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ABSTRACT

Jorgensen conjectured that every 6-connected graph with no Kg minor has a
vertex whose deletion makes the graph planar. We prove the conjecture for
all sufficiently large graphs.
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1 Introduction

Graphs in this paper are allowed to have loops and multiple edges. A graph is a minor of
another if the first can be obtained from a subgraph of the second by contracting edges. An
H minor is a minor isomorphic to H. A graph G is apez if it has a vertex v such that G\v

is planar. (We use \ for deletion.) Jgrgensen [4] made the following beautiful conjecture.

Conjecture 1.1 FEvery 6-connected graph with no Kg minor is apez.

This is related to Hadwiger’s conjecture [3], the following,.

Conjecture 1.2 For every integer t > 1, if a loopless graph has no K; minor, then it is
(t — 1)-colorable.

Hadwiger’s conjecture is known for ¢ < 6. For ¢ = 6 it has been proven in [14] by show-
ing that a minimal counterexample to Hadwiger’s conjecture for ¢ = 6 is apex. The proof
uses an earlier result of Mader [6] that every minimal counterexample to Conjecture 1.2 is
6-connected. Thus Conjecture 1.1, if true, would give more structural information. Further-
more, the structure of all graphs with no Kg minor is not known, and appears complicated
and difficult. On the other hand, Conjecture 1.1 provides a nice and clean statement for
6-connected graphs. Unfortunately, it, too, appears to be a difficult problem. In this paper

we prove Conjecture 1.1 for all sufficiently large graphs, as follows.

Theorem 1.3 There exists an absolute constant N such that every 6-connected graph on at

least N wertices with no Kg minor is apex.

The second and third author recently announced a generalization [8] of Theorem 1.3,
where 6 is replaced by an arbitrary integer t. The result states that for every integer ¢ there
exists an integer N; such that every t-connected graph on at least N, vertices with no K,
minor has a set of at most ¢ — 5 vertices whose deletion makes the graph planar. The proof
follows a different strategy, but makes use of several ideas developed in this paper and its
companion [5].

We use a number of results from the Graph Minor series of Robertson and Seymour,
and also three results of our own that are proved in [5]. The first of those is a version of
Theorem 1.3 for graphs of bounded tree-width, proved in [5, Theorem 1.2], the following.
(We will not define tree-width here, because it is sufficiently well-known, and because we do

not need the concept per se, only several theorems that use it.)

Theorem 1.4 For every integer w there exists an integer N such that every 6-connected

graph of tree-width at most w on at least N vertices and with no Kg minor is apex.
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Figure 1: An elementary wall of height 4.

C

Theorem 1.4 reduces the proof of Theorem 1.3 to graphs of large tree-width. By a result of
Robertson and Seymour [10] those graphs have a large grid minor. However, for our purposes
it is more convenient to work with walls instead. Let h > 2 be even. An elementary wall of

height h has vertex-set
{(z,y) :0< 2 <2+ 1,0 <y < h} = {(0,0), (2~ + 1, h)}

and an edge between any vertices (z,y) and (2/,y’) if either
o [x—2|=1landy=1y or
e v =2 ly—y/| =1and z and max{y,y'} have the same parity.
Figure 1 shows an elementary wall of height 4. A wall of height h is a subdivision of an

elementary wall of height h. The result of [10] (see also [2, 9, 15]) can be restated as follows.

Theorem 1.5 For every even integer h > 2 there exists an integer w such that every graph

of tree-width at least w has a subgraph isomorphic to a wall of height h.

The perimeter of a wall is the cycle that bounds the infinite face when the wall is drawn
as in Figure 1. Now let C be the perimeter of a wall H in a graph G. The compass of H
in G is the restriction of G to X, where X is the union of V(C') and the vertex-set of the
unique component of G\V(C) that contains a vertex of H. Thus H is a subgraph of its
compass, and the compass is connected. A wall H with perimeter C' in a graph G is planar
if its compass can be drawn in the plane with C' bounding the infinite face. In Section 2 we

prove the following.

Theorem 1.6 For every even integer t > 2 there exists an even integer h > 2 such that if a
5-connected graph G with no Kg minor has a wall of height at least h, then either it is apexz,

or has a planar wall of height t.



Actually, in the proof of Theorem 1.6 we need Lemma 2.4 that is proved in [5]. The
lemma says that if a 5-connected graph with no Kg minor has a subgraph isomorphic to
subdivision of a pinwheel with sufficiently many vanes (see Figure 3), then it is apex.

By Theorem 1.6 we may assume that our graph G has an arbitrarily large planar wall H.
Let C' be the perimeter of H, and let K be the compass of H. Then C' separates G into K
and another graph, say J, such that KUJ = G, V(K)NV(J) = V(C) and E(K)NE(J) = 0.
Next we study the graph J. Since the order of the vertices on C' is important, we are lead
to the notion of a “society”, introduced by Robertson and Seymour in [11].

Let Q be a cyclic permutation of the elements of some set; we denote this set by V(). A
society is a pair (G, ), where G is a graph, and €2 is a cyclic permutation with V' (Q) C V(G).
Now let J be as above, and let © be one of the two cyclic permutations of V(C') determined
by the order of vertices on C'. Then (J,€) is a society that is of primary interest to us. We
call it the anticompass society of H in G.

We say that (G, €2, €) is a neighborhood if G is a graph and 2, Q) are cyclic permutations,
where both V' (€2) and V' (£y) are subsets of V(G). Let ¥ be a plane, with some orientation
called “clockwise.” We say that a neighborhood (G, €2, €)) is rural if G has a drawing I' in
Y. without crossings (so G is planar) and there are closed discs Ag C A C ¥, such that

(i) the drawing I' uses no point of ¥ outside A, and none in the interior of Ay, and

(ii) forv € V(G), the point of ¥ representing v in the drawing I" lies in bd(A) (respectively,
bd(Ay)) if and only if v € V() (respectively, v € V(€)), and the cyclic permutation of
V() (respectively, V(€2)) obtained from the clockwise orientation of bd(A) (respectively,
bd(Ap)) coincides (in the natural sense) with € (respectively, €)).

We call (2,1, A, Ay) a presentation of (G, $2,p).

Let (G4, £2, Q) be a neighborhood, let (Gy, €2) be a society with V/(Go)NV(Gy) = V (),
and let G = Gy U Gy. Then (G,() is a society, and we say that (G,€2) is the composition
of the society (Gy, ) with the neighborhood (G1,€,€). If the neighborhood (G, €2, Q)
is rural, then we say that (Go, ) is a planar truncation of (G,€2). We say that a society
(G, Q) is k-cosmopolitan, where k > 0 is an integer, if for every planar truncation (Gy, <)
of (G, ) at least k vertices in V(£2) have at least two neighbors in V' (Gy). At the end of

Section 2 we deduce

Theorem 1.7 For every integer k > 1 there exists an even integer t > 2 such that if G is
a simple graph of minimum degree at least six and H is a planar wall of height t in G, then

the anticompass society of H in G is k-cosmopolitan.

For a fixed presentation (3, ', A; Ag) of a neighborhood (G, €, Q) and an integer s > 0
we define an s-nest for (3,1, A, Ag) to be a sequence (Cy,Cy, ..., Cs) of pairwise disjoint
cycles of G such that Ag C Ay C --- C Ay, C A, where A; denotes the closed disk in X
bounded by the image under I' of C;. We say that a society (G, Q) is s-nested if it is the
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Figure 2: (a),(b) A turtle. (c),(d) A gridlet. (e),(f) A separated doublecross.

composition of a society (G1, ) with a rural neighborhood (Gs, (2, €y) that has an s-nest
for some presentation of (G, €2, Q).

Let © be a cyclic permutation. For z € V() we denote the image of x under € by
Qx). If X CV(Q), then we denote by 2| X the restriction of Q to X. That is, Q| X is the
permutation €' defined by saying that V(') = X and /() is the first term of the sequence
Q(x), QQ(z)), ... which belongs to X. Let vy, vg,..., v, € V() be distinct. We say that
(v1,v9,...,v%) is clockwise in € (or simply clockwise when € is understood from context)
if ' (v;—1) = v; for all i = 1,2,... k, where vy means vy and Q' = Q{vy,vy,...,v}. For
u,v € V(Q) we define uQu as the set of all z € V() such that either z = u or z = v or
(u,z,v) is clockwise in €.

A separation of a graph is a pair (A, B) such that AU B = V(G) and there is no edge
with one end in A — B and the other end in B — A. The order of (A, B) is |AN B|. We say
that a society (G,€) is k-connected if there is no separation (A, B) of G of order at most
k—1 with V() C Aand B— A # 0. A bump in (G,€) is a path in G with at least one
edge, both ends in V() and otherwise disjoint from V().

Let (G, ) be a society and let (uq, uz, v1,ve, us, v3) be clockwise in Q. For i = 1,2 let P,
be a bump in G with ends u; and v;, and let L be either a bump with ends uz and vs, or

the union of two internally disjoint bumps, one with ends us and = € u3Qv3 and the other



with ends v3 and y € u3Qus. In the former case let Z = (), and in the latter case let Z be
the subinterval of u3Qus with ends x and y, including its ends. Assume that P;, Py, L are
pairwise disjoint. Let g1, g2 € V/(P) UV (Py) UvsQug — {us, v3} be distinct such that neither
of the sets V(Py) UwvzQuq, V(P,) UveQus includes both ¢; and ¢o. Let 7 and @2 be two
not necessarily disjoint paths with one end in u3Qus — Z — {us, v3} and the other end ¢; and
(2, respectively, both internally disjoint from V(P U P, U L)UV(Q). In those circumstances
we say that P, U P, U LU Q@ UQy is a turtle in (G, Q). We say that P, P, are the legs, L is
the neck, and (1 U Q2 is the body of the turtle. (See Figure 2(a),(b).)

Let (G, ) be a society, let (uy,ug, ug, v1,vse,v3) be clockwise in Q, and let Py, P, P3 be
disjoint bumps such that P; has ends u; and v;. In those circumstances we say that Py, P, P3
are three crossed paths in (G, Q).

Let (G,€Q) be a society, and let wuy, us, us, uy, v1,v2,v3,v4 € V() be such that either
(w1, ug, ug, Vg, Uy, V1, Vg, v3) O (Ug, Us, U3, Uy, V2, V1, Vg, V3) OF (U, U, Ug, Vg = Ug, V1, Uy, V3) 1S
clockwise. For ¢ = 1,2,3,4 let P, be a bump with ends u; and v; such that these bumps
are pairwise disjoint, except possibly for v9 = w4. In those circumstances we say that
Py, Py, P3, P, is a gridlet. (See Figure 2(c),(d).)

Let (G, Q) be asociety and let (uq, ug, v1, Ve, Uz, ug, v3,v4) be clockwise or counter-clockwise
in Q. Fori=1,2,3,4 let P, be a bump with ends u; and v; such that these bumps are pair-
wise disjoint, and let P5 be a path with one end in V(P;) U v4Qus — {ug, v1,v4}, the other
end in V(Ps) UvQuy — {vg, v3,us}, and otherwise disjoint from Py U P, U Py U Py. In those
circumstances we say that Py, Py, ..., Ps is a separated doublecross.(See Figure 2(e),(f).)

A society (G, ) is rural if G can be drawn in a disk with V(§2) drawn on the boundary
of the disk in the order given by Q. A society (G, () is nearly rural if there exists a vertex
v € V(G) such that the society (G\v, Q\v) obtained from (G, €2) by deleting v is rural.

In Sections 4-9 we prove the following. The proof strategy is explained in Section 5. It

uses a couple of theorems from [11] and Theorem 4.1 that we prove in Section 4.

Theorem 1.8 There exists an integer k > 1 such that for every integer s > 0 and every
6-connected s-nested k-cosmopolitan society (G, Q) either (G,<) is nearly rural, or G has a
triangle C' such that (G\E(C),Q) is rural, or (G,Q) has an s-nested planar truncation that

has a turtle, three crossed paths, a gridlet, or a separated doublecross.

Finally, we need to convert a turtle, three crossed paths, gridlet and a separated double-
cross into a Kg minor. Let G be a 6-connected graph, let H be a sufficiently high planar wall
in G, and let (J, 2) be the anticompass society of H in G. We wish to apply to Theorem 1.8
to (J,Q). We can, in fact, assume that H is a subgraph of a larger planar wall H' that
includes s concentric cycles C1, Cs, ..., surrounding H and disjoint from H, for some
suitable integer s, and hence (J,(2) is s-nested. Theorem 1.8 guarantees a turtle or paths

in (J, Q) forming three crossed paths, a gridlet, or a separated double-cross, but it does not



say how the turtle or paths might intersect the cycles C;. In Section 10 we prove a theorem
that says that the cycles and the turtle (or paths) can be changed such that after possibly
sacrificing a lot of the cycles, the remaining cycles and the new turtle (or paths) intersect
nicely. Using that information it is then easy to find a Kg minor in G. We complete the

proof of Theorem 1.3 in Section 11.

2 Finding a planar wall

Let a pinwheel with four vanes be the graph pictured in Figure 3. We define a pinwheel with
k vanes analogously. A graph G is internally 4-connected if it is simple, 3-connected, has at
least five vertices, and for every separation (A, B) of G of order three, one of A, B induces

a graph with at most three edges.

Figure 3: A pinwheel with four vanes.

The objective of this section is to prove the following theorem.

Theorem 2.1 For every even integer t > 2 there exists an even integer h such that if H is
a wall of height at least h in an internally 4-connected graph G, then either

(1) G has a K¢ minor, or

(2) G has a subgraph isomorphic to a subdivision of a pinwheel with t vanes, or

(3) G has a subgraph isomorphic to a planar wall of height t.

In the proof we will be using several results from [12]. Their statements require the
following terminology: distance function, (I,m)-star over H, external (I, m)-star over H,
subwall, dividing subwall, flat subwall, cross over a wall. We refer to [12] for precise defini-
tions, but we offer the following informal descriptions. The distance of two distinct vertices
s,t of a wall is the minimum number of times a curve in the plane joining s and ¢ intersects
the drawing of the wall, when the wall is drawn as in Figure 1. Thus two distinct vertices

on the same face (possibly the outer face) are at distance two. An (I, m)-star over a wall H
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in (G is a subdivision of a star with [ leaves such that only the leaves and possibly the center
belong to H, and the leaves are pairwise at distance at least m. The star is external if the
center does not belong to H. A subwall of a wall is dividing if its perimeter separates the
subwall from the rest of the wall. A cross over a wall is a set of two disjoint paths joining the
diagonally opposite pairs of “corners” of the wall, the vertices represented by solid circles
in Figure 1. A subwall H is flat in G if there is no cross P, Q) over H such that PU (@ is a
subgraph of the compass of H in G.

We begin with the following easy lemma. We leave the proof to the reader.

Lemma 2.2 For every integer t there exist integers | and m such that if a graph G has a
wall H with an external (I, m)-star, then it has a subgraph isomorphic to a subdivision of a

pinwheel with t vanes.

We need one more lemma, which follows immediately from [12, Theorem 8.6].

Lemma 2.3 Fvery flat wall in an internally 4-connected graph is planar.

H 5 5 H
¢ ® ® ® 9
e ‘6 1 2 o6
5) 0 3 4 ' X
§) D 05 05 ® 0O
6 6 6 6 6
® ® ® ® ®

Figure 4: A Kg minor in a grid with two crosses.

Proof of Theorem 2.1. Let t > 1 be given, let [, m be as in Lemma 2.2, let p = 6, and let
k,r be as in [12, Theorem 9.2]. If h is sufficiently large, then H has k + 1 subwalls of height
at least ¢, pairwise at distance at least r. If at least k of these subwalls are non-dividing,
then by [12, Theorem 9.2] G either has a K4 minor, or an (I, m)-star over H, in which case
it has a subgraph isomorphic to a pinwheel with ¢ vanes by Lemma 2.2. In either case the
theorem holds, and so we may assume that at least two of the subwalls, say H; and H,, are

dividing. We may assume that H; and Hs are not planar, for otherwise the theorem holds.
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Let i € {1,2}. By Lemma 2.3 the wall H; is not flat, and hence its compass has a cross
P; U Q;. Since the subwalls H; and Hs are dividing, it follows that the paths P, Q1, P, Q2
are pairwise disjoint. Thus G has a minor isomorphic to the graph shown in Figure 4, but
that graph has a minor isomorphic to a minor of Kg, as indicated by the numbers in the
figure. Thus G has a Kg minor, and the theorem holds. [J

To deduce Theorem 1.6 we need the following lemma, proved in [5, Lemma 5.3], which

in turn relies on results in [7].

Lemma 2.4 If a 5-connected graph G with no Kg minor has a subdivision isomorphic to a

pinwheel with 20 vanes, then G is apex.

Proof of Theorem 1.6. Let ¢ > 2 be an even integer. We may assume that ¢ > 20.
Let h be as in Theorem 2.1, and let G be a 5-connected graph with no K4 minor. From
Theorem 2.1 we deduce that G either satisfies the conclusion of Theorem 1.6, or has a
subdivision isomorphic to a pinwheel with ¢ vanes. In the latter case the theorem follows

from Lemma 2.4. [
We need the following theorem of DeVos and Seymour [1].

Theorem 2.5 Let (G,€2) be a rural society such that G is a simple graph and every vertex
of G not in V() has degree at least siz. Then |V(G)| < |[V(Q)]?/12+ |[V(Q)]/2 + 1.

Proof of Theorem 1.7. Let £ > 1 be an integer, and let £ be an even integer such that if
W is the elementary wall of height ¢ and |V (W)| < £2/12+¢/2+ 1, then ¢ > 6k — 6. Let K
be the compass of H in G, let (J,2) be the anticompass society of H in G, let (Gg, ) be a
planar truncation of (J,Q), and let ¢ = |V (€Q)|. Thus (J,2) is the composition of (G, (2o)
with a rural neighborhood (G’,€, ). Then |V (H)| < 2/12 4+ ¢/2 + 1 by Theorem 2.5
applied to the society (K UG’, ), and hence ¢ > 6k — 6. Let L be the graph obtained from
K UG’ by adding a new vertex v and joining it to every vertex of V' (€)y) and by adding an
edge joining every pair of nonadjacent vertices of V' ({y) that are consecutive in €}y. Then L
is planar. Let s be the number of vertices of V() with at least two neighbors in G. Then
all but s vertices of K U G’ have degree in L at least six. Thus the sum of the degrees of
vertices of L is at least 6|V (K UG’)| — 6s+ €. On the other hand, the sum of the degrees is
at most 6|V (L)| — 12, because L is planar, and hence s > k, as desired. [J

3 Rural societies

If Pis apath and z,y € V(P), we denote by x Py the unique subpath of P with ends = and y.

Let (G, $2) be a society. An orderly transaction in (G, <) is a sequence of k pairwise disjoint



bumps 7 = (P,..., P) such that P; has ends u; and v; and wuy,us, . .., Uk, Uk, Vg_1, . . ., V1
is clockwise. Let M be the graph obtained from P, U P, U ---U P, by adding the vertices
of V() as isolated vertices. We say that M is the frame of 7. We say that a path @ in G
is 7T -coterminal if @ has both ends in V(€2) and is otherwise disjoint from it and for every
1 =1,2,...,k the following holds: if ) intersects P;, then their intersection is a path whose
one end is a common end of () and P;.

Let (G,Q) be a society, and let M and 7 be as in the previous paragraph. Let i €
{1,2,...,k} and let @ be a T-coterminal path in G\V(F;) with one end in v;Qu; and the
other end in u;Qv;. In those circumstances we say that ) is a 7 -jump over P;, or simply a
T -jump.

Now let ¢ € {0,1,...,k} and let @1, Q2 be two disjoint 7 -coterminal paths such that @);
has ends z;,y; and (u;, T1, T2, Wit1, Vit1, Y1, Y2, ;) is clockwise in €, where possibly u; = 1,
To = Uit1, Viz1 = Y1, OF Yo = v;, and ug means xi, Ui, Means Tp, Uy, means yi, and vy
means Y. In those circumstances we say that (@1, Q2) is a 7 -cross in region i, or simply a
T -cross.

Finally, let i € {1,2,...,k} and let Qo, Q1, Q2 be three paths such that @); has ends
x;,y; and is otherwise disjoint from all members of 7, zg,yo € V([;), the vertices 1, zo are
internal vertices of zoPyo, y1,y2 € V(B;), y1 € u;—1Qu; Uv;Qu;_1, ya € u;Quyy Uv1Qu;, and
the paths g, @)1, Q)2 are pairwise disjoint, except possibly 1 = x5. In those circumstances
we say that (Qo, Q1,Q2) is a T -tunnel under P;, or simply a 7 -tunnel.

Intuitively, if we think of the paths in 7 as dividing the society into “regions”, then
a 7-jump arises from a 7-path whose ends do not belong to the same region. A 7-cross
arises from two 7-paths with ends in the same region that cross inside that region, and
furthermore, each path in 7 includes at most two ends of those crossing paths. Finally,
a 7-tunnel can be converted into a 7-jump by rerouting P, along (Jy. However, in some
applications such rerouting will be undesirable, and therefore we need to list 7-tunnels as
outcomes.

Let M be a subgraph of a graph G. An M-bridge in G is a connected subgraph B of G
such that F(B)NE(M) = () and either E(B) consists of a unique edge with both ends in M,
or for some component C of G\V (M) the set F(B) consists of all edges of G with at least
one end in V(C). The vertices in V(B) NV (M) are called the attachments of B. Now let M
be such that no block of M is a cycle. By a segment of M we mean a maximal subpath P of
M such that every internal vertex of P has degree two in M. It follows that the segments of
M are uniquely determined. Now if B is an M-bridge of GG, then we say that B is unstable if
some segment of M includes all the attachments of B, and otherwise we say that B is stable.

A society (G, ) is rurally 4-connected if for every separation (A, B) of order at most
three with V(Q2) C A the graph G[B] can be drawn in a disk with the vertices of AN B

drawn on the boundary of the disk. A society is cross-free if it has no cross. The following,

10



a close relative of Lemma 2.3, follows from [11, Theorem 2.4].
Theorem 3.1 FEvery cross-free rurally 4-connected society is rural.

Lemma 3.2 Let (G,) be a rurally 4-connected society, let T = (Py,..., Py) be an orderly
transaction in (G,Q), and let M be the frame of T. If every M-bridge of G is stable and
(G, Q) is not rural, then (G,) has a T -jump, a T -cross, or a T -tunnel.

Proof. For ¢ = 1,2,...,k let u; and v; be the ends of P; numbered as in the definition
of orderly transaction, and for convenience let Fy and Py be null graphs. We define
k 4+ 1 cyclic permutations €, Q4,...,Qx as follows. For i = 1,2,...,k — 1 let V() :=
V(P) UV (Pa1) UuQuiyr Uvi1Qu; with the cyclic order defined by saying that w;Qu;,q
is followed by V(P;y1) in order from w; ;1 to vy, followed by v;41Qu; followed by V(F;) in
order from v; to u;. The cyclic permutation ) is defined by letting v,Qu; be followed by
V(Py) in order from uy to vy, and € is defined by letting uiQuy be followed by V(P) in
order from v to uy.

Now if for some M-bridge B of G there is no index i € {0,1,...,k} such that all
attachments of B belong to V(§2;), then (G,{2) has a 7-jump. Thus we may assume that
such index exists for every M-bridge B, and since B is stable that index is unique. Let us
denote it by i(B). Fori = 0,1,...,k let G; be the subgraph of G consisting of P, U P4,
the vertex-set V/(£2;) and all M-bridges B of G with i(B) = i. The society (G, §2;) is rurally
4-connected. If each (G, €);) is cross-free, then each of them is rural by Theorem 3.1 and it
follows that (G, €?) is rural. Thus we may assume that for some i = 0,1,...,k the society
(G;,€2;) has a cross (Q1,Q2). If neither P; nor P, includes three or four ends of the paths
@1 and @, then (G, Q) has a T-cross. Thus we may assume that P; includes both ends
of @1 and at least one end of ()2. Let z;,y; be the ends of ();. Since the M-bridge of G
containing (), is stable, it has an attachment outside P;, and so if needed, we may replace
()2 by a path with an end outside P; (or conclude that (G,€2) has a 7-jump). Thus we may
assume that u;, x1, T2, y1,v; occur on P; in the order listed, and yo & V(P;).

The M-bridge of G' containing (); has an attachment outside P;. If it does not include
()2 and has an attachment outside V' (P;) U {ya}, then (G,Q?) has a 7-jump or 7 -cross, and
so we may assume not. Thus there exists a path ()3 with one end x3 in the interior of (),
and the other end y3 € V(Q2) — {z2} with no internal vertex in M U Q1 U Q3. We call the
triple (@1, @2, Q3) a tripod, and the path y3Qsys the leg of the tripod. If v is an internal
vertex of x1 Py, then we say that v is sheltered by the tripod (@1, Q2, Q3). Let L be a path
that is the leg of some tripod, and subject to that L is minimal. From now on we fix L and
we will consider different tripods with leg L; thus the vertices x1, y1, 2, 3 may change, but
yo and y3 will remain fixed as the ends of L.

Let z/,y] € V(P;) be such that they are sheltered by no tripod with leg L, but every
internal vertex of | Py is sheltered by some tripod with leg L. Let X’ be the union of
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) Py, and all tripods with leg L that shelter some internal vertex of z) Py, let X =
X\V(D)\{=},v}} and let Y = V(M U L) — V(z,Py}) — {ys}. Since (G,) is rurally 4-
connected we deduce that the set {z,y],y3} does not separate X from Y in G. It follows
that there exists a path P in G\{z),y],y3} with ends z € X and y € Y. We may assume
that P has no internal vertex in X UY. Let (Q1,Q2,Q3) be a tripod with leg L such that
either x is sheltered by it, or x € V(Q1 UQ2UQ3). If y & V(LU F;), then by considering the
paths P, Q1, Qs, Q3 it follows that (G, Q) has a 7-jump, 7-cross or 7-tunnel. If y € V(L),
then there is a tripod whose leg is a proper subpath of L, contrary to the choice of L. Thus
we may assume that y € V(F;), and that y € V(P;) for every choice of the path P as above.
If x € V(Q1UQ2UQR3) then there is a tripod with leg L that shelters ) or ¢4, a contradiction.
Thus = € V(P;). Let B be the M-bridge containing P. Since y € V(P;) for all choices of
P it follows that the attachments of B are a subset of V(P;) U {y2}. But B is stable, and
hence ys is an attachment of B. The minimality of L implies that B includes a path from y
to ys, internally disjoint from L. Using that path and the paths P, Q1, @2, Q3 it is now easy

to construct a tripod that shelters either 2} or yj, a contradiction. I

4 Leap of length five

A leap of length k in a society (G,€)) is a sequence of k + 1 pairwise disjoint bumps
Py, Py, ..., P, such that P; has ends u; and v; and uq, uy, uo, . .., Uk, Vg, Vg, Vg_1, - - -, V1, 1S

clockwise. In this section we prove the following.

Theorem 4.1 Let (G,Q2) be a 6-connected society with a leap of length five. Then (G,<)
is nearly rural, or G has a triangle C' such that (G\E(C), ) is rural, or (G,Q) has three

crossed paths, a gridlet, a separated doublecross, or a turtle.

The following is a hypothesis that will be common to several lemmas of this section, and

so we state it separately to avoid repetition.

Hypothesis 4.2 Let (G, ) be a society with no three crossed paths, no gridlet, no sepa-

rated doublecross, nor a turtle, let £ > 1 be an integer, let

(g, U1, Uy -+« s Uk, Vo, Uy Vg1, -« -, V1)

be clockwise in €2, and let Py, P, ..., P, be pairwise disjoint bumps such that P; has ends u;
and v;. Let 7 be the orderly transaction (P, Ps, ..., Py), let M be the frame of 7 and let

Z = uQup U Qu UV (Py) UV (P3)U--- UV (Pe_y) — {ug, ug, vy, vk}

Let Z1 = v1Quq — {ug, u1,v1} and Zy = upQuy, — {vo, ug, vg }-
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If H is a subgraph of G, then an H-path is a (possibly trivial) path with both ends in
V(H) and otherwise disjoint from H. This is somewhat non-standard, typically an H-path
is required to have at least one edge, but we use our definition for convenience. We say that
a vertex v of Py is exposed if there exists an (M U Py)-path P with one end v and the other
in Z.

Lemma 4.3 Assume Hypothesis 4.2 and let k > 3. Let Ry, Ry be two disjoint (M U Py)-
paths in G such that R; has ends x; € V(Py) and y; € V(M) — {ug,vo}, and assume that
Ug, L1, L9, Vg occur on Py in the order listed, where possibly ug = x1, or vg = x5, or both.
Then either y; € V(P1)Uv1Quq, or ys € V(Py) UurQuy, or both. In particular, there do not
exist two disjoint (M U Py)-paths from V(Fy) to Z.

Proof. The second statement follows immediately from the first, and so it suffices to prove
the first statement. Suppose for a contradiction that there exist paths R;, Ry satisfying the
hypotheses but not the conclusion of the lemma. By using the paths P, P3,..., P, 1 we
conclude that there exist two disjoint paths (1, Q2 in G such that @; has ends z; € V(FP)
and z; € V(Q), and is otherwise disjoint from V(Fp) UV (Q2), and if (); intersects some P; for
Jj€e{1,2,...,k}, then j € {2,...,k—1} and Q;NP; is a path one of whose ends is a common
end of @; and P;. Furthermore, z; € u;Quy — {uy,v1} and 2o € v Quy, — {uy, vy }. From
the symmetry we may assume that either (ug, vo, 22, 21), or (ug, 21, Vg, 22) or (ug, Vo, 21, 22) 18
clockwise. In the first two cases (G, 2) has a separated doublecross (the two pairs of crossing
bumps are P; and ()1 U ugFPyxy, and P, and Qo U vgFPyxs, and the fifth path is a subpath
of P,), unless the second case holds and z; € uxQuy or zo € v1Qug, or both. By symmetry
we may assume that z; € upQug. Then, if 25 € vp_2Qug, (G,2) has a gridlet formed by
the paths Py, Py_1, uoPor1 U Q1 and vgPyxs U Q2. Otherwise, 2o € v3Qug_o — {vg, vx_2} and
(G, Q) has a turtle with legs Py and vgPyza U Q2, neck Py and body ugPyza U Q.

Finally, in the third case (G,{2) has a turtle or three crossed paths. More precisely, if
2o € voQdu; — {v1}, then (G, ) has a turtle described in the paragraph above. Otherwise,
by symmetry, we may assume that zo € v1Quy and z; € vyQug, in which case vy FPyxo U Qg
ugPor1 U Q1 and P, are the three crossed paths. [J

Lemma 4.4 Assume Hypothesis .2 and let k > 2. Then (G\V (Fy), Q\V (Py)) has no 7T -

Jump.

Proof. Suppose for a contradiction that (G\V(F), 2\V(F)) has a 7-jump. Thus there is
an index ¢ € {1,2,...,k} and a T-coterminal path P in G\V (P, U P;) with ends x € v;Qu;
and y € u;Qu;. Let j € {1,2,...,k} — {i}. Then using the paths Py, P;, P; and P we deduce

that (G, <) has either three crossed paths or a gridlet, in either case a contradiction. [J
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Lemma 4.5 Assume Hypothesis 4.2 and let k > 2. Let v € V(Py) be such that there is no
(M U Py)-path in G\v from vPyvy to vPyug UV (PL U Py U -+ U Py_q) U vpQuy — {vk, ug }
and none from vPyug to V(P U Py U - --U Py) UuiQuy — {uy,v1}. Then (G\v, Q\v) has no
T -jump.

Proof. The hypotheses of the lemma imply that every 7-jump in (G\v, Q\v) is disjoint

from Fy. Thus the lemma follows from Lemma 4.4. O

Lemma 4.6 Assume Hypothesis 4.2, let k > 3, and let v € V(Py) be such that no vertex in
V(Py) —{v} is exposed. Leti € {0,1,...,k} be such that (G\v,Q\v) has a T -cross (Q1,Q2)
in region i. Then i € {0,k} and v is not exposed. Furthermore, assume that i =0, and that
there exists an (MU Py)-path Q with one end v and the other end in Py Uv;Quy — {ug}, and
that voPyv is disjoint from Q1 U Q. Then for some j € {1,2} there exist p € V(Q; NugFyv)
and g € V(Q; N Q) such that pPyv and qQu are internally disjoint from Q1 U Q.

Proof. If i ¢ {0, k}, then the 7T-cross is disjoint from P, by the choice of v, and hence the
T-cross and Py give rise to three crossed paths. To complete the proof of the first assertion
we may assume that ¢ = 0 and that v is exposed. Subject to these assumptions we choose
(1 and ()5 so that Q1 U Qo U Py is minimal. Since v is exposed there exists a 7 -coterminal
path @ from v to y € Z N V(Q) disjoint from Py U P, U By\v. Let Q" = Q" U vPyuvy. If
Q"'N(Q1UQ2) = 0 then (G, Q) has a separated doublecross, where one pair of crossed paths is
obtained from the 7 -cross, the other pair is P, and Q)”, and the fifth path is a subpath of P;.
Thus we may assume that there exists z € V(Q”) NV (Q);) for some j € {1,2} and that z is
chosen so that £Q)"y is internally disjoint from Q1 UQy. For r = 1,2 let z,. € v1Quy —{v1,u1}
be an end of @), such that Q3_, has one end in z,Quvy and another in vyQz,. If x € V(Q'),
then @); is disjoint from P, because v is the only exposed vertex and v ¢ V(Q1) U V(Q2).
Thus z;Qjx U 2Q'y is a T-jump disjoint from Fy, contrary to Lemma 4.4. It follows that
x € V(vgPyv), and @’ is disjoint from Q1 U Q.

Let o' € V(Fy) N (V(Q1) UV(Q2)) be chosen so that x’'Pyuy is internally disjoint from
Q1UQ2. Without loss of generality, we assume that ' € V(Q1). Define P = vy Pox’ Ux' Q1 2.
Let 2" € vPyuo N (V(P)) UV (Q2) U{up}) be chosen so that vFPyx” is internally disjoint from
PiuQ,. If 2" ¢ V(P}) then the path Q' UvPyuy, if " = g, or the path Q' UvFPyx” Uz"Qq2s,
if 2”7 € V(Q2) is a T-jump, disjoint from P, contradicting Lemma 4.4. (See Figure 5(a).)
If " € V(P;) then 2" Pyv U Q" and Q1\(V (Fy) — {2'}) are paths with one end in V(FP)) and
another in V(Q), contradicting Lemma 4.3, after we replace Py by P} and P; by Qs in M.
(See Figure 5(b).) This proves the first assertion of the lemma.

To prove the second statement of the lemma we assume that ¢ = 0 and that @ is a path
from v to v' € v;Quy — {up}, disjoint from M U Py\v, except that P, N () may be a path
with one end v’. Let the ends of @, Q2 be labeled as in the definition of 7-cross. If P,
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Figure 5: Configurations considered in the proof of the first assertion of Lemma 4.6.

is disjoint from Q; U Qs, then (G, ) has three crossed paths (if (o, ug, 1) is clockwise) or
a gridlet with paths Q1, Qa, Py, Py (if (21, ug, x2) or (yi,ug,y2) is clockwise), or a separated
doublecross with paths Q1, Q2, Py, Ps, Py (if (v1, ug, y1) or (x2, ug, u1) is clockwise). Thus we
may assume that P, intersects Q1 U Q3. (Please note that vgFPyv is disjoint from ¢ U @
by hypothesis.) Similarly we may assume that @ intersects Q1 U @2, for otherwise we apply
the previous argument with Py replaced by Q UvFPyvy. Let p € V(Q1 U Q2) N ugFPyv and
q € V(Q1UQy) NV (Q) be chosen to minimize pPyv and ¢Qu. If p and ¢ belong to different
paths Q1, Qo, then (G, Q) has a turtle with legs 1, Q2, neck Py, and body pPyvgUgQu. Thus
p and ¢ belong to the same ); and the lemma holds. [

In the proof of Lemma 4.8 we will be applying Lemma 3.2. To guarantee that the
conditions of Lemma 3.2 are satisfied, we will need a result from [5]. We need to precede the
statement of this result by a few definitions.

Let M be a subgraph of a graph G, such that no block of M is a cycle. Let P be a
segment of M of length at least two, and let () be a path in G with ends z,y € V(P) and
otherwise disjoint from M. Let M’ be obtained from M by replacing the path xPy by Q;
then we say that M’ was obtained from M by rerouting P along (), or simply that M’ was
obtained from M by rerouting. Please note that P is required to have length at least two,
and hence this relation is not symmetric. We say that the rerouting is proper if all the
attachments of the M-bridge that contains () belong to P. The following is proved in [5,

Lemma 2.1].

Lemma 4.7 Let G be a graph, and let M be a subgraph of G such that no block of M 1is
a cycle. Then there exists a subgraph M’ of G obtained from M by a sequence of proper
reroutings such that if an M’'-bridge B of G is unstable, say all its attachments belong to
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a segment P of M’', then there exist vertices x,y € V(P) such that some component of
G\{z,y} includes a vertex of B and is disjoint from M'\V(P).

Lemma 4.8 Assume Hypothesis 4.2, and let k > 4. If every leap of length k—1 has at most
one exposed vertex, (G,€) is 4-connected and (G\v,Q\v) is rurally 4-connected for every
v e V(R), then (G,Q) is nearly rural.

Proof. Since (G, ) has no separated doublecross it follows that it does not have a 7-cross
both in region 0 and region k. Thus we may assume that it has no 7-cross in region k.
Similarly, it follows that it does not have a 7-tunnel under both P, and P, or a 7-cross in
region 0 and a 7-tunnel under P;. Thus we may also assume that (G, 2) has no 7-tunnel
under Py. If some leap of length k in (G, €2) has an exposed vertex, then we may assume
that v is an exposed vertex. Otherwise, let the leap (P, Py, ..., P;) and v € V(Fy) be chosen
such that either v = ug or there exists an (M U FPp)-path with one end v and the other end
in P UvQuq — {up}, and, subject to that, vPyvy is as short as possible.

By Lemma 4.7 we may assume, by properly rerouting M if necessary, that every M-bridge
of G\v is stable. Since the reroutings are proper the new paths P; will still be disjoint from
Py, and the property that defines v will continue to hold. Similarly, the facts that there is no
7 -cross in region k and no 7-tunnel under P, remain unaffected. We claim that (G'\v, Q\v)
is rural.

We apply Lemma 3.2 to the society (G\v,Q\v) and orderly transaction 7. We may
assume that (G\v, Q\v) is not rural, and hence by Lemma 3.2 the society (G\v,2\v) has
a T-jump, a 7-cross or a 7-tunnel. By the choice of v there exists a path @} from v to
v € v Quy, — {vg, ug} such that @ does not intersect P, U Py\v and intersects at most one of
Py, Ps, ..., P,_1. Furthermore, if it intersects P; for some i € {1,2,...,k — 1} then P,NQ is
a path with one end a common end of both. (If v = 4 then we can choose ) to be a one
vertex path.)

We claim that v satisfies the hypotheses of Lemma 4.5. To prove this claim suppose for
a contradiction that P is an (M U Py)-path violating that hypothesis. Suppose first that P
and @ are disjoint. Then P joins different components of Py\v by Lemma 4.3. But then
changing P, to the unique path in Fy U P that does not use v either produces a leap with at
least two exposed vertices, or contradicts the minimality of vFPyvg. Thus P and () intersect.
Since no leap of length k£ has two or more exposed vertices, it follows that v is not exposed.
Thus P has one end in uygFyv by the minimality of vFPyvy, and the other end in P, U u,Quvy,
because v is not exposed. But then P U @ includes a 7-jump disjoint from F,, contrary
to Lemma 4.4. This proves our claim that v satisfies the hypotheses of Lemma 4.5. We
conclude that (G\v, 2\v) has no 7-jump.

Assume now that (G\v,Q\v) has a T-cross (@Q1,@2) in region i for some integer i €
{0,1,...,k}. By the first part of Lemma 4.6 and the fact that there is no 7-cross in region
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k it follows that ¢ = 0 and v is not exposed. We have v # g, for otherwise V (FPy) N (V(Q1)U
V(Q2)) = 0 and either Q1, Q2, Py are three crossed paths, or Q1, Q2, Py, Ps, P, is a separated
double cross in (G, ). Since v is not exposed we deduce that () satisfies the requirements of
Lemma 4.6. By the first part of Lemma 4.6 and the assumption made earlier it follows that
1 =0 and v is not exposed. But the existence of () and the second statement of Lemma 4.6
imply that some leap of length k has at least two exposed vertices, a contradiction. (To see
that let j,p, ¢ be as in Lemma 4.6. Replace P, by (3_; and replace Fy by a suitable subpath
of Q; UpPyvy U qQu.)

We may therefore assume that (G\v, 2\v) has a 7-tunnel (Qy, @1, Q2) under P; for some
i€{1,2,...,k}. Then the leap L' = (Fy, Py,..., P;_1, Piy1,..., P;) of length k — 1 > 3 has
a 7'-cross, where 7" is the corresponding orderly society, and the result follows in the same

way as above. []

Lemma 4.9 Assume Hypothesis 4.2 and let k > 3. If there exist at least two exposed
vertices, then there exists a cycle C' and three disjoint (M U C)-paths Ry, R, R3 such that
R; has ends x; € V(C) and y; € V(M), C\{z1, 22,23} is disjoint from M, y; = ug, Y2 = vy
and ys € Z.

Proof. Let z; be the closest exposed vertex to ug on Fy, and let x5 be the closest exposed
vertex to vy. Let Ry = x1 Pyug and let Ry = w9 Pyvg. For i = 1,2 let S; be an (M U P,)-path
with one end x; and the other end in Z. By Lemma 4.3 S; and S; intersect, and so we may
assume that S; N Ss is a path R3 containing an end of both S; and Ss, say y3. Let x3 be
the other end of R3. Then Py U .S; U.S; includes a unique cycle C. The cycle C and paths

R1, Ry, Rs3 are as desired for the lemma. [

If the cycle C' in Lemma 4.9 can be chosen to have at least four vertices, then we say
that the leap (P, Py, ..., Py) is diverse.

Lemma 4.10 Assume Hypothesis 4.2, let k > 4, and let there be no diverse leap of length
k. If C is as in Lemma 4.9 and (G\E(C), ) is rurally 4-connected, then (G\E(C),Q) is

rural.

Proof. Since the leap (P, Py,..., Py) is not diverse, it follows that C' is a triangle. Let
Ry, Ry, R3 and their ends be numbered as in Lemma 4.9. We may assume that Py = R; U
Ry 4+ x119. Since there is no diverse leap, Lemma 4.3 implies that there is no path in
G\E(C)\V(P) from x5 to vQuyg, and none in G\E(C)\V(P;) from x; to u1Qu;. It also
implies that no vertex on Py is exposed in G\x1x3\z273.

As in Lemma 4.8, we can apply Lemma 4.7 and assume, by properly rerouting M if neces-
sary, that the conditions of Lemma 3.2 are satisfied. We assume that the society (G\E(C), )
has a 7-jump, a 7 -cross, or a 7-tunnel, as otherwise by Lemma 3.2 (G\E(C),2) is rural.
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By the observation at the end of the previous paragraph this 7-jump, 7-cross, or 7-tunnel
cannot use both x; and x9; say it does not use x5. But that contradicts Lemma 4.5 or the
first part of Lemma 4.6, applied to v = x5 and the graph G\x;x3, in case of a 7-jump or a
T -cross.

Thus we may assume that (G\FE(C)\x2, Q\x2) has a 7-tunnel (Qy, @1, Q2) under P; for
some ¢ € {1,2,...,k}. But then the leap L' = (Fy, Py,...,P;_1,Piy1,..., ) of length
k —1> 3 has a T'-cross (@}, Q5), where 7" is the corresponding orderly transaction, @] is
obtained from P; by rerouting along )y and @), is the union of @)y U Q)2 with the subpath
of P, joining the ends of ); and ()3. By the first half of Lemma 4.6 applied to the graph
G\zyx3, the leap L', v := x5 and the 7T'-cross (@}, Q)) we may assume that ¢ = 1 and
that y3 € v9Qus — {up}. By the second half of Lemma 4.6 applied to the same entities and
Q = R3 + w375 there exist j € {1,2}, p € V(Q; N Ry) and ¢ € V(Q) N Q) such that pFyz,
and gQz, are internally disjoint from Q] UQy5. If j = 1, then p, ¢ belong to the interior of @,
and the leap (P, P, ..., Py) is diverse, as a subpath of @)y joins a vertex of Ry to a vertex
of @ in G\zyx3. If j = 2 then we obtain a diverse leap from (Fy, Py, ..., Py) by replacing P,
by @) and replacing Py by a suitable subpath of @ UwvgFPyp U Q5. O

Lemma 4.11 Assume Hypothesis 4.2, let k > 3, let (G, <) be 4-connected, let C, Ry, Ra, R3
be as in Lemma 4.9, and assume that C' is not a triangle. Then there exist four disjoint
(M U C)-paths, each with one end in V(C) and the other end respectively in the sets {ug},
{w}, Z and V(P U Py).

Proof. By an application of the proof of the max-flow min-cut theorem there exist four
disjoint (M UC')-paths, each with one end in V(C') and the other end respectively in the sets
{uo}, {vo}, Z and V(M). By Lemma 4.3 the fourth path does not end in V(M) — V(P,) —
V(Py). The result follows. [J

Lemma 4.12 Assume Hypothesis 4.2, let k > 3, let C, Ry, Rs, R3 be as in Lemma 4.9, let
D :=MUCUR;URyURs, and let Ry be a D-path with ends x4 € V(C) — {x1, 22, 23}
and ys € V(Py). Then x1, x5, x3,24 occur on C in the order listed. Furthermore, if R is a
D-path with ends © € V(C) — {x1, 22,23} and y € V(M), then 1, xs, 3,2 occur on C in
the order listed and y € V (Py).

Proof. The vertices x1, 9, x3, x4 occur on C' in the order listed by Lemma 4.3. Now let R
be as stated. By Lemma 4.3 we have y € V(P; U FPy), and so by the first part of the lemma
we may assume that y € V(P;). By the symmetric statement to the first half of the lemma
it follows that x1, s, x, x3 occur on C' in the order listed. We may assume that Py is the
unique path from wuy to vy in Ry U Ry U C\z3. Then Ry U RU C\V(F) includes a 7-jump

disjoint from F,, contrary to Lemma 4.4. []
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Figure 6: Hypothesis 4.13.

We need to further upgrade the assumptions of Hypothesis 4.2, as follows.

Hypothesis 4.13 Assume Hypothesis 4.2. Let C be a cycle with distinct vertices xy, x9, x3
such that C\{xy, x5, x3} is disjoint from M. Let R;, Ry, Rs be pairwise disjoint (M U C)-
paths such that R; has ends z; and y;, where y; = ug, y2 = vg, and y3 € Z. By a ray we mean
an (M UC)-path from C to M, disjoint from Ry U Ry U Rs. We say that a vertex v € V(P)
is illuminated if there is a ray with end v. Let x4,25 € V(P;) be illuminated vertices such
that either x4 = x5, or uy, x4, x5, v; occur on P; in the order listed, and x4 Py x5 includes all
illuminated vertices. Let R4 := uyPiz4 and Rs := vy Pizs, and let y4 := uy and y5 := v;.
Let Sy and S5 be rays with ends x4 and x5, respectively, and let Ay := V(M) — V(P;) and
By :=V(CUS;US5UxyPizs5). (See Figure 6.)

Lemma 4.14 Assume Hypothesis 4.13, let k > 3, and let (G,Q) be 6-connected. Then

x4 # x5, and the path x4 Pixs has at least one internal vertex.

Proof. If x4 = 5 or x4 Pyx5 has no internal vertex, then by Lemma 4.12 the set {z1, o, ..., x5}
is a cutset separating C' from M\V (Py), contrary to the 6-connectivity of (G,€2). Note that
V(C) —{z1,29,...,25} is non-empty as it includes an end of a ray. [J

Assume Hypothesis 4.13. By Lemma 4.14 the paths Ry, Rs, ..., Rs are disjoint paths

from Ay to By. The following lemma follows by a standard “augmenting path” argument.

Lemma 4.15 Assume Hypothesis 4.13, and let k > 2. If there is no separation (A, B) of

order at most five with Ay C A and By C B, then there exist an integer n and internally
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disjoint paths Q1,Qo, . ..,Qn 1 G, where Q; has distinct ends a; and b; such that

(i) a1 € Ao —{y1,¥2,...,4s} and b, € By — {1, 72,..., 25},

(i) foralli=1,2,...,n—1, a;41,b; € V(Ry) for somet € {1,2,...,5}, and y;, a;11, b;, x4
are pairwise distinct and occur on Ry in the order listed,

(ili) if a;,b; € V(Ry) for somet € {1,2,...,5} andi,j € {1,2,...,5} withi > j+1, then
either a; = bj, or y;, bj, a;, x¢ occur on Ry in the order listed, and

(iv) fori=1,2,...,n, if a vertez of Q; belongs to AgU ByUV (R URyU---U Ry3), then
it 1s an end of Q);.

The sequence of paths (Q1, @2, ...,Q,) as in Lemma 4.15 will be called an augmenting

sequence.

Lemma 4.16 Assume Hypothesis 4.13, and let k > 3. Then there is no augmenting sequence
(Q1,Qs,...,Qy), where Q is disjoint from P.

Proof. Suppose for a contradiction that there is an augmenting sequence (@1, Qa, ..., Qn),
where () is disjoint from P,, and let us assume that the leap (P, Py, . .., Py), cycle C, paths
Ry, Rs, R3, 5S4, S5 and augmenting sequence (Q1,Qs,...,Q,) are chosen with n minimum.
Let the ends of the paths @); be labeled as in Lemma 4.15. We may assume that Py is the

unique path from ug to vy in Ry U Ry U C'\z3. We proceed in a series of claims.
(1)  The vertex b, belongs to the interior of 4P xs5.

To prove (1) suppose for a contradiction that b, € V(C U S, U S;5). By Lemma 4.12, the
choice of x4, 5 and the fact that a, # x4, x5 by Lemma 4.15(ii) we deduce that a, € V(R;)
for some ¢ € {1,2,3}. Then we can use @, to modify C to include a,R;x; (and modify
Ry, Rs, R3 accordingly), in which case (Q1,Qs,...,Q,_1) is an augmentation contradicting

the choice of n. This proves (1).
(2) a;,b; € V(R;) fornoi € {1,2,...,n} and no j € {1,2,...,5}.

To prove (2) suppose to the contrary that a;,b; € V(R;). Then 1 < i < n and by
rerouting R; along (); we obtain an augmentation (Q1,Q2,...,Qi—2,Qi—1 U bi_1R;a;41 U
Qir1,Qito, ..., Qn), contrary to the minimality of n. This proves (2).

(3)  a;,b; € V(RiURyURy) fornoi € {1,2,...,n}.
Using (2) the proof of (3) is analogous to the argument at the end of the proof of Claim (1).
(4)  a;,b; € V(RyURs) fornoi € {1,2,...,n}.

By (2) one of a;, b; belongs to R, and the other to R5. We can reroute P; along @);, and then

(@Q1,Q2,-..,Qi_1) becomes an augmentation, contrary to the minimality of n.
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(5) Fori=1,2,...,n—1, the graph Q; U Ry U Ry U R3 includes no 7T -jump.
This claim follows from (3), Lemma 4.3 and Lemma 4.4 applied to P.
(6) aq g vlﬂul.

To prove (6) suppose for a contradiction that a; € v1Qu;. Since a; # y;, we may assume
from the symmetry that a; € v1Qy; —{y1}. Then by € V(P URy) by (5). But if b € V(R;),
where ¢ = 1 or ¢ = 5, then by rerouting R; along (); we obtain an augmenting sequence
(Q2 Uz Rias,Q3,Qy, ..., Qy), contrary to the choice of n. Thus b; € u; Pizs. By replacing
P, by the path Q1 Uu; P1b; and considering the paths R3 and S5U R5 we obtain contradiction
to Lemma 4.3. This proves (6).

(7) a1 & wpQuy.

Similarly as in the proof of (6), if a; € uiQuy, then by € V(Ry) by (5), and we reroute

R, along ) to obtain a contradiction to the minimality of n. This proves (7).
(8) a) € V(P k)

To prove (8) we may assume by (6) and (7) that a; € Z. Then by € V(R3 U Py) by (5).
If by € V(Rj3), then we reroute Rj along @)y as before. Thus b; € V(P;). It follows from (5)
and the hypothesis V(P,) NV (Q1) = 0 that a; € uQus — {uy, us} or a; € v2Qv1 — {vy, v2},
and so from the symmetry we may assume the latter.

Let us assume for a moment that y3 € a;Qv,. We reroute P; along ()1 Ub; Pyv;. The union
of R3, Ry and a path in C' between x5 and z3, avoiding x1, x4, x5, will play the role of F,
after rerouting. If b; € x4 Pyv; — {x4}, then Ry UC U S4U Ry includes two disjoint paths that
contradict Lemma 4.3 applied to the new frame and new path Fy. Therefore b, € V(Ry),
and hence (u; Pias U@, Qs, ..., Q,) is an augmenting sequence after the rerouting, contrary
to the choice of n.

It follows that y3 & a;Quy. If by € V(R5), we replace Py by Q1 U wuy Pyby; then (v Prag U
Q2,Qs,...,Q,) is an augmenting sequence that contradicts the choice of n. So it follows
that b, € uy Pixs. But now (G, ) has a gridlet using the paths Py, Py, Q1 U uy Piby and a
subpath of Ry U S5 U Ry U C\V(FP,). This proves (8).

(9) n>1.

To prove (9) suppose for a contradiction that n = 1. Thus b; belongs to the interior of x4 Px5
by (1), and a; € V(Pg) by (8). But then @, is a 7-jump, contrary to (5).

(10) b, € V(Rg)
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To prove (10) we first notice that b; € V(Ry U R3) by (5), (9) and (1). Suppose for a
contradiction that b; € V(Rs). Then ay € V(Ry), but by ¢ V(R U Ry U R3) by (3) and
by & V(Py) by (5), a contradiction. This proves (10).

Let Pi5 and P34 be two disjoint subpaths of C, where the first has ends x1, x5, and the
second has ends z3, z4. By (8) and (10) the path Q1 Ub; Rgxs U P3,U Sy is a 7-jump disjoint
from R; U P U Ry, contrary to Lemma 4.4. [

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Let (G, ) be a 6-connected society with a leap of length five. Thus
we may assume that Hypothesis 4.2 holds for £ = 5. By Lemma 4.8 either (G, 2) is nearly
rural, in which case the theorem holds, or there exists a leap of length at least four with at
least two exposed vertices. Thus we may assume that there exists a leap of length four with
at least two exposed vertices. Let C' be a cycle as in Lemma 4.9. If there is no diverse leap,
then C' is a triangle, (G\E(C), Q) is rurally 4-connected and hence rural by Lemma 4.10,
and the theorem holds. Thus we may assume that the cycle C' is not a triangle, and so by
Lemma 4.11 we may assume that Hypothesis 4.13 for k = 4 holds. By Lemma 4.14 and the
6-connectivity of G there is no separation (A, B) as described in Lemma 4.15, and hence by
that lemma there exists an augmenting sequence (Q1, @2, ..., Q,). By Lemma 4.16 the path
(21 intersects P, and hence ; is disjoint from P3, contrary to Lemma 4.16 applied to the
leap (Py, Py, Ps, Py) of length three and an augmenting sequence (@}, Qs, ..., Q,), where @}

is the union of @)1 and ay Pyus or a1 Pyvs. [

5 Societies of bounded depth

Let (G, ) be a society. A linear decomposition of (G, ) is a sequence (ty,...,t,) of all the
elements of V(Q2), where (t1,...,t,) is clockwise, together with a family (X; : 1 <i < n) of
subsets of V(G), with the following properties:
() UGIX] 1 <i<n) =G,
(ii) for 1 <i<mn, t; € X;, and
(iii) for 1 <i < <" <n, X;N Xy C Xy

The depth of such a linear decomposition is
max(|X; N Xy|: 1 <i<i <n),

and the depth of (G, Q) is the minimum depth of a linear decomposition of (G,€2). Theo-
rems (6.1), (7.1) and (8.1) of [11] imply the following.

Theorem 5.1 There exists an integer d such that every 4-connected society (G, ) either
has a separated doublecross, three crossed paths or a leap of length five, or some planar
truncation of (G,) has depth at most d.
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In light of Theorems 4.1 and 5.1, in the remainder of the paper we concentrate on societies
of bounded depth. We need a few definitions. Let (G, () be a society, let uy, us, ..., uy be
clockwise in §2, and let P, P, ..., Py be disjoint bumps in G such that for i = 1,2,...,2¢t
the path P»;_1 has ends uy;_3 and wug;_1, and the path P; has ends u4;_o and uy;. In those
circumstances we say that (G, <) has t disjoint consecutive crosses.

Now let wuy, vy, wq, ug, Vg, Wa, ..., us, vy, wy be clockwise in Q, let x € V(G) — {uy, v,
W, U, U we b, for @ = 1,2, t let P; be a path in G\x with ends w; and w; and
otherwise disjoint from V(Q2), let @); be a path with ends z and v; and otherwise disjoint
from V' (Q), and assume that the paths P; and @); are pairwise disjoint, except that the paths
@; meet at x. Let W be the union of all the paths P; and @);. We say that W is a windmill
with t vanes, and that the graph P; U Q); is a vane of the windmill.

Finally, let uy, ug, . .., u; and vy, ve, . . ., v; be vertices of V' (€2) such that for all z; € {u;, v;}
the sequence x1, o, . . ., x; is clockwise in Q. Let 21, 20 € V(G)—{uq, vq,. .., us, v, } be distinct,
fori=1,2,...,t let P; be a path in G\z, with ends z; and u; and otherwise disjoint from

V(2), and let @; be a path in G\z; with ends z5 and v; and otherwise disjoint from V(2).
Assume that the paths P, and (); are disjoint, except that the P; share z;, the @); share 2,
and P; and @); are allowed to intersect. Let I’ be the union of all the paths P, and @);. Then
we say that F'is a fan with t blades, and we say that P;U(Q); is a blade of the fan. The vertices

z1 and 29 will be called the hubs of the fan. In Section 8 we prove the following theorem.

Theorem 5.2 For every two integers d and t there exists an integer k such that every 6-
connected k-cosmopolitan society (G,<)) of depth at most d contains one of the following:
(1) t disjoint consecutive crosses, or
(2) a windmill with t vanes, or
(3) a fan with t blades.

Unfortunately, windmills and fans are nearly rural, and so for our application we need to
improve Theorem 5.2. We need more definitions.

Let x, u;, v;, w;, P;, Q; be as in the definition of a windmill W with ¢ vanes, let a,b,c,d €
V(G) be such that uq, vy, wy, ..., u, v, wy, a, b, ¢, d is clockwise in €2, and let (P, Q) be a cross
disjoint from W whose paths have ends in {a,b,c,d}. In those circumstances we say that
WU PUQ is a windmill with t vanes and a cross.

Now let u;, v;, P;, Q; be as in the definition of a fan F with ¢ blades, and let a, b, ¢,d € V(Q)
be such that all z; € {u;, v;} the sequence x1, s, ..., 2, a,b, ¢, d is clockwise in Q. Let (P, Q)
be a cross disjoint from F' whose paths have ends in {a,b,¢,d}. In those circumstances we
say that W U PUQ is a fan with t blades and a cross.

Let z1, 29, u;, v;, P;, Q; be as in the definition of a fan [’ with ¢ blades, and let aq, by, ¢1, as,
ba,co € V(G) be such that all z; € {u;,v;} the sequence 1,9, ..., 24, a1,b1,¢1,a9,ba, ¢y is

clockwise in 2, except that we permit ¢; = ag. For i = 1,2 let L; be a path in G\V (F') with
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ends a; and ¢; and otherwise disjoint from V' (€2), and let S; be a path with ends z; and b;
and otherwise disjoint from V' (F) U V(Q). If the paths Lq, Lo, S1,S2 are pairwise disjoint,
except possibly for L; intersecting Lo at ¢; = ao, then we say that F'U L; U Ly U S; U Sy is
a fan with t blades and two jumps.

Now let u;, v;, P;, Q; be as in the definition of a fan F’ with t+1 blades, and let a,b € V()
be such that all x; € {u;, v;} the sequence x1, s, ..., 1z, a, 1441, b is clockwise in Q. Let P be
a path in G\V(F') with ends a and b, and otherwise disjoint from V(F'). We say that F'U P

is a fan with t blades and a jump. In Section 9 we improve Theorem 5.2 as follows.

Theorem 5.3 For every two integers d and t there exists an integer k such that every 6-
connected k-cosmopolitan society (G, Q) of depth at most d is either nearly rural, or contains
one of the following:
(1) t disjoint consecutive crosses, or

2
3
4
5

a windmill with t vanes and a cross, or
a fan with t blades and a cross, or

(2)
(3)
(4) a fan with t blades and a jump, or
(5) a fan with t blades and two jumps.
For t = 4 each of the above outcomes gives a turtle, and hence we have the following

immediate corollary.

Corollary 5.4 For every integer d there exists an integer k such that every 6-connected

k-cosmopolitan society (G,€Y) of depth at most d is either nearly rural, or has a turtle.

The next four sections are devoted to proofs of Theorems 5.2 and 5.3. The proof of
Theorem 5.2 will be completed in Section 8 and the proof of Theorem 5.3 will be completed
in Section 9. At that time we will be able to deduce Theorem 1.8.

6 Crosses and goose bumps

In this section we prove that a society (G,€2) either satisfies Theorem 5.2, or it has many
disjoint bumps. If X is a set and 2 is a cyclic permutation, we define Q\ X to be Q|(V(Q2) —
X). Let Py, Ps,..., Py be a set of pairwise disjoint bumps in (G, 2), where P; has ends u;
and v; and uy, vy, U, Vg, ..., Uk, Vg is clockwise in . In those circumstances we say that
Py, P, ..., P is a goose bump in (G,Q) of strength k.

Lemma 6.1 Let b,d and t be positive integers, and let (G,€)) be a society of depth at most
d. Then either (G,Q2) has a goose bump of strength b, or there is a set X C V(G) of size at
most (b — 1)d such that the society (G\X, Q\X) has no bump.
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Proof. Let (t1,ts,...,t,) and (X1, X, ..., X,,) be a linear decomposition of (G, Q) of depth
at most d, and for i = 1,2,... ., n—11let Y; = X; N X;;. If P is a bump in (G, 2), then the

axioms of a linear decomposition imply that
Ip:={ie{l,2,....,n—1}:Y;NV(P) # 0}

is a nonempty subinterval of {1,2,...,n — 1}. It follows that either there exist bumps
Py, P,,..., B such that Ip, Ip,,...,Ip,
{1,2,...,n — 1} of size at most b — 1 such that I N Ip # ) for every bump P. In the former
case Py, Ps,..., P, is a desired goose bump, and in the latter case the set X := [

desired. OJ

are pairwise disjoint, or there exists a set I C

er Yi1s as

The proof of the following lemma is similar and is omitted.

Lemma 6.2 Let t and d be positive integers, and let (G,$2) be a society of depth at most d.
Then either (G,€)) has t disjoint consecutive crosses, or there is a set X C V(G) of size at
most (t — 1)d such that the society (G\X,Q\X) is cross-free.

Lemma 6.3 Let d,b,t be positive integers, let k > (b — 1)d + (t — 1)((b_21)d) + 1 and let
(G,Q) be a 3-connected society of depth at most d such that at least k vertices in V() have
at least two neighbors in V(G). Then (G,<) has either a fan with t blades, or a goose bump
of strength b.

Proof. By Lemma 6.1 we may assume that there exists a set X C V(G) of size at most

(b — 1)d such that (G\X,Q\X) has no bump. There are at least (¢t — 1)((6_21)d) + 1 vertices
in V() — X with at least two neighbors in V(G). Let v be one such vertex, and let H
be the component of G\X containing v. Since (G\X,Q\X) has no bumps it follows that
V(H)NV(Q2) = {v}. By the fact that v has at least two neighbors in G (if V(H) = {v}) or
the 3-connectivity of (G, Q) (if V(H) # {v}) it follows that H has at least two neighbors in
X. Thus there exist distinct vertices z1, zo such that for at least ¢ vertices of v € V(Q) — X
the component of G\ X containing v has z; and 2z, as neighbors. It follows that (G, () has

a fan with ¢ blades, as desired. [

7 Intrusions, invasions and wars

Let © be a cyclic permutation. A base in €2 is a pair (X,Y") of subsets of V() such that
IXNY| =2 XUY =V (Q) and for distinct elements x1, zo € X and y;,y> € Y the sequence
(x1,y1, T2, y2) is not clockwise. Now let (G,€2) be a society. A separation (A, B) of G is
called an intrusion in (G, §2) if there exists a base (X,Y) in © such that X C A, Y C B and
there exist disjoint paths (P,),cang, each with one end in X, the other end in Y and with
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v € V(P,). The intrusion (A, B) is minimal if there is no intrusion (A’, B’) of order |A N B|
with base (X, Y") such that A’ is a proper subset of A. The paths P, will be called longitudes
for the intrusion (A, B). We say that (A, B) is based at (X,Y’), and that (X,Y) is a base
for (A, B). An intrusion (A, B) in (G, ) is an invasion if [ AN BNV (Q)| = 2.

Lemma 7.1 Let d be a positive integer, and let (G, Q) be a society of depth at most d — 1.
Then for every base (X,Y") in Q there exists an intrusion of order at most 2d based at (X,Y).

Proof. Let (t1,ts,...,t,) and (X1, X5, ..., X,,) be a linear decomposition of (G, ) of depth
at most d — 1, and let X NY = {¢;,¢;}. Let 7,5’ € {1,2,...,n} be such that |i — 7| =
7 —Jj'| =1, and let Z := (X; N Xy) U (X; N X;) U{t;,t;}. It follows from the axioms of a
linear decomposition that |Z| < 2d and that Z separates X from Y in G. Thus there exists
a separation (A, B) of G of order at most 2d with X C A and Y C B. Any such separation
(A, B) with |A N B| minimum is as desired by Menger’s theorem. [J

An intrusion (A, B) in a society (G, ) is t-separating if (G, Q2) has goose bumps Py, Py, ..., P,
and @Q1,Q2,...,Q; such that V(P) CA—Band V(Q;) CB—Aforalli=1,2,... t.

Lemma 7.2 Let d, s,t be positive integers, and let (G, Q) be a society of depth at most d—1
with a goose bump of strength t(s + 2d). Then there exist s-separating minimal intrusions
(A1, B1), (A2, B), ..., (A, By) of order at most 2d such that A; N A; C B; N B; for all pairs
of distinct indices i,5 =1,2,...,t.

Proof. Let P be the set of paths comprising a goose bump of strength #(s+2d). Thus there
exist bases (X1,Y7), (Xs,Y2), ... (X}, Y;) such that the sets X; are pairwise disjoint and for
eacht =1,2,...,texactly s+2d of the paths in P have both ends in X;. By Lemma 7.1 there
exists, for each i = 1,2,...,¢, an intrusion (A;, B;) of order at most 2d based at (X;,Y;).
Let us choose, for each ¢ = 1,2, ..., ¢, an intrusion (A;, B;) of order at most 2d based at

(X;,Y;) in such a way that
t

Z |A;] is minimum. (1)
i=1
We claim that A; N A; € B; N B;. To prove the claim suppose to the contrary that say
IEAlﬁAQ—BlﬁBQ. Let

Al = AN By,
B} = Ay U By,
A, = Ay N By,
By = A; U Bs.

Then (A}, B}) and (A), B}) are separations of G with X; C A}, Y] C B}, X» C A} and
Y, C B). We have

| A1 N By + |Aa N By| = |A] N By + |Ay N By
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Furthermore, since each longitude for (A, By) intersects A} N B} we deduce that |4} N Bj| >
|A1N By |, and similarly |A5NBY| > |AsNBs|. Thus the last two inequalities hold with equality,
and hence the longitudes for (A, By) are also longitudes for (A, By), and the longitudes
for (Ay, Bs) are longitudes for (A5, B}). It follows that for ¢ = 1,2 the separation (A}, B)
is an intrusion in (G, €2) based at (X;,Y;) of order |A; N B;|. Since A1 N Ay — (B N By) =
(A1 N Ay — By) U (A N Ay — Bs) we may assume that € A; — By. But then replacing
(A1, B1) by (4], B}) produces a set of intrusions that contradict (1). This proves our claim
that A; N A; C B; N B; for all distinct integers ¢,7 =1,2,...,t.

Since at most 2d of the paths in P with ends in X; can intersect A; N B;, we deduce that

each intrusion (A;, B;) is s-separating. Moreover, each (A;, B;) is clearly minimal by (1). O
We need a lemma about subsets of a set.

Lemma 7.3 Letd andt be positive integers, and let F be a family 0f2(d;1)td distinct subsets
of a set S, where each member of F has size at most d. Then there exist a set X C S of
size at most (d;rl) and a family F' C F of size at least t such that FNF' C X for every two
distinct sets F, F' € F'.

Proof. We proceed by induction on d +¢. If d =1 or t = 1, then the lemma clearly holds,
and so we may assume that d,t > 1. Let Fy € F be minimal with respect to inclusion. If
F has a subfamily F; of at least 2(%2") (t — 1)? sets disjoint from Fp, then the result follows
from the induction hypothesis applied to F; and by adding Fj to the family thus obtained.
If the family Fy = {F — Fy : F € F, FN Fy # (0} includes at least 2(2) 441 distinct sets, then
the result follows from the induction hypothesis applied to F» by adding Fy to the set thus

obtained. Thus we may assume neither of the two cases holds. Thus

d d+1
2 2

1Fl < 20 (= 1) — 1+ 2920G) =1 — 1 41 < 2(")d,

a contradiction. [

Lemma 7.4 Let d,s,t be positive integers, and let (G, <)) be a society of depth at most d—1
with a goose bump of strength 2(2d2+1)t2d(8 +2d). Then there exist a set X C V(G) of size at
most (2d2+1) and s-separating intrusions (Ay, By), (A2, Ba), ..., (A, By) in (G\X, Q\X) such
that A; N Aj = 0 for all pairs of distinct indices i,j = 1,2,...,t.

d
Proof. Let T = 204", By Lemma 7.2 there exist s-separating minimal intrusions

(A1, B1),(Ag, By), ..., (Ar, Br) of order at most 2d such that A;NA; C B; N B; for all pairs
of distinct indices 7,7 = 1,2,...,¢t. By Lemma 7.3 applied to the sets A; N B; there exist
aset X C U, (AN By) of size at most (2d;r ") and a subset of ¢ of those intrusions, say

(A1, B1),(Ag, By), ..., (A4, By), such that A, N B; N A; N B; € X for all distinct integers
i,7=1,2,...,t. It follows that (A; — X, B; — X)) are as required for (G\X,Q\X). O
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Our next objective is to prove, albeit with weaker bounds, that the conclusion of Lemma 7.4
can be strengthened to assert that the intrusions (A;, B;) therein are actually invasions.

Let (A, B) be an intrusion in a society (G,€2) based at (X,Y). A path P in G[A] is a
meridian for (A, B) if its ends are the two vertices of X NY. If P is a meridian for (A, B)
and (Ly)yeanp are longitudes for (A, B), then the graph (P U, c4qp5 Lv)\(B — A) is called
a frame for (A, B).

Lemma 7.5 Let A and s be positive integers, let s' = (s — 1)(A — 1) + 1, let (G,Q) be a
cross-free society, and let (A, B) be an s'-separating minimal intrusion in (G,) of order

at most \. Then there exists an s-separating minimal invasion (C, D) in (G,$2) of order at
most X\ with a frame F' such that V(F) —V(2) C A.

Proof. We may assume that

(1)  there is no integer X' < X\ and an ((s — 1)(N — 1) + 1)-separating minimal intrusion
(A, B') in (G, ) of order at most X' with A" a proper subset of A,

for if (A’, B') exists, and it satisfies the conclusion of the lemma, then so does (A, B). We
first show that (A, B) has a meridian. Indeed, suppose not. Let (X,Y’) be a base of (A, B)
and let X NY = {w,v}; then G[A] has no u-v path. Since (G, 2) is cross-free it follows that
G[A] has a separation (A;, As) of order zero such that both X; = X N A; and Xo = X N A,
are intervals in €. It follows that there exist Y7, Y5 such that (X3,Y;) and (X5, Ys) are bases.
Thus (A;, A2,UBU(X;NY1)) and (A2, A; UBU(X2NYs)) are minimal intrusions, and one
of them violates (1). This proves that (A, B) has a meridian.

Let M be a meridian in (A, B), let (L,)veanp be a collection of longitudes for (A, B) and
let F'= M UU,canp(Lo\(B —A)). By the same argument that justifies (1) we may assume
that

(2) there is no integer N < X and an ((s — 1)(N — 1) + 1)-separating minimal intrusion
(A, B') in (G,Q) of order at most X" with frame F' such that F'\V () is a subgraph of F.

We claim that [AN BN V(Q)| = 2. We first prove that AN BN X = {u,v}. To this
end suppose for a contradiction that w € AN BN X — {u,v}; then w divides X into two
cyclic intervals X; and X, with ends w,w and w,v, respectively. Let Y; and Y5 be the
complementary cyclic intervals so that (X;,Y;) and (X3, Y3) are bases.

For i = 1,2 let A; consist of w and all vertices a € A such that there exists a path in
G[A]\w with one end a and the other end in X; — {w}, and let A3 = A — A} — Ay, It
follows that Ay N Ay = {w}, for if P is a path in G[A]\w with one end in X; and the other
end in Xy, then (P, P,) is a cross in (G, (2), a contradiction. Thus (A;, A U A3 U B) and
(Aa, A1 U A3 U B) are minimal intrusions based on (X1,Y)) and (Xb, Y>), respectively, with
Ay, Ay C A. Thus one of them violates (2).
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Next we show that |[A N BNY| = 2, and so we suppose for a contradiction that there
exists z € ANBNY — {u,v}. We define By, By, B3, X1,Y, Xo, Y, analogously as in the
previous paragraph, but with the roles of A and B reversed. Similarly we find that one of
(AUB;UBs, By) and (AUByUB3, By) isan ((s—1)(\' —1)+1)-separating minimal intrusion
in (G, Q) of order at most A, for some X' < A, and so from the symmetry we may assume
that (AU By U Bs, Bs) has this property. Since (M, P,) is not a cross in (G, ) it follows that
M and P, intersect. Thus M U P, includes a meridian for (A U By U Bs, Bs). Finally, since
Z =ByN(AUB; UBsg) C AN B, the paths (L,)yez form longitudes for (AU By U Bs, Bs),
contrary to (2).

Thus we have shown that AN BNV () = {u,v}. Let Z be the set of all vertices z € A
such that there is no path in G[A] with one end z and the other end in X, let C = A -7
and D = BUZ. Then (C, D) is an intrusion with CND = ANB and F is a frame for (C, D)
with V/(F) — V(Q) C C. Since the order of (C, D) is at least two, it satisfies the conclusion

of the lemma. [

We are ready to deduce the main result of this section. By a war in a society (G, (2)
we mean a set ¥V of minimal invasions such that each invasion in W has a meridian, and
AN A = for every two distinct invasions (A, B), (A’, B') € W. We say that the war W
is s-separating if each invasion in W is s-separating, we say W has order at most X if each

member of W has order at most A\, and we say that W is a war of intensity |W].

Lemma 7.6 Let s, t and d be positive integers, and let b = 2(*2") (2dt)*(s(2d — 1) + 2).
Then if a cross-free society (G,€Q)) of depth at most d — 1 has a goose bump of strength b,
then it has a set X of at most (2d2+1) vertices such that the society (G\X,Q\X) has an

s-separating war of intensity t and order at most 2d.

Proof. Let s' = (2d — 1)(s — 1) + 1. By Lemma 7.4 there exist a set X C V(G) with

2d+1
2

(G\X,Q\X) of order at most 2d such that A; N A; = ) for every pair i,7 = 1,2,...,2dt of
distinct integers. By 2dt applications of Lemma 7.5 there exist, for each i = 1,2,...,2dt,

at most ( ) elements and s'-separating intrusions (Aj, By), (A, Ba), ..., (Asa, Bog) in

and s-separating minimal invasion (Cj, D;) in (G\X, 2\ X) of order at most 2d with a frame
F; such that V(F;) — V(Q2) C V(A;). Let M; be a meridian for (C;, D;), and let (X;,Y;) be
the base for (C;, D;). Since (G, ) has depth at most d there exists a set I C {1,2,...,2dt}
of size t such that the sets { X, };c; are pairwise disjoint. By symmetry we may assume that
I'={1,2,...,t}. We claim that (C4, Dy), (Cs, Ds),...,(Cy, D;) are as desired. To prove the
claim suppose for a contradiction that say x € C; N C;. Since (C;, D;) is an invasion there
exists a path in G[C;] from = to X; C Y}; therefore this path intersects C; N D;. Thus there
exists a vertex v € C;ND;NC;; let L be the longitude of F; that includes v. But L connects
v € C; to a vertex of X; CY; C D;, and hence intersects C; N D; C V(F;). Thus F; and Fj
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intersect. But V() NV (F;)—V () C ANA; =0 and V(E)NV(F;)NV(Q) C X;nX; =0,
a contradiction. Thus (Cy, Dy), (Cs, Da), ..., (Cy, D;) satisty the conclusion of the lemma. [J

8 Using wars

Lemma 8.1 Let [, t,r be positive integers such that r > (t — 1)(;) +1, let (G,Q) be a con-
nected society, and let Z C V(G) be a set of size at most | such that the society (G\Z,Q\Z)
has a war W of intensity r such that for every (A, B) € W at least two distinct members of
Z have at least one neighbor in A. Then (G,)) has a fan with t blades.

Proof. There exist distinct vertices 21,20 € Z and a subset W of W of size ¢ such that
for every (A, B) € W' both z; and z; have a neighbor in A. Furthermore, since (A, B) is a
minimal intrusion, it follows that for every vertex a € A there exists a path in G[A] from a
to V(). It follows that (G,€2) has a fan with ¢ blades, as desired. [

Let (A, B) be an invasion in a cross-free society (G, ), based at (X,Y"), and let (L,)veann
be longitudes for (A, B). Let € be a cyclic permutation in A defined as follows: for each
u €Y, if u is an end of L,, then we replace u by v, and otherwise we delete u. Then
(G[A],§Y) is a society, and we will call it the society induced by (A, B). Since (G, Q) is
cross-free the definition does not depend on the choice of longitudes for (A, B).

Assume now that (G[A], Q') is rural. A path P in G[A] is called a perimeter path in
(G[A],Y) if An B C V(P) and G[A] has a drawing in a disk with vertices of (' appearing
on the boundary of the disk in the order specified by ' and with every edge of P drawn in
the boundary of the disk.

The next lemma is easy and we omit its proof.

Lemma 8.2 Let (A, B) be an invasion with longitudes {P,}ycanp in a cross-free society
(G,Q). Then the society induced by (A, B) is cross-free.

Lemma 8.3 Let (G,€) be a 5-connected society, let Z C V(G) be such that (G\Z,Q\Z) is
cross-free, and let (A, B) be an invasion in (G\Z,Q\Z). If at most one vertex of Z has a
neighbor in A, then the society induced in (G\Z,Q20\Z) by (A, B) is rural and has a perimeter
path.

Proof. Let (G[A],€) be the society induced in (G\Z,Q\Z) by (A, B). By Lemma 8.2 it
is cross-free and by Theorem 3.1 it is rural. Thus it has a drawing in a disk A with V()
drawn on the boundary of A in the order specified by €. When A is regarded as a subset
of the plane, the unbounded face of G[A] is bounded by a walk W. Let P be a subwalk of
W containing AN B. If P is not a path, then it has a repeated vertex, say z, and G[A] has
a separation (C, D) with CND = {z} and ANBNV(Q) C C. Since (G[A], ) is cross-free,
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the latter inclusion implies that D — C' is disjoint from V(§2) or from A N B. However,
the latter is impossible, which can be seen by considering the drawing of G[A] in A. Thus
(D—-C)NV(Q) =0, and since (A, B) has longitudes we deduce that |(D—-C)NANB| < 1.
Let z € Z be such that no vertex of Z —{z} has a neighbor in A. Since (G, §2) is 4-connected,
the fact that ((D —C)N AN B)U{x, z} does not separate G implies that D — C' consists of
a unique vertex, say d, and d € AN B. Furthermore, the only neighbor of d in A is x. But
then (A — {d}, BU{x}) contradicts the minimality of (A, B). This proves that P is a path,
and it follows that it is a perimeter path for (G[A], ). O

Let (G, Q) be a society. A set 7 of bumps in (G, Q) is called a transaction in (G, Q) if
there exist elements u,v € V(§2) such that each member of 7 has one end in ufv and the

other end in V() — uQv. The first part of the next lemma is easy, and the second part is
proved in [11, Theorem (8.1)].

Lemma 8.4 Let (G, ) be a society, and let d > 1 be an integer. If (G, ) has depth d, then
it has no transaction of cardinality exceeding 2d. Conversely, if (G,€2) has no transaction of

cardinality exceeding d, then it has depth at most d.

Lemma 8.5 Let (G,2) be a society of depth d, and let X C V(G). Then the society
(G\X,Q\X) has depth at most 2d.

Proof. By Lemma 8.4 the society (G,(2) has no transaction of cardinality exceeding 2d.
Then clearly (G\X,Q\X) has no transaction of cardinality exceeding 2d, and hence has
depth at most 2d by another application of Lemma 8.4. [

We need one last lemma before we can prove Theorem 5.2. The lemma we need is
concerned with the situation when a society of bounded depth “almost” has a windmill with
t vanes, except that the paths P; are not necessarily disjoint and their ends do not necessarily
appear in the right order. We begin with a special case when the ends of the paths P; do
appear in the right order.

Lemma 8.6 Lett > 1 be an integer, and let p = d(t—1)(t' —1)+1, where t' = d(t —1)*+t.
Let (G,Q) be a society of depth d, let (uy, 21,01, U2, 22, V2, . .., Up, 2p,V,) be clockwise, let
z € V(Q), fori=1,2,...,p let P; be a bump with ends u; and v;, and let Q; be a path of
length at least one with ends z and z; disjoint from V() — {z, z;}. Assume that the paths
Qi are pairwise disjoint except for z, and that each is disjoint from every P;. Then (G,(Q)

has either a windmill with t vanes, or a fan with t blades.

Proof. By the proof of Lemma 6.1 applied to the paths P; either some t of those paths
are vertex-disjoint, in which case (G,€2) has a windmill with ¢ vanes, or there exists a set
X C V(G) of size at most (t — 1)d such that each P; uses at least one vertex of X. We may
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therefore assume the latter. For i = 1,2,..., p the path P, has a subpath P/ with one end
u;, the other end z; € X and no internal vertex in X. Thus there exist z € X and a set
I C{1,2,...,p} of size t’ such that x = z; for all i € I. Let H be the union of all P/ over
i € I. By an application of Lemma 6.1 to the graph H\x we deduce that either H\x has
a goose bump of strength ¢, in which case (G, {2) has a windmill with ¢ vanes, or H has a
set Y of size at most (t — 1)d such that H\Y \x has no bumps. In the latter case for each
i € I there is a path P in H with one end w;, the other end y; € Y U {x} and otherwise
disjoint from Y U {x}. Thus there is a vertex y € Y U{z} and a set J C I of size t such that
yi =y for every i € J. Since H\Y'\z has no bumps it follows that P/ and P share only y

for distinct 7,7 € J. Thus (G, 2) has a fan with ¢ blades, as desired. [J
Now we are ready to prove the last lemma in full generality.

Lemma 8.7 Lett > 1 be an integer, and let £ = (d+ 1)p, where p is as in Lemma 8.6. Let
(G,Q) be a society of depth d, let z € V(G), fori = 1,2,...,& let (u;, z;,v;) be clockwise,
and let (uy, 21, U, 2o, . . ., Ug, z¢) be clockwise. Let P; be a bump with ends u; and v;, and let
Qi be a path of length at least one with ends z and z; disjoint from V() — {z, z;}. Assume
that the paths Q); are pairwise disjoint except for z, and that each is disjoint from every P;.
Then (G, ) has either a windmill with t vanes, or a fan with t blades.

Proof. Let (t1,ts,...,t,) be a clockwise enumeration of V(Q2), and let (X1, Xs,..., X,) be a
corresponding linear decomposition of (G, €2) of depth d. Let us fix an integer i = 1,2,..., p,
and let / = {1 —1)(d+1)+1,(: —1)(d+1)+2,...,i(d+ 1)}. For each such i we will
construct paths P’ and ()] satisfying the hypothesis of Lemma 8.6. In the construction we
will make use of the paths P; and @, for j € I.

If (uj, zj, V5, Uigas1)41) is clockwise for some j € I, then we put P* = P; and Q] = Q;.
Otherwise, letting s be such that ¢, = u;4+1), we deduce that P; intersects X; N X, for
all j € I. Since |I] > | Xy, N X, .| it follows that there exist j < j' € I such that P; and P
intersect. Let P’ be a subpath of P; U P with ends u; and u;, and let Q] = Q).

This completes the construction. The lemma follows from Lemma 8.6. [J

Proof of Theorem 5.2. Let the integers d and t be given, let £ be as in Lemma 8.7, let
C=2(t—1)d+ (4d2+2), let 7= (t— 1)(5) + (20t —1)d+ (8d2+2)) (66 — 1)+ 1, let b be as in
Lemma 7.6 with s = 1, ¢ = 7 and d replaced by 4d+ 1, and let k£ be as in Lemma 6.3 applied
to b, t, and 4d. We will prove that k satisfies the conclusion of the theorem.

To that end let (G, €2) be a k-cosmopolitan society of depth at most d, and let (G, €2g) be
a planar truncation of (G, Q). Let S C V(). We say that S is sparse if whenever uy, uy € S
are such that there does not exist w € S such that (u;,w,uz) is clockwise, then there exist
two disjoint bumps Py, P, in (G, {2) such that w; is an end of P;. The reader should notice
that if H is one of the graphs listed as outcomes (1)-(3) of Theorem 5.2, then V(H) NV ()
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is sparse. We say that (Gg, Q) is weakly linked if for every sparse set S C V ({y) there exist
|S| disjoint paths from S to V(§2) with no internal vertex in V(Gy). Thus if the conclusion of
the theorem holds for some weakly linked truncation of (G, ), then it holds for (G,€2) as
well. Thus we may assume that (G, €)p) is a weakly linked truncation of (G, Q) with |V (Gy)]
minimum. We will prove that (G, €29) satisfies the conclusion of Theorem 5.2. Since (G, )
is weakly linked, Lemma 8.4 implies that (G, £2o) has no transaction of cardinality exceeding
2d, and hence has depth at most 2d by Lemma 8.4.

By Lemma 6.2 there exists a set Z; C V(Gy) such that |Z;| < 2(t — 1)d and the society
(Go\Z1, %\ Z,) is cross-free. By Lemma 8.5 the society (Go\Z1,$2\Z1) has depth at most
4d. By Lemma 6.3 we may assume that (Go\Z1, 2\ Z1) has a goose bump of strength b. By
Lemma 7.6 there exists a set Z, C V(G) — Z; such that |Zy| < (4d2+2) and in the society
(Go\Z,Q\Z) there exists a 1-separating war W of intensity 7 and order at most 8d + 2,
where Z = Z, U Z,. If there exist at least (t — 1)(}) + 1 invasions (A, B) € W such that at
least two distinct vertices of Z have a neighbor in A, then the theorem holds by Lemma 8.1.
We may therefore assume that this is not the case, and hence W has a subset W’ of size at
least | Z|(6€ — 1) + 1 such that for every (A, B) € W' at most one vertex of Z has a neighbor
in A.

Let (A,B) € W' and let z € Z be such that no vertex in Z — {z} has a neighbor in
A. By Lemma 8.3 the society (Go[4],€Y’) induced in (Go\Z,\Z) by (A, B) is rural and
has a perimeter path P. It follows that (A U {z}, B U {z}) is a separation of Gy. Let
AN B = {wy,wy,...,ws}, and let L; be the longitude containing w;. Let the ends of L;
be u; € A and v; € B. We may assume that (ug,uq,...,us) is clockwise. The vertices w;
divide P into paths Py, Py, ..., P, where P; has ends w;_; and w;. We claim that no P;
includes all neighbors of z. Suppose for a contradiction that P; does. Let (G,Q) be the
composition of (Gy, 2y) with a rural neighborhood (G1,,€). Let G} = Gy UG[AU {z}],
let G, = Go\(A — B) and let € consist of wsQuwy followed by ws_1,ws o, ..., w; followed
by z followed by w;_1,w;_a,...,w;. Since (G[A],§) is rural and all neighbors of z belong
to P, it follows that (G1,,€))) is a rural neighborhood and (G, ) is the composition of
(G, ) with this neighborhood. Thus (Gf, €Y}) is a planar truncation of (G, 2). We claim
that (Gy,€Y) is weakly linked. To prove that let S" C V(€))) be sparse. Since (A, B) is
a minimal intrusion there exists a set P’ of |S’| disjoint paths from S’ to V(€y) with no
internal vertex in Gy; let S be the set of their ends in V(§). Since S’ is sparse in (Gj, €2)),
it follows that S is sparse in (G, {2y). Since (Gy, o) is weakly linked there exists a set P
of |S| disjoint paths in G from S to V(2) with no internal vertex in Gy. By taking unions
of members of P and P’ we obtain a set of paths proving that (Gy, €))) is weakly linked, as
desired. Since W is 1-separating this contradicts the minimality of G, proving our claim
that no P; includes all neighbors of z. The same argument, but with G| = G; U G[A] and
) not including z shows that z has a neighbor in A — B.
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We have shown, in particular, that exactly one vertex of Z has a neighbor in A— B. Thus
there exists a subset W’ of W' of size 6§ and a vertex z € Z such that for every (A, B) € W”
the vertex z has a neighbor in A — B. Now let w = (A, B) € W”, and let the notation be
as before. We will construct paths P,, @), such that the hypotheses of Lemma 8.7 will be
satisfied for at least half the members w € W".

The facts that (A, B) is a minimal intrusion and that z has a neighbor in A — B imply
that there exists a path @, in GJAU{z}] from z to z, € V(€)M A and a choice of longitudes
(L, : v € ANB) for (A, B) such that Q,, is disjoint from all L,. Referring to the subpaths P,
of the perimeter path P defined above, since no P; includes all neighbors of z it follows that
there exists v € AN B — V(). We define P, to be a path obtained from L, by suitably
modifying L, inside B such that P, intersects A’ for at most one (A’, B") e W' — {(A, B)}.
Such modification is easy to make, using the perimeter path of (A’, B’). Let u, € A and
Vw € B be the ends of P,,.

The set W has a subset W of size £ such that, using to the notation of the previous
paragraph, either (u, 2w, vy) is clockwise for every w € W" or (v, 2y, Uy) is clockwise
for every w € W" and for every w € W" the path P, is disjoint from A’ for every
(A, B") € W — {w}. The theorem now follows from Lemma 8.7. [J

9 Using lack of near-planarity

In this section we prove Theorems 5.3 and 1.8. The first follows immediately from Theo-

rem 5.2 and the two lemmas below.

Lemma 9.1 Let (G,Q) be a rurally 5-connected society that is not nearly rural, and let t be
a positive integer. If (G,Q) has a windmill with 4t + 1 vanes, then it has a windmill with t

vanes and a cross.

Proof. Let z,u;, v;, w;, P;, Q); be as in the definition of a windmill W with 4¢+1 vanes. Since
(G\z, Q\{x}) is rurally 4-connected and not rural, it has a cross (P, )) by Theorem 3.1. We
may choose the windmill W and cross (P, @) in (G\z, Q2\{x}) such that WUPUQ is minimal
with respect to inclusion. If the cross does not intersect the windmill, then the lemma clearly
holds, and so we may assume that a vane P; U @); intersects P U (). Let v be a vertex that
belongs to both P;UQ; and P U @ such that some subpath R of P; U (Q); with one end v and
the other end in V' (€2) has no vertex in (PUQ)\v. If R has at least one edge, then PUQUR
has a proper subgraph that is a cross, contrary to the minimality of W U P U (. Thus v is
an end of P or (). Since P and () have a total of four ends, it follows that P U @) intersects
at most four vanes of W. By ignoring those vanes we obtain a windmill with 4(¢t — 1) + 1

vanes, and a cross (P, Q) disjoint from it. The lemma follows. [
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Lemma 9.2 Let (G,Q) be a rurally 6-connected society that is not nearly rural, and let t be
a positive integer. If (G,2) has a fan with 16t +5 blades, then it has a fan with t blades and

a cross, or a fan with t blades and a jump, or a fan with t blades and two jumps.

Proof. Let 2y, 25 be the hubs of a fan F, with 16¢+ 5 blades. If (G\{z1, 22}, Q\{z1, 22}) has
a cross, then the lemma follows in the same way as Lemma 9.1, and so we may assume not.
Since (G\z1,2\{z1}) has a cross, an argument analogous to the proof of Lemma 9.1 shows
that there exists a subfan F} of Fy with 4¢ + 1 blades (that is, F} is obtained by ignoring
a set of 12t + 4 blades), and two paths Lo, S with ends ay, co and by, 29, respectively, such
that z1, 29, ..., Ty41, ag, by, o is clockwise in € for every choice of x1, x9,..., 2441 as in the
definition of a fan, and the graphs Ls, So\z9, F7 are pairwise disjoint. By using the same
argument and the fact that (G\z2, 2\{22}) has a cross we arrive at a subfan I of Fy with ¢
blades and paths L1, S; satisfying the same properties, but with the index 2 replaced by 1.
We may assume that F, Ly, Ly, Sq, S5 are chosen so that FFU L; U Ly U S7 U Sy is minimal
with respect to inclusion. This will be referred to as “minimality.”

If the paths L, Ly, S1, So are pairwise disjoint, except possibly for shared ends and pos-
sibly S7 and S5 intersecting, then it is easy to see that the lemma holds, and so we may
assume that an internal vertex of L; belongs to Ly U S;. Let v be the first vertex on L
(in either direction) that belongs to Ls U Sy, and suppose for a contradiction that v is not
an end of L. Let L} be a subpath of L; with one end v, the other end in V(£2) and no
internal vertex in Ly U Ss. Then by replacing a subpath of Ly or Sy by L} we obtain either a
contradiction to minimality, or a cross that is a subgraph of L; U Ly U S; U So\{z1, 22}, also
a contradiction. This proves that v is an end of L;, and hence both ends of L; are also ends
of Ly or Ss. In particular, L, and L, share at least one end.

Suppose first that one end of L, is an end of Sy. Thus from the symmetry we may assume
that a; is an end of Ly and ¢; = by; thus as = aq, because ao, by, 5 is clockwise. But now
¢ is not an end of Ly or S7, and so the argument of the previous paragraph implies that no
internal vertex of L, belongs to S; U L. The paths 51, 5o, Ly now show that (G, €2) has a
fan with ¢ blades and a jump.

We may therefore assume that a; = as and ¢; = ¢o. Let H be the union of Ly, Lo, S1\21,
So\z2, and V' (§2). Then the society (H, ) is rural, as otherwise (G\{z1, 22}, {2) has a cross.
Let I" be a drawing of (H,(2) in a disk A such that the vertices of V(2) are drawn on the
boundary of A in the clockwise order specified by . Let A’ C A be a disk such that A’
includes every path in I" with ends a; and ¢;, and the boundary of A’ includes a,€¢; and
a path P of I from ay to ¢;. Then Ly and Ly lie in A’ and since L; is disjoint from S;\z;
it follows that S;\z; and S\z; are inside A’ and, in particular, are disjoint from P. By

considering P, S; and Sy we obtain a fan with ¢ blades and a jump. OJ
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Proof of Theorem 5.3. Let d and ¢ be integers, let k be an integer such that Theorem 5.2
holds for d and 16t + 5, and let (G, Q) be a 6-connected k-cosmopolitan society of depth at
most d. We may assume that (G, ) is not nearly rural, for otherwise the theorem holds. By
Theorem 5.2 the society (G,€2) has t disjoint consecutive crosses, or a windmill with 4¢ + 1
vanes, or a fan with 16t 4+ 5 blades. In the first case the theorem holds, and in the second

and third case the theorem follows from Lemma 9.1 and Lemma 9.2, respectively. [J

For the proof of Theorem 1.8 we need one more lemma. Let us recall that presentation

of a neighborhood was defined prior to Theorem 1.7.

Lemma 9.3 Let d and s be integers, let (G,2) be an s-nested society, and let (G', Q) be a
planar truncation of (G, Q) of depth at most d. Then (G, 2) has an s-nested planar truncation
of depth at most 2(d + 2s).

Proof. By a vortical decomposition of a society (G, ) we mean a collection (Z, : v € V(Q2))
of sets such that

(i) U(Z, : v e V(Q)) = V(G) and every edge of G has both ends in Z, for some v € V (),

(i) for v € V(Q), v € Z,, and

(ili) if (v, va, vs,v4) is clockwise in 2, then Z, N Z,, C Z,, U Z,,.
The depth of such a vortical decomposition is max |Z, N Z,|, taken over all pairs of distinct
vertices u,v € V(Q2) that are consecutive in 2, and the depth of (G,() is the minimum
depth of a vortical decomposition of (G,€2). Thus if (G,2) has depth at most d, then
the corresponding linear decomposition also serves as a vortical decomposition of depth at
most d.

Let (G,€2) be an s-nested society, and let it be the composition of a society (Gy, £29) with
a rural neighborhood (G1, €2, €)), where the neighborhood has a presentation (3,1, A, Ag)
with an s-nest C7,Cs,...,C,. Let Ay, Aq,...,As be as in the definition of s-nest. Let
(G',€Y) be a planar truncation of (G, €2) of depth at most d. Then (G, Q) is the composition
of (G, ) with a rural neighborhood (G5, 2, '), and we may assume that (Gs,2,') has a
presentation (X, Ty, A A’), where Ay C A’. We may assume that the s-nest C,Cy, ..., Cy
is chosen as follows: first we select €' such that Ay € A; and the disk A; is as small as
possible, subject to that we select Cy such that A; C A, and the disk A, is as small as
possible, subject to that we select C3, and so on.

Let A* be a closed disk with A" C A* C A. We say that A* is normal if whenever an
interior point of an edge e € E(I';) belongs to the boundary of A* then e is a subset of the
boundary of A*. A normal disk A* defines a planar truncation (G*,{2*) in a natural way as
follows: G* is consists of all vertices and edges that of G either belong to G, or their image
under I'; belongs to A*, and Q* consists of vertices of G whose image under I'; belongs to
the boundary A* in the order determined by the boundary of A*.
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Given a normal disk A* and two vertices u,v € V(G) we define &ax(u,v), or simply
&(u,v) as follows. If u is adjacent to v, and the image e under I'; of the edge uv is a subset of
the boundary of A*, and for every internal point x on e there exists an open neighborhood
U of z such that U N A* = U N A;, then we let £(u,v) = i. Otherwise we define &(u,v) = 0.
A short explanation may be in order. If the image e of uv is a subset of the boundary of
A*, then this can happen in two ways: if we think of e as having two sides, either A* and
A; appear on the same side, or on opposite sides of e. In the definition of £ it is only edges
with A* and A; on the same side that count.

We may assume, by shrinking A’ slightly, that the boundary of A’ does not include
an interior point of any edge of I'y. Then A’ is normal, and the corresponding planar
truncation is (G’,€). Since a linear decomposition of (G’, ) of depth at most d may be
regarded as a vortical decomposition of (G’,€)’) of depth at most d, we may select a normal
disk A* that gives rise to a planar truncation (G*, 2*) of (G, ), and we may select a vortical
decomposition (Z, : v € V(%)) of (G*, Q%) such that |Z, N Z,| < d+ 2£(u,v) for every pair
of consecutive vertices of 2*. Furthermore, subject to this, we may choose A* such that the
number of unordered pairs u, v of distinct vertices of G with £(u,v) = s is maximum, subject
to that the number of unordered pairs u, v of distinct vertices of G with {(u,v) = s — 1 is
maximum, subject to that the number of unordered pairs u, v of distinct vertices of G with
&(u,v) = s — 2 is maximum, and so on.

We will show that (G*,2*) satisfies the conclusion of the theorem. Let (t1,%a,...,%,)
be an arbitrary clockwise enumeration of V(2*), and let X; := Z;, U (Z;, N Z;,). Then
(X1, Xs, ..., X,) is a linear decomposition of (G*, 2*) of depth at most 2(d + 2s).

To complete the proof we must show that (G*,Q*) is s-nested, and we will do that by
showing that each Cj is a subgraph of G*. To this end we suppose for a contradiction that
it is not the case, and let ig € {1,2,...,s} be the minimum integer such that C;, is not a
subgraph of G*.

If C;, has no edge in G*, then we can construct a new society (Gs,23), where €3 consists
of the vertices of C;, in order, and obtain a contradiction to the choice of (G*,Q*). Since
the construction is very similar but slightly easier than the one we are about to exhibit,
we omit the details. Instead, we assume that C;, includes edges of both G* and G\ E(G*).
Thus there exist vertices z,y € V(C;,) NV (£2*) such that some subpath P of C;, with ends
x and y has no internal vertex in V(2*). Let B denote the boundary of A*. There are three
closed disks with boundaries contained in B U P. One of them is A*; let D be the one that
is disjoint from Ay. If the interior of D is a subset of A;, and includes no edge of Cj,, then
we say that P is a good segment. It follows by a standard elementary argument that there
is a good segment.

Thus we may assume that P is a good segment, and that the notation is as in the

previous paragraph. There are two cases: either D is a subset of A* or the interiors of D
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and A* are disjoint. Since the former case is handled by a similar, but easier construction,
we leave it to the reader and assume the latter case. Let (sq,$1,...,5:11) be clockwise in
Q* such that sg, s1,..., 5,11 are all the vertices that belong to D N A*. Thus {sg, $411} =
{z,y}. Let ro = so,71,...,7Tk, Tkr1 = Sex1 be all the vertices of P, in order, let H be the
subgraph of G* consisting of all vertices and edges whose images under I'; belong to D,
and let X := {sq,$1,...,S41,70,71,---,Tkr1}. We can regard H as drawn in a disk with
the vertices sg, S1,...,St41, Tk Tk—1, - - - , 71 drawn on the boundary of the disk in order. We
may assume that every component of H intersects X. The way we chose the cycles Cj,
implies that every path in H\{si, Ss,..., sk} that joins two vertices of P is a subpath of
P. We will refer to this property as the convexity of H. For i = 0,1,...,k + 1 let b,
be the maximum index j such that the vertex s; can be reached from {rg,r;,...,r;} by a
path in H with no internal vertex in X. We define b_; := —1, and let R; be the set of
all vertices of H that can be reached from {r;, sy, 41,8, ,42,---,8p,} by a path with no
internal vertex in X. The convexity of H implies that for ¢ < j the only possible member of
R,N R, is sp,. We now define a new society (G**, 1**) as follows. The graph G** will be the
union of G* and H, and the cyclic permutation 2** is defined by replacing the subsequence
S0, 51, - - -5 S¢1 of 0 by the sequence rg, 7y, ..., 7, 7k+1. We define the sets Z** as follows.
For v € V(Q*) — V(Q*) we let Z}* := Z,. If v = r; and b; > b;_; we define Z** to be
the union of R; U {sp,, i1} and all Z,, for j = b1 +1,b;1 +2,...,0;. If v = r; and
b; = b1 we define Z** := R, U {sp,,ri_1} U (Zsbi N stl)-
that (G*, Q™) is a planar truncation of (G,{2) and that (Z}* : v € V(Q*)) is a vortical
decomposition of (G**, 2**). We claim that &a«(s;, sj11) < ig forall j =0,1,...,t. To prove

It is straightforward to verify

this we may assume that s; is adjacent to s;41, and let e be the image under I'; of the edge
s;sj+1. 1t follows that e is a subset of A, , and hence if s;s;11 € E(Cy) for some k, then
k < 1iy. Furthermore, if equality holds, then A;, and A* lie on opposite sides of e, and hence
€a+(Sj,5j41) = 0. This proves our claim that a«(s;, Sj+1) < 4o. Since for i = 0,1,...,k we
have Z;* N 27" C (Zs, N Zs, ) UA{ri, sp,}, and §axs (13, 7541) = do, where A™ denotes the

Ti+1

disk A*U D, we deduce that

125 020 < 2o, N Zy | 2 S d 2600 (8,, Sbi1) 2 < d o 2600 (r0, 7).

Ti+1

Thus the existence of (G**, Q**) contradicts the choice of (G*,2*). This completes our proof
that C,Cy, ..., Cy are subgraphs of G*, and hence (G*,Q*) is s-nested, as desired. [J

Proof of Theorem 1.8. Let d be as in Theorem 5.1, and let £ be as in Corollary 5.4
applied to 2(d + 2s) in place of d. We claim that k satisfies Theorem 1.8. To prove that
let (G,€2) be a 6-connected s-nested k-cosmopolitan society that is not nearly rural. Since
(G, Q) is an s-nested planar truncation of itself, by Theorem 5.1 we may assume that (G, (2)
has either a leap of length five, in which case it satisfies Theorem 1.8 by Theorem 4.1, or

it has a planar truncation of depth at most d. In the latter case it has an s-nested planar
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truncation (G’,€)') of depth at most 2(d 4 2s) by Lemma 9.3, and the theorem follows from
Corollary 5.4 applied to the society (G’,€Y). O

10 Finding a planar nest

In this section we prove a technical result that applies in the following situation. We will
be able to guarantee that some societies (G, (2) contain certain configurations consisting
of disjoint trees connecting specified vertices in V(€2). The main result of this section,
Theorem 10.5 below, states that if the society is sufficiently nested, then we can make sure
that the cycles in some reasonably big nest and the trees of the configuration intersect nicely.

A target in a society (G, Q) is a subgraph F' of G such that F' is a forest with no isolated
vertices, and every vertex of F' of degree one belongs to V(€2). We say that a target F' in

(G, Q) is s-nested, where s > 0 is an integer, if

(1) (G,) can be expressed as a composition of some society with a rural neighborhood

(G',Q, Q) that has a presentation with an s-nest, and
(2) if P is path in F' with distinct ends u,v € V(€2), then either

(a) there exists a vertex w € V() such that w belongs to a component of F' that

does not include P and u,w,v are clockwise in €2, or

(b) there exists a vertex in V(P) — V(G’) of degree in F' of at least three.

In the above circumstances we say that (G',Q, Q) is a buffer for F' in (G,2). We should
note that condition (b) will not be used in this paper, but is included for later applications.
We say that a vertex v € V(G) is F-special if either v has degree at least three in F, or v
has degree at least two in F' and v € V(2).

Now let F' be a target in (G,) and let T be a component of F'. Let P be a path in
G\V () with ends u,v such that u,v € V(T') and P is otherwise disjoint from F. Let C be
the unique cycle in 7"U P, and assume that C' has at most one F-special vertex. If C'\u\v
has no F-special vertex, then let P’ be the subpath of C' that is complementary to P, and if
C\u\v has an F-special vertex, say w, then let P’ be either the subpath of C'\u with ends
v and w, or the subpath of C'\v with ends v and w. Finally, let F’ be obtained from F'U P
by deleting all edges and internal vertices of P’. In those circumstances we say that F’ was
obtained from F' by rerouting. If G’ is a subgraph of G and C' is a subgraph of G, then
we say that F’ was obtained from F' by rerouting within G1. The next lemma explains the

significance of rerouting within G.
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Lemma 10.1 Let s > 0 be an integer, let F' be an s-nested target in a society (G,Q), let
(G',Q,8Y) be a buffer for F in (G,), and let F' be obtained from F by rerouting within G'.
Then F' is s-nested.

Proof. Since the rerouting is within G’ it follows that if a path P in F' satisfies condition
(2a) in the definition of s-nested target, then the corresponding path in F” also satisfies (2a).
The rest is straightforward. [J

A subgraph F of a rural neighborhood (G, €2, Q) is perpendicularto an s-nest (Cy, Cy, ..., Cy)
if for every component P of F

(i) P is a path with one end in V(§2) and the other in V' (€)), and

(i) PNC;isapathforalli=1,2,...,s.
The complexity of a forest F' in a society (G, Q) is

> (degp(v) =2)" + Y (degp(v) —1)*,
veV(Q)
where the first summation is over all v € V(G) — V(§2) and =% denotes max(z, 0).

The following is a preliminary version of the main result of this section.

Theorem 10.2 Let w, s, k be positive integers, and let s = 2w(k + 1) + s. Then for every
s'-nested society (G, <) such that G has tree-width strictly less than w and for every s'-nested
target Fy in (G, Q) with buffer (G1,8,q) the following holds. If the complexity of Gy N F
in the society (G1,2) is at most k, then there exists a target F in (G,S)) obtained from
Fy by repeated rerouting within Gy such that (G,Q) can be expressed as a composition of

some society with a rural neighborhood (G',$,€Y) that has a presentation with an s-nest
(C1,Cy, ..., Cy) such that G' N F' is perpendicular to (Cy,Cs, ..., Cy).

Proof. Suppose for a contradiction that the theorem is false for some integers w, s, k, a
society (G, ) and an s'-nested target F' with buffer (G, $2,$), and choose these entities
with |V(G1)| + |E(G1)| minimum. Let (G, ) be the composition of a society (G, )
with the rural neighborhood (G1,€, Q). Let (3,I', A, Ag) be a presentation of (G, €, ),
let (C1,C5,...,Cy) be an s'-nest for it, and let x be the complexity of F'N Gy in the
society (G,€2). The minimality of G implies that G = C; UCy U --- U Cy U F. Likewise,
CiUCyU---UCCy is edge-disjoint from F', for otherwise contracting an edge belonging to
the intersection of the two graphs contradicts the minimality of G.

By a dive we mean a subpath of F'N Gy with both ends in V' (§2y) and otherwise disjoint
from V(). Let P be a dive with ends u, v, and let P’ be the corresponding path in I'. Then
AgU P’ separates ¥; let A(P’) denote the component of 3 — Ag — P’ that is contained in A,
and let H(P) denote the subgraph of GGy consisting of all vertices and edges that correspond
to vertices or edges of I' that belong to the closure of A(P’). Thus P is a subgraph of
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Ca-t

Cd-t+l

Figure 7: Construction of H(P.).

H(P). We say that a dive P is clean if H(P)\V({)) includes at most one F-special vertex,
and if it includes one, say v, then v € V(P), and no edge of E(F) — E(P) incident with
v belongs to H(P). The depth of a dive P is the maximum integer d € {1,2,...,s"} such
that V(P) NV (Cyq) # 0, or 0 if no such integer exists. It follows from planarity that
V(P)NV(C;)| >2foralli=1,2,...,d—1.

(1) Every clean dive has depth at most 2w.

To prove the claim suppose for a contradiction that P; is a clean dive of depth d > 2w+1.
Thus V(P) N V(Cy) # 0. Assume that we have already constructed dives Py, Py, ..., P
for some ¢t < w such that V(P) N V(Cy_ss1) # 0 for all i = 1,2,...,t and H(F;) C
H(Pi—1) C -+ C H(Py). Since V(P,) NV(Cy_ys1) # 0, there exist distinct vertices z,y €
V(P,) NV (Cy_y). Furthermore, it is possible to select x,y such that one of subpaths of Cy_;
with ends x,y, say @, is a subgraph of H(F,) and no internal vertex of () belongs to P;.

We claim that some internal vertex of Q) belongs to F'. Indeed, if not, then we can reroute
x Py along @ to produce a target F” and delete an edge of x P,y; since P is clean and H (F;) is
a subgraph of H (P;) this is indeed a valid rerouting within G; as defined above. Furthermore,
F’ has the same complexity as F' and it is s'-nested by Lemma 10.1. But this contradicts
the minimality of GGy, and hence some internal vertex of @), say ¢, belongs to F. Since P is
clean and H(F;) is a subgraph of H(P;) it follows from the third axiom in the definition of
s’-nested target that ¢ belongs to a dive P, that is a subgraph of H(FP,)\V (F;). It follows
that H(P,y1) is a subgraph of H(P,), thus completing the construction. (See Figure 7.)

The dives Py, Ps, ..., P, 1 just constructed are pairwise disjoint and all intersect Cy_,,.
Since d > 2w+ 1 this implies that Py, P, ..., P, all intersect each of Cy, Cs, ..., Cyiq, and
hence C1 U P, CoU P, ..., Cyui1 UP,yq is a “screen” in G of “thickness” at least w+ 1. By
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[16, Theorem (1.4)] the graph G has tree-width at least w, a contradiction. This proves (1).

Our next objective is to prove that x = 0. That will take several steps. To that end
let us define a dive P to be special if P\V (€)) contains exactly one F-special vertex. By
a bridge we mean a subgraph B of G; N F' consisting of a component C of Gy N F\V ()
together with all edges from V(C) to V(€)) and all ends of these edges.

(2) If a bridge B includes an F-special vertex not in V (€)y), then B includes a special dive.

To prove Claim (2) let B be a bridge containing an F-special vertex not in V(). For
an F-special vertex b € V(B) — V(£)o) and an edge e € E(B) incident with b let P, be the
maximal subpath of B containing e such that one end of P, is b and no internal vertex of
P, is F-special or belongs to V' (€). Let u. be the other end of P.,. The second axiom in
the definition of an s'-nested target implies that at most one vertex of B belongs to V/(£2).
Since every F-special vertex in V(Gy) — V() has degree at least three, it follows that there
exists an F-special vertex b € V(B) — V(€) such that ue,,u., € V() for two distinct
edges €1, e € F(B) incident with b. Then P,, U P., is as desired. This proves (2).

By (2) we may select a special dive P with H(P) minimal. We claim that P is clean. For
let v € V(P) — V() be F-special. If some edge e € E(F') — E(P) incident with v belongs
to H(P), then there exists a subpath P’ of F' containing e with one end v and the other end
in V(o) U V(). But P’ is a subgraph of H(P), and hence the other end of P’ belongs to
V() by planarity. It follows that P U P’ includes a dive that contradicts the minimality
of H(P). This proves that the edge e as above does not exist.

It remains to show that no vertex of H(P)\V(§) except v is F-special. So suppose for
a contradiction that such vertex, say v’, exists. Then v € V(P), because P is special, and
hence v’ belongs to a bridge B’ # B. But B’ includes a special dive by (2), contrary to the
choice of P. This proves our claim that P is clean.

By (1) P has depth at most 2w. In particular, the image under I" of some F-special vertex
belongs to the open disk Ay, 11 bounded by the image under I' of Cy,,+1. Let G consist of Gy
and all vertices and edges of G whose images under I' belong to the closure of Ay, 11, let G}
consist of all vertices and edges whose images under I' belong to the complement of Ag,, 1,
and let € be defined by V() = V(Cay,41) and let the cyclic order of € be determined by
the order of V(Cyy11). Then (G, ) can be regarded as a composition of (Gy,€))) with the
rural neighborhood (G, €2, €2). This rural neighborhood has a presentation with a o-nest,
where 0 = 2wk + s. On the other hand, the complexity of F'N G is at most k — 1, contrary
to the minimality of G;. This proves our claim that x = 0.

By repeating the argument of the previous paragraph and sacrificing 2w of the cycles C;
we may assume that (Gy, 2, ) has a presentation with an s-nest Cq,Cy, ..., Cy and that

there are no dives. It follows that every component P of F' N (G, is a path with one end in
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V(€2) and the other in V(€y). To complete the proof of the theorem we must show that
PnNC;isapathforalli=1,2,...,s. Suppose for a contradiction that that is not the case.
Thus for some i € {1,2,...,s} and some component P of F'N G the intersection P N C; is
not a path. Thus there exist distinct vertices x,y € V(P N C;) such that Py is a path with
no edge or internal vertex in C;. Let us choose P, i, x,y such that, subject to the conditions
stated, ¢ is maximum. If ¢ < s and x Py intersects C; 1, then PNC;,; is not a path, contrary
to the choice of i. If i = 1 or 2Py does not intersect C;_;, then by rerouting one of the
subpaths of C; with ends z,y along xPy we obtain contradiction to the minimality of G.
Thus we may assume that ¢ > 1 and that x Py intersects C;_;.

Exactly one of the subpaths of C; with ends x, y, say @), has the property that the image
under I' of 2Py U @ bounds a disk contained in A and disjoint from Ag. If no component of
F N Gy other than P intersects (), then by rerouting F' along () we obtain a contradiction
to the minimality of G. Thus there exists a component P’ of F' N Gy other that P that
intersects @), say in a vertex u. The vertex u divides P’ into two subpaths P| and Pj. If
both P| and Pj intersect C;;1, then P’ contradicts the choice of i. Thus we may assume
that say P| does not intersect C;,1. But P/ includes a subpath P” with both ends on C; and
otherwise disjoint from C; U Cy U - - - U (Y, and hence by rerouting C; along P” we obtain a

contradiction to the minimality of G. This completes the proof of the theorem. [

Before we state the main result of this section we need the following deep result from
[13]. A linkage in a graph G is a subgraph of G, every component of which is a path. A
linkage L in a graph G is vital if V(L) = V(G) and there is no linkage L’ # L in G such that
for every two vertices u,v € V(G), the vertices u, v are the ends of a component of L if and

only if they are the ends of a component of L'.

Theorem 10.3 For every integer p > 0 there exists an integer w such that every graph that

has a vital linkage with p components has tree-width less than w.

If F'is a target in a society (G,€2) we say that a vertex v € V(G) is critical for F if v
is either F-special or a leaf of F'. We say that two targets F, F' are hypomorphic if they
have the same set of critical vertices, say X, and u,v € X are joined by a path in F' with
no internal vertices in X if and only if they are so joined in F’. The proof of the following

lemma is clear.

Lemma 10.4 Let s > 0 be an integer, and let F' be an s-nested target in a society (G, ).
Then every target hypomorphic to F is s-nested in (G,<2).

Now we are ready to state and prove the main theorem of this section.

Theorem 10.5 For every three positive integers s, k,c there exists an integer s’ such that

for every s'-nested society (G,€) and for every s'-nested target Fy in (G,) with buffer
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(G1,9Q,Q0) the following holds. If Fy has complexity at most k and at most ¢ components,
then there exists a target F' in (G,Q)) obtained from a target hypomorphic to Fy by repeated
rerouting within Gy such that (G, <)) can be expressed as a composition of some society with
a rural neighborhood (G',€Q, Q) that has a presentation with an s-nest (Cy,Csy, ..., Cs) such
that G' N F' is perpendicular to (Cy,Cs, ..., Cy).

Proof. Let p = 2k + ¢, let w be the bound guaranteed by Theorem 10.3, and let s’ :=
2(k +w)(k+ 1) +s. We will prove by induction on |V (G)| + |E(G)| that s’ satisfies the
conclusion of the theorem. To that end let (G,{2) be as stated in the theorem, and let it
be the composition of a society (G, £2g) with the rural neighborhood (G, (2,€). Let X be
the set of all F-special vertices, and let L = F\X. Then L is a linkage in G\X. If it is
vital, then G has tree-width less than | X|+w < k4w, and hence the theorem follows from
Theorem 10.2, because the complexity of Gy N F' is at most k.

Thus we may assume that L is not vital. Assume first that there exists a vertex v €
V(G)=V(L). Ifv e V(C;) for some i € {1,2,...,5'}, then the theorem follows by induction
applied to the graph obtained from G by contracting one of the edges of C; incident with v;
otherwise, the theorem follows by induction applied to the graph G\v.

Thus we may assume that V(L) = V(G), and hence there exists a linkage L' # L linking
the same pairs of terminals. Thus there exists an edge e € FE(L) — E(L'). If e € E(C;)
for some i € {1,2,...,s'}, then the theorem follows by induction by contracting the edge e;
otherwise it follows by induction by deleting e, because the linkage L’ guarantees that G\e
has a target hypomorphic to F', and that target is s'-nested by Lemma 10.4. (J

11 Chasing a turtle

In this section we prove Theorem 1.3, but first we need the following two theorems.

Theorem 11.1 There is an integer s such that if an s-nested society (G,€)) has a turtle,

then G has a Kg minor.

Proof. Let k& be the maximum complexity of a turtle, let s = 3, and let s’ be as in
Theorem 10.5. We claim that s satisfies the theorem. Indeed, let (G,€2) be an s'-nested
society that has a turtle. Since every turtle is a target, and is s-nested for every integer
s > 0, and every target obtained from a target hypomorphic to a turtle is again a turtle, we
deduce from Theorem 10.5 that (G, 2) has a turtle F' and can be expressed as a composition
of a society with a rural neighborhood (G’,€, Q) that has a presentation with a 3-nest
(C4, Cy, C3) such that G'N F is perpendicular to (Cy, Cy, C3). It is now fairly straightforward
to deduce that G has a K¢ minor. The argument is illustrated in Figure 8. [J
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Figure 8: A turtle giving rise to a K¢ minor.

Theorem 11.2 There is an integer s such that if an s-nested society (G, ) has three crossed

paths, a separated doublecross or a gridlet, then G has a K¢ minor.

Proof. The argument is analogous to the proof of the previous theorem, using Figures 9,
10 and 11 instead. We omit the details. [J

Proof of Theorem 1.3. Let s be an integer large enough that both Theorem 11.1 and
Theorem 11.2 hold for s. Let k£ be an integer such that Theorem 1.8 holds for this integer.
Let t be such that Theorem 1.7 holds for ¢t and the integer k£ just defined. Let h be an
integer such that Theorem 1.6 holds with ¢ replaced by ¢+ 2s. Let w be an integer such that
Theorem 1.5 holds for the integer h just defined. Finally, let N be as in Theorem 1.4.

Suppose for a contradiction that G is a 6-connected graph on at least /N vertices that is
not apex. Since GG has minimum degree at least six, it does not have a triangle C' such that
G\E(C) is planar. By Theorem 1.4 G has tree-width exceeding w. By Theorem 1.5 G has
a wall of height h. By Theorem 1.6 G has a planar wall H of height ¢ + 2s. By considering
a subwall H of H of height ¢ and s cycles of Hy\V(H) we find, by Theorem 1.7, that the
anticompass society (K, ) of H in G is s-nested and k-cosmopolitan. By Theorem 1.8 the
society (K, () has a turtle, three crossed paths, a separated doublecross, or a gridlet. By
Theorems 11.1 and 11.2 the graph G has a Kg minor, a contradiction. [



>
L

Figure 9: Three crossed paths giving rise to a K minor.

Figure 10: A gridlet giving rise to a K minor.

46



Figure 11: A separated doublecross giving rise to a K minor.
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