down chain since v / V (Hi0).
So we may assume that Gi0 is a one-way chain, and v must be the head since

v / V (Hi0). Therefore v has degree at least 2 in Hi0 , so we may consider the next
chain to contain v, say Gi1 . Note that v has degree one in Hi1 by the definition of i1.

If Gi1 is an up chain, then it is open and v is an end of the chain, since the chain
decomposition is minimal and v has degree one in Hi1 . The chain Gi1 is not a down
chain since v has degree one in Hi1 . If Gi1 is a one-way chain, then v is the head since
v( = r) does not have degree at least two in Hi1 . In all cases, v has degree one in Gi1

and degree at least 2 in Hi1 . Therefore Hi1 is not null, so i1 < m. Then i = i1 + 1
completes the proof.

Finally, we show that the chain decomposition implies a minimum degree result.

Lemma 3.5. Suppose G is a graph with no isolated vertices, G0, G1, . . . , Gm is a
chain decomposition of G rooted at r, and v  V (G) with v  = r. Then v has degree
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238 ALEXANDER HOYER AND ROBIN THOMAS

at least 4.

Proof. By Corollary 3.3, we may assume that there are no loops in G. If v is in
an up chain Gi, then v has degree at least 2 in Hi, and either degree 2 in Gi (if v is
internal) or degree at least 1 in Gi and degree at least 1 in Hi (if v is an end). Either
way, v has degree at least 4 in G. By symmetry, the same is true if v is in a down
chain.

So we may assume that the only chains containing v are one-way chains. Since G
has no isolated vertices, there is at least one such chain Gj . Then v has degree 1 in
Gj and degree at least 2 in Hj (if v is the tail) or Hj (if v is the head). We conclude
that v has degree at least 3 in G.

Assume for the sake of contradiction that v does not have degree at least 4.
Then v has degree 3 and is in exactly three one-way chains, say G 1 , G 2 , G 3 with
 1 <  2 <  3. Consider G 2 . Since we know all of the chains containing v, we can
say that v has degree 1 in H 2 and degree 1 in H 2 . This contradicts the definition
of a one-way chain, as v can be neither the head nor the tail of the chain G 2 . We
conclude that v has degree at least 4 as desired.

Remark 3.6. If  V (G)  2 in addition to G having a chain decomposition and
no isolated vertices, then G is 4-edge-connected so r has degree at least 4 as well.
However, we will not need this result, and it will follow from Corollary 7.1.

4. The Mader construction. We adapt the strategy of Schlipf and Schmidt
[10] in order to construct a chain decomposition. In particular, we will use a construc-
tion method for k-edge-connected graphs due to Mader [9]. We limit our description
of the construction to the needed case k = 4 since the method is more complicated
for odd k.

Definition 4.1. A Mader operation is one of the following operations:
1. Add an edge between two (not necessarily distinct) vertices.
2. Consider two distinct edges, say e1 with ends x, y and e2 with ends z, w,

and “pinch” them as follows. Delete the edges e1 and e2, add a new vertex
v, and then add the new edges ex, ey, ez, ew with one end v and the other end
x, y, z, w, respectively. While e1 and e2 must be distinct, the ends x, y, z, w
need not be. In this case, v will have parallel edges to any repeated vertex.

Theorem 4.2 (see [9, Corollary 14]). A graph G is 4-edge-connected if and only
if, for any r  V (G), one can construct G in the following way. Begin with a graph
G0 consisting of r and one other vertex of G, connected by four parallel edges. Then
repeatedly perform Mader operations to obtain G.

Remark 4.3. Mader does not explicitly state that one can include a fixed vertex r
in G0, but it follows from his work. His proof starts with G, and then reverses one of
the Mader operations while maintaining 4-edge-connectivity. An edge can be deleted
unless G is minimally 4-edge-connected, in which case he finds two vertices of degree
4 in his Lemma 13. He then shows that any degree 4 vertex can be “split off” (the
reverse of a pinch) in his Lemma 9, so we can always split off a vertex not equal to r.

5. Proof of Theorem 2.10. Due to Theorem 4.2, it suffices to prove that a
chain decomposition can be maintained through a Mader operation. The decomposi-
tion in the starting graph G0 is as follows. Two of the edges form a closed up chain.
The remaining two edges form a closed down chain.

Suppose the graph G is obtained from the graph G by a Mader operation,
with both graphs 4-edge-connected. Assume that we have a chain decomposition
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FOUR EDGE-INDEPENDENT SPANNING TREES 239

G0, G1, . . . , Gm of G. By Remark 2.9, we may assume that we have a minimal chain
decomposition. We wish to create a new chain decomposition of G .

5.1. Adding an edge. Suppose G is obtained from G by adding an edge with
ends u, v. If one of the ends is the root r, we can classify the new edge as a one-way
chain with tail r at, say, the very beginning of the chain decomposition. The head
must have at least two incident edges in later chains since all chains are later.

If neither end is r, choose the minimal index i such that u or v has degree exactly
two in Hi, guaranteed to exist by Lemma 3.4. Note that i  1 since H0 is null.
Without loss of generality, u has degree exactly two in Hi. By the definition of i, v
has degree at most two in Hi and therefore degree at least two in Hi 1. We classify
the new edge as a one-way chain with tail u and head v between the chains Gi 1

and Gi.
We consider the impact of these changes on other chains in the graph. A new

chain was added, but none of the other chains changed index relative to each other.
Vertices may have increased degree in the Hi’s or the Hi’s due to the new edge, but
increasing degree does not invalidate any chain types. Note that some chains may no
longer be minimal, so the new chain decomposition in G is not necessarily minimal.

5.2. Pinching edges. Suppose G is obtained from G by pinching the edges e1

with ends x, y and e2 with ends z, w, replacing them with edges ex, ey, ez, ew. We will
use the notation J1 = GCI(e1) = Pxe1Py for the chain containing e1, where Px is the
subpath between x and an end of J1 so that e1 / E(Px), and Py is defined similarly.
Note that Px (resp., Py) may have no edges if x (resp., y) is an end of J1. In the same
way, we will use the notation J2 = GCI(e2) = Pze2Pw for the chain containing e2.

We now prove several claims to deal with all possible chain classification and
chain index combinations for J1 and J2.

Claim 1. If CI(e1) = CI(e2), then G has a chain decomposition rooted at r.

Proof. If CI(e1) = CI(e2), then J1 = J2. Without loss of generality, e1  E(Pz)
and e2  E(Py), so that the chain can be written as J1 = J2 = Pxe1(Py  Pz)e2Pw

(where Py  Pz may have no edges if y = z). Recall that e1 and e2 are distinct, so
J1 = J2 is not a one-way chain.

By symmetry, we may assume J1 = J2 is an up chain. In G , we replace the chain
J1 = J2 with the following chains (in the listed order); see Figure 2 for an illustration:

1. PxexewPw. This is an up chain. Since the edges ey and ez have not yet been
used, the new vertex v is incident to two edges in later chains.

2. ey. This is a one-way chain with tail v and head y. The tail v is incident
to two edges in earlier chains, namely ex and ew. The head y is incident to
two edges in later chains since it was an internal vertex in the old up chain
J1 = J2.

3. ez. This is a one-way chain with tail v and head z. The tail v is incident
to two edges in earlier chains, namely ex and ew. The head z is incident to
two edges in later chains since it was an internal vertex in the old up chain
J1 = J2.

4. (Py  Pz). Only add this chain if Py  Pz contains an edge. This is an up
chain. The new ends y, z are each incident to an edge in an earlier chain (ey
and ez, respectively) and are each incident to two edges in later chains since
they were interior vertices of the old up chain J1 = J2.

We consider the impact of these replacements on other chains in the graph. We
inserted most of the edges of the old chain J1 = J2 at the same chain index CI(e1) =
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FOUR EDGE-INDEPENDENT SPANNING TREES 241

incident to two edges in earlier chains (ex, ez). The head y is either r or
incident to two edges in later chains since y has degree one in HCI(e2)

by assumption.
3. ew. This is a one-way chain with tail v and head w. The tail v has two

(in fact three) incident edges in earlier chains (ex, ey, ez). The head w
is either r or incident to two edges in later chains since it was part of
the old up chain J2.

4. Pw. Only add this if Pw contains an edge. This is an up chain. The new
end, w, has one incident edge in an earlier chain (ew) and two incident
edges in later chains since it was an internal vertex of the old up chain
J2. Since we placed ey above, the end of J2 in Pw is either r or incident
to an end in an earlier chain, even if the end is y.

 Case 2: J2 is a down chain. Since y has degree one in HCI(e2), y / V (J2),
so each vertex of J2 is still either r or incident to two edges in earlier chains,
despite having not placed ey yet. We use the edges of J2 and ey, ez, ew to
construct chains at the index CI(e2) as follows:

1. Pw. Only add this if Pw contains an edge. This is a down chain. The
new end, w, has one incident edge in a later chain (ew) and two incident
edges in earlier chains since it was an internal vertex of the old down
chain J1.

2. ew. This is a one-way chain with tail w and head v. The tail w is either
r or incident to two edges in earlier chains since it was part of the old
down chain J2. The head v is incident to two edges in later chains (ey,
ez).

3. Pzez. This is a down chain. The new end, v, has one incident edge in a
later chain (ey) and two incident edges in earlier chains (ex, ew).

4. ey. This is a one-way chain with tail v and head y. The tail v has two
(in fact three) incident edges in earlier chains (ex, ez, ew). The head y
is either r or incident to two edges in later chains since y has degree one
in HCI(e2) and y / V (J2) by assumption, so y has degree at least three

in HCI(e2) unless it is r.
 Case 3: J2 is a one-way chain. Since y has degree one in HCI(e2), y  = z, so

the tail z is still either r or incident to two edges in earlier chains, despite
having not placed ey yet. We use the edges ey, ez, ew to construct chains at
the index CI(e2) as follows:

1. ez. This is a one-way chain with tail z and head v. The tail z is either r
or incident to two edges in earlier chains as discussed above. The head
v is incident to two edges in later chains (ey, ew).

2. ew. This is a one-way chain with tail v and head w. The tail v is incident
to two edges in earlier chains (ex, ez). The head w is either r or incident
to two edges in later chains since it was the head of J2.

3. ey. This is a one-way chain with tail v and head y. The tail v has two
(in fact three) incident edges in earlier chains (ex, ez, ew). The head y
is either r or incident to two edges in later chains since y has degree one
in HCI(e2) and y / V (J2) by assumption, so y has degree at least three

in HCI(e2) unless it is r.
We consider the impact of these replacements on other chains in the graph. As

before, most of the edges of the old chains J1 and J2 were inserted at the same chain
indices CI(e1) and CI(e2), respectively, preventing any changes. The pinched edges
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e1 and e2 were deleted, but the ends x, z, w each received new incident edges ex,
ez, ew inserted at the same chain indices (CI(e1), CI(e2), and CI(e2), respectively).
However, ey was inserted at a chain index different from the deleted edge e1 since
e1 was at CI(e1) while ey was at CI(e2). By the claim assumptions, y has degree
one in HCI(e2), so there are no chains containing y between CI(e1) and CI(e2),
and so no chains were affected by the change. Thus, we have maintained the chain
decomposition. This proves Claim 2.

We may now assume the following for the remaining cases:
 If J1 is a one-way chain, then y has degree at least two in HCI(e2).

 If J2 is a one-way chain, then z has degree at least two in HCI(e1).
We also make the following conditional definitions, which will aid in distinguishing

the remaining cases:
 If J1 is a one-way chain and y is not in HCI(e1), then define the minimal index

i such that y  V (Gi) and CI(e1) < i < CI(e2). Since i is minimal, y has
degree one in Hi (incident only to the pinched edge e1). From this and the
fact that Gi is a minimal chain, it follows that either y is one of two distinct
ends of the up chain Gi, or y is the head of the one-way chain Gi which is
not a loop.

 If J2 is a one-way chain and z is not in HCI(e2), then define the maximal
index j such that z  V (Gj) and CI(e1) < j < CI(e2). Since j is maximal,
z has degree one in Hj (incident only to the pinched edge e2). From this
and the fact that Gj is a minimal chain, it follows that either z is one of two
distinct ends of the down chain Gj , or z is the tail of the one-way chain Gj

which is not a loop.

Claim 3. Suppose that either one of i, j is not defined, or i < j. Then G has a
chain decomposition rooted at r.

Proof. The chains replacing J1 will have indices adjacent to CI(e1) and i (if it is
defined). Likewise, the chains replacing J2 will have indices adjacent to CI(e2) and j
(if it is defined). Thus, by the assumptions of this claim, the chains replacing J1 will
have lower chain index than the chains replacing J2. This fact will be needed when
confirming that the new chains are valid. We begin by replacing J1 as follows:

 Case 1: J1 is an up chain. We replace it with PxexeyPy. This is an up chain.
The new vertex v has two incident edges in later chains, namely ez and ew.

 Case 2: J1 is a down chain. We replace it with the following chains (in the
listed order):

1. Px. Only add this chain if Px contains an edge. This is a down chain.
The new end x has an incident edge in a later chain, namely ex.

2. Py. Only add this chain if Py contains an edge. This is a down chain.
The new end y has an incident edge in a later chain, namely ey.

3. ex. This is a one-way chain with tail x and head v. The tail x is either
r or incident to two edges in earlier chains since it was in the old down
chain J1. The head v has two incident edges in later chains, namely ez
and ew.

4. ey. This is a one-way chain with tail y and head v. The tail y is either
r or incident to two edges in earlier chains since it was in the old down
chain J1. The head v has two incident edges in later chains, namely ez
and ew.

 Case 3: J1 is a one-way chain whose head y is in HCI(e1). We replace it with
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the following chains (in the listed order):
1. ex. This is a one-way chain with tail x and head v. The tail x was the

tail of the old one-way chain J1. The head v has two (in fact three)
incident edges in later chains, namely ey, ez, ew.

2. ey. This is an up chain. The vertex y is either r or incident to two edges
in later chains since it was the head of the old one-way chain J1, and
it has an incident edge in an earlier chain by assumption. The vertex v
has two incident edges in later chains, namely ez and ew, and is incident
to ex from the previous chain.

 Case 4: J1 is a one-way chain whose head y is not in HCI(e1). Then i is
defined as above.
First, we replace J1 with ex. This is a one-way chain with tail x and head v.
The tail x was the tail of the old one-way chain J1. The head v has two (in
fact three) incident edges in later chains, namely ey, ez, ew.

– Subcase 1: y is one of two distinct ends of the up chain Gi. Replace Gi

with Giey. This is an up chain. Since Gi was a path and v is a new
vertex, this new chain is a path. The new end v is adjacent to one edge
in an earlier chain (ex) and two edges in later chains (ez and ew).

– Subcase 2: y is the head of the one-way chain Gi which is not a loop.
Then y is not required to be in Hi for Gi to be a valid chain. In fact,
y is not required to be in any of H0, H1, . . . ,Hi by the definition of i
and the assumptions of this case. Thus, we can leave Gi as is and insert
the chain ey immediately after Gi. This is an up chain. The vertex y is
incident to an edge in the previous chain Gi, and is either r or incident
to two edges in later chains since it is the head of Gi. The vertex v
is adjacent to one edge in an earlier chain (ex) and two edges in later
chains (ez and ew).

The procedure for replacing J2 is symmetric by following the above steps in the
reversed chain decomposition.

We consider the impact of these replacements on other chains in the graph. In
most cases, we replaced the old chain J1 with new chains inserted at the same chain
index CI(e1), preventing any changes. The pinched edge e1 was deleted, but the end
x received a new incident edge ex at the same chain index CI(e1). In Cases 1–3,
the same is true for y. In Case 4, y received a new incident edge ey either at or
immediately after the chain index i. However, by the definition of i and the claim
assumptions, no chains were affected by the new chain index except Gi, which was
specifically considered and shown to be valid in Case 4. By similar arguments, the
changes caused by replacing J2 also did not invalidate any chains. Thus, we have
maintained the chain decomposition. This proves Claim 3.

Claim 4. Suppose that both of i, j are defined and i = j. Then G has a chain
decomposition rooted at r.

Proof. Recall that Gi is either an up chain or a one-way chain with head y, and
Gj is either a down chain or a one-way chain with tail z. Since i = j, we conclude
that Gi = Gj must be a one-way chain with tail z and head y, and y  = z since i
and j are defined. We can replace J1 and J2 with the following chains in the listed
order. The first two will be placed immediately before index i = j and the last two
immediately after index i = j; see Figure 3 for an illustration:

1. ex. This is a one-way chain with tail x and head v. The tail x was the tail of
the old one-way chain J1, and we are placing this chain after index CI(e1).
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associated with each numbering. Within each pair, paths back to the root r will be
monotonic in the associated numbering to ensure independence. Between pairs, paths
back to the root r will be monotonic in chain index to ensure independence.

Using Corollary 3.3, we may assume that there are no loops in G. By Lemma
3.4, for each vertex v  = r, there are two distinct nonloop edges incident to v whose
chain indices are strictly smaller than the chain index of any other edge incident to
v. Likewise, there are two distinct edges whose chain indices are strictly larger than
the chain index of any other edge adjacent to v. We will name these edges as follows.

Definition 6.1. For each vertex v  = r, the two f-edges of v are the two incident
edges with the lowest chain index. Similarly, the two g-edges of v are the two incident
edges with the highest chain index.

Remark 6.2. By the definition of a down chain, the edges of down chains are
never f -edges. Likewise, by the definition of an up chain, the edges of up chains are
never g-edges.

Next, we will iteratively define a numbering f , which will assign distinct values
in R to all edges in up chains and one-way chains. Here, two “consecutive” edges in
a chain will refer to two edges in the chain which are incident to an internal vertex of
the chain, so the two edges incident to the end of a closed chain are not consecutive,
despite being adjacent.

We begin by numbering the edges in E(G0), and then number the edges of each
up chain and one-way chain in order of chain index. When we reach a chain Gi,
we may assume that all edges in E(Hi) belonging to up chains and one-way chains
have been numbered, which includes all f -edges in E(Hi) by Remark 6.2. We use the
following procedure to number the edges in E(Gi):

 If Gi is a closed up chain containing r, then number the edges in E(Gi) so
that the values change monotonically between consecutive edges in the chain.
The particular numbers used are arbitrary.

 If Gi is a closed up chain not containing r, then both f -edges of the common
end have already been numbered. Call these two f -edges numbering edges of
Gi. Say the numbering edges of Gi have f -values a and b. Number the edges
in E(Gi) so that the values change monotonically between consecutive edges
in the chain, and all values are between a and b.

 If Gi is an open up chain containing r, then r is an end and the other end
is some u  = r. At least one f -edge of u has already been numbered. Choose
an f -edge which has already been numbered and call it a numbering edge
of Gi. Say that a is the f -value of the numbering edge. Number the edges
in E(Gi) so that the values increase between consecutive edges in the chain
when moving from u to r, and all values are larger than a.

 If Gi is an open up chain not containing r, then at least one f -edge of each
end has been numbered. If the ends are u and v, we can choose two distinct
edges eu, ev  E(Hi) so that eu is an f -edge of u and ev is an f -edge of v.
We can choose these two distinct edges because otherwise, the only f -edge of
u or v in E(Hi) would be a single edge between u and v, and then Hi would
not be connected. Call the edges eu, ev numbering edges of Gi. Without loss
of generality, f(eu) = a < b = f(ev). Number the edges in E(Gi) so that the
values increase between consecutive edges in the chain when moving from u
to v, and all values are between a and b.

 If Gi is a one-way chain whose tail is r, then number the edge of Gi arbitrarily.
 If Gi is a one-way chain whose tail is not r, then both f -edges of the tail
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are already numbered, say with f -values a and b. Number the edge of Gi

between a and b.
We symmetrically define a numbering g, which assigns distinct values in R to

the edges of down chains and one-way chains, by using the above procedure in the
reversed chain decomposition.

We are finally ready to construct the trees. Define the subgraphs T1, T2, T3, T4

as follows. For each v  = r, consider the two f -edges of v. Assign the edge with the
lower f -value to T1 and the edge with the higher f -value to T2. Similarly, consider
the two g-edges of v. Assign the edge with the lower g-value to T3 and the edge with
the higher g-value to T4.

Several properties of T1, T2, T3, T4 will follow from the following claim.

Claim 6. For any v  = r, consider the edge e1 assigned to T1 at v. Let v be the
other end of e1. If v  = r, let e 

1 be the edge assigned to T1 at v . Then CI(e 
1)  

CI(e1) and f(e 
1) < f(e1).

Proof. Let e2 be the edge assigned to T2 at v. The edge e1 is not in a down chain
by Remark 6.2. We break the proof into two cases.

 Suppose e1 is in an up chain Gi. Since the chain decomposition is minimal
and v  V (Gi), its f -edges either are in E(Gi) or else have chain index less
than i. In either case, CI(e 

1)  i = CI(e1) as desired.
Note that e2 either is in E(Gi) or else is the numbering edge of Gi at the
end v. By the numbering procedure, we know that f(e1) is between f(e2)
and the f -value of one of the f -edges of v , say e . By the definition of T1,
f(e1) < f(e2), so it follows that f(e ) < f(e1). Again by the definition of T1,
f(e 

1)  f(e ), so f(e 
1) < f(e1) as desired.

 Suppose e1 induces a one-way chain Gi. Since e1 is an f -edge, v has degree
at most one in Hi, so v must be the head of Gi. Then v is the tail of Gi, so
the f -edges of v have chain indices smaller than i, which means e 

1  = e1 and
CI(e 

1) < CI(e1) as desired.
From the numbering procedure, we know that f(e1) is between the f -values
of the two f -edges of v , with f(e 

1) being the smaller by the definition of T1.
So, f(e 

1) < f(e1) as desired.
In both cases we have CI(e 

1)  CI(e1) and f(e 
1) < f(e1). This proves the

claim.

With the claim proven, it follows that the edges assigned to T1 are all distinct,
there are no cycles in T1, and following consecutive edges assigned to T1 produces a
path which is decreasing in chain index and strictly decreasing in f -value, and can
only end at r. Thus, T1 is connected and is a spanning tree of G. A similar argument
shows that T2 is a spanning tree of G where paths to r are decreasing in chain index
and strictly increasing in f -value. Due to the opposite trends in f -values, T1 and T2

are edge-independent with root r.
By symmetry, we obtain analogous results for T3 and T4. It remains to show that

a tree from  T1, T2 and a tree from  T3, T4 are edge-independent. The paths back to
r from a vertex v  = r are decreasing in chain index in one tree and increasing in chain
index in the other tree, but not strictly. The first edges in these paths are an f -edge
and a g-edge of v, respectively. By Lemmas 3.4 and 3.5, there is a positive difference
in chain index between these initial edges, so the paths are in fact edge-disjoint.
The proof of Theorem 2.11 is complete. The proof also implies a polynomial-time
algorithm to construct the edge-independent spanning trees.
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7. Summary of results. With Theorems 2.10 and 2.11 proven, we obtain The-
orem 1.1. In fact, we can examine the argument more carefully to extract a stronger,
summarizing result.

Corollary 7.1. Suppose G is a graph with no isolated vertices and  V (G)  2.
Then the following statements are equivalent:

1. G is 4-edge-connected.
2. There exists r  V (G) so that G has a chain decomposition rooted at r.
3. For all r  V (G), G has a chain decomposition rooted at r.
4. There exists r  V (G) so that G has four edge-independent spanning trees

rooted at r.
5. For all r  V (G), G has four edge-independent spanning trees rooted at r.

Proof. Theorem 2.10 gives us (1)  (3). Theorem 2.11 gives us (2)  (4) and
(3)  (5). Trivially, we have (3)  (2) and (5)  (4). Therefore, we need only show
(4)  (1).

Assume for the sake of contradiction that G has four edge-independent spanning
trees rooted at some r  V (G) but is not 4-edge-connected. Suppose S  E(G) is an
edge cut with  S < 4. Consider a vertex v in a component of G  S not containing
r. Using the paths in each of the edge-independent spanning trees, we find that
there exist four edge-disjoint paths between v and r. This contradicts the existence
of S.
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