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ABSTRACT

We prove that every sufficiently large 6-connected graph of bounded tree-
width either has a Kg minor, or has a vertex whose deletion makes the graph
planar. This is a step toward proving that the same conclusion holds for all
sufficiently large 6-connected graphs. Jorgensen conjectured that it holds for
all 6-connected graphs.
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1 Introduction

Graphs in this paper are allowed to have loops and multiple edges. A graph is a minor of
another if the first can be obtained from a subgraph of the second by contracting edges. An
H minor is a minor isomorphic to H. A graph G is apez if it has a vertex v such that G\v

is planar. (We use \ for deletion.) Jorgensen [9] made the following beautiful conjecture.

Conjecture 1.1 FEvery 6-connected graph with no Kg minor is apez.

In a companion paper [10] we prove that Conjecture 1.1 holds for all sufficiently big

6-connected graphs. Here we establish the first step toward that goal, the following.

Theorem 1.2 For every integer w > 1 there exists an integer N such that every 6-connected

graph on at least N wvertices and tree-width at most w with no K¢ minor is apez.

We define tree-width later in this section, but let us discuss Jorgensen’s conjecture first.

It is related to Hadwiger’s conjecture [7], the following.

Conjecture 1.3 For every integer t > 1, if a loopless graph has no K; minor, then it is
(t — 1)-colorable.

Hadwiger’s conjecture is known for ¢ < 6. It is trivial for t < 3, and is still fairly easy
for t = 4, as shown by Dirac [6]. However, for ¢ > 5 Hadwiger’s conjecture implies the Four-
Color Theorem. Wagner [24] gave a structural characterization of graphs with no K5 minor,
which implies that Hadwiger’s conjecture for ¢ = 5 is actually equivalent to the Four-Color
Theorem. The same conclusion has been obtained for ¢ = 6 in [19] by showing that a minimal
counterexample to Hadwiger’s conjecture for ¢ = 6 is apex. The proof uses an earlier result
of Mader [11] that every minimal counterexample to Conjecture 1.3 is 6-connected. Thus
Conjecture 1.1, if true, would give more structural information. Furthermore, the structure
of all graphs with no Kg minor is not known, and appears complicated and difficult. Thus
obtaining a structural characterization of graphs with no Kg minor, an analogue of Wag-
ner’s theorem mentioned above, appears beyond reach at the moment. On the other hand,
Conjecture 1.1 provides a nice necessary and sufficient condition for 6-connected graphs.
Unfortunately, it, too, appears to be a difficult problem.

Let us turn to tree-width and our proof method. Tree-width of a graph was first defined
by Halin [8], and was later rediscovered in [15], and, independently, in [1]. The definition is
as follows. A tree-decomposition of a graph G is a pair (T,Y), where T is a tree and Y is a
family {Y; | t € V(T')} of vertex sets ¥; C V(G), such that the following two properties hold:

(W1) Uev(r) Yt = V(G), and every edge of G has both ends in some Y;.

(W2) If t, ¢/, t" € V(T) and t' lies on the path in 7" between ¢t and ¢”, then Y; NY;» C Yy,



The width of a tree-decomposition (7, Y") is maxyecy () (|Y:| —1), and the tree-width of a graph
G is the minimum width of a tree-decomposition of G.

Our proof of Theorem 1.2 proceeds as follows. We choose a tree-decomposition (7', W)
of G of width w with no “redundancies”. It follows easily that if T" has a vertex of large
degree, then GG has a K minor, and so we may assume that 7" has a long path. For the
rest of the proof we concentrate our effort on this long path. Since other branches of T
are inconsequential, we convert (7, W) to a “linear decomposition”, which is really just a
tree-decomposition, where the underlying tree is a path, but we find it more convenient
to number the sets of vertices Wy, Wy, ..., W, rather than index them by the vertices of a
path. At this point we no longer require that the width be bounded; all we need is that the
intersections W;_; N W; are bounded and that [ is sufficiently large. Thus we may assume
(by trimming our linear decomposition) that all the sets W;_; N W; have the same size,
say ¢q. Furthermore, it can be arranged (by invoking the result from [22] or by a direct
argument) that there exist ¢ disjoint paths Py, Ps, ..., P, from Wy N W, to Wiy N W,. We
apply the pigeon hole principle many times, each time trimming the linear decomposition,
but still keeping it sufficiently long, to make sure that if the subgraph G[W;] has some useful
property for some ¢ € {1,2,...,l — 1}, then all the graphs G[W;] have that property for all
ie{l,2,...,1—1}.

A prime example of a useful property is the existence of two disjoint paths @1, Q2 in
G[W;], internally disjoint from Py, P, ..., P,, with ends uy,v; and ug, vo, respectively, such
that uy, vy € V(Py), ug,v1 € V(P,) and they appear on those paths in the order listed as P;
and P, are traversed from Wy N W; to W;_1 N W,. In those circumstances we say that P,
and P, twist in W;. Thus, in particular, we can arrange that if two paths P; and Pj twist
in W; for some i € {1,2,...,1— 1}, then they twist in W; for all i € {1,2,...,1—1}. On the
other hand, if two paths P; and Py twist in W; for all i € {1,2,...,]l — 1} and [ is not too
small, then G has a K¢ minor. This is the sort of argument we will be using, but the details
are too numerous to be described in their entirety here.

In [10] we use Theorem 1.2 to prove Jgrgensen’s conjecture for sufficiently big graphs,

formally the following:

Theorem 1.4 There exists an integer N such that every 6-connected graph on at least N

vertices with no Kg minor is apez.

How does Theorem 1.2 help in the proof of Theorem 1.47 By the excluded grid theorem
of Robertson and Seymour [16] (see also [5, 14, 20]) it suffices to prove Theorem 1.4 for
graphs that have a sufficiently large grid minor. We then analyze how the remainder of the
graph attaches to the grid. We refer to [10] for details.

The paper is organized as follows. In Section 2 we state a few lemmas, mostly from

other papers. In Section 3 we convert a tree-decomposition into a linear decomposition,



as described above, and we prove that the linear decomposition can be chosen with some
additional useful properties. In Section 4 we introduce the auxiliary graph—its vertices are
the paths Py, P, ..., P, and two of them are adjacent if they are joined by a path avoiding
all the other paths P, P, ..., P,. By joined we mean in some or every W;; by now the two
are equivalent. We use the auxiliary graph to further refine the linear decomposition. A
core is a component of the subgraph of the auxiliary graph induced by those of the paths
Py, P, ..., P, that have at least one edge. We show, among other things, that every core is a
path or a cycle. In Section 5 we use the theory of “non-planar extensions” of planar graphs
from [12] to get under control adjacencies in the auxiliary graph of those paths P; that are
trivial. In Section 6 we further refine our linear decomposition to arrange that the part of
G that corresponds to a core can be drawn either in a disk or in a cylinder, depending on
whether the core is a path or a cycle. In Section 7 we digress and prove a slight extension of
a result of DeVos and Seymour [4]. Finally, in Section 8 we essentially complete the proof of
Theorem 1.2 in the case when some core of the auxiliary graph is a cycle, and in Section 9

we do the same when some core is a path.

2 Rerouting and rural societies

Let S be a subgraph of a graph G. An S-bridge in G is a connected subgraph B of G such
that E(B) N E(S) = () and either E(B) consists of a unique edge with both ends in S, or
for some component C' of G\V(S) the set E(B) consists of all edges of G with at least one
end in V(C'). The vertices in V(B) NV (S) are called the attachments of B. We say that an
S-bridge B attaches to a subgraph H of S if V(H)NV(B) # 0.

Now let S be such that no block of S is a cycle. By a segment of S we mean a maximal
subpath P of S such that every internal vertex of P has degree two in S. It follows that the
segments of S are uniquely determined. Now if B is an S-bridge of G, then we say that B is
unstable if some segment of S includes all the attachments of B, and otherwise we say that
B is stable. Our next lemma says that it is possible to make all bridges stable by making
the following “local” changes. Let G and S be as before, let P be a segment of S of length
at least two, and let () be a path in G with ends z,y € V(P) and otherwise disjoint from
S. Let S’ be obtained from S by replacing the path z Py (the subpath of P with ends x and
y) by Q; then we say that S’ was obtained from S by rerouting P along @, or simply that
S’ was obtained from S by rerouting. Please note that P is required to have length at least
two, and hence this relation is not symmetric. We say that the rerouting is proper if all the
attachments of the S-bridge that contains ) belong to P. The following lemma is essentially
due to Tutte.

Lemma 2.1 Let G be a simple graph, and let S be a subgraph of G such that no block of
S is a cycle. Then there exists a subgraph S’ of G obtained from S by a sequence of proper
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reroutings such that if an S’-bridge B of G is unstable, say all its attachments belong to a
segment P of S', then there exist vertices x,y € V(P) such that some component of G\{x,y}
includes a vertex of B and is disjoint from S'\V (P).

Proof. We may choose a subgraph S’ of G obtained from S by a sequence of proper
reroutings such that the number of vertices that belong to stable S’-bridges is maximum,
and, subject to that, |V(S")| is minimum. We will show that S’ is as desired. To that end
we may assume that B is an S’-bridge of G with all its attachments in a segment P of S’.

Let vg,v1, ..., v, be distinct vertices of P, listed in order of occurrence on P such that
vo and vy are the ends of P and {vq,...,v,_1} is the set of all internal vertices of P that are
attachments of a stable S’-bridge. We claim that if u, v are two attachments of B, then no
v; belongs to the interior of uPv. To prove this suppose to the contrary that v; is an internal
vertex of uPv. But then replacing uPv by an induced subpath of B with ends u,v and
otherwise disjoint from S’ is a proper rerouting that produces a graph S” with strictly more
vertices belonging to stable S”-bridges, contrary to the choice of S’. This proves our claim
that no v; belongs to the interior of uPv. But then for some ¢ = 1,2, ..., k the path v;_; Pv;
includes all attachments of B. Since G has no parallel edges, the same argument (using the
minimality of [V (S")|) now shows that V(B)—{v;_1,v;} # (). Consequently some component
J of G\{v;_1,v;} includes a vertex of B. It follows that B\{v;_1,v;} is a subgraph of J. Now
B has all its attachments in v;,_; Pv;, the interior of v;,_;Pv; includes no attachment of a
stable S’-bridge, and (by what we have shown about B) every unstable S’-bridge with an
attachment in the interior of v;_; Pv; has all its attachments in v;_; Pv;. It follows that J is
disjoint from S"\V(P), as desired. OJ

We deduce the following corollary.

Theorem 2.2 Let G be a 3-connected graph, and let S be a subgraph of G with at least two
segments such that no block of S is a cycle. Then there exists a subgraph S’ of G obtained

rom S by a sequence of proper reroutings such that every S’'-bridge is stable.
Y q p g Y g

Next we introduce several notions and a theorem from [17]. Let €2 be a cyclic permutation
of the elements of some set; we denote this set by V(). A society is a pair (G, ), where G
is a graph, and 2 is a cyclic permutation with V(Q2) C V(G). A society (G, ) is rural if G
can be drawn in a disk with V' (€) drawn on the boundary of the disk in the order given by
Q. A cross in (G, ) is a pair of disjoint non-trivial paths P; and P, with ends u;, v; and
ug,vq Tespectively, so that uy, us, vy, vy € V() appear in € in this or reverse order, and P,
and P, are otherwise disjoint from V/(£2).

A separation of a graph G is a pair (A, B) such that AU B = V(@) and there is no edge
with one end in A — B and the other end in B — A. The order of (4, B) is |AN B|. We say



that a society (G, ) is 4-connected if there is no separation (A, B) of G of order at most
three with V(2) C A and B — A # ().
The next theorem follows from Theorems (2.3) and (2.4) in [17].

Theorem 2.3 Let (G,(2) be a 4-connected society with no cross. Then (G,Q) is rural.

We will need the following lemma, a special case of [10, Lemma 3.2]. A linkage in a graph
is a set P of disjoint paths. If A, B are sets such that each P € P has one end in A and the
other in B, then we say that P is a linkage from A to B. The graph of the linkage P is the
union of all P € P. Occasionally we will use P in reference to the graph of P; thus we will
use V(P) to denote the vertex-set of the graph of P and we will also speak of P-bridges. A
path is trivial if it has exactly one vertex and non-trivial otherwise. By a P-path we mean

a non-trivial path with both ends in V(P) and otherwise disjoint from the graph of P.

Lemma 2.4 Let k > 2 be an integer, let P = {Py, Ps,..., Py} be a linkage in a graph G,
where P; has distinct ends u; and v;, and let every P-bridge of G be stable. Assume that G
cannot be drawn in a disk with uy, us, ..., U, Vg, Vk_1, ...,V drawn on the boundary of the
disk in order and the paths P, and Py also drawn on the boundary, and assume also that
there is no set X C V(G) of size at most three such that some component of G\ X ‘is disjoint
from {uy,ug, ... ug,v1,v9,...,0x}. Then either

(i) there exist integers i,j € {1,2,...,k} with |i — j| > 1 and a P-path Q in G with one
end in V(P;) and the other end in V(P;), or

(i) there exist an integer i € {1,2,...,k — 1} and two disjoint P-paths Q1, Qs in G
such that @Q); has ends x;,y;, the vertices u;, x1,22,v; occur on P; in the order listed and
Uit1, Y2, Y1, Vir1 occur on Py in the order listed, or

(iii) there exist an integer i € {2,3,...,k — 1} and three P-paths Qq, Q1, Q2 such that
Q; has ends x; and y;, we have xo,yo € V(P;), the vertices x1,xo are internal vertices of
2oPyo, y1 € V(Pi—1), y2 € V(Piy1), and the paths Qo, Q1, Qo are pairwise disjoint, except

possibly for xq1 = xs.

Proof. We define k—1 cyclic permutations 21, (s, ..., ;1 as follows. Fori=1,2,..., k—1
let V(€2;) := V(P;) UV(P;y1) with the cyclic order defined by saying that V' (P;;;) in order
from w; 41 to v;11 is followed by V(P;) in order from v; to u;.

Now if for some P-bridge B of G there is no index i € {0, 1, ..., k} such that all attach-
ments of B belong to V(£2;), then (i) holds. Thus we may assume that such index exists for
every P-bridge B, and since B is stable that index is unique. Let us denote it by i(B). For
1=1,2,...,k— 1 let G; be the subgraph of GG consisting of P; U P,;; and all P-bridges B
of G with i(B) = i. The society (G}, §2;) is 4-connected by hypothesis of the lemma. If each
(G, <)) is cross-free, then each of them is rural by Theorem 2.3 and it follows that G can

be drawn in a disk with wy, us, ..., ug, Vg, Vg1, ..., vy drawn on the boundary of the disk in



order and the paths P, and Py also drawn on the boundary, contrary to a hypothesis of the
lemma. Thus we may assume that for some i = 1,2, ..., k—1 the society (G;, €2;) has a cross
(Q1,Q2). If neither P; nor P, includes three or four ends of the paths @1 and @2, then
(ii) holds. Thus we may assume that P; includes both ends of @); and at least one end of
Q2. Let x;,y; be the ends of ;. Since the P-bridge of G containing () is stable, it has an
attachment outside P;, and so if needed, we may replace ()2 by a path with an end outside
P; (or conclude that (i) holds). Thus we may assume that u;, 1, 2, 1, v; occur on P; in the
order listed, and y, € V (F;).

The P-bridge of G containing (); has an attachment outside P;. If it does not include Q)
and has an attachment outside V' (FP;) U {y2}, then (i) or (ii) holds, and so we may assume
not. Thus there exists a path )3 with one end x3 in the interior of ), and the other end
yz € V(Q2) — {x2} with no internal vertex in P U Q1 U Q2. We call the triple (@, Q2, Q3)
a tripod, and the path y3Q2y» the leg of the tripod. If v is an internal vertex of x1 Py, then
we say that v is sheltered by the tripod (@1, Q2, @3). Let L be a path that is the leg of some
tripod, and subject to that L is minimal. From now on we fix L and will consider different
tripods with leg L; thus the vertices x1, y1, T2, x3 may change, but y, and y3 will remain fixed
as the ends of L.

Let z,y; € V(P;) be such that they are sheltered by no tripod with leg L, but every
internal vertex of x| Py] is sheltered by some tripod with leg L. Let X’ be the union
of z{ Py} and all tripods with leg L that shelter some internal vertex of x| Piy;, let X =
X\V(L)\{z},v,} and let Y := V(PUL)—V (2| Py;)—{ys}. By hypothesis the set {2/, v}, y3}
does not separate X from Y in G. It follows that there exists a path P in G\{z,v},vy3}
with ends x € X and y € Y. We may assume that P has no internal vertex in X UY. Let
(@1, Q2, Q3) be a tripod with leg L such that either x is sheltered by it, or z € V(Q1UQ2UQ3).
If y € V(LU P;), then by considering the paths P,Q1,Q2, Q3 it follows that one of the
outcomes of the lemma holds. If y € V(L), then there is a tripod whose leg is a proper
subpath of L, contrary to the choice of L. Thus we may assume that y € V(P;), and that
y € V(P;) for every choice of the path P as above. If x € V(Q; U Q2 U @Q3) then there is
a tripod with leg L that shelters 2| or y;, a contradiction. Thus z € V(P;). Let B be the
P-bridge containing P. Since y € V(F;) for all choices of P it follows that the attachments
of B are a subset of V(P;) U {y2}. But B is stable, and hence y, is an attachment of B.
The minimality of L implies that B includes a path from y to ys, internally disjoint from
L. Using that path and the paths P, Q1, @2, Q3 it is now easy to construct a tripod that

shelters either z or y;, a contradiction. [J

By a cylinder we mean the surface obtained from a sphere by removing the interiors of
two disjoint closed disks Ay, As. By a clockwise ordering of the boundary of A; we mean the
cyclic ordering that traverses around A; in clockwise direction. We need a slight variation

of the previous lemma. We omit its proof, because it is completely analogous.
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Lemma 2.5 Let k > 3 be an integer, let P = {Py, Ps, ..., P} be a linkage in a graph G,
where P; has distinct ends u; and v;, and let every P-bridge of G be stable. Assume that
G cannot be drawn in a cylinder with uy,us, ..., u; drawn on one boundary component in
the clockwise cyclic order listed and vy, vg_1,...,v1 drawn on the other boundary component
in the clockwise cyclic order listed, assume also that there is no set X C V(G) of size at
most three such that some component of G\X is disjoint from {uy,us, ..., ug, v1,v9, ..., U},
and finally assume that if k = 3, then no P-bridge has vertices of attachment on all three
members of P. Then either

(1) there exist integersi,j € {1,2,...,k} with |i—j| > 1 and {i,j} # {1,k} and a P-path
Q in G with one end in V(P;) and the other end in V(F;), or

(i) there exist an integer i € {1,2,...,k — 1} and two disjoint P-paths @1, Qo in G
such that QQ; has ends x;y;, the vertices u;,x1,x2,v; occur on P; in the order listed and
Uit1, Y2, Y1, Vir1 occur on Py in the order listed, or

(ili) there exist an integer i = 1,2,...,k and three P-paths Qo, Q1, Q2 such that Q; has
ends x; and y;, we have xo,yo € V(P;), the vertices x1,xo are internal vertices of xoPyo,
y1 € V(Pi_1), yo € V(Piy1), and the paths Qo, Q1, Q2 are pairwise disjoint, except possibly

for x1 = x5, where Py means P, and Py..1 means P;.

3 Linear decompositions

In this section we show that it suffices to prove Theorem 1.2 for graphs that have a “linear
decomposition” of bounded “adhesion”. Similar techniques have been developed and used
in [2, 3, 13]. A linear decomposition is really a tree-decomposition, where the underlying tree
is a path, but it is more convenient to number the sets by integers rather than vertices of a
path. Thus a linear decomposition of a graph G is a family of sets W = (Wy, Wy,..., W)
such that

(L1) Ui:o W; = V(G), and every edge of G has both ends in some W;, and
(L2) if 0 <i<j <k < then W;nW, CW,.

We say that the length of W is L.
In the proof of Theorem 1.2 we will need linear decompositions satisfying the following

additional properties:
(L3) there is an integer g such that |W;,_y NW;| =q foralli=1,2,... 1,
(L4) for every i =1,2,...,1, W,y # W,y N W; £ W,

(L5) there exists a linkage from Wy N Wy to W;_1 N W of cardinality g.



If a linear decomposition satisfies (L3), then we say that it has adhesion q. A linkage as in
(L5) will be called a foundational linkage and its members will be called foundational paths.
We will need more properties, but first we show that we can assume that our graph has a
linear decomposition satisfying (L1)-(L5). In the proof we will need the following additional

properties of tree-decompositions, stated using the same notation as (W1)-(W2):

(W3) for every two vertices ¢,t' of T' and every positive integer k, either there are k disjoint
paths in G between Y; and Y}, or there is a vertex ¢t of T" on the path between ¢ and
t' such that |Y/| < k,

(W4) if £,¢" are distinct vertices of T, then Y; # Yy, and

(W5) if to € V(T') and W is a component of 7" — g, then ey Y2 \ Y # 0.

Lemma 3.1 For all integers k,l,p,w > 0 there exists an integer N with the following prop-
erty. If G is a p-connected graph of tree-width at most w with at least N wvertices, then either
G has a minor isomorphic to K, , or G has a linear decomposition of length at least I and

adhesion at most w satisfying (L1)—(L5).

Proof. Let k,l,w > 0 be given integers. We will use the proof technique of [13, Theorem 3.1]
with the constants nq, ng, n7, ng and ng redefined as follows: Let ny := w, ng := [, ny := ngl+1,

ng 1= (Zl)(k — 1), and
ng := 2+ ng +ng(ng — 1) + - - + ng(ns — 1)“17/21_2.

We will show that N := ning satisfies the lemma.

To this end let G be as stated. The argument in Claims (1)—(4) of [13, Theorem 3.1]
shows that G either has a minor isomorphic to K, or a tree-decomposition (7, Y") satistying
(W1)—(W5) such that 7" has a path R that includes distinct vertices 71,79, ..., 7, appearing
on R in the order listed, such that for some integer ¢ with p < g < w we have that |Y,..| = ¢
for all i = 1,2,...,l and |Y,| > ¢ for every r € V(R) between 7 and r;.

It is easy to see that there exist subtrees Ty, T7,...,T; of T such that

(i) HoUTyU---UT, =T,

(ii) 7; and T} are disjoint whenever |i — j| > 2, and

(iii) V(T;-) NV(T;) = {r;} forall i =1,2,...,1.
Fori=0,1,...,llet W; be the union of Y; over all t € V(T;). We claim that (W, Wy,..., W)
is a linear decomposition of G satisfying (L1)—(L5).

Property (L1) is satisfied by (W1) and (i). If 0 <1i < j < k <, then for every t € V(Tj)
and t' € V(T},) the path from ¢ to ¢ in T" contains the path from r;;; to ry. Therefore, by
(W2) and (iii), we have Y; NYy C Y, and, consequently, W; "W, C Y, C W;. Thus (L2)
is satisfied. Similarly, we have W;_; N W; = Y, , and, therefore, we have |W,_; N W;| = ¢,



implying (L3). For 1 < i <[ we have |Y, |Y..| =¢q,and Y,, # Y, _, by (W4). Therefore
Wi, 1 —W; DY, , =Y, #0. By construction, Ty \ r; is the union of components of T"\ 7
disjoint from R. It follows from (W5) that Wy — Wy = Wy —Y,, # 0. By symmetry,
W; — W;,_1 # 0 for every 1 < ¢ <[, and (L4) holds. Finally, by (W3) and the choice of
r1,T9,...,7, there exists a linkage from Wy N Wy =Y, to W,y N W, =Y,,, implying (L5).
O

i71| -

Let P be a foundational linkage for a linear decomposition W = (Wy, W1, ..., W) of a
graph G, and let i € {1,2,... 1 —1}. We say that distinct foundational paths P, P’ € P are
bridge adjacent in W; if there exists a P-bridge in G[W;] with an attachment in both P and
P'. Given a fixed integer p we wish to consider the following properties of YW and P. In our

applications we will always have p = 6.

(L6) for all i € {1,2,...,] — 1} and all non-trivial paths P € P, if some P-bridge of G[W}]
has at least one attachment in P and no attachment in a non-trivial foundational path

other than P, then P is bridge adjacent in W; to at least p — 2 trivial members of P,

(L7) for every P € P, if there exists an index i € {1,2,...,l—1} such that P[W;] is a trivial
path, then P[W}] is a trivial path for all k =1,2,...,1 -1,

(L8) for every two distinct paths P, P’ € P, if there exists an integer k € {1,...,l—1} such

that P and P’ are bridge adjacent in W}, then they are bridge adjacent in W}, for all
Ke{l,....;1—1}.

With respect to condition (L8) it may be helpful to point out that for all i = 1,2,...,1
we have W;_y NW; C V(P), and hence each P-bridge H of G satisfies V(H) C W}, for some
k€ {0,1,...,1}, even though this index k need not be unique.

Lemma 3.2 Let p > 0 be an integer, and let VW be a linear decomposition of a p-connected
graph satisfying (L1)—(L5). Then W has a foundational linkage P satisfying (L6).

Proof. Let W = (W, Wy,...,W)) be as stated. By (L5) there exists a linkage P from
Wo N Wy to W,y N W, of cardinality ¢. Let S be the union of all non-trivial paths in P,
and let H be obtained from G[W; U Wy U --- U W,_1] by deleting all trivial paths in P.
By Lemma 2.1 applied to H and S we may assume (by changing P) that S satisfies the
conclusion of that lemma. We claim that the linkage P then satisfies (L6). To prove this
claim suppose that i € {1,2,...,l—1} and some S-bridge B of H[W;] has all its attachments
in V(P) for some non-trivial P € P; then there are vertices z,y € V(P) such that some
component J of H\{z,y} has at least three vertices, includes a vertex of B and is disjoint
from V(S) — V(P). Since G is p-connected the set V(J) has at least p — 2 neighbors among
the trivial paths in P. Hence P is bridge adjacent in W; to those trivial paths, as required.
This proves that P satisfies (L6). O
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We will make use of the following easy lemma, whose proof we omit.

Lemma 3.3 Let W = (W, W1, ..., W)) be a linear decomposition of a graph G of length | >
2, and leti e {1,2,...,1}. Then W' := Wy, Wy,... , Wi o W, 1 UW;, W, 1, Wiia,...,W)) is
also a linear decomposition of G. Furthermore, if W satisfies any of the properties (L.3)—(L8),
then so does W'.

If W and W' are as in Lemma 3.3, then we say that W was obtained from W by
an elementary contraction. Let P be a foundational linkage for W. 1If i ¢ {1,(}, then
let P' := P. If i = 1, then let P’ be the linkage obtained from P by restricting each
PePtoWyaUWsU...UW,, and if i = [, then let P’ be obtained by restricting P to
Wi uUWsU...UW,_1. Then P’ is a foundational linkage for WW’. It will be referred to
as the corresponding restriction of P. If a linear decomposition W is obtained from W
by a sequence of elementary contractions, then we say that W is obtained from W by a

contraction. We will also need the following lemma about sequences of sets.

Lemma 3.4 Letl,n,\ > 0 be integers such that X\ > {"*in!. For all sequences Si, S, ..., S\
of subsets of {1,...,n} there exist integers 1 < iy < iy < --- <i;y < A+ 1 such that

SiOUSiOJrlU"'USilfl:Silusz’lJrlU"'USigfl:"‘:Sil,lu"'USilfr

Proof. We proceed by induction on n. The lemma clearly holds when n = 0, and so we
assume that n > 0 and that the lemma holds for all smaller values of n. If [ consecutive sets
S; are empty, say S;, Sit1,- - ., Siti—1, then the lemma holds with i; = ¢+j for j =0,1,...,[.
Thus we may assume that this is not the case, and hence there is an integer z € {1,2,...,n}
such that at least X' := A/(In) > ["(n — 1)! of the sets S; include the element z. Thus
{1,..., A} can be partitioned into consecutive intervals Iy, I5, ..., I,» such that each interval
includes an index ¢ with € S;. For ¢ = 1,2,..., X let S be the union of S; — {x} over
all j € I;. By the induction hypothesis applied to the sets S! there exist required indices
1<ip<iy <---<ip<XN+1for the sets S]. For j =0,1,...,0let ¢; := min]l-;,. It follows

from the construction that these indices satisfy the conclusion of the lemma. [J

Lemma 3.5 For every triple of integers l,p,q > 0 there exists an integer \ such that the
following holds. If a graph G has a linear decomposition VW of length A + 1 and adhesion q
and a foundational linkage P satisfying (L1)—(L6), then it has a linear decomposition W' of
length | and adhesion q obtained from W by a contraction such that W' and the corresponding
restriction of P satisfy (L1)—(L8).

Proof. Let [,q > 0 be given, let s := (g), and let p := [°71s!. We will show that \ := uitiq!

satisfies the conclusion of the lemma.
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Let W = (Wy, W1, ..., Wyy1) be as stated. We wish to apply Lemma 3.4 with ¢ playing
the role of n and p playing the role of [. For i = 1,2,..., X\ let S; be the set of all P € P
such that P[W;] is a non-trivial path. By Lemma 3.4 there exist indices 1 <ip <i; < --- <
iy < A+ 1 as stated in that lemma. Let i_y :=0and i, := A+ 1and fort = —1,0,...,
define

Wi =W, UW;, 1 U---UW;,, 1.

By Lemma 3.3 W' := (Wg, Wi, ..., W/,,) is alinear decomposition of G satisfying (L1)-(L6).
It follows from the construction that it also satisfies (L7).

To construct a linear decomposition satisfying (L1)—(L8) we apply the same argument
again, as follows. For a 2-element subset X C P let Sx be the set of integers j € {1,2,...,¢}
such that some P-bridge H of G has attachments in P for both elements P € X and
satisfies V(H) C W;. By applying Lemma 3.4 with n := () and X replaced by p to the
linear decomposition YW and using the same construction we arrive at the desired linear

decomposition of G. [J

Let W be a linear decomposition of a graph G of length [ > 2 with foundational linkage
P satisfying (L1)-(L8). We define the auziliary graph of the pair (W, P) to be the graph
with vertex-set P in which two paths P, P’ € P are adjacent if they are bridge adjacent in
W; for some (and hence every) ¢ € {1,2,...,1—1}.

We will need one more property of a linear decomposition VW and its foundational linkage

P. The parameter p is the same as in (L6).

(L9) Let P; C P, C P such that |Py| + |P2] < p and each member of P; is non-trivial.
Then there exists a linkage Q in G of cardinality |P;| from Wy N Wy N V(Py) to
Wi NW; NV (Py) such that its graph is a subgraph of H := G[WoUWJUJpep_p, P

Our objective is to show that if a graph has a linear decomposition satisfying (L1)—(L8),
then it also has one satisfying (L9). For the proof we need a definition and a lemma. Let
W = (Wy, Wy, ..., W) be a linear decomposition of a graph G with foundational linkage P
satisfying (L1)—(L8). We say that a set P’ of components of P is well-connected if for every
two paths P, P’ € P’ there exists a path Q in the auxiliary graph of (W, P) such that every
internal vertex of Q is a non-trivial foundational path belonging to P’. The lemma we need

is the following.

Lemma 3.6 Let l,s,q > 0 be integers, and let G be a graph with a linear decomposition
W = (Wo, Wh,...,W,) of length l, adhesion q and foundational linkage P satisfying (L1)—
(L8). Let Q be a well-connected set of foundational paths, and let X;; == (W3 N W; N
V(Q) U (W; nW,1 NV(Q)). Then for every two integers 1,7 with 1 <i <i+2¢<j<lI
and every two sets A, B C X,; of size s there exist s disjoint paths, each with one end in A,
the other end in B and no internal vertex in any Wy for k € {0,1,..., 1} —{i,i+1,...,7}.
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Proof. Let H be the subgraph of G obtained by deleting W, —A—B forall j € {0,1,...,l}—
{i,i +1,...,7}. If the paths do not exist, then by Menger’s theorem there exists a set
Y C V(H) of size at most s — 1 such that H\Y has no path from A to B. We may
assume that AN B = (), for otherwise we may proceed by induction by deleting AN B. Since
(Wi NW;| = [W;N W44 | = g we deduce that s < ¢. Let Z be the union of the vertex-sets of
the trivial paths in P. By (L7) and the fact that W;NW;,; CV(P) foralli=1,2,...,1—1,
the sets Wiy1 — Z, Wiys — Z, ..., Wite,-1 — Z are pairwise disjoint, and so one of them, say
Wy, — Z, is disjoint from Y. For z € Xj; let P, be the member of Q that includes z. If
x € Wiy N W,, then let P, denote the restriction of P, to W; UW; ;U ---UW,,_4, and if
x € WiNW1, then let P, denote the restriction of P, to W, 11 UW,, 4 oU---UW,. Since the
paths P, are pairwise vertex-disjoint, there exist a € A and b € B such that P, and P/ are
disjoint from Y. Since Q is well-connected it follows that P, UG[W,,]U P} includes a path in

H from a to b with no internal vertex in Z. That path is disjoint from Y, a contradiction. [

Lemma 3.7 Letp,q > 0 andl > 3 be integers, and let G be a p-connected graph with a linear
decomposition W = (Wo, Wi, ..., Wisagr2) of length | +4q + 2, adhesion q and foundational
linkage P satisfying (L1)—(L8). Let W' := (W, W1, ..., W]), where W§ :=WoUW;U---U
Wagi1, W= Wigoger fori=1,2,....1 =1 and W] := Witog41 U Wigagio U -+ U Wigagio,
and let P’ be the corresponding restriction of P. Then W' is a linear decomposition of G
of length | and adhesion q, and P’ is a foundational linkage for W' such that conditions

(L1)~(L9) hold.

Proof. The linear decomposition W' satisfies (L1)—(L8) by Lemma 3.3, and so it remains to
show that it satisfies (L9). Since [ > 3 we may choose an index s with 2¢+2 < s < [+2g+1.
Let P; C Py be two sets of foundational paths such that every member of P; is non-trivial
and [Py| + [Pa| < p. Let H := G[WyU W/ UUpep_p, P- We must show that there exist
|P1] disjoint paths in H from Xo := W N W/ NV (Py) to X; := W/, NnW/NV(Py). Since G
is p-connected and |W; N W; 11 NV (P,)| = |P2| we deduce that there exists a linkage of size
|Py| from X to X; in G\(Ws N W11 NV (Py)). Let us choose such linkage, say Q, such that
it uses the least number of edges not in H. We will prove that Q is as desired. To do so
we may assume for a contradiction that Q uses an edge e € E(G) — E(H). By considering
the linear decomposition (W}, W/ ,,..., W/) we may assume that e has both ends in W; for
some i € {2¢+2,2¢+3,...,s}.

By an annexr we mean a maximal well-connected set of foundational paths that includes
at least one non-trivial foundational path. Let R be an annex. We define H;(R) to be the
subgraph of J := G[W; U Wy U --- U W] consisting of the graph of R restricted to J and
all R-bridges that are the subgraphs of J and have all vertices of attachment in V(R). We
define Hy(R) analogously as a subgraph of G[W; U Wy U -+ U Wayq]. It follows that e is

an edge of Hy(R) for some maximal well-connected set R of foundational paths. Let us
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assume that e belongs to Hy(R) for some annex R. Thus we fix R and denote Hy(R) and
H{(R) by Hy and Hq, respectively. We will modify the linkage Q within H;, and will obtain
a contradiction to its choice that way.

Let Q' be the subset of Q consisting of those paths that use at least one vertex of Hj.
For Q € Q' let a(Q) be its end in Xy, let d(Q) be its end in X, and let b(Q) and ¢(Q)
be two vertices of Q N H; such that the subpath of @ from b(Q) to ¢(Q) is maximum and
a(Q),b(Q),c(Q),d(Q) occur on @ in the order listed. It follows that b(Q), c(Q) belong to
(Wo n W) U (Win W)U (Ws N Wsyq), but if one of them belongs to Wi N W], then it is
equal to a(Q).

If b(Q) € Wo N Wy or b(Q) € WiN W, we define V'(Q) := b(Q) and let B(Q) be the null
graph; otherwise b(Q) belongs to a foundational path P ¢ P,, and we define b'(Q) to be the
unique member of Wa 11 N Wayia NV(P), and we let B(Q) := P[Wagio U Waiz U~ - U W]
We define ¢(Q) and C(Q) analogously. By Lemma 3.6 applied to YW and P with i = 0 and
J = 2q+1 there exists a linkage S in Hy of size |Q'| from {§'(Q) : Q € @'} to {d(Q) : Q € Q'}.
The fact that R was chosen to be a maximal well-connected set implies that members of this
linkage are disjoint from the members of @ — Q’. For each (Q € Q" we delete the interior of
the subpath of @ between b(Q) and ¢(Q), and add the linkage S and the paths B(Q) and
C(Q) for all @ € Q'. Thus we obtain a new linkage with the same properties as Q, but with
fewer edges not in H, contrary to the choice of Q. This completes the case when e belongs
to H1(R) for some annex R, and so from now on we may assume the opposite.

Let K denote the union of the trivial paths in P. Since e belongs to H;(R) for no annex
R it follows that the K-bridge B of H containing e includes no non-trivial foundational
path. Let @@ € Q be the path containing e, and let b,c € V(Q) be such that bQc is a
maximal subpath of B containing e. Since @ is disjoint from W, N W1 NV (Py), and hence
from the the trivial paths in P, we deduce that b,c & V(Ps). It follows more generally
(from the fact that e belongs to Hy(R) for no annex R) that every K-bridge B’ of H that
has b and ¢ as attachments includes no non-trivial foundational path. Consequently, if B’
includes a non-trivial subpath of some member of Q, then this subpath uses two vertices of
V(K). On the other hand the foundational paths with vertex-sets {b} and {c} are adjacent
in the auxiliary graph, and hence for each i = 1,2,..., ¢ there exists a K-bridge of G[W}]
whose attachments include b and c¢. By the conclusion of the sentence before the previous
one we deduce that there is i € {1,2,...,¢q} such that W; includes no non-trivial subpath of
a member of Q. Thus we can replace bQ)c by a subpath of W;, contrary to the choice of Q.
This completes the proof that W' and P’ satisfy (L9). O

We are now ready to state the main result of this section.

Theorem 3.8 For all integers k,l,p,w > 0 there exists an integer N with the following
property. If G is a p-connected graph of tree-width at most w with at least N wvertices, then
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either G has a minor isomorphic to K, , or G has a linear decomposition of length at least
[ and adhesion at most w satisfying (L1)—(19).

Proof. Let k,[,p,w > 0 be integers, and let [, := [ + 4w + 2. Let Iy be the minimum value
of A\ such that Lemma 3.5 holds for [ = [}, p and all ¢ < w. Finally, let N be such that
Lemma 3.1 holds for | =[5, k,p, and w. We claim that N satisfies the theorem. To prove
the claim let G be a p-connected graph of tree-width at most w with at least N vertices.
By Lemma 3.1 it has either a minor isomorphic to K, or a linear decomposition W, of
length at least I, and adhesion g < w satisfying (L1)—(L5), and so we may assume the latter.
By Lemma 3.2 there is a foundational linkage P; satisfying (L6). By Lemma 3.5 the graph
G has a linear decomposition W, of length [; and adhesion ¢ such that W, and P; satisfy
(L1)-(L8). Finally, by Lemma 3.7 there exist a linear decomposition W of length [ and
adhesion ¢ and a foundational linkage satisfying (L.1)—(L9). O

We will need the following special case.

Corollary 3.9 For all integers l,w > 0 there exists an integer N with the following property.
If G is a 6-connected graph of tree-width at most w with at least N vertices, then either G has
a minor isomorphic to Kg, or G has a linear decomposition of length at least | and adhesion
at most w satisfying (L1)—(L9) for p = 6.

4 Analyzing the auxiliary graph

Let G be a 6-connected graph with no Kg minor, and let W and P be as before and satisfy
(L1)—(1L9). In this section we establish several properties of the auxiliary graph of the pair
(W, P). The first main result is Lemma 4.6 stating that if WV is sufficiently long, then every
component of the subgraph of the auxiliary graph induced by the non-trivial foundational
paths is either a path or a cycle. The second main result of this section, Lemma 4.10, allows
us to modify the pair (W), P) such that in the new pair every non-trivial P-bridge attaches
to exactly two non-trivial foundational paths.

Let k,l > 3 be integers. For i € {1,2,...,k} let P; be a path with vertices v}, ..., v} in
order. We define the linked k-cylinder of length [ to be the graph with vertex-set Ule V(P)

and edge-set Ule E(P)U {U;U;H 1<i<k 1< < l} U{q1, g2}, where the index notation
is taken modulo k£ and the edges ¢; and ¢, have no common end and each have one end in
{v},v2,... v}} and the other end in {v},v?, ..., vf}. Figure 1 shows a linked 3-cylinder of

length six.

Lemma 4.1 For all integers k > 3, a linked k-cylinder of length twelve has a Kg minor.

Proof. By finding two suitable paths with vertex-sets in {v; 1 <i < k1< <3}
and two paths with vertex-sets in {{U; 1 <i < k10 < j < 12}, we see that a linked
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Figure 1: Finding a Kg minor in a linked 3-cylinder of length six.

k-cylinder of length twelve has a minor isomorphic to a linked 3-cylinder of length six with
the additional property that the ends of the edge ¢; are v and v} for i = 1,2. This graph

has a K¢ minor as indicated in Figure 1. [J

Lemma 4.2 Let | > 2 and q > 3 be integers, and let W = (Wo, W1, ..., W) be a linear
decomposition of length | and adhesion q of a graph G, and let P be a foundational linkage
for W such that (L1)—~(L5) hold and (L9) holds for p = 5. If for at least 43(%) indices
i € {1,2,...,1 — 1} there exists a P-bridge in G[W,] with attachments on at least three

non-trivial paths in P, then G has a K¢ minor.

Proof. Let [,q be integers and W = (W, ..., W;) and P be given. If there exist 48(3)
distinct indices ¢ with 1 < i < [ — 1 such that G[W;] contains a P-bridge attaching to at
least three non-trivial foundational paths, then there exist 48 distinct indices ¢ and three
distinct non-trivial foundational paths P;, Py, Py € P such that G[WW;] contains a P-bridge
attaching to P; for j = 1,2,3. Then there exists a subset of indices I C {1,...,l — 1} with
|I| = 24 such that |i — j| > 2 for all distinct i,5 € I, and furthermore, G[W;| contains a
bridge B; attaching to P; for all i € [ and j = 1,2,3. By property (L9), there exist two
disjoint paths @1 and Q)2 each with one end in V(P U P, U P3) N W N W, and one end
in V(PLUP,U P;) N W,y N W,. Moreover, the paths @); and @2 do not have an internal
vertex in either B; \ V/(P) or P, for all i € [ and 1 < j < 3. It follows that G' has a minor
isomorphic to a linked 3-cylinder of length twelve since each pair of successive bridges B;
can be contracted to a single cycle of length three. By Lemma 4.1 the graph G has a K

minor, as desired. [

The following will be a hypothesis common to several forthcoming lemmas. In order to

avoid unnecessary repetition we give it a name.

Hypothesis 4.3 Let p =6, > 2 and ¢ > 6 be integers, let G be a 6-connected graph with
no Kg minor, and let W = (W, Wi, ..., W) be a linear decomposition of G of length [ and
adhesion ¢ with a foundational linkage P such that conditions (L1)-(L9) hold.
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Lemma 4.4 Assume Hypothesis 4.3. Then there do not exist 6(2) distinct indices 1 with
1 <i <1 -1 such that GIW;] contains a non-trivial P-bridge attaching only to trivial

foundational paths.

Proof. Let G, W, P, q, and [ be as stated. If the conclusion of the lemma does not hold,
then there exist six distinct indices ¢ such that G[WW;] contains a non-trivial P-bridge B;
attaching to the same subset of six trivial foundational paths. By contracting the internal

vertices of each B; to a single vertex, we see G would have a Kg minor, a contradiction. [J

Lemma 4.5 Assume Hypothesis 4.5. If | > 6(3), then P includes at least one non-trivial
path.

Proof. Let G, W, P, q, and [ be as stated, and suppose for a contradiction that every
path in P is trivial. For every i, 1 < i <[ — 1, G[W;] contains a non-trivial bridge B;, as
Wi € W1, Wi € Wiy by (L4), in contradiction with Lemma 4.4. O

Let VW be a linear decomposition of a graph GG and let P be a foundational linkage such
that W and P satisfy (L1)—(L8). By a core of the pair (W, P) we mean a component of the
graph obtained from the auxiliary graph of (W, P) by deleting all trivial foundational paths.

The next lemma is the first main result of this section.

Lemma 4.6 Assume Hypothesis 4.3. If | > 48, then every core of the pair (W, P) is a path

or a cycle.

Proof. Let G, W, P, q, and [ be as stated. Suppose for a contradiction that there exists
a non-trivial foundational path P, € P adjacent in the auxiliary graph to three non-trivial
paths P, P3, Py € P. By property (L9), there exist two disjoint paths Q1 and Qs each with
one end in V(P,UP;UP,)NWyNW; and one end in V (P,UP3UPy)NW,_1NW,. Furthermore,
1 and )2 avoid any internal vertex of P; for 1 <14 < 4 as well as any internal vertex of a
P-bridge in G[W,]| for 1 < j <l—1. Forall7 € {1,2,...,24}, we contract to a single vertex
b; the set of vertices consisting of Pi[Ws;_1] and the internal vertices of every non-trivial
bridge attaching to P; in G[W3;_1]. Note that no vertex of Q); for i = 1,2 is contained in the
contracted set of by;_; for any 1 < j < 24. Each vertex b; has a neighbor in each of P, P,
and P,. Also, the neighbors of b; and b; are distinct for ¢ # j. It follows that G has a minor

isomorphic to a linked 3-cylinder of length twelve, contrary to Lemma 4.1. [J

Lemma 4.7 Assume Hypothesis 4.3. If | > 12, then every non-trivial path in P is adjacent

in the auxiliary graph to at most three trivial paths in P.

Proof. Let G, W, P, q, and [ be as stated. Assume, to reach a contradiction, that P, € P

is a non-trivial path and is adjacent to four trivial foundational paths in the auxiliary graph.
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Let the vertices comprising the four trivial foundational paths be v, vy, v3,v4. For each
i€{l1,2,...,6} we contract to a single vertex b; the vertex set containing P;[Ws;_;] and the
internal vertices of all non-trivial bridges of G[Wy;_1] attaching to P;. It follows that G has
as a minor isomorphic to the graph with vertex set {v; : 1 <i <4} U{b; : 1 <i <6} and
edges {vib; 1 1 <7 <41 <7 <6}U{bb;is1:1 <4 <5} This graph has a K¢ minor, and

hence so does G, a contradiction. [J]

Corollary 4.8 Assume Hypothesis 4.53. If | > 12, then every member of P is an induced
path.

Proof. If some non-trivial P € P is not induced, then by (L6) the path P is adjacent to at

least 4 trivial foundational paths in the auxilliary graph, contrary to Lemma 4.7. [

Lemma 4.9 Assume Hypothesis 4.5. If | > 12, then no non-trivial foundational path is

adjacent in the auziliary graph to three or more trivial foundational paths.

Proof. Let G, W, P, q, and | be as stated. As above, assume to reach a contradiction,
that P; € P is a non-trivial path and is adjacent to three trivial foundational paths in the
auxiliary graph. By the 6-connectivity of G, P, must be adjacent to another foundational
path in the auxiliary graph. By Lemma 4.7, such a path, call it P, must be non-trivial.
For each i, 1 <i < 6, we contract to a single vertex the vertex set containing P;[Ws;_;] and
the internal vertices of any non-trivial bridge of G[W3;_4] attaching to P;. It follows that G
has a minor isomorphic to the graph in Figure 2, which has a K3 minor as indicated in that

figure, a contradiction. [.

P 3 3 3

p_l1 2 3 4 5 6

Figure 2: Finding a Kg minor when a non-trivial foundational path is bridge adjacent to
three trivial foundational paths.

In the next lemma, the second main result of this section, we show that we can assume
that our linear decomposition W = (W, Wi, ..., W) and foundational linkage P satisfy the
following property.
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(L10) For alli € {1,2,...,l—1}, every non-trivial P-bridge of G[W;] attaches to exactly two

non-trivial foundational paths.

Lemma 4.10 Assume Hypothesis 4.3. Ifl > (6 (g) + 48 (g)) I', then there exist a contraction
W' of W of length I and adhesion q and a foundational linkage P’ for W' satisfying (L1)—
(L10).

Proof. By Lemma 4.4 and Lemma 4.2 and our choice of [, there exists an index « such that
foralli € {1,2,...,I'—1}, G[W,4;] contains neither a non-trivial P-bridge attaching only to
trivial foundational paths nor a P-bridge attaching to three or more non-trivial foundational
paths. Moreover, Lemma 4.7 and property (L6) imply that no non-trivial bridge attaches
to exactly one non-trivial foundational path. The lemma follows from considering the con-
traction W' = (U?:o Wi, Waits Waria, s Wasw—1, UL WZ> of W and the corresponding

i=a+l
restriction of P. O

5 Finding and eliminating a pinwheel

Let us assume Hypothesis 4.3. In the previous section we have shown that W and P can be
chosen so that for every i € {1,2,...,l — 1}, every non-trivial P-bridge B of G[W;] attaches
to exactly two non-trivial foundational paths. The main result of this section will be used
in Section 6 to show that if G is not an apex graph then YV and P can be chosen so that
every such bridge attaches to no trivial foundational path. The proof technique is different,
and relies on a theory of “non-planar extensions” of planar graphs, developed in [12].

A pinwheel with t vanes is the graph defined as follows. Let C' and C? be two disjoint
cycles of length 2¢, where the vertices of C* are v}, vS, ... v%, in order. Let wy, wy, ..., ws,x
be t + 1 distinct vertices. The pinwheel with ¢ vanes has vertex-set V(C') U V(C?) U

{wy,ws, ..., w, x} and edge-set

E(CYUE(C?) U{vyvs; 1 1<j <t}
U{wjvh;_y 1 <j<ti=12}U{zw;:1<j<t}

The cycles C! and C? form the rings of the pinwheel. A pinwheel with four vanes is pictured
in Figure 3. A Mdbius pinwheel with t vanes is obtained from a pinwheel with ¢ vanes by
deleting the edges vy, vl and v3,v? and adding the edges v3,v? and v3,01. The cycle formed by
V(CYHYUV(C?) in a Mébius pinwheel is the ring of the Mobius pinwheel. A Mdbius pinwheel

with 4 vanes contains Kg as a minor as shown on Figure 3.

Lemma 5.1 Let q, [, and p =6, t > 4 be positive integers. Let W = (Wo, W1, ..., W)) be a
linear decomposition of a 6-connected graph G of length | and adhesion q with foundational
linkage P satisfying (L1)—(L9). Let Py, Py, P5,Q € P be distinct, let Q be trivial, and let P,
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Figure 3: (a) A pinwheel with four vanes, (b) A Mobius pinwheel with 4 vanes and a K
minor in it.

be non-trivial fori = 1,2,3. Furthermore, let Py be adjacent to Py, P3, and Q) in the auziliary
graph. If 1 > 4t + 1, then G has a subgraph isomorphic to a subdivision of a pinwheel or a

Mébius pinwheel with t vanes.

Proof. Let V(Q) = {z}, let BLNWyN Wy = {s;} fori = 1,3, and let PN W, N W, = {¢;}
for i = 1,3. Let P =P — {P, P, P5,Q}. By property (L9), there exist two disjoint paths
Ry and Ry in GIWy UW;] U Upep P each with one end in {si,s3} and one end in {t1,#3}.
The rings of our pinwheel will be formed by R, U Ry U Py U P3. If the paths R; and Rs cross,
i.e. the ends of Ry are s; and t3 and the ends of Ry are s3 and t;, we construct a Mobius
pinwheel. Otherwise, we simply construct a pinwheel on ¢ vanes.

Note that for every j = 1,...,1 — 1 there exists a path S; with one end in W; NV (F;)
and the other end in W; N V(Ps), such that V(S;) € W;, and S; is internally disjoint
from UP€P7P2 P. Also, for every j = 1,...,1 — 1 there exists a vertex v; € W; and three
paths T}, 77 and T, internally disjoint from each other and from (Jpcp_p, P, satisfying
the following. Each of T}, T7 and T} has one end vj, the second end of T} is in V(Py),
the second end of T3 is in V(Ps) and the second end of T7 is . The paths S;, T}, T and
Tf are internally disjoint from the rings of our pinwheel by construction, and the paths,
corresponding to the sets W; with non-consecutive indices, are also disjoint. Therefore we
can use the paths corresponding to the sets W; with odd indices to construct a subgraph of
G isomorphic to a subdivision of a pinwheel or a Mobius pinwheel, with rings of the pinwheel

as prescribed above. [J

As we have seen above a Mdobius pinwheel with sufficiently many vanes contains a Kg

minor. A pinwheel is, however, an apex graph. In order to prove that graphs containing a
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subdivision of a pinwheel with many vanes satisfy Theorem 1.2, we will need the following
lemma concerning subdivisions of apex graphs contained in larger non-apex graphs. The

lemma is proved in [12, Theorem (9.10)].

Lemma 5.2 Let J be an internally 4-connected triangle-free planar graph not isomorphic
to the cube, and let F C E(J) be a nonempty set of edges such that no two edges of F' are
incident with the same face of J. Let J' be obtained from J by subdividing each edge in F
exactly once, and let H be the graph obtained from J' by adding a new vertex v ¢ V(J') and
joining it by an edge to all the new vertices of J'. Let a subdivision of H be isomorphic to a
subgraph of G, and let uw € V(QG) correspond to the vertex v. If G\u is internally 4-connected

and non-planar, then there exists an edge e € E(H) incident with v such that either

(1) there exist vertices x,y € V(J') not belonging to the same face of J' such that (H\e)+xy

s isomorphic to a minor of G, or

(i1) there exist vertices xy,xs,x3,x4 € V(J') appearing on some face of J' in order such

that (H\e) + x1x3 + xox4 is isomorphic to a minor of G and xyx3, xexy & E(J).

Lemma 5.3 If a 5-connected graph G with no Kg minor contains a subdivision of a pinwheel

with 20 vanes as a subgraph, then G is apex.

Proof. We will show that for every positive integer ¢ every 5-connected non-apex graph G
containing a subdivision of a pinwheel with 4t vanes contains a Mdbius pinwheel with ¢t — 1
vanes as a minor. A Mobius pinwheel with 4 vanes contains a Kg minor, as observed above,
and so the lemma will follow.

We apply Lemma 5.2, where the graphs H and J, the vertex v € V(H) and the set of
edges F' C E(J) are defined as follows. Let H be the pinwheel with 4t vanes, and let v be the
“hub” of the pinwheel (denoted by z in the definition of a pinwheel). Let the graph J consist
of two disjoint cycles C* and C? of length 8t with the vertices of C* = {v} : 1 < j < 8t}
for i = 1,2 and v} adjacent to vi,, and vj*' for all 1 < j < 8t and ¢ = 1,2 with the
subscript addition taken modulo 8¢ and the superscript addition taken modulo 2. Finally,
let F'={vy; yv3; ;:1<j <4t}

Suppose that outcome (ii) of Lemma 5.2 holds (the case when outcome (i) holds is
analogous). If the boundary of the face of J' containing the vertices x1, x5, 3 and x4 is not
one of the cycles C! and C?, then without loss of generality we have either x; = v{, 29 =
v, x5 = v3 and x4 = vi, or x; is the new vertex that resulted from the subdivision of the
edge viv? and zy = v} 13 = v3 and x4 = v]. Clearly, for every edge e € E(H) incident to v
the graph (H\e) + z123 + 2224 contains a subgraph isomorphic to a subdivision of a Mébius
pinwheel with 4t — 2 >t — 1 vanes.

Therefore, by symmetry, we assume that the vertices 1, x9, r3 and x4 are contained in
Ch ie x; = v,ﬁi for i = 1,2, 3,4, where, without loss of generality, t < ky, ko, k3, ky < 4t.
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Then the subgraph Jy of J + z123 + 2224 induced on {vf (1 <i<d4t j=1,2} contains two
disjoint paths, one with ends v} and v3,, and another with ends v? and vj,. Now consider
the graph (H\e) + x1x3 + xoxy, where e € E(H) is an edge incident to v, and delete all the
edges of Jy from this graph, except for those that belong to the paths constructed above.
If is easy to see that the resulting graph contains a subdivision of a Mobius pinwheel with

t — 1 vanes, as claimed. [
The next corollary follows immediately from Lemmas 5.1 and 5.3.

Corollary 5.4 Assume Hypothesis 4.3. If | > 81 and some non-trivial foundational path is
adjacent in the auxiliary graph to two non-trivial and at least one trivial foundational path,

then G is apex.

6 Taming the bridges

In Lemma 4.10 we have modified W and P so that for every i € {1,2,...,l — 1} every
non-trivial P-bridge B of G[W;] attaches to exactly two non-trivial foundational paths. Let
us recall that a core is a component of the subgraph of the auxiliary graph restricted to
non-trivial foundational paths. In this section we show that the graph consisting of all paths
of a core of (W, P) and all bridges that attach to two paths of the core can be drawn in
either a disk or a cylinder, depending on whether the core is a path or a cycle.

The following lemma follows easily from the definition of properties (L1)—(L5) and (L9).

Lemma 6.1 Let | > 2, ¢ > 0, and p > 0 be integers, and let W = (Wo, W1q,..., W) be a
linear decomposition of length | and adhesion q of a graph G, and let P be a foundational
linkage for W such that (L1)—(L5) and (L9) hold. Let i be fized with 1 < i <1 —1 and let
Q be a path in G[W;] with ends x and y such that x,y € V(P) for some P € P and Q is
otherwise disjoint from V(P). Let P' be obtained from P by replacing Py by Q). Then the
linkage P' = (P — {P}) U{P'} satisfies (L1)-(L5) and (L9).

Let G be a graph and W = (Wy,...,W;) be a linear decomposition of length | and
adhesion ¢ of G, and let P be a foundational linkage such that (L1)—(L5) hold. Let i €
{1,2,...,1—1}, let P, P’ € P be two non-trivial foundational paths, let W;_1 "W; NV (P) =
{z}, Wi n W, nV(P) ={"}, W,nW;;u N V(P) ={y}, and W, n W, ;s N V(P") = {y'}.
Let @1, Q2 be two disjoint paths where @); has ends u; and v; for ¢« = 1,2. If the paths @
and )y are internally disjoint from V' (P), the vertices x, uy, us, y occur on P in that order,
and ', vy, vy, ¥y occur on P’ in that order, then we say that the foundational paths P and
P’ twist.

Let P, P, and P; be three non-trivial foundational paths and let )1, ()2, and ()3 be

three internally disjoint paths such that @); is also internally disjoint from each member of
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P for each j € {1,2,3}. Let the ends of @); be z;, y; for 1 < j < 3. The paths @1, Qo,
and Q3 form a Pj-tunnel if zq,y; € V(P)), the vertices xs, 23 € V(21 Piy1) — {z1,y1} and
y; € V(P;) for j = 2,3. The path @)y is called the arch of the tunnel.

Lemma 6.2 Let | > 2, ¢ > 3, and p > 4 be integers, and let W = (Wy, W1, ..., W) be a
linear decomposition of length | and adhesion q of a graph G, and let P be a foundational
linkage for W such that (L1)~(L5) and (L9) hold. If there exist 48() distinct indices i €
{1,2,...,1—1} such that GIW;] contains a P-tunnel for some non-trivial foundational path
P e P, then G has a K¢ minor.

Proof. Let [, ¢, p, YW and P be given. Assume, to reach a contradiction, that there
exist 48({) indices i € {1,2,...,1 — 1} such that G[WW;] has a P;-tunnel for some non-trivial
foundational path P; € P. Reroute the paths P; along the arches of the P;-tunnels to get a
linkage P’. By Lemma 6.1 W and P’ satisfy (L1)—(L5) and (L9). Moreover, for each of the
above 48(%) distinct indices ¢ there exists a non-trivial P'-bridge in G[W;] that attaches to
at least three non-trivial foundational paths. It follows from Lemma 4.2 that G has a Kg

minor, as desired. [

Lemma 6.3 Let | > 2, ¢ > 3, and p = 6 be integers, and let W = (Wo, W1, ..., W) be a
linear decomposition of length | and adhesion q of a graph G, and let P be a foundational
linkage for W such that (L1)~(L5) and (L9) hold. If there ewist 12(%) distinct indices i €
{1,2,...,1 — 1} such that G[W;] contains a pair of twisting non-trivial foundational paths,

then G has a K¢ minor.

Proof. Let I, ¢, p, W and P be given. Assume there exist 12(3) distinct indices 7 €
{1,2,...,1 — 1} such that G[W;] contains a pair of twisting non-trivial foundational paths.
It follows that there exists a subset Z C {1,2,...,l — 1} of cardinality 12 and non-trivial
paths Py, P, € P such that Py and P, twist in G[W;] for all i € Z. We use the twisting paths
to contract three disjoint K, subgraphs onto P, and P, to find a minor isomorphic to the
graph in Figure 4. The edges r; and ry in the figure exist by applying property (L9) to the
ends of P and P;. The numbering in Figure 4 shows a K minor, implying that G also has

a Kg minor, as desired. [

Lemma 6.4 Let G be a 6-connected graph with no K¢ minor. Let | > 2, ¢ > 3, and p =6
be integers, let W = (Wo, Wi, ..., W)) be a linear decomposition of length | and adhesion q
of G, and let P be a foundational linkage for W such that (L1)—(L9) hold. If there exist
40(%) distinct indices i € {1,2,...,1 — 1} such that G[W;] contains a non-trivial P-bridge

attaching to a trivial foundational path, then G is apex.

23



1

T9

Figure 4: Finding a Kg minor when there exist a pair of non-trivial foundational paths that
twist in twelve distinct W;. The edges r; and ry are depicted as not crossing, however, if
they cross the graph still contains K¢ as a minor.

Proof. Let [, ¢, p, W and P be given. Assume that there exist 40(%) distinct indices
i€ {1,2,...,1 — 1} such that G[W;] contains a non-trivial P-bridge attaching to a trivial
foundational path. By (L10) each such bridge attaches to two non-trivial foundational paths.
Therefore, there exist distinct non-trivial paths P, P’ € P and a trivial path Q € P such
that G[W;] contains a P-bridge attaching to P, P’ and @ for at least 40 distinct indices
i€{l1,2,...,1—1}. The argument used in the proof of Lemma 5.1 implies that G' contains a
subgraph isomorphic to a subdivision of a pinwheel with 20 vanes or a Mobius pinwheel with
20 vanes. Note that the M6bius pinwheel with 20 vanes contains a Kg minor, and, thus, G

is apex by Lemma 5.3, as desired. [

Let us assume Hypothesis 4.3, and let C be a core of (W, P). We define the ith section of
C, denoted by G(C, 7), to be the subgraph of G[W;], obtained from the union of the paths in C
and all P-bridges of G[W;] that attach to a member of C by deleting the trivial foundational
paths. By Lemma 4.6 the graph C is a path or a cycle. Let Pi, P, ..., P, be the vertices of
C, listed in order, let W,y N W; NV(P;) = {u;} and let W; N W, 1, NV (P;) = {v;}. If C is
a path, then we say that C is flat in W; if G(C,i) can be drawn in a disk with the vertices
Uy, U, - . , Ug, Vg, Vy_1, - .., v; drawn on the boundary of the disk in order, and the paths P,
and P, also drawn on the boundary of the disk. If C is a cycle, then we say that C is flat
in W; if G(C,1) can be drawn in a cylinder with the vertices uy,us,...,u; drawn on one of
the boundary components of the cylinder in the clockwise order listed, and vy, v;_q,...,v;
drawn on the other boundary component in the clockwise order listed. Our next objective
is to find a linear decomposition W = (W, Wy, ..., W) and a foundational linkage P such
that

(L11) Every core of (W, P) is flat in W; for every i € {1,2,...,1 —1}.

(L12) For every i € {1,2,...,1 — 1}, no non-trivial P-bridge of G[W;] attaches to a trivial
foundational path.
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Lemma 6.5 Let G be a 6-connected non-apex graph not containing K¢ as a minor. Let
p=26,1>2 q=>6 be integers, and let W = (W1, Wy, ..., W)) be a linear decomposition
of G of adhesion q and length | satisfying (L1)~(L10). If 1 > (88(%) + 12(%)) ', then there
exists a contraction W' of W of length l' such that W' and the corresponding restriction of
P satisfy (L1)-(L12).

Proof. Let G, p, q, [, W, and P be given. By our choice of [ and Lemmas 6.3, 6.2 and 6.4,
there exists an index « such that for all i € {0,1,...,{'} the graph G[W,;] does not contain
a P-tunnel for any P in P, nor does it contain a pair of non-trivial twisting foundational
paths, nor does it contain a non-trivial bridge attaching to a trivial foundational path. We
claim that the contraction (Uf‘;ol Wi, Wea, Wait, oo s Wasr, Ufj:a—&—l’—i—l VVZ) of W is as desired.
Condition (L12) follows from the construction, and hence it suffices to prove (L11).

Fix an index ¢ € {0,1...,0'} and a core C of the auxiliary graph. We wish to apply
Lemma 2.4 or 2.5, depending on whether C is a path or cycle, to the graph H := G(C, o+ 1)
and linkage C. Let P, u;,v; for j € {1,2,...,t} be as in the definition of flat. By Corollary 4.8
and (L10) every C-bridge of H is stable, and by (L10) no C-bridge of H attaches to three or
more members of C. If there exists a set X C V(H) of size at most three such that some
component J of G\ X is disjoint from {uy, ug, ..., u,v1,v9,...,v:}, then by 6-connectivity
of G the vertices of J include a neighbor of at least three distinct trivial paths of P. We
conclude that some member of C is adjacent in the auxiliary graph to at least three trivial
foundational paths, contrary to Lemma 4.9. Thus no such set X exists. Next we show that
none of the outcomes (i)—(iii) of Lemmas 2.4 and 2.5 hold. Outcome (i) does not hold by
the definition of C, and outcomes (ii) and (iii) do not hold by the choice of o and . Thus it
follows from Lemma 2.4 if C is a path or Lemma 2.5 if C is a cycle that H can be drawn in
a disk or a cylinder as described in that lemma, which is precisely the definition of C being
flat in W,;. Thus W’ satisfies (L11) as well. O

7 Controlling the boundary of a planar graph

Let GG be a simple plane graph with the infinite region bounded by a cycle ', and such that
the degree of every vertex in V(G)—V(C) is at least six. DeVos and Seymour [4] proved that
V(G| < [V(C)|?/12+ O(|[V(C)]). In this section we digress to prove a similar result under
the weaker hypothesis that G has deficiency at most five, where the deficiency of a plane
graph G with the infinite region bounded by a cycle C'is defined as -, () v (o) max{6 —
deg(v),0}. We denote the deficiency of G by def(G). The proof is an adaptation of the
argument from [4], but we include it, because the details are different. We begin with a
couple of definitions and a lemma.

A quilt is a simple plane graph G with the infinite region bounded by a cycle C', such
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that G has deficiency at most five and every finite region of G is bounded by a triangle. If
exactly one vertex of ' has degree three, and all other vertices have degree exactly four,
then we say that C' is a convenient graph. Otherwise, a convenient graph is a subpath of C
with at least one edge, with both ends of degree exactly three, and all internal vertices of

degree exactly four.

Lemma 7.1 Fvery quilt with no vertices of degree two has a convenient graph.

Proof. Let GG be a quilt with no vertices of degree two, and let the deficiency of G be d.
Consider the planar graph G’ obtained by adding a vertex v to G adjacent to every vertex
of C. Let |V(G)| =n and |V(C)| = m. Then

6(n+1)—12 = Z deges (v)

VeV (@)
= Z (degg(v) +1) +m+ Z degq(v)
vev(C) VeV (G)-V(C)
> degq(v) +6(n —m) — d + 2m.
veV(C)

It follows that 3 v (o degg(v) < 4m —6+d. Since d <5 we deduce that there are strictly
more vertices in C' of degree three than of degree at least five. Thus, a convenient graph

exists. [

The main theorem of this section follows easily from the next lemma. If G is a quilt, we
define ;(G) to be 1 if G has a vertex of degree two, and otherwise we define 14(G) to be the
minimum number of edges in a convenient graph. Thus u(G) is at least one, and at most

the length of the cycle bounding the infinite region of G.

Lemma 7.2 Let G be a quilt on at least four vertices with the infinite region bounded by a
cycle of length k. Then |V (G)| < k*/2+ k/2 4 u(G) + def(G) — 6.

Proof. Let G and k be as stated. We proceed by induction on |V(G)|. If G has exactly
four vertices, then it is isomorphic to Ky, or K4 minus an edge. We have k = 3, u(G) = 1,
def(G) = 3, or k =4, u(G) =1, def(G) = 0, and the lemma holds. Thus we may assume
that G has at least five vertices, and that the lemma holds for all quilts on fewer than |V (G)]
vertices. Let C be the cycle bounding the infinite region of G. If C has a chord, then the
chord divides G into two quilts (G; and G5 in the obvious way. Let the infinite region of G;
have length k;. Assume first that G, has exactly three vertices. Then by induction

V(G| = V(G| +1 < ki/2+ ki /2 + u(Gy) + def(Gy) — 6+ 1
=k2/2+k/24+ u(G1) — k + 1+ def(G,) — 6
< K*/2+k/2 + p(G) + def(G) — 6,
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as desired. Thus we may assume that both G; and G5 have at least four vertices. Since
ki, ke > 3 we have 3(ky + k2) < ki1ko + 9, and hence by induction

V(G = V(G| +|V(G2)| -2
< k)2 + ki /2 + ky 4+ def(Gy) — 6 + k3 /2 + ko /2 + ko + def(Gy) — 6 — 2
= (ky + ko — 2)?/2 4 (k1 + ky — 2)/2 + def(G1) + def(Gy) — kyky + 3k + 3ky — 15
<K+ k/2 + u(G) + def(G) — 6,
as desired. Thus we may assume that C' has no chord. In particular, G has no vertex of
degree two.

By Lemma 7.1 the quilt G’ has a convenient graph. Let P be a convenient graph with
the smallest number of edges. Let us assume first that P has exactly one edge. Then P is
a path with ends v and v, say. Since C' does not have any chords and G has at least five
vertices, the graph G’ := G\{u, v} is a quilt. If G’ has exactly three vertices, then G is the
wheel on five vertices, k = 4, u(G) = 1, def(G) = 2, and the lemma holds. Thus we may

assume that G’ has at least four vertices, and hence by induction
V()| = V(G +2< (k=124 (k—1)/2+ u(G") + def(G') — 6 + 2

=k*/2+ k/2+ u(G") — k + 2+ def(G') — 6

<k*/2+k/2 + p(G) + def(G) — 6,
as desired. Thus we may assume that P has at least two edges. If P = C, then let u be
the unique vertex of C' of degree three; otherwise P is a path, and we let u be an end of P.
Let ' be the unique neighbor of u that does not belong to C. Then G’ := G\u is a quilt
on at least four vertices with the infinite region bounded by a cycle C’, where C’ has length
k. Since C has no chords and G has at least five vertices we deduce that degg, (u’) > 3.
If equality holds, then u has degree four in G, and hence def(G’) = def(G) — 2. Otherwise
w(G") < u(G) — 1. In either case we have by induction

V(@) = V(G +1< K /24+k/2+ u(G') + def(G') — 6 + 1
< k)24 k/2 4+ p(G) + def(G) — 6,

as desired. O

Theorem 7.3 Let G be a simple graph drawn in a disk, let X be the set of vertices of G
drawn on the boundary of the disk, and assume that 3_ .y ) x max{6 — deg(v),0} < 5. If
| X| >3, then |V(G)| < |X?/2 + 3|X]|/2 — 1.

Proof. Let G and X be as stated. We may assume, by adding edges to G, that G is a
quilt with the infinite region bounded by a cycle with vertex set X. By Lemma 7.2 we have
V(G| < |X|?/2 +|X|/2 + u(G) + def(G) — 6 < | X|?/2 + 3| X|/2 — 1, as desired. [J
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8 Cylindrical tube

Lemma 4.5 guarantees the existence of a non-empty core in a sufficiently long linear decom-
position of any Kg-minor-free 6-connected graph G of bounded tree-width, assuming that
such a decomposition satisfies conditions (L1)—(L9). Lemma 4.6 implies that, under the
same conditions, each core is a path or a cycle. In this section we handle the case when some
core of a linear decomposition of the graph G is a cycle.

Before introducing the main result of this section, we need to present one more definition
and a related lemma. Let k, [ be positive integers, k,l > 3. A double crossed k-cylinder of
length [ is the graph defined as follows. Let Py, ..., P, be k vertex disjoint paths with the
vertex set of P, = {v; 1< j<li}forall 1 <i<kwith vj- adjacent to v§+1 forall 1 <j <
[ — 1. The double crossed k-cylinder of length [ has vertex set {U; 1<i<1<i<k}
and edge set

k
(U E(R)) U {U;U;+1 1 S Z S k; 1 S] S l} U {C]17612a7”1>7"2}7
i=1

where the superscript addition is taken modulo k. Furthermore, the ends of ¢; are u;,v; €
{v{ 11 < j <k} fori=12 and the vertices uy, us, vy, vy occur in that order in the cyclic
order (vi,v},... v}). Similarly, the edges r; and ry cross in the cyclic order (v}, v?, ... vF).
Explicitly, the ends of r; are x;,y; € {vlj :1 < j <k} for i = 1,2 and occur in the order

Ty, T2, Y1, Y2 in the cyclic order (vi,v?, ..., vF).

Lemma 8.1 Lett and [ be integers, t > 5, 1 > 16. A double crossed t-cylinder of length [

contains Kg as a minor.

Proof. Let G be a doubled crossed t-cylinder of length [ with vertex set {v; 1< <L1<L
i < t}. By possibly routing the crossing edges ¢; and ¢, in the first five cycles on vertices
{v;'- : 1 <j <5,1 <i <t} and routing the edges r; and ry on the final five cycles with
vertex set {v; :1—=5<j<I,1<i<t}, weseethat G contains as a minor a doubled crossed
5-cylinder G’ of length 6 and moreover, with the additional property that the ends of ¢; are
v} and v} and the ends of ¢, are v? and v{. Similarly, the edges r; and ro of G’ have ends

v, vg and vZ, vg, respectively. The graph G then contains Kg as a minor, as indicated in

Figure 5. [J
We now give the main result of this section.

Lemma 8.2 Let p =6, 1 > 2, and q > 6 be integers. Let G be a 6-connected graph with
no K¢ minor, and let W = (W, Wy,..., W) be a linear decomposition of G of length | and
adhesion q with a foundational linkage P satisfying (L1)—(L12). Further, assume that some
core of (W, P) is a cycle. If 1 > 2q + 32, then G is apex.
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Figure 5: A double crossed 5-cylinder of length 6 contains Kg as a minor

Proof. Let p, [, g, and W be given, let C be a core of (W), P) that is a cycle, and assume for
a contradiction that GG is not apex. Let P;, P, ..., P, be the vertices of C listed in order. For
i=1,2,...,1—1let H; denote the graph G(C, 1), and for j = 1,2,...,t let u; be the unique
element of V(P;) N W, N W,4; and v; the unique element of V(P;) N W30 N Wi y33. Let
A ={uy,ug,...,ut}, B={v1,09,...,0}, let K denote the graph H, 1 U H, 2 U...UH 39,
and let L denote the graph G \ (V(K) — A — B). Since G is not apex and C is a cycle,
by Corollary 5.4 the core C forms a component of the auxiliary graph. Therefore, we have
KUL=Gand V(KNL)=AUB.

We claim that L does not include two disjoint paths from A to B. Indeed, otherwise
by contracting P;[W,;2;] to a single vertex for 1 < i <t and 0 < j < 11, we see that G
contains a linked ¢-cylinder of length twelve. Lemma 4.1 then contradicts our choice of G.
Thus there exist subgraphs Ly, Ly of L such that Ly U Ly =L, A CV(Ly), B C V(L) and
|V(Ly N Ly)| < 1. Now property (L9) applied to C and a subset of C of size two implies that
t>5.

Let 4 be the cyclic permutation (uq,us,...,u;), and let 2y be the cyclic permutation
(v1,v2,...,v¢). Thus (L1,Q) and (Lo, 22) are societies. Let X = V(L; N Ly). By (L11) the
graph K can be drawn in a cylinder with uq,us, ..., u; drawn in one boundary component
in the clockwise order listed, and vy, vs,...,v; drawn in the other boundary component in
the clockwise order listed. Thus if both societies (L; \ X, \ X) and (L2 \ X, Qs \ X) are
rural, then G is apex, so we may assume that (L; \ X,€; \ X) is not rural and hence by
Theorem 2.3 it has a cross. The society (Lg,2s) is not rural by Theorem 7.3, because each
vertex of V(Ls) — B — X has degree at least 6 and |V (Ls)| > gt > t* = | B|?, because V(L)
includes each of the pairwise disjoint sets W; N W;,1 NV (C) for i = ¢+32,¢+33,...,2¢+ 31.
Likewise, (Lg,€2s) has a cross by Theorem 7.3.

We have shown that there exist four pairwise disjoint paths, two of them forming a cross
in (L1,€) and two forming a cross in (Lo, §2). Let j € {0,1,...,15}. By the definition of
core the graph G(C, ¢+ 2j + 1) has internally disjoint paths @1, Qs, ..., Q; such that @; has
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one end in P;, the other end in P;;; (where P,y means P;), and is otherwise disjoint from
C. Since for j # j' the graphs G(C,q+2j + 1) and G(C,q + 25’ + 1) are vertex disjoint, we
conclude that G contains as a minor a double crossed t-cylinder of length at least 16. This

observation contradicts Lemma 8.1 and completes the proof of the lemma. [

9 Planar strip
We now examine the case when some core of the auxiliary graph is a path.

Lemma 9.1 Let p =6, 1 > 2 and q > 6 be integers. Let G be a 6-connected graph with
no K¢ minor, and let W = (Wo, Wy, ..., W) be a linear decomposition of G of length | and
adhesion q with a foundational linkage P satisfying (L1)-(L12). Further, assume thal some
core of (W, P) is a path. If | > max{4q + 11,48}, then G is an apex graph.

Proof. Let p, [, g, and W be given, let C be a core of (W, P) that is a path, and assume
for a contradiction that G is not apex. Let P;, P, ..., P, be the vertices of C listed in order.
As in the proof of Lemma 8.2, for i = 1,2,...,1 — 1 let H; denote the graph G(C, 1), and for
Jj=1,2,...,t let u; be the unique element of V(P;) N Wy N W, and v; the unique element
of V(P) N Wi_y N W,. Let A = {uy,us,...,u}, B ={v1,09,...,0:}, and let Q denote the
set of trivial foundational paths adjacent in the auxiliary graph to paths in C. Let K denote
the subgraph of G induced on V(H; U HyU...UH;_1) UV(Q), and let L denote the graph
G\ (V(K)—A—B-V(Q)). Note that K UL=G and V(K)NV(L)=AUBUV(Q).

We claim that either P, or P; is adjacent in the auxiliary graph to at least two paths
in Q. Suppose for a contradiction that both P, and P, are adjacent to at most one such
path. We assume that P; is adjacent to exactly one trivial foundational path S; € Q for
1 = 1,2 = t. The argument is similar in the case when one or both of P, and P, are not
adjacent to any paths in Q. Note that by (L.12) and Corollary 5.4 all the neighbors of V(S})
and V(S2) lie on Py U Py. If Sy # Sy, we let {s;} = V(S;) fori=1,i=1tand K' = K. If
S1 = Sy with V(S1) = V(S;) = {s}, let K’ be obtained from K by deleting s, and adding
new vertices s; and sy, where s; is adjacent to every neighbor of s on P;, and s; is adjacent
to every neighbor of s on P,. By property (L11), the graph K’ is planar and embeds in a
disk with exactly the vertices {si,s;} U AU B on the boundary. Moreover, every vertex not
on the boundary of the disk has degree at least six. This is a contradiction to Theorem 7.3,
as |[V(K')| > It > (2t 4+ 2)?, because [ > 4q + 11.

Using the above claim and Lemma 4.2 we assume without loss of generality that P; is
adjacent in the auxiliary graph to exactly two paths in Q, say Q1 and (5. Let V(Q1) = {¢1}
and V(Q2) = {g}. We claim that the graph G’ = G \ {q1,¢2} is planar and that P; is
a subset of a facial boundary of G’. Suppose that P, is adjacent to at least two paths in

Q — {Q1,Q2}. Then G contains as a minor the graph in Figure 6. The horizontal paths
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Figure 6: Finding a K¢ minor when there exist four distinct trivial foundational paths with
neighbors in C.

in the figure correspond to contractions of P, and P, and the vertical edges correspond to
paths in Hy; 1 for i =1,2,...,6 with ends on P, and P, which exist by the definition of C.
The graph in Figure 6 contains a Kg minor, as indicated, a contradiction. Therefore P; is
adjacent to at most one path in @ — {Q1,Q2}. By (L11), (L12) and Corollary 5.4, the graph
K is planar and embeds in the disk with P, forming part of its boundary. Let 2 be a cyclic
permutation of the set V() = AUBU (V(Q) — {q1,q2}) ordered wus, u;_1,...,u1,01,...,0
followed by the element of V(Q) — {q1,q.} if V(Q) — {q1,q2} # 0. If the society (L, <)
contains a cross, then GG contains as a minor one of the configurations pictured in Figure 7.
As each of this configurations contains a Kg minor as indicated in Figure 7, we conclude by
Theorem 2.3 that (L, <) is rural. Combined with the planarity of K this implies our claim
that G’ is planar and P is a subset of a facial boundary.

Let Py = {Q1,Q2, P1, P}. By property (L9), there exist two disjoint paths R; and Ry
in G[Woy U W] U UPGP_P2 P linking the set {u;,us} to the set {vy,v,}. By the claim in
the previous paragraph we assume without loss of generality that R; has ends u; and v; for
1 =1,2, and that R; U P, forms a facial cycle of G'. As G is not apex, both ¢; and ¢, must
have some neighbor not contained in Ry U P;. Let ¢, be such a neighbor of ¢; for i = 1,2.
The cycle Ry U P is a facial cycle in the 4-connected planar graph G’, and hence there is a
unique (Ry U Py)-bridge in G — {q1, ¢2}. It follows that for each ¢} there exists a path from
¢, to Ry U Py avoiding Ry U Py. Let R for i = 1,2 be such paths from ¢} to Ry U P,. Since
[ > 48 there exists an index « such that W,.; is disjoint from R} and R, for 0 < i < 14.
By considering P, and P, and the bridges attaching to P, and P, in Hy, Hot1, .-y Hav14,
we see that GG contains as a minor the graph in Figure 8, and consequently, a K minor, as

indicated in Figure 8. This contradiction completes the proof of the lemma. []

Lemma 9.1 represents the final step in our analysis of the structure of the auxiliary graph.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let w > 1 be an integer. Let [; = max{4w + 11,2w + 32,58},
let I, = (88(;‘)’) + 12(’;)) l1, and let I3 = (6 (Z’) + 48(’;‘:)) l3. By Corollary 3.9 there exists an

31



3 4 4 4 1 1 1 1
3 4 4 3 4 1 2 2 4
3
5 3 1 2 3 f 4 5 1 2 3 3
5 6 5 6
4 2
1 1 1 2
3 5 1 2
3 4
5 6

Figure 8: Configurations giving K¢ minors when the trivial foundational paths @); and Q-
have a neighbor not contained in the boundary of the face defined by Ry U P;

integer N such that every 6-connected graph G of tree-width at most w with no Kg minor
has a linear decomposition of length at least I3 and adhesion at most w satisfying properties
(L1)-(L9) for p = 6. We claim that such an integer N satisfies Theorem 1.2.

Let G be a 6-connected graph of tree-width at most w with at least N vertices and
no K minor. By Lemma 4.10 the graph G has a linear decomposition of length at least
lo and adhesion at most w satisfying properties (L1)—(L10), and thus by Lemma 6.5 the
graph G has a linear decomposition W of length at least /; and adhesion at most w and a
foundational linkage P satisfying properties (L1)—(L12). By Lemma 4.5 P includes a non-
trivial foundational path. By Lemma 4.9 every non-trivial foundational path of P attaches to

at most 2 trivial foundational paths in the auxiliary graph. Therefore, by the 6-connectivity
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of G, every core of (W, P) has at least two vertices, and by Lemma 4.6 every core is a path
or a cycle. If some core of (W, P) is a cycle, then G is apex by Lemma 8.2. Otherwise, G is
apex by Lemma 9.1. [J
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