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ABSTRACT
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1 Introduction

Graphs in this paper are allowed to have loops and multiple edges. A graph is a minor of

another if the first can be obtained from a subgraph of the second by contracting edges. An

H minor is a minor isomorphic to H. A graph G is apex if it has a vertex v such that G\v

is planar. (We use \ for deletion.) Jørgensen [9] made the following beautiful conjecture.

Conjecture 1.1 Every 6-connected graph with no K6 minor is apex.

In a companion paper [10] we prove that Conjecture 1.1 holds for all sufficiently big

6-connected graphs. Here we establish the first step toward that goal, the following.

Theorem 1.2 For every integer w ≥ 1 there exists an integer N such that every 6-connected

graph on at least N vertices and tree-width at most w with no K6 minor is apex.

We define tree-width later in this section, but let us discuss Jørgensen’s conjecture first.

It is related to Hadwiger’s conjecture [7], the following.

Conjecture 1.3 For every integer t ≥ 1, if a loopless graph has no Kt minor, then it is

(t− 1)-colorable.

Hadwiger’s conjecture is known for t ≤ 6. It is trivial for t ≤ 3, and is still fairly easy

for t = 4, as shown by Dirac [6]. However, for t ≥ 5 Hadwiger’s conjecture implies the Four-

Color Theorem. Wagner [24] gave a structural characterization of graphs with no K5 minor,

which implies that Hadwiger’s conjecture for t = 5 is actually equivalent to the Four-Color

Theorem. The same conclusion has been obtained for t = 6 in [19] by showing that a minimal

counterexample to Hadwiger’s conjecture for t = 6 is apex. The proof uses an earlier result

of Mader [11] that every minimal counterexample to Conjecture 1.3 is 6-connected. Thus

Conjecture 1.1, if true, would give more structural information. Furthermore, the structure

of all graphs with no K6 minor is not known, and appears complicated and difficult. Thus

obtaining a structural characterization of graphs with no K6 minor, an analogue of Wag-

ner’s theorem mentioned above, appears beyond reach at the moment. On the other hand,

Conjecture 1.1 provides a nice necessary and sufficient condition for 6-connected graphs.

Unfortunately, it, too, appears to be a difficult problem.

Let us turn to tree-width and our proof method. Tree-width of a graph was first defined

by Halin [8], and was later rediscovered in [15], and, independently, in [1]. The definition is

as follows. A tree-decomposition of a graph G is a pair (T, Y ), where T is a tree and Y is a

family {Yt | t ∈ V (T )} of vertex sets Yt ⊆ V (G), such that the following two properties hold:

(W1)
∪

t∈V (T ) Yt = V (G), and every edge of G has both ends in some Yt.

(W2) If t, t′, t′′ ∈ V (T ) and t′ lies on the path in T between t and t′′, then Yt ∩ Yt′′ ⊆ Yt′ .
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The width of a tree-decomposition (T, Y ) is maxt∈V (T )(|Yt|−1), and the tree-width of a graph

G is the minimum width of a tree-decomposition of G.

Our proof of Theorem 1.2 proceeds as follows. We choose a tree-decomposition (T,W )

of G of width w with no “redundancies”. It follows easily that if T has a vertex of large

degree, then G has a K6 minor, and so we may assume that T has a long path. For the

rest of the proof we concentrate our effort on this long path. Since other branches of T

are inconsequential, we convert (T,W ) to a “linear decomposition”, which is really just a

tree-decomposition, where the underlying tree is a path, but we find it more convenient

to number the sets of vertices W0,W1, . . . ,Wl, rather than index them by the vertices of a

path. At this point we no longer require that the width be bounded; all we need is that the

intersections Wi−1 ∩ Wi are bounded and that l is sufficiently large. Thus we may assume

(by trimming our linear decomposition) that all the sets Wi−1 ∩ Wi have the same size,

say q. Furthermore, it can be arranged (by invoking the result from [22] or by a direct

argument) that there exist q disjoint paths P1, P2, . . . , Pq from W0 ∩W1 to Wl−1 ∩Wl. We

apply the pigeon hole principle many times, each time trimming the linear decomposition,

but still keeping it sufficiently long, to make sure that if the subgraph G[Wi] has some useful

property for some i ∈ {1, 2, . . . , l − 1}, then all the graphs G[Wi] have that property for all

i ∈ {1, 2, . . . , l − 1}.

A prime example of a useful property is the existence of two disjoint paths Q1, Q2 in

G[Wi], internally disjoint from P1, P2, . . . , Pq, with ends u1, v1 and u2, v2, respectively, such

that u1, v2 ∈ V (P1), u2, v1 ∈ V (P2) and they appear on those paths in the order listed as P1

and P2 are traversed from W0 ∩ W1 to Wl−1 ∩ Wl. In those circumstances we say that P1

and P2 twist in Wi. Thus, in particular, we can arrange that if two paths Pj and Pj′ twist

in Wi for some i ∈ {1, 2, . . . , l− 1}, then they twist in Wi for all i ∈ {1, 2, . . . , l− 1}. On the

other hand, if two paths Pj and Pj′ twist in Wi for all i ∈ {1, 2, . . . , l − 1} and l is not too

small, then G has a K6 minor. This is the sort of argument we will be using, but the details

are too numerous to be described in their entirety here.

In [10] we use Theorem 1.2 to prove Jørgensen’s conjecture for sufficiently big graphs,

formally the following:

Theorem 1.4 There exists an integer N such that every 6-connected graph on at least N

vertices with no K6 minor is apex.

How does Theorem 1.2 help in the proof of Theorem 1.4? By the excluded grid theorem

of Robertson and Seymour [16] (see also [5, 14, 20]) it suffices to prove Theorem 1.4 for

graphs that have a sufficiently large grid minor. We then analyze how the remainder of the

graph attaches to the grid. We refer to [10] for details.

The paper is organized as follows. In Section 2 we state a few lemmas, mostly from

other papers. In Section 3 we convert a tree-decomposition into a linear decomposition,
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as described above, and we prove that the linear decomposition can be chosen with some

additional useful properties. In Section 4 we introduce the auxiliary graph—its vertices are

the paths P1, P2, . . . , Pq, and two of them are adjacent if they are joined by a path avoiding

all the other paths P1, P2, . . . , Pq. By joined we mean in some or every Wi; by now the two

are equivalent. We use the auxiliary graph to further refine the linear decomposition. A

core is a component of the subgraph of the auxiliary graph induced by those of the paths

P1, P2, . . . , Pq that have at least one edge. We show, among other things, that every core is a

path or a cycle. In Section 5 we use the theory of “non-planar extensions” of planar graphs

from [12] to get under control adjacencies in the auxiliary graph of those paths Pi that are

trivial. In Section 6 we further refine our linear decomposition to arrange that the part of

G that corresponds to a core can be drawn either in a disk or in a cylinder, depending on

whether the core is a path or a cycle. In Section 7 we digress and prove a slight extension of

a result of DeVos and Seymour [4]. Finally, in Section 8 we essentially complete the proof of

Theorem 1.2 in the case when some core of the auxiliary graph is a cycle, and in Section 9

we do the same when some core is a path.

2 Rerouting and rural societies

Let S be a subgraph of a graph G. An S-bridge in G is a connected subgraph B of G such

that E(B) ∩ E(S) = ∅ and either E(B) consists of a unique edge with both ends in S, or

for some component C of G\V (S) the set E(B) consists of all edges of G with at least one

end in V (C). The vertices in V (B)∩ V (S) are called the attachments of B. We say that an

S-bridge B attaches to a subgraph H of S if V (H) ∩ V (B) ̸= ∅.

Now let S be such that no block of S is a cycle. By a segment of S we mean a maximal

subpath P of S such that every internal vertex of P has degree two in S. It follows that the

segments of S are uniquely determined. Now if B is an S-bridge of G, then we say that B is

unstable if some segment of S includes all the attachments of B, and otherwise we say that

B is stable. Our next lemma says that it is possible to make all bridges stable by making

the following “local” changes. Let G and S be as before, let P be a segment of S of length

at least two, and let Q be a path in G with ends x, y ∈ V (P ) and otherwise disjoint from

S. Let S ′ be obtained from S by replacing the path xPy (the subpath of P with ends x and

y) by Q; then we say that S ′ was obtained from S by rerouting P along Q, or simply that

S ′ was obtained from S by rerouting. Please note that P is required to have length at least

two, and hence this relation is not symmetric. We say that the rerouting is proper if all the

attachments of the S-bridge that contains Q belong to P . The following lemma is essentially

due to Tutte.

Lemma 2.1 Let G be a simple graph, and let S be a subgraph of G such that no block of

S is a cycle. Then there exists a subgraph S ′ of G obtained from S by a sequence of proper
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reroutings such that if an S ′-bridge B of G is unstable, say all its attachments belong to a

segment P of S ′, then there exist vertices x, y ∈ V (P ) such that some component of G\{x, y}

includes a vertex of B and is disjoint from S ′\V (P ).

Proof. We may choose a subgraph S ′ of G obtained from S by a sequence of proper

reroutings such that the number of vertices that belong to stable S ′-bridges is maximum,

and, subject to that, |V (S ′)| is minimum. We will show that S ′ is as desired. To that end

we may assume that B is an S ′-bridge of G with all its attachments in a segment P of S ′.

Let v0, v1, . . . , vk be distinct vertices of P , listed in order of occurrence on P such that

v0 and vk are the ends of P and {v1, . . . , vk−1} is the set of all internal vertices of P that are

attachments of a stable S ′-bridge. We claim that if u, v are two attachments of B, then no

vi belongs to the interior of uPv. To prove this suppose to the contrary that vi is an internal

vertex of uPv. But then replacing uPv by an induced subpath of B with ends u, v and

otherwise disjoint from S ′ is a proper rerouting that produces a graph S ′′ with strictly more

vertices belonging to stable S ′′-bridges, contrary to the choice of S ′. This proves our claim

that no vi belongs to the interior of uPv. But then for some i = 1, 2, . . . , k the path vi−1Pvi

includes all attachments of B. Since G has no parallel edges, the same argument (using the

minimality of |V (S ′)|) now shows that V (B)−{vi−1, vi} ̸= ∅. Consequently some component

J of G\{vi−1, vi} includes a vertex of B. It follows that B\{vi−1, vi} is a subgraph of J . Now

B has all its attachments in vi−1Pvi, the interior of vi−1Pvi includes no attachment of a

stable S ′-bridge, and (by what we have shown about B) every unstable S ′-bridge with an

attachment in the interior of vi−1Pvi has all its attachments in vi−1Pvi. It follows that J is

disjoint from S ′\V (P ), as desired. �

We deduce the following corollary.

Theorem 2.2 Let G be a 3-connected graph, and let S be a subgraph of G with at least two

segments such that no block of S is a cycle. Then there exists a subgraph S ′ of G obtained

from S by a sequence of proper reroutings such that every S ′-bridge is stable.

Next we introduce several notions and a theorem from [17]. Let Ω be a cyclic permutation

of the elements of some set; we denote this set by V (Ω). A society is a pair (G,Ω), where G

is a graph, and Ω is a cyclic permutation with V (Ω) ⊆ V (G). A society (G,Ω) is rural if G

can be drawn in a disk with V (Ω) drawn on the boundary of the disk in the order given by

Ω. A cross in (G,Ω) is a pair of disjoint non-trivial paths P1 and P2 with ends u1, v1 and

u2,v2 respectively, so that u1, u2, v1, v2 ∈ V (Ω) appear in Ω in this or reverse order, and P1

and P2 are otherwise disjoint from V (Ω).

A separation of a graph G is a pair (A,B) such that A∪B = V (G) and there is no edge

with one end in A−B and the other end in B −A. The order of (A,B) is |A ∩B|. We say
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that a society (G,Ω) is 4-connected if there is no separation (A,B) of G of order at most

three with V (Ω) ⊆ A and B − A ̸= ∅.

The next theorem follows from Theorems (2.3) and (2.4) in [17].

Theorem 2.3 Let (G,Ω) be a 4-connected society with no cross. Then (G,Ω) is rural.

We will need the following lemma, a special case of [10, Lemma 3.2]. A linkage in a graph

is a set P of disjoint paths. If A,B are sets such that each P ∈ P has one end in A and the

other in B, then we say that P is a linkage from A to B. The graph of the linkage P is the

union of all P ∈ P . Occasionally we will use P in reference to the graph of P ; thus we will

use V (P) to denote the vertex-set of the graph of P and we will also speak of P-bridges. A

path is trivial if it has exactly one vertex and non-trivial otherwise. By a P-path we mean

a non-trivial path with both ends in V (P) and otherwise disjoint from the graph of P .

Lemma 2.4 Let k ≥ 2 be an integer, let P = {P1, P2, . . . , Pk} be a linkage in a graph G,

where Pi has distinct ends ui and vi, and let every P-bridge of G be stable. Assume that G

cannot be drawn in a disk with u1, u2, . . . , uk, vk, vk−1, . . . , v1 drawn on the boundary of the

disk in order and the paths P1 and Pk also drawn on the boundary, and assume also that

there is no set X ⊆ V (G) of size at most three such that some component of G\X is disjoint

from {u1, u2, . . . , uk, v1, v2, . . . , vk}. Then either

(i) there exist integers i, j ∈ {1, 2, . . . , k} with |i− j| > 1 and a P-path Q in G with one

end in V (Pi) and the other end in V (Pj), or

(ii) there exist an integer i ∈ {1, 2, . . . , k − 1} and two disjoint P-paths Q1, Q2 in G

such that Qj has ends xj, yj, the vertices ui, x1, x2, vi occur on Pi in the order listed and

ui+1, y2, y1, vi+1 occur on Pi+1 in the order listed, or

(iii) there exist an integer i ∈ {2, 3, . . . , k − 1} and three P-paths Q0, Q1, Q2 such that

Qj has ends xj and yj, we have x0, y0 ∈ V (Pi), the vertices x1, x2 are internal vertices of

x0Piy0, y1 ∈ V (Pi−1), y2 ∈ V (Pi+1), and the paths Q0, Q1, Q2 are pairwise disjoint, except

possibly for x1 = x2.

Proof. We define k−1 cyclic permutations Ω1,Ω2, . . . ,Ωk−1 as follows. For i = 1, 2, . . . , k−1

let V (Ωi) := V (Pi) ∪ V (Pi+1) with the cyclic order defined by saying that V (Pi+1) in order

from ui+1 to vi+1 is followed by V (Pi) in order from vi to ui.

Now if for some P-bridge B of G there is no index i ∈ {0, 1, . . . , k} such that all attach-

ments of B belong to V (Ωi), then (i) holds. Thus we may assume that such index exists for

every P-bridge B, and since B is stable that index is unique. Let us denote it by i(B). For

i = 1, 2, . . . , k − 1 let Gi be the subgraph of G consisting of Pi ∪ Pi+1 and all P-bridges B

of G with i(B) = i. The society (Gi,Ωi) is 4-connected by hypothesis of the lemma. If each

(Gi,Ωi) is cross-free, then each of them is rural by Theorem 2.3 and it follows that G can

be drawn in a disk with u1, u2, . . . , uk, vk, vk−1, . . . , v1 drawn on the boundary of the disk in
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order and the paths P1 and Pk also drawn on the boundary, contrary to a hypothesis of the

lemma. Thus we may assume that for some i = 1, 2, . . . , k−1 the society (Gi,Ωi) has a cross

(Q1, Q2). If neither Pi nor Pi+1 includes three or four ends of the paths Q1 and Q2, then

(ii) holds. Thus we may assume that Pi includes both ends of Q1 and at least one end of

Q2. Let xj, yj be the ends of Qj. Since the P-bridge of G containing Q2 is stable, it has an

attachment outside Pi, and so if needed, we may replace Q2 by a path with an end outside

Pi (or conclude that (i) holds). Thus we may assume that ui, x1, x2, y1, vi occur on Pi in the

order listed, and y2 ̸∈ V (Pi).

The P-bridge of G containing Q1 has an attachment outside Pi. If it does not include Q2

and has an attachment outside V (Pi) ∪ {y2}, then (i) or (ii) holds, and so we may assume

not. Thus there exists a path Q3 with one end x3 in the interior of Q1 and the other end

y3 ∈ V (Q2) − {x2} with no internal vertex in P ∪ Q1 ∪ Q2. We call the triple (Q1, Q2, Q3)

a tripod, and the path y3Q2y2 the leg of the tripod. If v is an internal vertex of x1Piy1, then

we say that v is sheltered by the tripod (Q1, Q2, Q3). Let L be a path that is the leg of some

tripod, and subject to that L is minimal. From now on we fix L and will consider different

tripods with leg L; thus the vertices x1, y1, x2, x3 may change, but y2 and y3 will remain fixed

as the ends of L.

Let x′
1, y

′
1 ∈ V (Pi) be such that they are sheltered by no tripod with leg L, but every

internal vertex of x′
1Piy

′
1 is sheltered by some tripod with leg L. Let X ′ be the union

of x′
1Piy

′
1 and all tripods with leg L that shelter some internal vertex of x′

1Piy
′
1, let X :=

X ′\V (L)\{x′
1, y

′
1} and let Y := V (P∪L)−V (x′

1Piy
′
1)−{y3}. By hypothesis the set {x

′
1, y

′
1, y3}

does not separate X from Y in G. It follows that there exists a path P in G\{x′
1, y

′
1, y3}

with ends x ∈ X and y ∈ Y . We may assume that P has no internal vertex in X ∪ Y . Let

(Q1, Q2, Q3) be a tripod with leg L such that either x is sheltered by it, or x ∈ V (Q1∪Q2∪Q3).

If y ̸∈ V (L ∪ Pi), then by considering the paths P,Q1, Q2, Q3 it follows that one of the

outcomes of the lemma holds. If y ∈ V (L), then there is a tripod whose leg is a proper

subpath of L, contrary to the choice of L. Thus we may assume that y ∈ V (Pi), and that

y ∈ V (Pi) for every choice of the path P as above. If x ∈ V (Q1 ∪ Q2 ∪ Q3) then there is

a tripod with leg L that shelters x′
1 or y′1, a contradiction. Thus x ∈ V (Pi). Let B be the

P-bridge containing P . Since y ∈ V (Pi) for all choices of P it follows that the attachments

of B are a subset of V (Pi) ∪ {y2}. But B is stable, and hence y2 is an attachment of B.

The minimality of L implies that B includes a path from y to y3, internally disjoint from

L. Using that path and the paths P,Q1, Q2, Q3 it is now easy to construct a tripod that

shelters either x′
1 or y′1, a contradiction. �

By a cylinder we mean the surface obtained from a sphere by removing the interiors of

two disjoint closed disks ∆1,∆2. By a clockwise ordering of the boundary of ∆i we mean the

cyclic ordering that traverses around ∆i in clockwise direction. We need a slight variation

of the previous lemma. We omit its proof, because it is completely analogous.
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Lemma 2.5 Let k ≥ 3 be an integer, let P = {P1, P2, . . . , Pk} be a linkage in a graph G,

where Pi has distinct ends ui and vi, and let every P-bridge of G be stable. Assume that

G cannot be drawn in a cylinder with u1, u2, . . . , uk drawn on one boundary component in

the clockwise cyclic order listed and vk, vk−1, . . . , v1 drawn on the other boundary component

in the clockwise cyclic order listed, assume also that there is no set X ⊆ V (G) of size at

most three such that some component of G\X is disjoint from {u1, u2, . . . , uk, v1, v2, . . . , vk},

and finally assume that if k = 3, then no P-bridge has vertices of attachment on all three

members of P. Then either

(i) there exist integers i, j ∈ {1, 2, . . . , k} with |i−j| > 1 and {i, j} ̸= {1, k} and a P-path

Q in G with one end in V (Pi) and the other end in V (Pj), or

(ii) there exist an integer i ∈ {1, 2, . . . , k − 1} and two disjoint P-paths Q1, Q2 in G

such that Qj has ends xjyj, the vertices ui, x1, x2, vi occur on Pi in the order listed and

ui+1, y2, y1, vi+1 occur on Pi+1 in the order listed, or

(iii) there exist an integer i = 1, 2, . . . , k and three P-paths Q0, Q1, Q2 such that Qj has

ends xj and yj, we have x0, y0 ∈ V (Pi), the vertices x1, x2 are internal vertices of x0Piy0,

y1 ∈ V (Pi−1), y2 ∈ V (Pi+1), and the paths Q0, Q1, Q2 are pairwise disjoint, except possibly

for x1 = x2, where P0 means Pk and Pk+1 means P1.

3 Linear decompositions

In this section we show that it suffices to prove Theorem 1.2 for graphs that have a “linear

decomposition” of bounded “adhesion”. Similar techniques have been developed and used

in [2, 3, 13]. A linear decomposition is really a tree-decomposition, where the underlying tree

is a path, but it is more convenient to number the sets by integers rather than vertices of a

path. Thus a linear decomposition of a graph G is a family of sets W = (W0,W1, . . . ,Wl)

such that

(L1)
∪l

i=0 Wi = V (G), and every edge of G has both ends in some Wi, and

(L2) if 0 ≤ i ≤ j ≤ k ≤ l, then Wi ∩Wk ⊆ Wj.

We say that the length of W is l.

In the proof of Theorem 1.2 we will need linear decompositions satisfying the following

additional properties:

(L3) there is an integer q such that |Wi−1 ∩Wi| = q for all i = 1, 2, . . . , l,

(L4) for every i = 1, 2, . . . , l, Wi−1 ̸= Wi−1 ∩Wi ̸= Wi,

(L5) there exists a linkage from W0 ∩W1 to Wl−1 ∩Wl of cardinality q.
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If a linear decomposition satisfies (L3), then we say that it has adhesion q. A linkage as in

(L5) will be called a foundational linkage and its members will be called foundational paths.

We will need more properties, but first we show that we can assume that our graph has a

linear decomposition satisfying (L1)–(L5). In the proof we will need the following additional

properties of tree-decompositions, stated using the same notation as (W1)–(W2):

(W3) for every two vertices t, t′ of T and every positive integer k, either there are k disjoint

paths in G between Yt and Yt′ , or there is a vertex t′′ of T on the path between t and

t′ such that |Yt′′ | < k,

(W4) if t, t′ are distinct vertices of T , then Yt ̸= Yt′ , and

(W5) if t0 ∈ V (T ) and W is a component of T − t0, then
∪

t∈V (W ) Yt \ Yt0 ̸= ∅.

Lemma 3.1 For all integers k, l, p, w ≥ 0 there exists an integer N with the following prop-

erty. If G is a p-connected graph of tree-width at most w with at least N vertices, then either

G has a minor isomorphic to Kp,k, or G has a linear decomposition of length at least l and

adhesion at most w satisfying (L1)–(L5).

Proof. Let k, l, w ≥ 0 be given integers. We will use the proof technique of [13, Theorem 3.1]

with the constants n1, n6, n7, n8 and n9 redefined as follows: Let n1 := w, n6 := l, n7 := nn1+1
6 ,

n8 :=
(

n1

p

)

(k − 1), and

n9 := 2 + n8 + n8(n8 − 1) + · · ·+ n8(n8 − 1)⌈n7/2⌉−2.

We will show that N := n1n9 satisfies the lemma.

To this end let G be as stated. The argument in Claims (1)–(4) of [13, Theorem 3.1]

shows that G either has a minor isomorphic to Kp,k, or a tree-decomposition (T, Y ) satisfying

(W1)–(W5) such that T has a path R that includes distinct vertices r1, r2, . . . , rl, appearing

on R in the order listed, such that for some integer q with p ≤ q ≤ w we have that |Yri | = q

for all i = 1, 2, . . . , l and |Yr| ≥ q for every r ∈ V (R) between r1 and rl.

It is easy to see that there exist subtrees T0, T1, . . . , Tl of T such that

(i) T0 ∪ T1 ∪ · · · ∪ Tl = T ,

(ii) Ti and Tj are disjoint whenever |i− j| ≥ 2, and

(iii) V (Ti−1) ∩ V (Ti) = {ri} for all i = 1, 2, . . . , l.

For i = 0, 1, . . . , l letWi be the union of Yt over all t ∈ V (Ti). We claim that (W0,W1, . . . ,Wl)

is a linear decomposition of G satisfying (L1)–(L5).

Property (L1) is satisfied by (W1) and (i). If 0 ≤ i < j < k ≤ l, then for every t ∈ V (Ti)

and t′ ∈ V (Tk) the path from t to t′ in T contains the path from ri+1 to rk. Therefore, by

(W2) and (iii), we have Yt ∩ Yt′ ⊆ Yrj and, consequently, Wi ∩Wk ⊆ Yrj ⊆ Wj. Thus (L2)

is satisfied. Similarly, we have Wi−1 ∩ Wi = Yri , and, therefore, we have |Wi−1 ∩ Wi| = q,
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implying (L3). For 1 < i ≤ l we have |Yri−1
| = |Yri | = q, and Yri ̸= Yri−1

by (W4). Therefore

Wi−1 −Wi ⊇ Yri−1
− Yri ̸= ∅. By construction, T0 \ r1 is the union of components of T \ r1

disjoint from R. It follows from (W5) that W0 − W1 = W0 − Yr1 ̸= ∅. By symmetry,

Wi − Wi−1 ̸= ∅ for every 1 ≤ i ≤ l, and (L4) holds. Finally, by (W3) and the choice of

r1, r2, . . . , rl, there exists a linkage from W0 ∩W1 = Yr1 to Wl−1 ∩Wl = Yrl , implying (L5).

�

Let P be a foundational linkage for a linear decomposition W = (W0,W1, . . . ,Wl) of a

graph G, and let i ∈ {1, 2, . . . , l− 1}. We say that distinct foundational paths P, P ′ ∈ P are

bridge adjacent in Wi if there exists a P-bridge in G[Wi] with an attachment in both P and

P ′. Given a fixed integer p we wish to consider the following properties of W and P . In our

applications we will always have p = 6.

(L6) for all i ∈ {1, 2, . . . , l − 1} and all non-trivial paths P ∈ P , if some P-bridge of G[Wi]

has at least one attachment in P and no attachment in a non-trivial foundational path

other than P , then P is bridge adjacent in Wi to at least p− 2 trivial members of P ,

(L7) for every P ∈ P , if there exists an index i ∈ {1, 2, . . . , l−1} such that P [Wi] is a trivial

path, then P [Wk] is a trivial path for all k = 1, 2, . . . , l − 1,

(L8) for every two distinct paths P, P ′ ∈ P , if there exists an integer k ∈ {1, . . . , l− 1} such

that P and P ′ are bridge adjacent in Wk, then they are bridge adjacent in Wk′ for all

k′ ∈ {1, . . . , l − 1}.

With respect to condition (L8) it may be helpful to point out that for all i = 1, 2, . . . , l

we have Wi−1 ∩Wi ⊆ V (P), and hence each P-bridge H of G satisfies V (H) ⊆ Wk for some

k ∈ {0, 1, . . . , l}, even though this index k need not be unique.

Lemma 3.2 Let p ≥ 0 be an integer, and let W be a linear decomposition of a p-connected

graph satisfying (L1)–(L5). Then W has a foundational linkage P satisfying (L6).

Proof. Let W = (W0,W1, . . . ,Wl) be as stated. By (L5) there exists a linkage P from

W0 ∩ W1 to Wl−1 ∩ Wl of cardinality q. Let S be the union of all non-trivial paths in P ,

and let H be obtained from G[W1 ∪ W2 ∪ · · · ∪ Wl−1] by deleting all trivial paths in P .

By Lemma 2.1 applied to H and S we may assume (by changing P) that S satisfies the

conclusion of that lemma. We claim that the linkage P then satisfies (L6). To prove this

claim suppose that i ∈ {1, 2, . . . , l−1} and some S-bridge B of H[Wi] has all its attachments

in V (P ) for some non-trivial P ∈ P ; then there are vertices x, y ∈ V (P ) such that some

component J of H\{x, y} has at least three vertices, includes a vertex of B and is disjoint

from V (S)− V (P ). Since G is p-connected the set V (J) has at least p− 2 neighbors among

the trivial paths in P . Hence P is bridge adjacent in Wi to those trivial paths, as required.

This proves that P satisfies (L6). �
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We will make use of the following easy lemma, whose proof we omit.

Lemma 3.3 Let W = (W0,W1, . . . ,Wl) be a linear decomposition of a graph G of length l ≥

2, and let i ∈ {1, 2, . . . , l}. Then W ′ := (W0,W1, . . . ,Wi−2,Wi−1∪Wi,Wi+1,Wi+2, . . . ,Wl) is

also a linear decomposition of G. Furthermore, if W satisfies any of the properties (L3)–(L8),

then so does W ′.

If W and W ′ are as in Lemma 3.3, then we say that W ′ was obtained from W by

an elementary contraction. Let P be a foundational linkage for W . If i ̸∈ {1, l}, then

let P ′ := P . If i = 1, then let P ′ be the linkage obtained from P by restricting each

P ∈ P to W2 ∪ W3 ∪ . . . ∪ Wl, and if i = l, then let P ′ be obtained by restricting P to

W1 ∪ W2 ∪ . . . ∪ Wl−1. Then P ′ is a foundational linkage for W ′. It will be referred to

as the corresponding restriction of P . If a linear decomposition W ′′ is obtained from W

by a sequence of elementary contractions, then we say that W ′′ is obtained from W by a

contraction. We will also need the following lemma about sequences of sets.

Lemma 3.4 Let l, n, λ ≥ 0 be integers such that λ ≥ ln+1n!. For all sequences S1, S2, . . . , Sλ

of subsets of {1, . . . , n} there exist integers 1 ≤ i0 < i1 < · · · < il ≤ λ+ 1 such that

Si0 ∪ Si0+1 ∪ · · · ∪ Si1−1 = Si1 ∪ Si1+1 ∪ · · · ∪ Si2−1 = · · · = Sil−1
∪ · · · ∪ Sil−1.

Proof. We proceed by induction on n. The lemma clearly holds when n = 0, and so we

assume that n > 0 and that the lemma holds for all smaller values of n. If l consecutive sets

Si are empty, say Si, Si+1, . . . , Si+l−1, then the lemma holds with ij = i+ j for j = 0, 1, . . . , l.

Thus we may assume that this is not the case, and hence there is an integer x ∈ {1, 2, . . . , n}

such that at least λ′ := λ/(ln) ≥ ln(n − 1)! of the sets Si include the element x. Thus

{1, . . . , λ} can be partitioned into consecutive intervals I1, I2, . . . , Iλ′ such that each interval

includes an index i with x ∈ Si. For i = 1, 2, . . . , λ′ let S ′
i be the union of Sj − {x} over

all j ∈ Ii. By the induction hypothesis applied to the sets S ′
i there exist required indices

1 ≤ i′0 < i′1 < · · · < i′l ≤ λ′ + 1 for the sets S ′
i. For j = 0, 1, . . . , l let ij := min Ii′j . It follows

from the construction that these indices satisfy the conclusion of the lemma. �

Lemma 3.5 For every triple of integers l, p, q ≥ 0 there exists an integer λ such that the

following holds. If a graph G has a linear decomposition W of length λ + 1 and adhesion q

and a foundational linkage P satisfying (L1)–(L6), then it has a linear decomposition W ′ of

length l and adhesion q obtained from W by a contraction such that W ′ and the corresponding

restriction of P satisfy (L1)–(L8).

Proof. Let l, q ≥ 0 be given, let s :=
(

q
2

)

, and let µ := ls+1s!. We will show that λ := µq+1q!

satisfies the conclusion of the lemma.
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Let W = (W0,W1, . . . ,Wλ+1) be as stated. We wish to apply Lemma 3.4 with q playing

the role of n and µ playing the role of l. For i = 1, 2, . . . , λ let Si be the set of all P ∈ P

such that P [Wi] is a non-trivial path. By Lemma 3.4 there exist indices 1 ≤ i0 < i1 < · · · <

iµ ≤ λ+ 1 as stated in that lemma. Let i−1 := 0 and iµ+1 := λ+ 1 and for t = −1, 0, . . . , µ

define

W ′
t+1 := Wit ∪Wit+1 ∪ · · · ∪Wit+1−1.

By Lemma 3.3W ′ := (W ′
0,W

′
1, . . . ,W

′
µ+1) is a linear decomposition ofG satisfying (L1)–(L6).

It follows from the construction that it also satisfies (L7).

To construct a linear decomposition satisfying (L1)–(L8) we apply the same argument

again, as follows. For a 2-element subset X ⊆ P let SX be the set of integers j ∈ {1, 2, . . . , q}

such that some P-bridge H of G has attachments in P for both elements P ∈ X and

satisfies V (H) ⊆ Wj. By applying Lemma 3.4 with n :=
(

q
2

)

and λ replaced by µ to the

linear decomposition W ′ and using the same construction we arrive at the desired linear

decomposition of G. �

Let W be a linear decomposition of a graph G of length l ≥ 2 with foundational linkage

P satisfying (L1)–(L8). We define the auxiliary graph of the pair (W ,P) to be the graph

with vertex-set P in which two paths P, P ′ ∈ P are adjacent if they are bridge adjacent in

Wi for some (and hence every) i ∈ {1, 2, . . . , l − 1}.

We will need one more property of a linear decomposition W and its foundational linkage

P . The parameter p is the same as in (L6).

(L9) Let P1 ⊆ P2 ⊆ P such that |P1| + |P2| ≤ p and each member of P1 is non-trivial.

Then there exists a linkage Q in G of cardinality |P1| from W0 ∩ W1 ∩ V (P1) to

Wl−1∩Wl∩V (P1) such that its graph is a subgraph of H := G[W0∪Wl]∪
∪

P∈P−P2
P .

Our objective is to show that if a graph has a linear decomposition satisfying (L1)–(L8),

then it also has one satisfying (L9). For the proof we need a definition and a lemma. Let

W = (W0,W1, . . . ,Wl) be a linear decomposition of a graph G with foundational linkage P

satisfying (L1)–(L8). We say that a set P ′ of components of P is well-connected if for every

two paths P, P ′ ∈ P ′ there exists a path Q in the auxiliary graph of (W ,P) such that every

internal vertex of Q is a non-trivial foundational path belonging to P ′. The lemma we need

is the following.

Lemma 3.6 Let l, s, q ≥ 0 be integers, and let G be a graph with a linear decomposition

W = (W0,W1, . . . ,Wl) of length l, adhesion q and foundational linkage P satisfying (L1)–

(L8). Let Q be a well-connected set of foundational paths, and let Xij := (Wi−1 ∩ Wi ∩

V (Q)) ∪ (Wj ∩Wj+1 ∩ V (Q)). Then for every two integers i, j with 1 ≤ i ≤ i + 2q ≤ j < l

and every two sets A,B ⊆ Xij of size s there exist s disjoint paths, each with one end in A,

the other end in B and no internal vertex in any Wk for k ∈ {0, 1, . . . , l} − {i, i+ 1, . . . , j}.
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Proof. LetH be the subgraph of G obtained by deletingWj−A−B for all j ∈ {0, 1, . . . , l}−

{i, i + 1, . . . , j}. If the paths do not exist, then by Menger’s theorem there exists a set

Y ⊆ V (H) of size at most s − 1 such that H\Y has no path from A to B. We may

assume that A∩B = ∅, for otherwise we may proceed by induction by deleting A∩B. Since

|Wi−1∩Wi| = |Wj∩Wj+1| = q we deduce that s ≤ q. Let Z be the union of the vertex-sets of

the trivial paths in P . By (L7) and the fact that Wi∩Wi+1 ⊆ V (P) for all i = 1, 2, . . . , l−1,

the sets Wi+1 − Z,Wi+3 − Z, . . . ,Wi+2q−1 − Z are pairwise disjoint, and so one of them, say

Wm − Z, is disjoint from Y . For x ∈ Xij let Px be the member of Q that includes x. If

x ∈ Wi−1 ∩Wi, then let P ′
x denote the restriction of Px to Wi ∪Wi+1 ∪ · · · ∪Wm−1, and if

x ∈ Wl∩Wl+1, then let P ′
x denote the restriction of Px to Wm+1∪Wm+2∪· · ·∪Wl. Since the

paths P ′
x are pairwise vertex-disjoint, there exist a ∈ A and b ∈ B such that P ′

a and P ′
b are

disjoint from Y . Since Q is well-connected it follows that P ′
a∪G[Wm]∪P ′

b includes a path in

H from a to b with no internal vertex in Z. That path is disjoint from Y , a contradiction. �

Lemma 3.7 Let p, q ≥ 0 and l ≥ 3 be integers, and let G be a p-connected graph with a linear

decomposition W = (W0,W1, . . . ,Wl+4q+2) of length l+ 4q + 2, adhesion q and foundational

linkage P satisfying (L1)–(L8). Let W ′ := (W ′
0,W

′
1, . . . ,W

′
l ), where W ′

0 := W0 ∪W1 ∪ · · · ∪

W2q+1, W
′
i := Wi+2q+1 for i = 1, 2, . . . , l − 1 and W ′

l := Wl+2q+1 ∪Wl+2q+2 ∪ · · · ∪Wl+4q+2,

and let P ′ be the corresponding restriction of P. Then W ′ is a linear decomposition of G

of length l and adhesion q, and P ′ is a foundational linkage for W ′ such that conditions

(L1)–(L9) hold.

Proof. The linear decomposition W ′ satisfies (L1)–(L8) by Lemma 3.3, and so it remains to

show that it satisfies (L9). Since l ≥ 3 we may choose an index s with 2q+2 < s < l+2q+1.

Let P1 ⊆ P2 be two sets of foundational paths such that every member of P1 is non-trivial

and |P1| + |P2| ≤ p. Let H := G[W ′
0 ∪ W ′

l ] ∪
∪

P∈P−P2
P . We must show that there exist

|P1| disjoint paths in H from X0 := W ′
0 ∩W ′

1 ∩ V (P1) to Xl := W ′
l−1 ∩W ′

l ∩ V (P1). Since G

is p-connected and |Wj ∩Wj+1 ∩ V (P2)| = |P2| we deduce that there exists a linkage of size

|P1| from X0 to Xl in G\(Ws ∩Ws+1 ∩ V (P2)). Let us choose such linkage, say Q, such that

it uses the least number of edges not in H. We will prove that Q is as desired. To do so

we may assume for a contradiction that Q uses an edge e ∈ E(G) − E(H). By considering

the linear decomposition (W ′
l ,W

′
l−1, . . . ,W

′
0) we may assume that e has both ends in Wi for

some i ∈ {2q + 2, 2q + 3, . . . , s}.

By an annex we mean a maximal well-connected set of foundational paths that includes

at least one non-trivial foundational path. Let R be an annex. We define H1(R) to be the

subgraph of J := G[W1 ∪ W2 ∪ · · · ∪ Ws] consisting of the graph of R restricted to J and

all R-bridges that are the subgraphs of J and have all vertices of attachment in V (R). We

define H0(R) analogously as a subgraph of G[W1 ∪ W2 ∪ · · · ∪ W2q+1]. It follows that e is

an edge of H1(R) for some maximal well-connected set R of foundational paths. Let us
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assume that e belongs to H1(R) for some annex R. Thus we fix R and denote H0(R) and

H1(R) by H0 and H1, respectively. We will modify the linkage Q within H1, and will obtain

a contradiction to its choice that way.

Let Q′ be the subset of Q consisting of those paths that use at least one vertex of H1.

For Q ∈ Q′ let a(Q) be its end in X0, let d(Q) be its end in Xl, and let b(Q) and c(Q)

be two vertices of Q ∩ H1 such that the subpath of Q from b(Q) to c(Q) is maximum and

a(Q), b(Q), c(Q), d(Q) occur on Q in the order listed. It follows that b(Q), c(Q) belong to

(W0 ∩ W1) ∪ (W ′
0 ∩ W ′

1) ∪ (Ws ∩ Ws+1), but if one of them belongs to W ′
0 ∩ W ′

1, then it is

equal to a(Q).

If b(Q) ∈ W0 ∩W1 or b(Q) ∈ W ′
0 ∩W ′

1 we define b′(Q) := b(Q) and let B(Q) be the null

graph; otherwise b(Q) belongs to a foundational path P ̸∈ P2, and we define b′(Q) to be the

unique member of W2q+1 ∩W2q+2 ∩ V (P ), and we let B(Q) := P [W2q+2 ∪W2q+3 ∪ · · · ∪Ws].

We define c′(Q) and C(Q) analogously. By Lemma 3.6 applied to W and P with i = 0 and

j = 2q+1 there exists a linkage S inH0 of size |Q
′| from {b′(Q) : Q ∈ Q′} to {c′(Q) : Q ∈ Q′}.

The fact that R was chosen to be a maximal well-connected set implies that members of this

linkage are disjoint from the members of Q−Q′. For each Q ∈ Q′ we delete the interior of

the subpath of Q between b(Q) and c(Q), and add the linkage S and the paths B(Q) and

C(Q) for all Q ∈ Q′. Thus we obtain a new linkage with the same properties as Q, but with

fewer edges not in H, contrary to the choice of Q. This completes the case when e belongs

to H1(R) for some annex R, and so from now on we may assume the opposite.

Let K denote the union of the trivial paths in P . Since e belongs to H1(R) for no annex

R it follows that the K-bridge B of H containing e includes no non-trivial foundational

path. Let Q ∈ Q be the path containing e, and let b, c ∈ V (Q) be such that bQc is a

maximal subpath of B containing e. Since Q is disjoint from Ws ∩Ws+1 ∩ V (P2), and hence

from the the trivial paths in P2, we deduce that b, c ̸∈ V (P2). It follows more generally

(from the fact that e belongs to H1(R) for no annex R) that every K-bridge B′ of H that

has b and c as attachments includes no non-trivial foundational path. Consequently, if B′

includes a non-trivial subpath of some member of Q, then this subpath uses two vertices of

V (K). On the other hand the foundational paths with vertex-sets {b} and {c} are adjacent

in the auxiliary graph, and hence for each i = 1, 2, . . . , q there exists a K-bridge of G[Wi]

whose attachments include b and c. By the conclusion of the sentence before the previous

one we deduce that there is i ∈ {1, 2, . . . , q} such that Wi includes no non-trivial subpath of

a member of Q. Thus we can replace bQc by a subpath of Wi, contrary to the choice of Q.

This completes the proof that W ′ and P ′ satisfy (L9). �

We are now ready to state the main result of this section.

Theorem 3.8 For all integers k, l, p, w ≥ 0 there exists an integer N with the following

property. If G is a p-connected graph of tree-width at most w with at least N vertices, then
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either G has a minor isomorphic to Kp,k, or G has a linear decomposition of length at least

l and adhesion at most w satisfying (L1)–(L9).

Proof. Let k, l, p, w ≥ 0 be integers, and let l1 := l + 4w + 2. Let l2 be the minimum value

of λ such that Lemma 3.5 holds for l = l1, p and all q ≤ w. Finally, let N be such that

Lemma 3.1 holds for l = l2, k, p, and w. We claim that N satisfies the theorem. To prove

the claim let G be a p-connected graph of tree-width at most w with at least N vertices.

By Lemma 3.1 it has either a minor isomorphic to Kp,k, or a linear decomposition W2 of

length at least l2 and adhesion q ≤ w satisfying (L1)–(L5), and so we may assume the latter.

By Lemma 3.2 there is a foundational linkage P1 satisfying (L6). By Lemma 3.5 the graph

G has a linear decomposition W1 of length l1 and adhesion q such that W1 and P1 satisfy

(L1)–(L8). Finally, by Lemma 3.7 there exist a linear decomposition W of length l and

adhesion q and a foundational linkage satisfying (L1)–(L9). �

We will need the following special case.

Corollary 3.9 For all integers l, w ≥ 0 there exists an integer N with the following property.

If G is a 6-connected graph of tree-width at most w with at least N vertices, then either G has

a minor isomorphic to K6, or G has a linear decomposition of length at least l and adhesion

at most w satisfying (L1)–(L9) for p = 6.

4 Analyzing the auxiliary graph

Let G be a 6-connected graph with no K6 minor, and let W and P be as before and satisfy

(L1)–(L9). In this section we establish several properties of the auxiliary graph of the pair

(W ,P). The first main result is Lemma 4.6 stating that if W is sufficiently long, then every

component of the subgraph of the auxiliary graph induced by the non-trivial foundational

paths is either a path or a cycle. The second main result of this section, Lemma 4.10, allows

us to modify the pair (W ,P) such that in the new pair every non-trivial P-bridge attaches

to exactly two non-trivial foundational paths.

Let k, l ≥ 3 be integers. For i ∈ {1, 2, . . . , k} let Pi be a path with vertices vi1, . . . , v
i
l in

order. We define the linked k-cylinder of length l to be the graph with vertex-set
∪k

i=1 V (Pi)

and edge-set
∪k

i=1 E(Pi)∪
{

vijv
i+1
j : 1 ≤ i ≤ k, 1 ≤ j ≤ l

}

∪{q1, q2}, where the index notation

is taken modulo k and the edges q1 and q2 have no common end and each have one end in

{v11, v
2
1, . . . , v

k
1} and the other end in {v1l , v

2
l , . . . , v

k
l }. Figure 1 shows a linked 3-cylinder of

length six.

Lemma 4.1 For all integers k ≥ 3, a linked k-cylinder of length twelve has a K6 minor.

Proof. By finding two suitable paths with vertex-sets in {vij : 1 ≤ i ≤ k, 1 ≤ j ≤ 3},

and two paths with vertex-sets in {{vij : 1 ≤ i ≤ k, 10 ≤ j ≤ 12}, we see that a linked

15



4 4 1 1 1 4

6 3 3 5 5 5

6 2 2 5 6 6

Figure 1: Finding a K6 minor in a linked 3-cylinder of length six.

k-cylinder of length twelve has a minor isomorphic to a linked 3-cylinder of length six with

the additional property that the ends of the edge qi are vi1 and vi6 for i = 1, 2. This graph

has a K6 minor as indicated in Figure 1. �

Lemma 4.2 Let l ≥ 2 and q ≥ 3 be integers, and let W = (W0,W1, . . . ,Wl) be a linear

decomposition of length l and adhesion q of a graph G, and let P be a foundational linkage

for W such that (L1)–(L5) hold and (L9) holds for p = 5. If for at least 48
(

q
3

)

indices

i ∈ {1, 2, . . . , l − 1} there exists a P-bridge in G[Wi] with attachments on at least three

non-trivial paths in P, then G has a K6 minor.

Proof. Let l, q be integers and W = (W0, . . . ,Wl) and P be given. If there exist 48
(

q
3

)

distinct indices i with 1 ≤ i ≤ l − 1 such that G[Wi] contains a P-bridge attaching to at

least three non-trivial foundational paths, then there exist 48 distinct indices i and three

distinct non-trivial foundational paths P1, P2, P3 ∈ P such that G[Wi] contains a P-bridge

attaching to Pj for j = 1, 2, 3. Then there exists a subset of indices I ⊆ {1, . . . , l − 1} with

|I| = 24 such that |i − j| > 2 for all distinct i, j ∈ I, and furthermore, G[Wi] contains a

bridge Bi attaching to Pj for all i ∈ I and j = 1, 2, 3. By property (L9), there exist two

disjoint paths Q1 and Q2 each with one end in V (P1 ∪ P2 ∪ P3) ∩ W1 ∩ W2 and one end

in V (P1 ∪ P2 ∪ P3) ∩ Wl−1 ∩ Wl. Moreover, the paths Q1 and Q2 do not have an internal

vertex in either Bi \ V (P) or Pj for all i ∈ I and 1 ≤ j ≤ 3. It follows that G has a minor

isomorphic to a linked 3-cylinder of length twelve since each pair of successive bridges Bi

can be contracted to a single cycle of length three. By Lemma 4.1 the graph G has a K6

minor, as desired. �

The following will be a hypothesis common to several forthcoming lemmas. In order to

avoid unnecessary repetition we give it a name.

Hypothesis 4.3 Let p = 6, l ≥ 2 and q ≥ 6 be integers, let G be a 6-connected graph with

no K6 minor, and let W = (W0,W1, . . . ,Wl) be a linear decomposition of G of length l and

adhesion q with a foundational linkage P such that conditions (L1)–(L9) hold.
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Lemma 4.4 Assume Hypothesis 4.3. Then there do not exist 6
(

q
6

)

distinct indices i with

1 ≤ i ≤ l − 1 such that G[Wi] contains a non-trivial P-bridge attaching only to trivial

foundational paths.

Proof. Let G, W , P , q, and l be as stated. If the conclusion of the lemma does not hold,

then there exist six distinct indices i such that G[Wi] contains a non-trivial P-bridge Bi

attaching to the same subset of six trivial foundational paths. By contracting the internal

vertices of each Bi to a single vertex, we see G would have a K6 minor, a contradiction. �

Lemma 4.5 Assume Hypothesis 4.3. If l > 6
(

q
6

)

, then P includes at least one non-trivial

path.

Proof. Let G, W , P , q, and l be as stated, and suppose for a contradiction that every

path in P is trivial. For every i, 1 ≤ i ≤ l − 1, G[Wi] contains a non-trivial bridge Bi, as

Wi * Wi+1, Wi * Wi−1 by (L4), in contradiction with Lemma 4.4. �

Let W be a linear decomposition of a graph G and let P be a foundational linkage such

that W and P satisfy (L1)–(L8). By a core of the pair (W ,P) we mean a component of the

graph obtained from the auxiliary graph of (W ,P) by deleting all trivial foundational paths.

The next lemma is the first main result of this section.

Lemma 4.6 Assume Hypothesis 4.3. If l ≥ 48, then every core of the pair (W ,P) is a path

or a cycle.

Proof. Let G, W , P , q, and l be as stated. Suppose for a contradiction that there exists

a non-trivial foundational path P1 ∈ P adjacent in the auxiliary graph to three non-trivial

paths P2, P3, P4 ∈ P . By property (L9), there exist two disjoint paths Q1 and Q2 each with

one end in V (P2∪P3∪P4)∩W0∩W1 and one end in V (P2∪P3∪P4)∩Wl−1∩Wl. Furthermore,

Q1 and Q2 avoid any internal vertex of Pi for 1 ≤ i ≤ 4 as well as any internal vertex of a

P-bridge in G[Wj] for 1 ≤ j ≤ l− 1. For all i ∈ {1, 2, . . . , 24}, we contract to a single vertex

bi the set of vertices consisting of P1[W2i−1] and the internal vertices of every non-trivial

bridge attaching to P1 in G[W2i−1]. Note that no vertex of Qi for i = 1, 2 is contained in the

contracted set of b2j−1 for any 1 ≤ j ≤ 24. Each vertex bi has a neighbor in each of P2, P3,

and P4. Also, the neighbors of bi and bj are distinct for i ̸= j. It follows that G has a minor

isomorphic to a linked 3-cylinder of length twelve, contrary to Lemma 4.1. �

Lemma 4.7 Assume Hypothesis 4.3. If l ≥ 12, then every non-trivial path in P is adjacent

in the auxiliary graph to at most three trivial paths in P.

Proof. Let G, W , P , q, and l be as stated. Assume, to reach a contradiction, that P1 ∈ P

is a non-trivial path and is adjacent to four trivial foundational paths in the auxiliary graph.
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Let the vertices comprising the four trivial foundational paths be v1, v2, v3, v4. For each

i ∈ {1, 2, . . . , 6} we contract to a single vertex bi the vertex set containing P1[W2i−1] and the

internal vertices of all non-trivial bridges of G[W2i−1] attaching to P1. It follows that G has

as a minor isomorphic to the graph with vertex set {vi : 1 ≤ i ≤ 4} ∪ {bi : 1 ≤ i ≤ 6} and

edges {vibj : 1 ≤ i ≤ 4, 1 ≤ j ≤ 6} ∪ {bibi+1 : 1 ≤ i ≤ 5}. This graph has a K6 minor, and

hence so does G, a contradiction. �

Corollary 4.8 Assume Hypothesis 4.3. If l ≥ 12, then every member of P is an induced

path.

Proof. If some non-trivial P ∈ P is not induced, then by (L6) the path P is adjacent to at

least 4 trivial foundational paths in the auxilliary graph, contrary to Lemma 4.7. �

Lemma 4.9 Assume Hypothesis 4.3. If l ≥ 12, then no non-trivial foundational path is

adjacent in the auxiliary graph to three or more trivial foundational paths.

Proof. Let G, W , P , q, and l be as stated. As above, assume to reach a contradiction,

that P1 ∈ P is a non-trivial path and is adjacent to three trivial foundational paths in the

auxiliary graph. By the 6-connectivity of G, P1 must be adjacent to another foundational

path in the auxiliary graph. By Lemma 4.7, such a path, call it P2, must be non-trivial.

For each i, 1 ≤ i ≤ 6, we contract to a single vertex the vertex set containing P1[W2i−1] and

the internal vertices of any non-trivial bridge of G[W2i−1] attaching to P1. It follows that G

has a minor isomorphic to the graph in Figure 2, which has a K6 minor as indicated in that

figure, a contradiction. �.

1 2 3 4 5 6

3 3 3

4

5

6

P2

P1

Figure 2: Finding a K6 minor when a non-trivial foundational path is bridge adjacent to
three trivial foundational paths.

In the next lemma, the second main result of this section, we show that we can assume

that our linear decomposition W = (W0,W1, . . . ,Wl) and foundational linkage P satisfy the

following property.
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(L10) For all i ∈ {1, 2, . . . , l−1}, every non-trivial P-bridge of G[Wi] attaches to exactly two

non-trivial foundational paths.

Lemma 4.10 Assume Hypothesis 4.3. If l ≥
(

6
(

q
6

)

+ 48
(

q
3

))

l′, then there exist a contraction

W ′ of W of length l′ and adhesion q and a foundational linkage P ′ for W ′ satisfying (L1)–

(L10).

Proof. By Lemma 4.4 and Lemma 4.2 and our choice of l, there exists an index α such that

for all i ∈ {1, 2, . . . , l′−1}, G[Wα+i] contains neither a non-trivial P-bridge attaching only to

trivial foundational paths nor a P-bridge attaching to three or more non-trivial foundational

paths. Moreover, Lemma 4.7 and property (L6) imply that no non-trivial bridge attaches

to exactly one non-trivial foundational path. The lemma follows from considering the con-

traction W ′ =
(

∪α
i=0 Wi,Wα+1,Wα+2, . . . ,Wα+l′−1,

∪l
i=α+l′ Wi

)

of W and the corresponding

restriction of P . �

5 Finding and eliminating a pinwheel

Let us assume Hypothesis 4.3. In the previous section we have shown that W and P can be

chosen so that for every i ∈ {1, 2, . . . , l− 1}, every non-trivial P-bridge B of G[Wi] attaches

to exactly two non-trivial foundational paths. The main result of this section will be used

in Section 6 to show that if G is not an apex graph then W and P can be chosen so that

every such bridge attaches to no trivial foundational path. The proof technique is different,

and relies on a theory of “non-planar extensions” of planar graphs, developed in [12].

A pinwheel with t vanes is the graph defined as follows. Let C1 and C2 be two disjoint

cycles of length 2t, where the vertices of Ci are vi1, v
i
2, . . . , v

i
2t in order. Let w1, w2, . . . , wt, x

be t + 1 distinct vertices. The pinwheel with t vanes has vertex-set V (C1) ∪ V (C2) ∪

{w1, w2, . . . , wt, x} and edge-set

E(C1) ∪ E(C2) ∪ {v12jv
2
2j : 1 ≤ j ≤ t}

∪ {wjv
i
2j−1 : 1 ≤ j ≤ t, i = 1, 2} ∪ {xwj : 1 ≤ j ≤ t}

The cycles C1 and C2 form the rings of the pinwheel. A pinwheel with four vanes is pictured

in Figure 3. A Möbius pinwheel with t vanes is obtained from a pinwheel with t vanes by

deleting the edges v12tv
1
1 and v22tv

2
1 and adding the edges v12tv

2
1 and v22tv

1
1. The cycle formed by

V (C1)∪V (C2) in a Möbius pinwheel is the ring of the Möbius pinwheel. A Möbius pinwheel

with 4 vanes contains K6 as a minor as shown on Figure 3.

Lemma 5.1 Let q, l, and p = 6, t ≥ 4 be positive integers. Let W = (W0,W1, . . . ,Wl) be a

linear decomposition of a 6-connected graph G of length l and adhesion q with foundational

linkage P satisfying (L1)–(L9). Let P1, P2, P3, Q ∈ P be distinct, let Q be trivial, and let Pi
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Figure 3: (a) A pinwheel with four vanes, (b) A Möbius pinwheel with 4 vanes and a K6

minor in it.

be non-trivial for i = 1, 2, 3. Furthermore, let P2 be adjacent to P1, P3, and Q in the auxiliary

graph. If l ≥ 4t + 1, then G has a subgraph isomorphic to a subdivision of a pinwheel or a

Möbius pinwheel with t vanes.

Proof. Let V (Q) = {x}, let Pi ∩W0 ∩W1 = {si} for i = 1, 3, and let Pi ∩Wl−1 ∩Wl = {ti}

for i = 1, 3. Let P̄ = P − {P1, P2, P3, Q}. By property (L9), there exist two disjoint paths

R1 and R2 in G[W0 ∪ Wl] ∪
∪

P∈P̄ P each with one end in {s1, s3} and one end in {t1, t3}.

The rings of our pinwheel will be formed by R1∪R2∪P1∪P3. If the paths R1 and R2 cross,

i.e. the ends of R1 are s1 and t3 and the ends of R2 are s3 and t1, we construct a Möbius

pinwheel. Otherwise, we simply construct a pinwheel on t vanes.

Note that for every j = 1, . . . , l − 1 there exists a path Sj with one end in Wj ∩ V (P1)

and the other end in Wj ∩ V (P3), such that V (Sj) ⊆ Wj, and Sj is internally disjoint

from
∪

P∈P−P2
P . Also, for every j = 1, . . . , l − 1 there exists a vertex vj ∈ Wj and three

paths T 1
j , T

2
j and T 3

j , internally disjoint from each other and from
∪

P∈P−P2
P , satisfying

the following. Each of T 1
j , T

2
j and T 3

j has one end vj, the second end of T 1
j is in V (P1),

the second end of T 3
j is in V (P3) and the second end of T 2

j is x. The paths Sj, T
1
j , T

2
j and

T 3
j are internally disjoint from the rings of our pinwheel by construction, and the paths,

corresponding to the sets Wi with non-consecutive indices, are also disjoint. Therefore we

can use the paths corresponding to the sets Wi with odd indices to construct a subgraph of

G isomorphic to a subdivision of a pinwheel or a Möbius pinwheel, with rings of the pinwheel

as prescribed above. �

As we have seen above a Möbius pinwheel with sufficiently many vanes contains a K6

minor. A pinwheel is, however, an apex graph. In order to prove that graphs containing a
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subdivision of a pinwheel with many vanes satisfy Theorem 1.2, we will need the following

lemma concerning subdivisions of apex graphs contained in larger non-apex graphs. The

lemma is proved in [12, Theorem (9.10)].

Lemma 5.2 Let J be an internally 4-connected triangle-free planar graph not isomorphic

to the cube, and let F ⊆ E(J) be a nonempty set of edges such that no two edges of F are

incident with the same face of J . Let J ′ be obtained from J by subdividing each edge in F

exactly once, and let H be the graph obtained from J ′ by adding a new vertex v ̸∈ V (J ′) and

joining it by an edge to all the new vertices of J ′. Let a subdivision of H be isomorphic to a

subgraph of G, and let u ∈ V (G) correspond to the vertex v. If G\u is internally 4-connected

and non-planar, then there exists an edge e ∈ E(H) incident with v such that either

(i) there exist vertices x, y ∈ V (J ′) not belonging to the same face of J ′ such that (H\e)+xy

is isomorphic to a minor of G, or

(ii) there exist vertices x1, x2, x3, x4 ∈ V (J ′) appearing on some face of J ′ in order such

that (H\e) + x1x3 + x2x4 is isomorphic to a minor of G and x1x3, x2x4 ̸∈ E(J).

Lemma 5.3 If a 5-connected graph G with no K6 minor contains a subdivision of a pinwheel

with 20 vanes as a subgraph, then G is apex.

Proof. We will show that for every positive integer t every 5-connected non-apex graph G

containing a subdivision of a pinwheel with 4t vanes contains a Möbius pinwheel with t− 1

vanes as a minor. A Möbius pinwheel with 4 vanes contains a K6 minor, as observed above,

and so the lemma will follow.

We apply Lemma 5.2, where the graphs H and J , the vertex v ∈ V (H) and the set of

edges F ⊆ E(J) are defined as follows. Let H be the pinwheel with 4t vanes, and let v be the

“hub” of the pinwheel (denoted by x in the definition of a pinwheel). Let the graph J consist

of two disjoint cycles C1 and C2 of length 8t with the vertices of Ci = {vij : 1 ≤ j ≤ 8t}

for i = 1, 2 and vij adjacent to vij+1 and vi+1
j for all 1 ≤ j ≤ 8t and i = 1, 2 with the

subscript addition taken modulo 8t and the superscript addition taken modulo 2. Finally,

let F = {v12j−1v
2
2j−1 : 1 ≤ j ≤ 4t}.

Suppose that outcome (ii) of Lemma 5.2 holds (the case when outcome (i) holds is

analogous). If the boundary of the face of J ′ containing the vertices x1, x2, x3 and x4 is not

one of the cycles C1 and C2, then without loss of generality we have either x1 = v11, x2 =

v21, x3 = v22 and x4 = v12, or x1 is the new vertex that resulted from the subdivision of the

edge v11v
2
1 and x2 = v21, x3 = v22 and x4 = v12. Clearly, for every edge e ∈ E(H) incident to v

the graph (H\e)+ x1x3 + x2x4 contains a subgraph isomorphic to a subdivision of a Möbius

pinwheel with 4t− 2 ≥ t− 1 vanes.

Therefore, by symmetry, we assume that the vertices x1, x2, x3 and x4 are contained in

C1, i.e. xi = v1ki for i = 1, 2, 3, 4, where, without loss of generality, t ≤ k1, k2, k3, k4 ≤ 4t.
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Then the subgraph J0 of J + x1x3 + x2x4 induced on {vji : t ≤ i ≤ 4t, j = 1, 2} contains two

disjoint paths, one with ends v1t and v24t, and another with ends v2t and v14t. Now consider

the graph (H\e) + x1x3 + x2x4, where e ∈ E(H) is an edge incident to v, and delete all the

edges of J0 from this graph, except for those that belong to the paths constructed above.

If is easy to see that the resulting graph contains a subdivision of a Möbius pinwheel with

t− 1 vanes, as claimed. �

The next corollary follows immediately from Lemmas 5.1 and 5.3.

Corollary 5.4 Assume Hypothesis 4.3. If l ≥ 81 and some non-trivial foundational path is

adjacent in the auxiliary graph to two non-trivial and at least one trivial foundational path,

then G is apex.

6 Taming the bridges

In Lemma 4.10 we have modified W and P so that for every i ∈ {1, 2, . . . , l − 1} every

non-trivial P-bridge B of G[Wi] attaches to exactly two non-trivial foundational paths. Let

us recall that a core is a component of the subgraph of the auxiliary graph restricted to

non-trivial foundational paths. In this section we show that the graph consisting of all paths

of a core of (W ,P) and all bridges that attach to two paths of the core can be drawn in

either a disk or a cylinder, depending on whether the core is a path or a cycle.

The following lemma follows easily from the definition of properties (L1)–(L5) and (L9).

Lemma 6.1 Let l ≥ 2, q ≥ 0, and p ≥ 0 be integers, and let W = (W0,W1, . . . ,Wl) be a

linear decomposition of length l and adhesion q of a graph G, and let P be a foundational

linkage for W such that (L1)–(L5) and (L9) hold. Let i be fixed with 1 ≤ i ≤ l − 1 and let

Q be a path in G[Wi] with ends x and y such that x, y ∈ V (P ) for some P ∈ P and Q is

otherwise disjoint from V (P). Let P ′ be obtained from P by replacing xPy by Q. Then the

linkage P ′ = (P − {P}) ∪ {P ′} satisfies (L1)–(L5) and (L9).

Let G be a graph and W = (W0, . . . ,Wl) be a linear decomposition of length l and

adhesion q of G, and let P be a foundational linkage such that (L1)–(L5) hold. Let i ∈

{1, 2, . . . , l−1}, let P, P ′ ∈ P be two non-trivial foundational paths, let Wi−1∩Wi∩V (P ) =

{x}, Wi−1 ∩Wi ∩ V (P ′) = {x′}, Wi ∩Wi+1 ∩ V (P ) = {y}, and Wi ∩Wi+1 ∩ V (P ′) = {y′}.

Let Q1, Q2 be two disjoint paths where Qi has ends ui and vi for i = 1, 2. If the paths Q1

and Q2 are internally disjoint from V (P), the vertices x, u1, u2, y occur on P in that order,

and x′, v2, v1, y
′ occur on P ′ in that order, then we say that the foundational paths P and

P ′ twist.

Let P1, P2 and P3 be three non-trivial foundational paths and let Q1, Q2, and Q3 be

three internally disjoint paths such that Qj is also internally disjoint from each member of
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P for each j ∈ {1, 2, 3}. Let the ends of Qj be xj, yj for 1 ≤ j ≤ 3. The paths Q1, Q2,

and Q3 form a P1-tunnel if x1, y1 ∈ V (P1), the vertices x2, x3 ∈ V (x1P1y1) − {x1, y1} and

yj ∈ V (Pj) for j = 2, 3. The path Q1 is called the arch of the tunnel.

Lemma 6.2 Let l ≥ 2, q ≥ 3, and p ≥ 4 be integers, and let W = (W0,W1, . . . ,Wl) be a

linear decomposition of length l and adhesion q of a graph G, and let P be a foundational

linkage for W such that (L1)–(L5) and (L9) hold. If there exist 48
(

q
3

)

distinct indices i ∈

{1, 2, . . . , l− 1} such that G[Wi] contains a P -tunnel for some non-trivial foundational path

P ∈ P, then G has a K6 minor.

Proof. Let l, q, p, W and P be given. Assume, to reach a contradiction, that there

exist 48
(

q
3

)

indices i ∈ {1, 2, . . . , l − 1} such that G[Wi] has a Pi-tunnel for some non-trivial

foundational path Pi ∈ P . Reroute the paths Pi along the arches of the Pi-tunnels to get a

linkage P ′. By Lemma 6.1 W and P ′ satisfy (L1)–(L5) and (L9). Moreover, for each of the

above 48
(

q
3

)

distinct indices i there exists a non-trivial P ′-bridge in G[Wi] that attaches to

at least three non-trivial foundational paths. It follows from Lemma 4.2 that G has a K6

minor, as desired. �

Lemma 6.3 Let l ≥ 2, q ≥ 3, and p = 6 be integers, and let W = (W0,W1, . . . ,Wl) be a

linear decomposition of length l and adhesion q of a graph G, and let P be a foundational

linkage for W such that (L1)–(L5) and (L9) hold. If there exist 12
(

q
2

)

distinct indices i ∈

{1, 2, . . . , l − 1} such that G[Wi] contains a pair of twisting non-trivial foundational paths,

then G has a K6 minor.

Proof. Let l, q, p, W and P be given. Assume there exist 12
(

q
2

)

distinct indices i ∈

{1, 2, . . . , l − 1} such that G[Wi] contains a pair of twisting non-trivial foundational paths.

It follows that there exists a subset I ⊆ {1, 2, . . . , l − 1} of cardinality 12 and non-trivial

paths P1, P2 ∈ P such that P1 and P2 twist in G[Wi] for all i ∈ I. We use the twisting paths

to contract three disjoint K4 subgraphs onto P1 and P2 to find a minor isomorphic to the

graph in Figure 4. The edges r1 and r2 in the figure exist by applying property (L9) to the

ends of P1 and P2. The numbering in Figure 4 shows a K6 minor, implying that G also has

a K6 minor, as desired. �

Lemma 6.4 Let G be a 6-connected graph with no K6 minor. Let l ≥ 2, q ≥ 3, and p = 6

be integers, let W = (W0,W1, . . . ,Wl) be a linear decomposition of length l and adhesion q

of G, and let P be a foundational linkage for W such that (L1)–(L9) hold. If there exist

40
(

q
3

)

distinct indices i ∈ {1, 2, . . . , l − 1} such that G[Wi] contains a non-trivial P-bridge

attaching to a trivial foundational path, then G is apex.
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4 5 5 6 6 4

r2

r1

Figure 4: Finding a K6 minor when there exist a pair of non-trivial foundational paths that
twist in twelve distinct Wi. The edges r1 and r2 are depicted as not crossing, however, if
they cross the graph still contains K6 as a minor.

Proof. Let l, q, p, W and P be given. Assume that there exist 40
(

q
3

)

distinct indices

i ∈ {1, 2, . . . , l − 1} such that G[Wi] contains a non-trivial P-bridge attaching to a trivial

foundational path. By (L10) each such bridge attaches to two non-trivial foundational paths.

Therefore, there exist distinct non-trivial paths P, P ′ ∈ P and a trivial path Q ∈ P such

that G[Wi] contains a P-bridge attaching to P, P ′ and Q for at least 40 distinct indices

i ∈ {1, 2, . . . , l−1}. The argument used in the proof of Lemma 5.1 implies that G contains a

subgraph isomorphic to a subdivision of a pinwheel with 20 vanes or a Möbius pinwheel with

20 vanes. Note that the Möbius pinwheel with 20 vanes contains a K6 minor, and, thus, G

is apex by Lemma 5.3, as desired. �

Let us assume Hypothesis 4.3, and let C be a core of (W ,P). We define the ith section of

C, denoted by G(C, i), to be the subgraph of G[Wi], obtained from the union of the paths in C

and all P-bridges of G[Wi] that attach to a member of C by deleting the trivial foundational

paths. By Lemma 4.6 the graph C is a path or a cycle. Let P1, P2, . . . , Pt be the vertices of

C, listed in order, let Wi−1 ∩Wi ∩ V (Pj) = {uj} and let Wi ∩Wi+1 ∩ V (Pj) = {vj}. If C is

a path, then we say that C is flat in Wi if G(C, i) can be drawn in a disk with the vertices

u1, u2, . . . , ut, vt, vt−1, . . . , v1 drawn on the boundary of the disk in order, and the paths P1

and Pt also drawn on the boundary of the disk. If C is a cycle, then we say that C is flat

in Wi if G(C, i) can be drawn in a cylinder with the vertices u1, u2, . . . , ut drawn on one of

the boundary components of the cylinder in the clockwise order listed, and vt, vt−1, . . . , v1

drawn on the other boundary component in the clockwise order listed. Our next objective

is to find a linear decomposition W = (W0,W1, . . . ,Wl) and a foundational linkage P such

that

(L11) Every core of (W ,P) is flat in Wi for every i ∈ {1, 2, . . . , l − 1}.

(L12) For every i ∈ {1, 2, . . . , l − 1}, no non-trivial P-bridge of G[Wi] attaches to a trivial

foundational path.
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Lemma 6.5 Let G be a 6-connected non-apex graph not containing K6 as a minor. Let

p = 6, l ≥ 2, q ≥ 6 be integers, and let W = (W1,W2, . . . ,Wl) be a linear decomposition

of G of adhesion q and length l satisfying (L1)–(L10). If l >
(

88
(

q
3

)

+ 12
(

q
2

))

l′, then there

exists a contraction W ′ of W of length l′ such that W ′ and the corresponding restriction of

P satisfy (L1)–(L12).

Proof. Let G, p, q, l, W , and P be given. By our choice of l and Lemmas 6.3, 6.2 and 6.4,

there exists an index α such that for all i ∈ {0, 1, . . . , l′} the graph G[Wα+i] does not contain

a P -tunnel for any P in P , nor does it contain a pair of non-trivial twisting foundational

paths, nor does it contain a non-trivial bridge attaching to a trivial foundational path. We

claim that the contraction
(

∪α−1
i=0 Wi,Wα,Wα+1, . . . ,Wα+l′ ,

∪l
i=α+l′+1 Wi

)

of W is as desired.

Condition (L12) follows from the construction, and hence it suffices to prove (L11).

Fix an index i ∈ {0, 1 . . . , l′} and a core C of the auxiliary graph. We wish to apply

Lemma 2.4 or 2.5, depending on whether C is a path or cycle, to the graph H := G(C, α+ i)

and linkage C. Let Pj, uj, vj for j ∈ {1, 2, . . . , t} be as in the definition of flat. By Corollary 4.8

and (L10) every C-bridge of H is stable, and by (L10) no C-bridge of H attaches to three or

more members of C. If there exists a set X ⊆ V (H) of size at most three such that some

component J of G \X is disjoint from {u1, u2, . . . , ut, v1, v2, . . . , vt}, then by 6-connectivity

of G the vertices of J include a neighbor of at least three distinct trivial paths of P . We

conclude that some member of C is adjacent in the auxiliary graph to at least three trivial

foundational paths, contrary to Lemma 4.9. Thus no such set X exists. Next we show that

none of the outcomes (i)–(iii) of Lemmas 2.4 and 2.5 hold. Outcome (i) does not hold by

the definition of C, and outcomes (ii) and (iii) do not hold by the choice of α and i. Thus it

follows from Lemma 2.4 if C is a path or Lemma 2.5 if C is a cycle that H can be drawn in

a disk or a cylinder as described in that lemma, which is precisely the definition of C being

flat in Wα+i. Thus W
′ satisfies (L11) as well. �

7 Controlling the boundary of a planar graph

Let G be a simple plane graph with the infinite region bounded by a cycle C, and such that

the degree of every vertex in V (G)−V (C) is at least six. DeVos and Seymour [4] proved that

|V (G)| ≤ |V (C)|2/12 +O(|V (C)|). In this section we digress to prove a similar result under

the weaker hypothesis that G has deficiency at most five, where the deficiency of a plane

graph G with the infinite region bounded by a cycle C is defined as
∑

v∈V (G)−V (C)max{6−

deg(v), 0}. We denote the deficiency of G by def(G). The proof is an adaptation of the

argument from [4], but we include it, because the details are different. We begin with a

couple of definitions and a lemma.

A quilt is a simple plane graph G with the infinite region bounded by a cycle C, such

25



that G has deficiency at most five and every finite region of G is bounded by a triangle. If

exactly one vertex of C has degree three, and all other vertices have degree exactly four,

then we say that C is a convenient graph. Otherwise, a convenient graph is a subpath of C

with at least one edge, with both ends of degree exactly three, and all internal vertices of

degree exactly four.

Lemma 7.1 Every quilt with no vertices of degree two has a convenient graph.

Proof. Let G be a quilt with no vertices of degree two, and let the deficiency of G be d.

Consider the planar graph G′ obtained by adding a vertex v to G adjacent to every vertex

of C. Let |V (G)| = n and |V (C)| = m. Then

6(n+ 1)− 12 =
∑

v∈V (G′)

degG′(v)

=
∑

v∈V (C)

(degG(v) + 1) +m+
∑

v∈V (G)−V (C)

degG(v)

≥
∑

v∈V (C)

degG(v) + 6(n−m)− d+ 2m.

It follows that
∑

v∈V (C) degG(v) ≤ 4m− 6+ d. Since d ≤ 5 we deduce that there are strictly

more vertices in C of degree three than of degree at least five. Thus, a convenient graph

exists. �

The main theorem of this section follows easily from the next lemma. If G is a quilt, we

define µ(G) to be 1 if G has a vertex of degree two, and otherwise we define µ(G) to be the

minimum number of edges in a convenient graph. Thus µ(G) is at least one, and at most

the length of the cycle bounding the infinite region of G.

Lemma 7.2 Let G be a quilt on at least four vertices with the infinite region bounded by a

cycle of length k. Then |V (G)| ≤ k2/2 + k/2 + µ(G) + def(G)− 6.

Proof. Let G and k be as stated. We proceed by induction on |V (G)|. If G has exactly

four vertices, then it is isomorphic to K4, or K4 minus an edge. We have k = 3, µ(G) = 1,

def(G) = 3, or k = 4, µ(G) = 1, def(G) = 0, and the lemma holds. Thus we may assume

that G has at least five vertices, and that the lemma holds for all quilts on fewer than |V (G)|

vertices. Let C be the cycle bounding the infinite region of G. If C has a chord, then the

chord divides G into two quilts G1 and G2 in the obvious way. Let the infinite region of Gi

have length ki. Assume first that G2 has exactly three vertices. Then by induction

|V (G)| = |V (G1)|+ 1 ≤ k2
1/2 + k1/2 + µ(G1) + def(G1)− 6 + 1

= k2/2 + k/2 + µ(G1)− k + 1 + def(G1)− 6

≤ k2/2 + k/2 + µ(G) + def(G)− 6,
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as desired. Thus we may assume that both G1 and G2 have at least four vertices. Since

k1, k2 ≥ 3 we have 3(k1 + k2) ≤ k1k2 + 9, and hence by induction

|V (G)| = |V (G1)|+ |V (G2)| − 2

≤ k2
1/2 + k1/2 + k1 + def(G1)− 6 + k2

2/2 + k2/2 + k2 + def(G2)− 6− 2

= (k1 + k2 − 2)2/2 + (k1 + k2 − 2)/2 + def(G1) + def(G2)− k1k2 + 3k1 + 3k2 − 15

≤ k2 + k/2 + µ(G) + def(G)− 6,

as desired. Thus we may assume that C has no chord. In particular, G has no vertex of

degree two.

By Lemma 7.1 the quilt G has a convenient graph. Let P be a convenient graph with

the smallest number of edges. Let us assume first that P has exactly one edge. Then P is

a path with ends u and v, say. Since C does not have any chords and G has at least five

vertices, the graph G′ := G\{u, v} is a quilt. If G′ has exactly three vertices, then G is the

wheel on five vertices, k = 4, µ(G) = 1, def(G) = 2, and the lemma holds. Thus we may

assume that G′ has at least four vertices, and hence by induction

|V (G)| = |V (G′)|+ 2 ≤ (k − 1)2/2 + (k − 1)/2 + µ(G′) + def(G′)− 6 + 2

= k2/2 + k/2 + µ(G′)− k + 2 + def(G′)− 6

≤ k2/2 + k/2 + µ(G) + def(G)− 6,

as desired. Thus we may assume that P has at least two edges. If P = C, then let u be

the unique vertex of C of degree three; otherwise P is a path, and we let u be an end of P .

Let u′ be the unique neighbor of u that does not belong to C. Then G′ := G\u is a quilt

on at least four vertices with the infinite region bounded by a cycle C ′, where C ′ has length

k. Since C has no chords and G has at least five vertices we deduce that degG′(u′) ≥ 3.

If equality holds, then u has degree four in G, and hence def(G′) = def(G) − 2. Otherwise

µ(G′) ≤ µ(G)− 1. In either case we have by induction

|V (G)| = |V (G′)|+ 1 ≤ k2/2 + k/2 + µ(G′) + def(G′)− 6 + 1

≤ k2/2 + k/2 + µ(G) + def(G)− 6,

as desired. �

Theorem 7.3 Let G be a simple graph drawn in a disk, let X be the set of vertices of G

drawn on the boundary of the disk, and assume that
∑

v∈V (G)−X max{6− deg(v), 0} ≤ 5. If

|X| ≥ 3, then |V (G)| ≤ |X|2/2 + 3|X|/2− 1.

Proof. Let G and X be as stated. We may assume, by adding edges to G, that G is a

quilt with the infinite region bounded by a cycle with vertex set X. By Lemma 7.2 we have

|V (G)| ≤ |X|2/2 + |X|/2 + µ(G) + def(G)− 6 ≤ |X|2/2 + 3|X|/2− 1, as desired. �
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8 Cylindrical tube

Lemma 4.5 guarantees the existence of a non-empty core in a sufficiently long linear decom-

position of any K6-minor-free 6-connected graph G of bounded tree-width, assuming that

such a decomposition satisfies conditions (L1)–(L9). Lemma 4.6 implies that, under the

same conditions, each core is a path or a cycle. In this section we handle the case when some

core of a linear decomposition of the graph G is a cycle.

Before introducing the main result of this section, we need to present one more definition

and a related lemma. Let k, l be positive integers, k, l ≥ 3. A double crossed k-cylinder of

length l is the graph defined as follows. Let P1, . . . , Pk be k vertex disjoint paths with the

vertex set of Pi = {vij : 1 ≤ j ≤ l} for all 1 ≤ i ≤ k with vij adjacent to vij+1 for all 1 ≤ j ≤

l − 1. The double crossed k-cylinder of length l has vertex set {vij : 1 ≤ j ≤ l, 1 ≤ i ≤ k}

and edge set

(

k
∪

i=1

E(Pi)

)

∪ {vijv
i+1
j : 1 ≤ i ≤ k, 1 ≤ j ≤ l} ∪ {q1, q2, r1, r2},

where the superscript addition is taken modulo k. Furthermore, the ends of qi are ui, vi ∈

{vj1 : 1 ≤ j ≤ k} for i = 1, 2 and the vertices u1, u2, v1, v2 occur in that order in the cyclic

order (v11, v
2
1, . . . , v

1
k). Similarly, the edges r1 and r2 cross in the cyclic order (v1l , v

2
l , . . . , v

k
l ).

Explicitly, the ends of ri are xi, yi ∈ {vjl : 1 ≤ j ≤ k} for i = 1, 2 and occur in the order

x1, x2, y1, y2 in the cyclic order (v1l , v
2
l , . . . , v

k
l ).

Lemma 8.1 Let t and l be integers, t ≥ 5, l ≥ 16. A double crossed t-cylinder of length l

contains K6 as a minor.

Proof. Let G be a doubled crossed t-cylinder of length l with vertex set {vij : 1 ≤ j ≤ l, 1 ≤

i ≤ t}. By possibly routing the crossing edges q1 and q2 in the first five cycles on vertices

{vij : 1 ≤ j ≤ 5, 1 ≤ i ≤ t} and routing the edges r1 and r2 on the final five cycles with

vertex set {vij : l−5 ≤ j ≤ l, 1 ≤ i ≤ t}, we see that G contains as a minor a doubled crossed

5-cylinder G′ of length 6 and moreover, with the additional property that the ends of q1 are

v11 and v31 and the ends of q2 are v21 and v41. Similarly, the edges r1 and r2 of G′ have ends

v16, v
3
6 and v26, v

4
6, respectively. The graph G then contains K6 as a minor, as indicated in

Figure 5. �

We now give the main result of this section.

Lemma 8.2 Let p = 6, l ≥ 2, and q ≥ 6 be integers. Let G be a 6-connected graph with

no K6 minor, and let W = (W0,W1, . . . ,Wl) be a linear decomposition of G of length l and

adhesion q with a foundational linkage P satisfying (L1)–(L12). Further, assume that some

core of (W ,P) is a cycle. If l ≥ 2q + 32, then G is apex.
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Figure 5: A double crossed 5-cylinder of length 6 contains K6 as a minor

Proof. Let p, l, q, and W be given, let C be a core of (W ,P) that is a cycle, and assume for

a contradiction that G is not apex. Let P1, P2, . . . , Pt be the vertices of C listed in order. For

i = 1, 2, . . . , l− 1 let Hi denote the graph G(C, i), and for j = 1, 2, . . . , t let uj be the unique

element of V (Pj) ∩ Wq ∩ Wq+1 and vj the unique element of V (Pj) ∩ Wq+32 ∩ Wq+33. Let

A = {u1, u2, . . . , ut}, B = {v1, v2, . . . , vt}, let K denote the graph Hq+1 ∪Hq+2 ∪ . . .∪Hq+32,

and let L denote the graph G \ (V (K) − A − B). Since G is not apex and C is a cycle,

by Corollary 5.4 the core C forms a component of the auxiliary graph. Therefore, we have

K ∪ L = G and V (K ∩ L) = A ∪B.

We claim that L does not include two disjoint paths from A to B. Indeed, otherwise

by contracting Pi[Wq+2j] to a single vertex for 1 ≤ i ≤ t and 0 ≤ j ≤ 11, we see that G

contains a linked t-cylinder of length twelve. Lemma 4.1 then contradicts our choice of G.

Thus there exist subgraphs L1, L2 of L such that L1 ∪ L2 = L, A ⊆ V (L1), B ⊆ V (L2) and

|V (L1 ∩L2)| ≤ 1. Now property (L9) applied to C and a subset of C of size two implies that

t ≥ 5.

Let Ω1 be the cyclic permutation (u1, u2, . . . , ut), and let Ω2 be the cyclic permutation

(v1, v2, . . . , vt). Thus (L1,Ω1) and (L2,Ω2) are societies. Let X = V (L1 ∩ L2). By (L11) the

graph K can be drawn in a cylinder with u1, u2, . . . , ut drawn in one boundary component

in the clockwise order listed, and v1, v2, . . . , vt drawn in the other boundary component in

the clockwise order listed. Thus if both societies (L1 \X,Ω1 \X) and (L2 \X,Ω2 \X) are

rural, then G is apex, so we may assume that (L1 \ X,Ω1 \ X) is not rural and hence by

Theorem 2.3 it has a cross. The society (L2,Ω2) is not rural by Theorem 7.3, because each

vertex of V (L2)−B −X has degree at least 6 and |V (L2)| ≥ qt ≥ t2 = |B|2, because V (L2)

includes each of the pairwise disjoint sets Wi∩Wi+1∩V (C) for i = q+32, q+33, . . . , 2q+31.

Likewise, (L2,Ω2) has a cross by Theorem 7.3.

We have shown that there exist four pairwise disjoint paths, two of them forming a cross

in (L1,Ω1) and two forming a cross in (L2,Ω2). Let j ∈ {0, 1, . . . , 15}. By the definition of

core the graph G(C, q+2j +1) has internally disjoint paths Q1, Q2, . . . , Qt such that Qi has
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one end in Pi, the other end in Pi+1 (where Pt+1 means P1), and is otherwise disjoint from

C. Since for j ̸= j′ the graphs G(C, q + 2j + 1) and G(C, q + 2j′ + 1) are vertex disjoint, we

conclude that G contains as a minor a double crossed t-cylinder of length at least 16. This

observation contradicts Lemma 8.1 and completes the proof of the lemma. �

9 Planar strip

We now examine the case when some core of the auxiliary graph is a path.

Lemma 9.1 Let p = 6, l ≥ 2 and q ≥ 6 be integers. Let G be a 6-connected graph with

no K6 minor, and let W = (W0,W1, . . . ,Wl) be a linear decomposition of G of length l and

adhesion q with a foundational linkage P satisfying (L1)–(L12). Further, assume that some

core of (W ,P) is a path. If l ≥ max{4q + 11, 48}, then G is an apex graph.

Proof. Let p, l, q, and W be given, let C be a core of (W ,P) that is a path, and assume

for a contradiction that G is not apex. Let P1, P2, . . . , Pt be the vertices of C listed in order.

As in the proof of Lemma 8.2, for i = 1, 2, . . . , l− 1 let Hi denote the graph G(C, i), and for

j = 1, 2, . . . , t let uj be the unique element of V (Pj) ∩W0 ∩W1 and vj the unique element

of V (Pj) ∩Wl−1 ∩Wl. Let A = {u1, u2, . . . , ut}, B = {v1, v2, . . . , vt}, and let Q denote the

set of trivial foundational paths adjacent in the auxiliary graph to paths in C. Let K denote

the subgraph of G induced on V (H1 ∪H2 ∪ . . . ∪Hl−1) ∪ V (Q), and let L denote the graph

G \ (V (K)− A− B − V (Q)). Note that K ∪ L = G and V (K) ∩ V (L) = A ∪ B ∪ V (Q).

We claim that either P1 or Pt is adjacent in the auxiliary graph to at least two paths

in Q. Suppose for a contradiction that both P1 and Pt are adjacent to at most one such

path. We assume that Pi is adjacent to exactly one trivial foundational path Si ∈ Q for

i = 1, i = t. The argument is similar in the case when one or both of P1 and Pt are not

adjacent to any paths in Q. Note that by (L12) and Corollary 5.4 all the neighbors of V (S1)

and V (S2) lie on P1 ∪ P2. If S1 ̸= St, we let {si} = V (Si) for i = 1, i = t and K ′ = K. If

S1 = St with V (S1) = V (St) = {s}, let K ′ be obtained from K by deleting s, and adding

new vertices s1 and s2, where s1 is adjacent to every neighbor of s on P1, and st is adjacent

to every neighbor of s on Pt. By property (L11), the graph K ′ is planar and embeds in a

disk with exactly the vertices {s1, st} ∪A ∪B on the boundary. Moreover, every vertex not

on the boundary of the disk has degree at least six. This is a contradiction to Theorem 7.3,

as |V (K ′)| ≥ lt > (2t+ 2)2, because l ≥ 4q + 11.

Using the above claim and Lemma 4.2 we assume without loss of generality that P1 is

adjacent in the auxiliary graph to exactly two paths in Q, say Q1 and Q2. Let V (Q1) = {q1}

and V (Q2) = {q2}. We claim that the graph G′ = G \ {q1, q2} is planar and that P1 is

a subset of a facial boundary of G′. Suppose that Pt is adjacent to at least two paths in

Q − {Q1, Q2}. Then G contains as a minor the graph in Figure 6. The horizontal paths

30



1

1

2

2

3

3

3

4

4

4

5

5

56

6

6

Figure 6: Finding a K6 minor when there exist four distinct trivial foundational paths with
neighbors in C.

in the figure correspond to contractions of P1 and Pt and the vertical edges correspond to

paths in H2i+1 for i = 1, 2, . . . , 6 with ends on P1 and Pt, which exist by the definition of C.

The graph in Figure 6 contains a K6 minor, as indicated, a contradiction. Therefore Pt is

adjacent to at most one path in Q−{Q1, Q2}. By (L11), (L12) and Corollary 5.4, the graph

K is planar and embeds in the disk with P1 forming part of its boundary. Let Ω be a cyclic

permutation of the set V (Ω) = A ∪ B ∪ (V (Q)− {q1, q2}) ordered ut, ut−1, . . . , u1, v1, . . . , vt

followed by the element of V (Q) − {q1, q2} if V (Q) − {q1, q2} ̸= ∅. If the society (L,Ω)

contains a cross, then G contains as a minor one of the configurations pictured in Figure 7.

As each of this configurations contains a K6 minor as indicated in Figure 7, we conclude by

Theorem 2.3 that (L,Ω) is rural. Combined with the planarity of K this implies our claim

that G′ is planar and P1 is a subset of a facial boundary.

Let P2 = {Q1, Q2, P1, P2}. By property (L9), there exist two disjoint paths R1 and R2

in G[W0 ∪ Wl] ∪
∪

P∈P−P2
P linking the set {u1, u2} to the set {v1, v2}. By the claim in

the previous paragraph we assume without loss of generality that Ri has ends ui and vi for

i = 1, 2, and that R1 ∪ P1 forms a facial cycle of G′. As G is not apex, both q1 and q2 must

have some neighbor not contained in R1 ∪ P1. Let q′i be such a neighbor of qi for i = 1, 2.

The cycle R1 ∪ P1 is a facial cycle in the 4-connected planar graph G′, and hence there is a

unique (R1 ∪ P1)-bridge in G− {q1, q2}. It follows that for each q′i there exists a path from

q′i to R2 ∪ P2 avoiding R1 ∪ P1. Let R′
i for i = 1, 2 be such paths from q′i to R2 ∪ P2. Since

l ≥ 48 there exists an index α such that Wα+i is disjoint from R′
1 and R′

2 for 0 ≤ i ≤ 14.

By considering P1 and P2 and the bridges attaching to P1 and P2 in Hα, Hα+1, . . . , Hα+14,

we see that G contains as a minor the graph in Figure 8, and consequently, a K6 minor, as

indicated in Figure 8. This contradiction completes the proof of the lemma. �

Lemma 9.1 represents the final step in our analysis of the structure of the auxiliary graph.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let w ≥ 1 be an integer. Let l1 = max{4w + 11, 2w + 32, 58},

let l2 =
(

88
(

w
3

)

+ 12
(

w
2

))

l1, and let l3 =
(

6
(

w
6

)

+ 48
(

w
3

))

l2. By Corollary 3.9 there exists an
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Figure 7: Finding K6 minor when the society (L,Ω) is not rural.
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Figure 8: Configurations giving K6 minors when the trivial foundational paths Q1 and Q2

have a neighbor not contained in the boundary of the face defined by R1 ∪ P1

integer N such that every 6-connected graph G of tree-width at most w with no K6 minor

has a linear decomposition of length at least l3 and adhesion at most w satisfying properties

(L1)–(L9) for p = 6. We claim that such an integer N satisfies Theorem 1.2.

Let G be a 6-connected graph of tree-width at most w with at least N vertices and

no K6 minor. By Lemma 4.10 the graph G has a linear decomposition of length at least

l2 and adhesion at most w satisfying properties (L1)–(L10), and thus by Lemma 6.5 the

graph G has a linear decomposition W of length at least l1 and adhesion at most w and a

foundational linkage P satisfying properties (L1)–(L12). By Lemma 4.5 P includes a non-

trivial foundational path. By Lemma 4.9 every non-trivial foundational path of P attaches to

at most 2 trivial foundational paths in the auxiliary graph. Therefore, by the 6-connectivity

32



of G, every core of (W ,P) has at least two vertices, and by Lemma 4.6 every core is a path

or a cycle. If some core of (W ,P) is a cycle, then G is apex by Lemma 8.2. Otherwise, G is

apex by Lemma 9.1. �
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[7] H. Hadwiger, Über eine Klassifikation der Streckenkomplexe, Vierteljschr. Naturforsch.
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