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1 Introduction

Graphs in this paper are allowed to have loops and multiple edges. A graph is a minor of

another if the first can be obtained from a subgraph of the second by contracting edges. An

H minor is a minor isomorphic to H . A graph G is apex if it has a vertex v such that G\v

is planar. (We use \ for deletion.) Jørgensen [4] made the following beautiful conjecture.

Conjecture 1.1 Every 6-connected graph with no K6 minor is apex.

This is related to Hadwiger’s conjecture [3], the following.

Conjecture 1.2 For every integer t ≥ 1, if a loopless graph has no Kt minor, then it is

(t − 1)-colorable.

Hadwiger’s conjecture is known for t ≤ 6. For t = 6 it has been proven in [14] by show-

ing that a minimal counterexample to Hadwiger’s conjecture for t = 6 is apex. The proof

uses an earlier result of Mader [6] that every minimal counterexample to Conjecture 1.2 is

6-connected. Thus Conjecture 1.1, if true, would give more structural information. Further-

more, the structure of all graphs with no K6 minor is not known, and appears complicated

and difficult. On the other hand, Conjecture 1.1 provides a nice and clean statement for

6-connected graphs. Unfortunately, it, too, appears to be a difficult problem. In this paper

we prove Conjecture 1.1 for all sufficiently large graphs, as follows.

Theorem 1.3 There exists an absolute constant N such that every 6-connected graph on at

least N vertices with no K6 minor is apex.

The second and third author recently announced a generalization [8] of Theorem 1.3,

where 6 is replaced by an arbitrary integer t. The result states that for every integer t there

exists an integer Nt such that every t-connected graph on at least Nt vertices with no Kt

minor has a set of at most t− 5 vertices whose deletion makes the graph planar. The proof

follows a different strategy, but makes use of several ideas developed in this paper and its

companion [5].

We use a number of results from the Graph Minor series of Robertson and Seymour,

and also three results of our own that are proved in [5]. The first of those is a version of

Theorem 1.3 for graphs of bounded tree-width, proved in [5, Theorem 1.2], the following.

(We will not define tree-width here, because it is sufficiently well-known, and because we do

not need the concept per se, only several theorems that use it.)

Theorem 1.4 For every integer w there exists an integer N such that every 6-connected

graph of tree-width at most w on at least N vertices and with no K6 minor is apex.
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Figure 1: An elementary wall of height 4.

Theorem 1.4 reduces the proof of Theorem 1.3 to graphs of large tree-width. By a result of

Robertson and Seymour [10] those graphs have a large grid minor. However, for our purposes

it is more convenient to work with walls instead. Let h ≥ 2 be even. An elementary wall of

height h has vertex-set

{(x, y) : 0 ≤ x ≤ 2h + 1, 0 ≤ y ≤ h} − {(0, 0), (2h + 1, h)}

and an edge between any vertices (x, y) and (x′, y′) if either

• |x − x′| = 1 and y = y′, or

• x = x′, |y − y′| = 1 and x and max{y, y′} have the same parity.

Figure 1 shows an elementary wall of height 4. A wall of height h is a subdivision of an

elementary wall of height h. The result of [10] (see also [2, 9, 15]) can be restated as follows.

Theorem 1.5 For every even integer h ≥ 2 there exists an integer w such that every graph

of tree-width at least w has a subgraph isomorphic to a wall of height h.

The perimeter of a wall is the cycle that bounds the infinite face when the wall is drawn

as in Figure 1. Now let C be the perimeter of a wall H in a graph G. The compass of H

in G is the restriction of G to X, where X is the union of V (C) and the vertex-set of the

unique component of G\V (C) that contains a vertex of H . Thus H is a subgraph of its

compass, and the compass is connected. A wall H with perimeter C in a graph G is planar

if its compass can be drawn in the plane with C bounding the infinite face. In Section 2 we

prove the following.

Theorem 1.6 For every even integer t ≥ 2 there exists an even integer h ≥ 2 such that if a

5-connected graph G with no K6 minor has a wall of height at least h, then either it is apex,

or has a planar wall of height t.
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Actually, in the proof of Theorem 1.6 we need Lemma 2.4 that is proved in [5]. The

lemma says that if a 5-connected graph with no K6 minor has a subgraph isomorphic to

subdivision of a pinwheel with sufficiently many vanes (see Figure 3), then it is apex.

By Theorem 1.6 we may assume that our graph G has an arbitrarily large planar wall H .

Let C be the perimeter of H , and let K be the compass of H . Then C separates G into K

and another graph, say J , such that K∪J = G, V (K)∩V (J) = V (C) and E(K)∩E(J) = ∅.

Next we study the graph J . Since the order of the vertices on C is important, we are lead

to the notion of a “society”, introduced by Robertson and Seymour in [11].

Let Ω be a cyclic permutation of the elements of some set; we denote this set by V (Ω). A

society is a pair (G, Ω), where G is a graph, and Ω is a cyclic permutation with V (Ω) ⊆ V (G).

Now let J be as above, and let Ω be one of the two cyclic permutations of V (C) determined

by the order of vertices on C. Then (J, Ω) is a society that is of primary interest to us. We

call it the anticompass society of H in G.

We say that (G, Ω, Ω0) is a neighborhood if G is a graph and Ω, Ω0 are cyclic permutations,

where both V (Ω) and V (Ω0) are subsets of V (G). Let Σ be a plane, with some orientation

called “clockwise.” We say that a neighborhood (G, Ω, Ω0) is rural if G has a drawing Γ in

Σ without crossings (so G is planar) and there are closed discs ∆0 ⊆ ∆ ⊆ Σ, such that

(i) the drawing Γ uses no point of Σ outside ∆, and none in the interior of ∆0, and

(ii) for v ∈ V (G), the point of Σ representing v in the drawing Γ lies in bd(∆) (respectively,

bd(∆0)) if and only if v ∈ V (Ω) (respectively, v ∈ V (Ω0)), and the cyclic permutation of

V (Ω) (respectively, V (Ω0)) obtained from the clockwise orientation of bd(∆) (respectively,

bd(∆0)) coincides (in the natural sense) with Ω (respectively, Ω0).

We call (Σ, Γ, ∆, ∆0) a presentation of (G, Ω, Ω0).

Let (G1, Ω, Ω0) be a neighborhood, let (G0, Ω0) be a society with V (G0)∩V (G1) = V (Ω0),

and let G = G0 ∪ G1. Then (G, Ω) is a society, and we say that (G, Ω) is the composition

of the society (G0, Ω0) with the neighborhood (G1, Ω, Ω0). If the neighborhood (G1, Ω, Ω0)

is rural, then we say that (G0, Ω0) is a planar truncation of (G, Ω). We say that a society

(G, Ω) is k-cosmopolitan, where k ≥ 0 is an integer, if for every planar truncation (G0, Ω0)

of (G, Ω) at least k vertices in V (Ω0) have at least two neighbors in V (G0). At the end of

Section 2 we deduce

Theorem 1.7 For every integer k ≥ 1 there exists an even integer t ≥ 2 such that if G is

a simple graph of minimum degree at least six and H is a planar wall of height t in G, then

the anticompass society of H in G is k-cosmopolitan.

For a fixed presentation (Σ, Γ, ∆, ∆0) of a neighborhood (G, Ω, Ω0) and an integer s ≥ 0

we define an s-nest for (Σ, Γ, ∆, ∆0) to be a sequence (C1, C2, . . . , Cs) of pairwise disjoint

cycles of G such that ∆0 ⊆ ∆1 ⊆ · · · ⊆ ∆s ⊆ ∆, where ∆i denotes the closed disk in Σ

bounded by the image under Γ of Ci. We say that a society (G, Ω) is s-nested if it is the
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Figure 2: (a),(b) A turtle. (c),(d) A gridlet. (e),(f) A separated doublecross.

composition of a society (G1, Ω0) with a rural neighborhood (G2, Ω, Ω0) that has an s-nest

for some presentation of (G2, Ω, Ω0).

Let Ω be a cyclic permutation. For x ∈ V (Ω) we denote the image of x under Ω by

Ω(x). If X ⊆ V (Ω), then we denote by Ω|X the restriction of Ω to X. That is, Ω|X is the

permutation Ω′ defined by saying that V (Ω′) = X and Ω′(x) is the first term of the sequence

Ω(x), Ω(Ω(x)), . . . which belongs to X. Let v1, v2, . . . , vk ∈ V (Ω) be distinct. We say that

(v1, v2, . . . , vk) is clockwise in Ω (or simply clockwise when Ω is understood from context)

if Ω′(vi−1) = vi for all i = 1, 2, . . . , k, where v0 means vk and Ω′ = Ω|{v1, v2, . . . , vk}. For

u, v ∈ V (Ω) we define uΩv as the set of all x ∈ V (Ω) such that either x = u or x = v or

(u, x, v) is clockwise in Ω.

A separation of a graph is a pair (A, B) such that A ∪ B = V (G) and there is no edge

with one end in A −B and the other end in B −A. The order of (A, B) is |A ∩B|. We say

that a society (G, Ω) is k-connected if there is no separation (A, B) of G of order at most

k − 1 with V (Ω) ⊆ A and B − A 6= ∅. A bump in (G, Ω) is a path in G with at least one

edge, both ends in V (Ω) and otherwise disjoint from V (Ω).

Let (G, Ω) be a society and let (u1, u2, v1, v2, u3, v3) be clockwise in Ω. For i = 1, 2 let Pi

be a bump in G with ends ui and vi, and let L be either a bump with ends u3 and v3, or

the union of two internally disjoint bumps, one with ends u3 and x ∈ u3Ωv3 and the other
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with ends v3 and y ∈ u3Ωv3. In the former case let Z = ∅, and in the latter case let Z be

the subinterval of u3Ωv3 with ends x and y, including its ends. Assume that P1, P2, L are

pairwise disjoint. Let q1, q2 ∈ V (P1)∪V (P2)∪ v3Ωu3 −{u3, v3} be distinct such that neither

of the sets V (P1) ∪ v3Ωu1, V (P2) ∪ v2Ωu3 includes both q1 and q2. Let Q1 and Q2 be two

not necessarily disjoint paths with one end in u3Ωv3 −Z −{u3, v3} and the other end q1 and

q2, respectively, both internally disjoint from V (P1 ∪P2 ∪L)∪V (Ω). In those circumstances

we say that P1 ∪ P2 ∪ L ∪Q1 ∪Q2 is a turtle in (G, Ω). We say that P1, P2 are the legs, L is

the neck, and Q1 ∪ Q2 is the body of the turtle. (See Figure 2(a),(b).)

Let (G, Ω) be a society, let (u1, u2, u3, v1, v2, v3) be clockwise in Ω, and let P1, P2, P3 be

disjoint bumps such that Pi has ends ui and vi. In those circumstances we say that P1, P2, P3

are three crossed paths in (G, Ω).

Let (G, Ω) be a society, and let u1, u2, u3, u4, v1, v2, v3, v4 ∈ V (Ω) be such that either

(u1, u2, u3, v2, u4, v1, v4, v3) or (u1, u2, u3, u4, v2, v1, v4, v3) or (u1, u2, u3, v2 = u4, v1, v4, v3) is

clockwise. For i = 1, 2, 3, 4 let Pi be a bump with ends ui and vi such that these bumps

are pairwise disjoint, except possibly for v2 = u4. In those circumstances we say that

P1, P2, P3, P4 is a gridlet. (See Figure 2(c),(d).)

Let (G, Ω) be a society and let (u1, u2, v1, v2, u3, u4, v3, v4) be clockwise or counter-clockwise

in Ω. For i = 1, 2, 3, 4 let Pi be a bump with ends ui and vi such that these bumps are pair-

wise disjoint, and let P5 be a path with one end in V (P1) ∪ v4Ωu2 − {u2, v1, v4}, the other

end in V (P3) ∪ v2Ωu4 − {v2, v3, u4}, and otherwise disjoint from P1 ∪ P2 ∪ P3 ∪ P4. In those

circumstances we say that P1, P2, . . . , P5 is a separated doublecross.(See Figure 2(e),(f).)

A society (G, Ω) is rural if G can be drawn in a disk with V (Ω) drawn on the boundary

of the disk in the order given by Ω. A society (G, Ω) is nearly rural if there exists a vertex

v ∈ V (G) such that the society (G\v, Ω\v) obtained from (G, Ω) by deleting v is rural.

In Sections 4–9 we prove the following. The proof strategy is explained in Section 5. It

uses a couple of theorems from [11] and Theorem 4.1 that we prove in Section 4.

Theorem 1.8 There exists an integer k ≥ 1 such that for every integer s ≥ 0 and every

6-connected s-nested k-cosmopolitan society (G, Ω) either (G, Ω) is nearly rural, or G has a

triangle C such that (G\E(C), Ω) is rural, or (G, Ω) has an s-nested planar truncation that

has a turtle, three crossed paths, a gridlet, or a separated doublecross.

Finally, we need to convert a turtle, three crossed paths, gridlet and a separated double-

cross into a K6 minor. Let G be a 6-connected graph, let H be a sufficiently high planar wall

in G, and let (J, Ω) be the anticompass society of H in G. We wish to apply to Theorem 1.8

to (J, Ω). We can, in fact, assume that H is a subgraph of a larger planar wall H ′ that

includes s concentric cycles C1, C2, . . . , Cs surrounding H and disjoint from H , for some

suitable integer s, and hence (J, Ω) is s-nested. Theorem 1.8 guarantees a turtle or paths

in (J, Ω) forming three crossed paths, a gridlet, or a separated double-cross, but it does not
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say how the turtle or paths might intersect the cycles Ci. In Section 10 we prove a theorem

that says that the cycles and the turtle (or paths) can be changed such that after possibly

sacrificing a lot of the cycles, the remaining cycles and the new turtle (or paths) intersect

nicely. Using that information it is then easy to find a K6 minor in G. We complete the

proof of Theorem 1.3 in Section 11.

2 Finding a planar wall

Let a pinwheel with four vanes be the graph pictured in Figure 3. We define a pinwheel with

k vanes analogously. A graph G is internally 4-connected if it is simple, 3-connected, has at

least five vertices, and for every separation (A, B) of G of order three, one of A, B induces

a graph with at most three edges.

Figure 3: A pinwheel with four vanes.

The objective of this section is to prove the following theorem.

Theorem 2.1 For every even integer t ≥ 2 there exists an even integer h such that if H is

a wall of height at least h in an internally 4-connected graph G, then either

(1) G has a K6 minor, or

(2) G has a subgraph isomorphic to a subdivision of a pinwheel with t vanes, or

(3) G has a subgraph isomorphic to a planar wall of height t.

In the proof we will be using several results from [12]. Their statements require the

following terminology: distance function, (l, m)-star over H , external (l, m)-star over H ,

subwall, dividing subwall, flat subwall, cross over a wall. We refer to [12] for precise defini-

tions, but we offer the following informal descriptions. The distance of two distinct vertices

s, t of a wall is the minimum number of times a curve in the plane joining s and t intersects

the drawing of the wall, when the wall is drawn as in Figure 1. Thus two distinct vertices

on the same face (possibly the outer face) are at distance two. An (l, m)-star over a wall H
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in G is a subdivision of a star with l leaves such that only the leaves and possibly the center

belong to H , and the leaves are pairwise at distance at least m. The star is external if the

center does not belong to H . A subwall of a wall is dividing if its perimeter separates the

subwall from the rest of the wall. A cross over a wall is a set of two disjoint paths joining the

diagonally opposite pairs of “corners” of the wall, the vertices represented by solid circles

in Figure 1. A subwall H is flat in G if there is no cross P, Q over H such that P ∪ Q is a

subgraph of the compass of H in G.

We begin with the following easy lemma. We leave the proof to the reader.

Lemma 2.2 For every integer t there exist integers l and m such that if a graph G has a

wall H with an external (l, m)-star, then it has a subgraph isomorphic to a subdivision of a

pinwheel with t vanes.

We need one more lemma, which follows immediately from [12, Theorem 8.6].

Lemma 2.3 Every flat wall in an internally 4-connected graph is planar.

Figure 4: A K6 minor in a grid with two crosses.

Proof of Theorem 2.1. Let t ≥ 1 be given, let l, m be as in Lemma 2.2, let p = 6, and let

k, r be as in [12, Theorem 9.2]. If h is sufficiently large, then H has k + 1 subwalls of height

at least t, pairwise at distance at least r. If at least k of these subwalls are non-dividing,

then by [12, Theorem 9.2] G either has a K6 minor, or an (l, m)-star over H , in which case

it has a subgraph isomorphic to a pinwheel with t vanes by Lemma 2.2. In either case the

theorem holds, and so we may assume that at least two of the subwalls, say H1 and H2, are

dividing. We may assume that H1 and H2 are not planar, for otherwise the theorem holds.
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Let i ∈ {1, 2}. By Lemma 2.3 the wall Hi is not flat, and hence its compass has a cross

Pi ∪ Qi. Since the subwalls H1 and H2 are dividing, it follows that the paths P1, Q1, P2, Q2

are pairwise disjoint. Thus G has a minor isomorphic to the graph shown in Figure 4, but

that graph has a minor isomorphic to a minor of K6, as indicated by the numbers in the

figure. Thus G has a K6 minor, and the theorem holds. �

To deduce Theorem 1.6 we need the following lemma, proved in [5, Lemma 5.3], which

in turn relies on results in [7].

Lemma 2.4 If a 5-connected graph G with no K6 minor has a subdivision isomorphic to a

pinwheel with 20 vanes, then G is apex.

Proof of Theorem 1.6. Let t ≥ 2 be an even integer. We may assume that t ≥ 20.

Let h be as in Theorem 2.1, and let G be a 5-connected graph with no K6 minor. From

Theorem 2.1 we deduce that G either satisfies the conclusion of Theorem 1.6, or has a

subdivision isomorphic to a pinwheel with t vanes. In the latter case the theorem follows

from Lemma 2.4. �

We need the following theorem of DeVos and Seymour [1].

Theorem 2.5 Let (G, Ω) be a rural society such that G is a simple graph and every vertex

of G not in V (Ω) has degree at least six. Then |V (G)| ≤ |V (Ω)|2/12 + |V (Ω)|/2 + 1.

Proof of Theorem 1.7. Let k ≥ 1 be an integer, and let t be an even integer such that if

W is the elementary wall of height t and |V (W )| ≤ ℓ2/12 + ℓ/2 + 1, then ℓ > 6k − 6. Let K

be the compass of H in G, let (J, Ω) be the anticompass society of H in G, let (G0, Ω0) be a

planar truncation of (J, Ω), and let ℓ = |V (Ω0)|. Thus (J, Ω) is the composition of (G0, Ω0)

with a rural neighborhood (G′, Ω, Ω0). Then |V (H)| ≤ ℓ2/12 + ℓ/2 + 1 by Theorem 2.5

applied to the society (K ∪G′, Ω0), and hence ℓ > 6k− 6. Let L be the graph obtained from

K ∪ G′ by adding a new vertex v and joining it to every vertex of V (Ω0) and by adding an

edge joining every pair of nonadjacent vertices of V (Ω0) that are consecutive in Ω0. Then L

is planar. Let s be the number of vertices of V (Ω0) with at least two neighbors in G0. Then

all but s vertices of K ∪ G′ have degree in L at least six. Thus the sum of the degrees of

vertices of L is at least 6|V (K ∪G′)| − 6s + ℓ. On the other hand, the sum of the degrees is

at most 6|V (L)| − 12, because L is planar, and hence s ≥ k, as desired. �

3 Rural societies

If P is a path and x, y ∈ V (P ), we denote by xPy the unique subpath of P with ends x and y.

Let (G, Ω) be a society. An orderly transaction in (G, Ω) is a sequence of k pairwise disjoint
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bumps T = (P1, . . . , Pk) such that Pi has ends ui and vi and u1, u2, . . . , uk, vk, vk−1, . . . , v1

is clockwise. Let M be the graph obtained from P1 ∪ P2 ∪ · · · ∪ Pk by adding the vertices

of V (Ω) as isolated vertices. We say that M is the frame of T . We say that a path Q in G

is T -coterminal if Q has both ends in V (Ω) and is otherwise disjoint from it and for every

i = 1, 2, . . . , k the following holds: if Q intersects Pi, then their intersection is a path whose

one end is a common end of Q and Pi.

Let (G, Ω) be a society, and let M and T be as in the previous paragraph. Let i ∈

{1, 2, . . . , k} and let Q be a T -coterminal path in G\V (Pi) with one end in viΩui and the

other end in uiΩvi. In those circumstances we say that Q is a T -jump over Pi, or simply a

T -jump.

Now let i ∈ {0, 1, . . . , k} and let Q1, Q2 be two disjoint T -coterminal paths such that Qj

has ends xj , yj and (ui, x1, x2, ui+1, vi+1, y1, y2, vi) is clockwise in Ω, where possibly ui = x1,

x2 = ui+1, vi+1 = y1, or y2 = vi, and u0 means x1, uk+1 means x2, vk+1 means y1, and v0

means y2. In those circumstances we say that (Q1, Q2) is a T -cross in region i, or simply a

T -cross.

Finally, let i ∈ {1, 2, . . . , k} and let Q0, Q1, Q2 be three paths such that Qj has ends

xj , yj and is otherwise disjoint from all members of T , x0, y0 ∈ V (Pi), the vertices x1, x2 are

internal vertices of x0Piy0, y1, y2 6∈ V (Pi), y1 ∈ ui−1Ωui∪viΩvi−1, y2 ∈ uiΩui+1∪vi+1Ωvi, and

the paths Q0, Q1, Q2 are pairwise disjoint, except possibly x1 = x2. In those circumstances

we say that (Q0, Q1, Q2) is a T -tunnel under Pi, or simply a T -tunnel.

Intuitively, if we think of the paths in T as dividing the society into “regions”, then

a T -jump arises from a T -path whose ends do not belong to the same region. A T -cross

arises from two T -paths with ends in the same region that cross inside that region, and

furthermore, each path in T includes at most two ends of those crossing paths. Finally,

a T -tunnel can be converted into a T -jump by rerouting Pi along Q0. However, in some

applications such rerouting will be undesirable, and therefore we need to list T -tunnels as

outcomes.

Let M be a subgraph of a graph G. An M-bridge in G is a connected subgraph B of G

such that E(B)∩E(M) = ∅ and either E(B) consists of a unique edge with both ends in M ,

or for some component C of G\V (M) the set E(B) consists of all edges of G with at least

one end in V (C). The vertices in V (B)∩V (M) are called the attachments of B. Now let M

be such that no block of M is a cycle. By a segment of M we mean a maximal subpath P of

M such that every internal vertex of P has degree two in M . It follows that the segments of

M are uniquely determined. Now if B is an M-bridge of G, then we say that B is unstable if

some segment of M includes all the attachments of B, and otherwise we say that B is stable.

A society (G, Ω) is rurally 4-connected if for every separation (A, B) of order at most

three with V (Ω) ⊆ A the graph G[B] can be drawn in a disk with the vertices of A ∩ B

drawn on the boundary of the disk. A society is cross-free if it has no cross. The following,
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a close relative of Lemma 2.3, follows from [11, Theorem 2.4].

Theorem 3.1 Every cross-free rurally 4-connected society is rural.

Lemma 3.2 Let (G, Ω) be a rurally 4-connected society, let T = (P1, . . . , Pk) be an orderly

transaction in (G, Ω), and let M be the frame of T . If every M-bridge of G is stable and

(G, Ω) is not rural, then (G, Ω) has a T -jump, a T -cross, or a T -tunnel.

Proof. For i = 1, 2, . . . , k let ui and vi be the ends of Pi numbered as in the definition

of orderly transaction, and for convenience let P0 and Pk+1 be null graphs. We define

k + 1 cyclic permutations Ω0, Ω1, . . . , Ωk as follows. For i = 1, 2, . . . , k − 1 let V (Ωi) :=

V (Pi) ∪ V (Pi+1) ∪ uiΩui+1 ∪ vi+1Ωvi with the cyclic order defined by saying that uiΩui+1

is followed by V (Pi+1) in order from ui+1 to vi+1, followed by vi+1Ωvi followed by V (Pi) in

order from vi to ui. The cyclic permutation Ω0 is defined by letting v1Ωu1 be followed by

V (P1) in order from u1 to v1, and Ωk is defined by letting ukΩvk be followed by V (Pk) in

order from vk to uk.

Now if for some M-bridge B of G there is no index i ∈ {0, 1, . . . , k} such that all

attachments of B belong to V (Ωi), then (G, Ω) has a T -jump. Thus we may assume that

such index exists for every M-bridge B, and since B is stable that index is unique. Let us

denote it by i(B). For i = 0, 1, . . . , k let Gi be the subgraph of G consisting of Pi ∪ Pi+1,

the vertex-set V (Ωi) and all M-bridges B of G with i(B) = i. The society (Gi, Ωi) is rurally

4-connected. If each (Gi, Ωi) is cross-free, then each of them is rural by Theorem 3.1 and it

follows that (G, Ω) is rural. Thus we may assume that for some i = 0, 1, . . . , k the society

(Gi, Ωi) has a cross (Q1, Q2). If neither Pi nor Pi+1 includes three or four ends of the paths

Q1 and Q2, then (G, Ω) has a T -cross. Thus we may assume that Pi includes both ends

of Q1 and at least one end of Q2. Let xj , yj be the ends of Qj . Since the M-bridge of G

containing Q2 is stable, it has an attachment outside Pi, and so if needed, we may replace

Q2 by a path with an end outside Pi (or conclude that (G, Ω) has a T -jump). Thus we may

assume that ui, x1, x2, y1, vi occur on Pi in the order listed, and y2 6∈ V (Pi).

The M-bridge of G containing Q1 has an attachment outside Pi. If it does not include

Q2 and has an attachment outside V (Pi) ∪ {y2}, then (G, Ω) has a T -jump or T -cross, and

so we may assume not. Thus there exists a path Q3 with one end x3 in the interior of Q1

and the other end y3 ∈ V (Q2) − {x2} with no internal vertex in M ∪ Q1 ∪ Q2. We call the

triple (Q1, Q2, Q3) a tripod, and the path y3Q2y2 the leg of the tripod. If v is an internal

vertex of x1Piy1, then we say that v is sheltered by the tripod (Q1, Q2, Q3). Let L be a path

that is the leg of some tripod, and subject to that L is minimal. From now on we fix L and

we will consider different tripods with leg L; thus the vertices x1, y1, x2, x3 may change, but

y2 and y3 will remain fixed as the ends of L.

Let x′

1, y
′

1 ∈ V (Pi) be such that they are sheltered by no tripod with leg L, but every

internal vertex of x′

1Piy
′

1 is sheltered by some tripod with leg L. Let X ′ be the union of
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x′

1Piy
′

1 and all tripods with leg L that shelter some internal vertex of x′

1Piy
′

1, let X :=

X ′\V (L)\{x′

1, y
′

1} and let Y := V (M ∪ L) − V (x′

1Piy
′

1) − {y3}. Since (G, Ω) is rurally 4-

connected we deduce that the set {x′

1, y
′

1, y3} does not separate X from Y in G. It follows

that there exists a path P in G\{x′

1, y
′

1, y3} with ends x ∈ X and y ∈ Y . We may assume

that P has no internal vertex in X ∪ Y . Let (Q1, Q2, Q3) be a tripod with leg L such that

either x is sheltered by it, or x ∈ V (Q1 ∪Q2 ∪Q3). If y 6∈ V (L∪Pi), then by considering the

paths P, Q1, Q2, Q3 it follows that (G, Ω) has a T -jump, T -cross or T -tunnel. If y ∈ V (L),

then there is a tripod whose leg is a proper subpath of L, contrary to the choice of L. Thus

we may assume that y ∈ V (Pi), and that y ∈ V (Pi) for every choice of the path P as above.

If x ∈ V (Q1∪Q2∪Q3) then there is a tripod with leg L that shelters x′

1 or y′

1, a contradiction.

Thus x ∈ V (Pi). Let B be the M-bridge containing P . Since y ∈ V (Pi) for all choices of

P it follows that the attachments of B are a subset of V (Pi) ∪ {y2}. But B is stable, and

hence y2 is an attachment of B. The minimality of L implies that B includes a path from y

to y3, internally disjoint from L. Using that path and the paths P, Q1, Q2, Q3 it is now easy

to construct a tripod that shelters either x′

1 or y′

1, a contradiction. �

4 Leap of length five

A leap of length k in a society (G, Ω) is a sequence of k + 1 pairwise disjoint bumps

P0, P1, . . . , Pk such that Pi has ends ui and vi and u0, u1, u2, . . . , uk, v0, vk, vk−1, . . . , v1, is

clockwise. In this section we prove the following.

Theorem 4.1 Let (G, Ω) be a 6-connected society with a leap of length five. Then (G, Ω)

is nearly rural, or G has a triangle C such that (G\E(C), Ω) is rural, or (G, Ω) has three

crossed paths, a gridlet, a separated doublecross, or a turtle.

The following is a hypothesis that will be common to several lemmas of this section, and

so we state it separately to avoid repetition.

Hypothesis 4.2 Let (G, Ω) be a society with no three crossed paths, no gridlet, no sepa-

rated doublecross, nor a turtle, let k ≥ 1 be an integer, let

(u0, u1, u2, . . . , uk, v0, vk, vk−1, . . . , v1)

be clockwise in Ω, and let P0, P1, . . . , Pk be pairwise disjoint bumps such that Pi has ends ui

and vi. Let T be the orderly transaction (P1, P2, . . . , Pk), let M be the frame of T and let

Z = u1Ωuk ∪ vkΩv1 ∪ V (P2) ∪ V (P3) ∪ · · · ∪ V (Pk−1) − {u1, uk, v1, vk}.

Let Z1 = v1Ωu1 − {u0, u1, v1} and Z2 = ukΩvk − {v0, uk, vk}.
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If H is a subgraph of G, then an H-path is a (possibly trivial) path with both ends in

V (H) and otherwise disjoint from H . This is somewhat non-standard, typically an H-path

is required to have at least one edge, but we use our definition for convenience. We say that

a vertex v of P0 is exposed if there exists an (M ∪ P0)-path P with one end v and the other

in Z.

Lemma 4.3 Assume Hypothesis 4.2 and let k ≥ 3. Let R1, R2 be two disjoint (M ∪ P0)-

paths in G such that Ri has ends xi ∈ V (P0) and yi ∈ V (M) − {u0, v0}, and assume that

u0, x1, x2, v0 occur on P0 in the order listed, where possibly u0 = x1, or v0 = x2, or both.

Then either y1 ∈ V (P1)∪ v1Ωu1, or y2 ∈ V (Pk)∪ ukΩvk, or both. In particular, there do not

exist two disjoint (M ∪ P0)-paths from V (P0) to Z.

Proof. The second statement follows immediately from the first, and so it suffices to prove

the first statement. Suppose for a contradiction that there exist paths R1, R2 satisfying the

hypotheses but not the conclusion of the lemma. By using the paths P2, P3, . . . , Pk−1 we

conclude that there exist two disjoint paths Q1, Q2 in G such that Qi has ends xi ∈ V (P0)

and zi ∈ V (Ω), and is otherwise disjoint from V (P0)∪V (Ω), and if Qi intersects some Pj for

j ∈ {1, 2, . . . , k}, then j ∈ {2, . . . , k−1} and Qi∩Pj is a path one of whose ends is a common

end of Qi and Pj. Furthermore, z1 ∈ u1Ωv1 − {u1, v1} and z2 ∈ vkΩuk − {uk, vk}. From

the symmetry we may assume that either (u0, v0, z2, z1), or (u0, z1, v0, z2) or (u0, v0, z1, z2) is

clockwise. In the first two cases (G, Ω) has a separated doublecross (the two pairs of crossing

bumps are P1 and Q1 ∪ u0P0x1, and Pk and Q2 ∪ v0P0x2, and the fifth path is a subpath

of P2), unless the second case holds and z1 ∈ ukΩv0 or z2 ∈ v1Ωu0, or both. By symmetry

we may assume that z1 ∈ ukΩv0. Then, if z2 ∈ vk−2Ωu0, (G, Ω) has a gridlet formed by

the paths Pk, Pk−1, u0P0x1 ∪Q1 and v0P0x2 ∪ Q2. Otherwise, z2 ∈ vkΩvk−2 − {vk, vk−2} and

(G, Ω) has a turtle with legs Pk and v0P0x2 ∪ Q2, neck P1 and body u0P0x2 ∪ Q1.

Finally, in the third case (G, Ω) has a turtle or three crossed paths. More precisely, if

z2 ∈ v0Ωv1 − {v1}, then (G, Ω) has a turtle described in the paragraph above. Otherwise,

by symmetry, we may assume that z2 ∈ v1Ωu0 and z1 ∈ v0Ωvk, in which case v0P0x2 ∪ Q2,

u0P0x1 ∪ Q1 and P2 are the three crossed paths. �

Lemma 4.4 Assume Hypothesis 4.2 and let k ≥ 2. Then (G\V (P0), Ω\V (P0)) has no T -

jump.

Proof. Suppose for a contradiction that (G\V (P0), Ω\V (P0)) has a T -jump. Thus there is

an index i ∈ {1, 2, . . . , k} and a T -coterminal path P in G\V (P0 ∪ Pi) with ends x ∈ viΩui

and y ∈ uiΩvi. Let j ∈ {1, 2, . . . , k}− {i}. Then using the paths P0, Pi, Pj and P we deduce

that (G, Ω) has either three crossed paths or a gridlet, in either case a contradiction. �
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Lemma 4.5 Assume Hypothesis 4.2 and let k ≥ 2. Let v ∈ V (P0) be such that there is no

(M ∪ P0)-path in G\v from vP0v0 to vP0u0 ∪ V (P1 ∪ P2 ∪ · · · ∪ Pk−1) ∪ vkΩuk − {vk, uk}

and none from vP0u0 to V (P2 ∪ P3 ∪ · · · ∪ Pk) ∪ u1Ωv1 − {u1, v1}. Then (G\v, Ω\v) has no

T -jump.

Proof. The hypotheses of the lemma imply that every T -jump in (G\v, Ω\v) is disjoint

from P0. Thus the lemma follows from Lemma 4.4. �

Lemma 4.6 Assume Hypothesis 4.2, let k ≥ 3, and let v ∈ V (P0) be such that no vertex in

V (P0)−{v} is exposed. Let i ∈ {0, 1, . . . , k} be such that (G\v, Ω\v) has a T -cross (Q1, Q2)

in region i. Then i ∈ {0, k} and v is not exposed. Furthermore, assume that i = 0, and that

there exists an (M ∪P0)-path Q with one end v and the other end in P1 ∪ v1Ωu1 −{u0}, and

that v0P0v is disjoint from Q1 ∪Q2. Then for some j ∈ {1, 2} there exist p ∈ V (Qj ∩u0P0v)

and q ∈ V (Qj ∩ Q) such that pP0v and qQv are internally disjoint from Q1 ∪ Q2.

Proof. If i 6∈ {0, k}, then the T -cross is disjoint from P0 by the choice of v, and hence the

T -cross and P0 give rise to three crossed paths. To complete the proof of the first assertion

we may assume that i = 0 and that v is exposed. Subject to these assumptions we choose

Q1 and Q2 so that Q1 ∪ Q2 ∪ P0 is minimal. Since v is exposed there exists a T -coterminal

path Q′ from v to y ∈ Z ∩ V (Ω) disjoint from P0 ∪ P1 ∪ Pk\v. Let Q′′ = Q′ ∪ vP0v0. If

Q′′∩(Q1∪Q2) = ∅ then (G, Ω) has a separated doublecross, where one pair of crossed paths is

obtained from the T -cross, the other pair is Pk and Q′′, and the fifth path is a subpath of P2.

Thus we may assume that there exists x ∈ V (Q′′) ∩ V (Qj) for some j ∈ {1, 2} and that x is

chosen so that xQ′′y is internally disjoint from Q1∪Q2. For r = 1, 2 let zr ∈ v1Ωu1−{v1, u1}

be an end of Qr such that Q3−r has one end in zrΩv0 and another in v0Ωzr. If x ∈ V (Q′),

then Qj is disjoint from P0, because v is the only exposed vertex and v 6∈ V (Q1) ∪ V (Q2).

Thus zjQjx ∪ xQ′y is a T -jump disjoint from P0, contrary to Lemma 4.4. It follows that

x ∈ V (v0P0v), and Q′ is disjoint from Q1 ∪ Q2.

Let x′ ∈ V (P0) ∩ (V (Q1) ∪ V (Q2)) be chosen so that x′P0v0 is internally disjoint from

Q1∪Q2. Without loss of generality, we assume that x′ ∈ V (Q1). Define P ′

0 = v0P0x
′∪x′Q1z1.

Let x′′ ∈ vP0u0 ∩ (V (P ′

0)∪ V (Q2)∪ {u0}) be chosen so that vP0x
′′ is internally disjoint from

P ′

0∪Q2. If x′′ 6∈ V (P ′

0) then the path Q′∪vP0u0, if x′′ = u0, or the path Q′∪vP0x
′′∪x′′Q2z2,

if x′′ ∈ V (Q2) is a T -jump, disjoint from P ′

0, contradicting Lemma 4.4. (See Figure 5(a).)

If x′′ ∈ V (P ′

0) then x′′P0v ∪Q′ and Q1\(V (P0)− {x′}) are paths with one end in V (P ′

0) and

another in V (Ω), contradicting Lemma 4.3, after we replace P0 by P ′

0 and P1 by Q2 in M .

(See Figure 5(b).) This proves the first assertion of the lemma.

To prove the second statement of the lemma we assume that i = 0 and that Q is a path

from v to v′ ∈ v1Ωu1 − {u0}, disjoint from M ∪ P0\v, except that P1 ∩ Q may be a path

with one end v′. Let the ends of Q1, Q2 be labeled as in the definition of T -cross. If P0
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Figure 5: Configurations considered in the proof of the first assertion of Lemma 4.6.

is disjoint from Q1 ∪ Q2, then (G, Ω) has three crossed paths (if (y2, u0, x1) is clockwise) or

a gridlet with paths Q1, Q2, P0, P2 (if (x1, u0, x2) or (y1, u0, y2) is clockwise), or a separated

doublecross with paths Q1, Q2, P0, P2, Pk (if (v1, u0, y1) or (x2, u0, u1) is clockwise). Thus we

may assume that P0 intersects Q1 ∪ Q2. (Please note that v0P0v is disjoint from Q1 ∪ Q2

by hypothesis.) Similarly we may assume that Q intersects Q1 ∪Q2, for otherwise we apply

the previous argument with P0 replaced by Q ∪ vP0v0. Let p ∈ V (Q1 ∪ Q2) ∩ u0P0v and

q ∈ V (Q1 ∪Q2) ∩ V (Q) be chosen to minimize pP0v and qQv. If p and q belong to different

paths Q1, Q2, then (G, Ω) has a turtle with legs Q1, Q2, neck Pk and body pP0v0∪qQv. Thus

p and q belong to the same Qj and the lemma holds. �

In the proof of Lemma 4.8 we will be applying Lemma 3.2. To guarantee that the

conditions of Lemma 3.2 are satisfied, we will need a result from [5]. We need to precede the

statement of this result by a few definitions.

Let M be a subgraph of a graph G, such that no block of M is a cycle. Let P be a

segment of M of length at least two, and let Q be a path in G with ends x, y ∈ V (P ) and

otherwise disjoint from M . Let M ′ be obtained from M by replacing the path xPy by Q;

then we say that M ′ was obtained from M by rerouting P along Q, or simply that M ′ was

obtained from M by rerouting. Please note that P is required to have length at least two,

and hence this relation is not symmetric. We say that the rerouting is proper if all the

attachments of the M-bridge that contains Q belong to P . The following is proved in [5,

Lemma 2.1].

Lemma 4.7 Let G be a graph, and let M be a subgraph of G such that no block of M is

a cycle. Then there exists a subgraph M ′ of G obtained from M by a sequence of proper

reroutings such that if an M ′-bridge B of G is unstable, say all its attachments belong to
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a segment P of M ′, then there exist vertices x, y ∈ V (P ) such that some component of

G\{x, y} includes a vertex of B and is disjoint from M ′\V (P ).

Lemma 4.8 Assume Hypothesis 4.2, and let k ≥ 4. If every leap of length k−1 has at most

one exposed vertex, (G, Ω) is 4-connected and (G\v, Ω\v) is rurally 4-connected for every

v ∈ V (P0), then (G, Ω) is nearly rural.

Proof. Since (G, Ω) has no separated doublecross it follows that it does not have a T -cross

both in region 0 and region k. Thus we may assume that it has no T -cross in region k.

Similarly, it follows that it does not have a T -tunnel under both P1 and Pk, or a T -cross in

region 0 and a T -tunnel under Pk. Thus we may also assume that (G, Ω) has no T -tunnel

under Pk. If some leap of length k in (G, Ω) has an exposed vertex, then we may assume

that v is an exposed vertex. Otherwise, let the leap (P0, P1, . . . , Pk) and v ∈ V (P0) be chosen

such that either v = u0 or there exists an (M ∪ P0)-path with one end v and the other end

in P1 ∪ v1Ωu1 − {u0}, and, subject to that, vP0v0 is as short as possible.

By Lemma 4.7 we may assume, by properly rerouting M if necessary, that every M-bridge

of G\v is stable. Since the reroutings are proper the new paths Pi will still be disjoint from

P0, and the property that defines v will continue to hold. Similarly, the facts that there is no

T -cross in region k and no T -tunnel under Pk remain unaffected. We claim that (G\v, Ω\v)

is rural.

We apply Lemma 3.2 to the society (G\v, Ω\v) and orderly transaction T . We may

assume that (G\v, Ω\v) is not rural, and hence by Lemma 3.2 the society (G\v, Ω\v) has

a T -jump, a T -cross or a T -tunnel. By the choice of v there exists a path Q from v to

v′ ∈ vkΩuk −{vk, uk} such that Q does not intersect Pk ∪P0\v and intersects at most one of

P1, P2, . . . , Pk−1. Furthermore, if it intersects Pi for some i ∈ {1, 2, . . . , k − 1} then Pi ∩Q is

a path with one end a common end of both. (If v = u0 then we can choose Q to be a one

vertex path.)

We claim that v satisfies the hypotheses of Lemma 4.5. To prove this claim suppose for

a contradiction that P is an (M ∪ P0)-path violating that hypothesis. Suppose first that P

and Q are disjoint. Then P joins different components of P0\v by Lemma 4.3. But then

changing P0 to the unique path in P0 ∪P that does not use v either produces a leap with at

least two exposed vertices, or contradicts the minimality of vP0v0. Thus P and Q intersect.

Since no leap of length k has two or more exposed vertices, it follows that v is not exposed.

Thus P has one end in u0P0v by the minimality of vP0v0, and the other end in Pk ∪ ukΩvk,

because v is not exposed. But then P ∪ Q includes a T -jump disjoint from P0, contrary

to Lemma 4.4. This proves our claim that v satisfies the hypotheses of Lemma 4.5. We

conclude that (G\v, Ω\v) has no T -jump.

Assume now that (G\v, Ω\v) has a T -cross (Q1, Q2) in region i for some integer i ∈

{0, 1, . . . , k}. By the first part of Lemma 4.6 and the fact that there is no T -cross in region
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k it follows that i = 0 and v is not exposed. We have v 6= u0, for otherwise V (P0)∩ (V (Q1)∪

V (Q2)) = ∅ and either Q1, Q2, P0 are three crossed paths, or Q1, Q2, P0, P3, P2 is a separated

double cross in (G, Ω). Since v is not exposed we deduce that Q satisfies the requirements of

Lemma 4.6. By the first part of Lemma 4.6 and the assumption made earlier it follows that

i = 0 and v is not exposed. But the existence of Q and the second statement of Lemma 4.6

imply that some leap of length k has at least two exposed vertices, a contradiction. (To see

that let j, p, q be as in Lemma 4.6. Replace P1 by Q3−j and replace P0 by a suitable subpath

of Qj ∪ pP0v0 ∪ qQv.)

We may therefore assume that (G\v, Ω\v) has a T -tunnel (Q0, Q1, Q2) under Pi for some

i ∈ {1, 2, . . . , k}. Then the leap L′ = (P0, P1, . . . , Pi−1, Pi+1, . . . , Pk) of length k − 1 ≥ 3 has

a T ′-cross, where T ′ is the corresponding orderly society, and the result follows in the same

way as above. �

Lemma 4.9 Assume Hypothesis 4.2 and let k ≥ 3. If there exist at least two exposed

vertices, then there exists a cycle C and three disjoint (M ∪ C)-paths R1, R2, R3 such that

Ri has ends xi ∈ V (C) and yi ∈ V (M), C\{x1, x2, x3} is disjoint from M , y1 = u0, y2 = v0

and y3 ∈ Z.

Proof. Let x1 be the closest exposed vertex to u0 on P0, and let x2 be the closest exposed

vertex to v0. Let R1 = x1P0u0 and let R2 = x2P0v0. For i = 1, 2 let Si be an (M ∪ P0)-path

with one end xi and the other end in Z. By Lemma 4.3 S1 and S2 intersect, and so we may

assume that S1 ∩ S2 is a path R3 containing an end of both S1 and S2, say y3. Let x3 be

the other end of R3. Then P0 ∪ S1 ∪ S2 includes a unique cycle C. The cycle C and paths

R1, R2, R3 are as desired for the lemma. �

If the cycle C in Lemma 4.9 can be chosen to have at least four vertices, then we say

that the leap (P0, P1, . . . , Pk) is diverse.

Lemma 4.10 Assume Hypothesis 4.2, let k ≥ 4, and let there be no diverse leap of length

k. If C is as in Lemma 4.9 and (G\E(C), Ω) is rurally 4-connected, then (G\E(C), Ω) is

rural.

Proof. Since the leap (P0, P1, . . . , Pk) is not diverse, it follows that C is a triangle. Let

R1, R2, R3 and their ends be numbered as in Lemma 4.9. We may assume that P0 = R1 ∪

R2 + x1x2. Since there is no diverse leap, Lemma 4.3 implies that there is no path in

G\E(C)\V (Pk) from x2 to vkΩuk, and none in G\E(C)\V (P1) from x1 to u1Ωv1. It also

implies that no vertex on P0 is exposed in G\x1x3\x2x3.

As in Lemma 4.8, we can apply Lemma 4.7 and assume, by properly rerouting M if neces-

sary, that the conditions of Lemma 3.2 are satisfied. We assume that the society (G\E(C), Ω)

has a T -jump, a T -cross, or a T -tunnel, as otherwise by Lemma 3.2 (G\E(C), Ω) is rural.
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By the observation at the end of the previous paragraph this T -jump, T -cross, or T -tunnel

cannot use both x1 and x2; say it does not use x2. But that contradicts Lemma 4.5 or the

first part of Lemma 4.6, applied to v = x2 and the graph G\x1x3, in case of a T -jump or a

T -cross.

Thus we may assume that (G\E(C)\x2, Ω\x2) has a T -tunnel (Q0, Q1, Q2) under Pi for

some i ∈ {1, 2, . . . , k}. But then the leap L′ = (P0, P1, . . . , Pi−1, Pi+1, . . . , Pk) of length

k − 1 ≥ 3 has a T ′-cross (Q′

1, Q
′

2), where T ′ is the corresponding orderly transaction, Q′

1 is

obtained from Pi by rerouting along Q0 and Q′

2 is the union of Q1 ∪ Q2 with the subpath

of Pi joining the ends of Q1 and Q2. By the first half of Lemma 4.6 applied to the graph

G\x1x3, the leap L′, v := x2 and the T ′-cross (Q′

1, Q
′

2) we may assume that i = 1 and

that y3 ∈ v2Ωu2 − {u0}. By the second half of Lemma 4.6 applied to the same entities and

Q := R3 + x3x2 there exist j ∈ {1, 2}, p ∈ V (Q′

j ∩ R1) and q ∈ V (Q′

j ∩ Q) such that pP0x2

and qQx2 are internally disjoint from Q′

1∪Q′

2. If j = 1, then p, q belong to the interior of Q0,

and the leap (P0, P1, . . . , Pk) is diverse, as a subpath of Q0 joins a vertex of R1 to a vertex

of Q in G\x1x3. If j = 2 then we obtain a diverse leap from (P0, P1, . . . , Pk) by replacing P1

by Q′

1 and replacing P0 by a suitable subpath of Q ∪ v0P0p ∪ Q′

2. �

Lemma 4.11 Assume Hypothesis 4.2, let k ≥ 3, let (G, Ω) be 4-connected, let C, R1, R2, R3

be as in Lemma 4.9, and assume that C is not a triangle. Then there exist four disjoint

(M ∪ C)-paths, each with one end in V (C) and the other end respectively in the sets {u0},

{v0}, Z and V (P1 ∪ Pk).

Proof. By an application of the proof of the max-flow min-cut theorem there exist four

disjoint (M ∪C)-paths, each with one end in V (C) and the other end respectively in the sets

{u0}, {v0}, Z and V (M). By Lemma 4.3 the fourth path does not end in V (M) − V (P1) −

V (Pk). The result follows. �

Lemma 4.12 Assume Hypothesis 4.2, let k ≥ 3, let C, R1, R2, R3 be as in Lemma 4.9, let

D := M ∪ C ∪ R1 ∪ R2 ∪ R3, and let R4 be a D-path with ends x4 ∈ V (C) − {x1, x2, x3}

and y4 ∈ V (P1). Then x1, x2, x3, x4 occur on C in the order listed. Furthermore, if R is a

D-path with ends x ∈ V (C) − {x1, x2, x3} and y ∈ V (M), then x1, x2, x3, x occur on C in

the order listed and y ∈ V (P1).

Proof. The vertices x1, x2, x3, x4 occur on C in the order listed by Lemma 4.3. Now let R

be as stated. By Lemma 4.3 we have y ∈ V (P1 ∪ Pk), and so by the first part of the lemma

we may assume that y ∈ V (Pk). By the symmetric statement to the first half of the lemma

it follows that x1, x2, x, x3 occur on C in the order listed. We may assume that P0 is the

unique path from u0 to v0 in R1 ∪ R2 ∪ C\x3. Then R4 ∪ R ∪ C\V (P0) includes a T -jump

disjoint from P0, contrary to Lemma 4.4. �
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Figure 6: Hypothesis 4.13.

We need to further upgrade the assumptions of Hypothesis 4.2, as follows.

Hypothesis 4.13 Assume Hypothesis 4.2. Let C be a cycle with distinct vertices x1, x2, x3

such that C\{x1, x2, x3} is disjoint from M . Let R1, R2, R3 be pairwise disjoint (M ∪ C)-

paths such that Ri has ends xi and yi, where y1 = u0, y2 = v0, and y3 ∈ Z. By a ray we mean

an (M ∪C)-path from C to M , disjoint from R1 ∪R2 ∪R3. We say that a vertex v ∈ V (P1)

is illuminated if there is a ray with end v. Let x4, x5 ∈ V (P1) be illuminated vertices such

that either x4 = x5, or u1, x4, x5, v1 occur on P1 in the order listed, and x4P1x5 includes all

illuminated vertices. Let R4 := u1P1x4 and R5 := v1P1x5, and let y4 := u1 and y5 := v1.

Let S4 and S5 be rays with ends x4 and x5, respectively, and let A0 := V (M) − V (P1) and

B0 := V (C ∪ S4 ∪ S5 ∪ x4P1x5). (See Figure 6.)

Lemma 4.14 Assume Hypothesis 4.13, let k ≥ 3, and let (G, Ω) be 6-connected. Then

x4 6= x5, and the path x4P1x5 has at least one internal vertex.

Proof. If x4 = x5 or x4P1x5 has no internal vertex, then by Lemma 4.12 the set {x1, x2, . . . , x5}

is a cutset separating C from M\V (P1), contrary to the 6-connectivity of (G, Ω). Note that

V (C) − {x1, x2, . . . , x5} is non-empty as it includes an end of a ray. �

Assume Hypothesis 4.13. By Lemma 4.14 the paths R1, R2, . . . , R5 are disjoint paths

from A0 to B0. The following lemma follows by a standard “augmenting path” argument.

Lemma 4.15 Assume Hypothesis 4.13, and let k ≥ 2. If there is no separation (A, B) of

order at most five with A0 ⊆ A and B0 ⊆ B, then there exist an integer n and internally
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disjoint paths Q1, Q2, . . . , Qn in G, where Qi has distinct ends ai and bi such that

(i) a1 ∈ A0 − {y1, y2, . . . , y5} and bn ∈ B0 − {x1, x2, . . . , x5},

(ii) for all i = 1, 2, . . . , n−1, ai+1, bi ∈ V (Rt) for some t ∈ {1, 2, . . . , 5}, and yt, ai+1, bi, xt

are pairwise distinct and occur on Rt in the order listed,

(iii) if ai, bj ∈ V (Rt) for some t ∈ {1, 2, . . . , 5} and i, j ∈ {1, 2, . . . , 5} with i > j + 1, then

either ai = bj, or yt, bj , ai, xt occur on Rt in the order listed, and

(iv) for i = 1, 2, . . . , n, if a vertex of Qi belongs to A0 ∪ B0 ∪ V (R1 ∪ R2 ∪ · · · ∪ R5), then

it is an end of Qi.

The sequence of paths (Q1, Q2, . . . , Qn) as in Lemma 4.15 will be called an augmenting

sequence.

Lemma 4.16 Assume Hypothesis 4.13, and let k ≥ 3. Then there is no augmenting sequence

(Q1, Q2, . . . , Qn), where Q1 is disjoint from P2.

Proof. Suppose for a contradiction that there is an augmenting sequence (Q1, Q2, . . . , Qn),

where Q1 is disjoint from P2, and let us assume that the leap (P0, P1, . . . , Pk), cycle C, paths

R1, R2, R3, S4, S5 and augmenting sequence (Q1, Q2, . . . , Qn) are chosen with n minimum.

Let the ends of the paths Qi be labeled as in Lemma 4.15. We may assume that P0 is the

unique path from u0 to v0 in R1 ∪ R2 ∪ C\x3. We proceed in a series of claims.

(1) The vertex bn belongs to the interior of x4P1x5.

To prove (1) suppose for a contradiction that bn ∈ V (C ∪ S4 ∪ S5). By Lemma 4.12, the

choice of x4, x5 and the fact that an 6= x4, x5 by Lemma 4.15(ii) we deduce that an ∈ V (Ri)

for some i ∈ {1, 2, 3}. Then we can use Qn to modify C to include anRixi (and modify

R1, R2, R3 accordingly), in which case (Q1, Q2, . . . , Qn−1) is an augmentation contradicting

the choice of n. This proves (1).

(2) ai, bi ∈ V (Rj) for no i ∈ {1, 2, . . . , n} and no j ∈ {1, 2, . . . , 5}.

To prove (2) suppose to the contrary that ai, bi ∈ V (Rj). Then 1 < i < n and by

rerouting Rj along Qi we obtain an augmentation (Q1, Q2, . . . , Qi−2, Qi−1 ∪ bi−1Rjai+1 ∪

Qi+1, Qi+2, . . . , Qn), contrary to the minimality of n. This proves (2).

(3) ai, bi ∈ V (R1 ∪ R2 ∪ R3) for no i ∈ {1, 2, . . . , n}.

Using (2) the proof of (3) is analogous to the argument at the end of the proof of Claim (1).

(4) ai, bi ∈ V (R4 ∪ R5) for no i ∈ {1, 2, . . . , n}.

By (2) one of ai, bi belongs to R4 and the other to R5. We can reroute P1 along Qi, and then

(Q1, Q2, . . . , Qi−1) becomes an augmentation, contrary to the minimality of n.
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(5) For i = 1, 2, . . . , n − 1, the graph Qi ∪ R1 ∪ R2 ∪ R3 includes no T -jump.

This claim follows from (3), Lemma 4.3 and Lemma 4.4 applied to P0.

(6) a1 6∈ v1Ωu1.

To prove (6) suppose for a contradiction that a1 ∈ v1Ωu1. Since a1 6= y1, we may assume

from the symmetry that a1 ∈ v1Ωy1−{y1}. Then b1 ∈ V (P1 ∪R1) by (5). But if b1 ∈ V (Ri),

where i = 1 or i = 5, then by rerouting Ri along Q1 we obtain an augmenting sequence

(Q2 ∪ x1Ria2, Q3, Q4, . . . , Qn), contrary to the choice of n. Thus b1 ∈ u1P1x5. By replacing

P1 by the path Q1∪u1P1b1 and considering the paths R3 and S5∪R5 we obtain contradiction

to Lemma 4.3. This proves (6).

(7) a1 6∈ ukΩvk.

Similarly as in the proof of (6), if a1 ∈ ukΩvk, then b1 ∈ V (R2) by (5), and we reroute

R2 along Q1 to obtain a contradiction to the minimality of n. This proves (7).

(8) a1 ∈ V (Pk).

To prove (8) we may assume by (6) and (7) that a1 ∈ Z. Then b1 ∈ V (R3 ∪ P1) by (5).

If b1 ∈ V (R3), then we reroute R3 along Q1 as before. Thus b1 ∈ V (P1). It follows from (5)

and the hypothesis V (P2) ∩ V (Q1) = ∅ that a1 ∈ u1Ωu2 − {u1, u2} or a1 ∈ v2Ωv1 − {v1, v2},

and so from the symmetry we may assume the latter.

Let us assume for a moment that y3 ∈ a1Ωv1. We reroute P1 along Q1∪b1P1v1. The union

of R3, R2 and a path in C between x2 and x3, avoiding x1, x4, x5, will play the role of P0

after rerouting. If b1 ∈ x4P1v1 −{x4}, then R1 ∪C ∪S4 ∪R4 includes two disjoint paths that

contradict Lemma 4.3 applied to the new frame and new path P0. Therefore b1 ∈ V (R4),

and hence (u1P1a2∪Q2, Q3, . . . , Qn) is an augmenting sequence after the rerouting, contrary

to the choice of n.

It follows that y3 6∈ a1Ωv1. If b1 ∈ V (R5), we replace P1 by Q1 ∪ u1P1b1; then (v1P1a2 ∪

Q2, Q3, . . . , Qn) is an augmenting sequence that contradicts the choice of n. So it follows

that b1 ∈ u1P1x5. But now (G, Ω) has a gridlet using the paths P0, Pk, Q1 ∪ u1P1b1 and a

subpath of R5 ∪ S5 ∪ R3 ∪ C\V (P0). This proves (8).

(9) n > 1.

To prove (9) suppose for a contradiction that n = 1. Thus b1 belongs to the interior of x4Px5

by (1), and a1 ∈ V (Pk) by (8). But then Q1 is a T -jump, contrary to (5).

(10) b1 ∈ V (R3).
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To prove (10) we first notice that b1 ∈ V (R2 ∪ R3) by (5), (9) and (1). Suppose for a

contradiction that b1 ∈ V (R2). Then a2 ∈ V (R2), but b2 6∈ V (R1 ∪ R2 ∪ R3) by (3) and

b2 6∈ V (P1) by (5), a contradiction. This proves (10).

Let P12 and P34 be two disjoint subpaths of C, where the first has ends x1, x2, and the

second has ends x3, x4. By (8) and (10) the path Q1 ∪ b1R3x3 ∪P34 ∪S4 is a T -jump disjoint

from R1 ∪ P12 ∪ R2, contrary to Lemma 4.4. �

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Let (G, Ω) be a 6-connected society with a leap of length five. Thus

we may assume that Hypothesis 4.2 holds for k = 5. By Lemma 4.8 either (G, Ω) is nearly

rural, in which case the theorem holds, or there exists a leap of length at least four with at

least two exposed vertices. Thus we may assume that there exists a leap of length four with

at least two exposed vertices. Let C be a cycle as in Lemma 4.9. If there is no diverse leap,

then C is a triangle, (G\E(C), Ω) is rurally 4-connected and hence rural by Lemma 4.10,

and the theorem holds. Thus we may assume that the cycle C is not a triangle, and so by

Lemma 4.11 we may assume that Hypothesis 4.13 for k = 4 holds. By Lemma 4.14 and the

6-connectivity of G there is no separation (A, B) as described in Lemma 4.15, and hence by

that lemma there exists an augmenting sequence (Q1, Q2, . . . , Qn). By Lemma 4.16 the path

Q1 intersects P2, and hence Q1 is disjoint from P3, contrary to Lemma 4.16 applied to the

leap (P0, P1, P3, P4) of length three and an augmenting sequence (Q′

1, Q2, . . . , Qn), where Q′

1

is the union of Q1 and a1P2u2 or a1P2v2. �

5 Societies of bounded depth

Let (G, Ω) be a society. A linear decomposition of (G, Ω) is a sequence (t1, . . . , tn) of all the

elements of V (Ω), where (t1, . . . , tn) is clockwise, together with a family (Xi : 1 ≤ i ≤ n) of

subsets of V (G), with the following properties:

(i)
⋃

(G[Xi] : 1 ≤ i ≤ n) = G,

(ii) for 1 ≤ i ≤ n, ti ∈ Xi, and

(iii) for 1 ≤ i ≤ i′ ≤ i′′ ≤ n, Xi ∩ Xi′′ ⊆ Xi′ .

The depth of such a linear decomposition is

max(|Xi ∩ Xi′ | : 1 ≤ i < i′ ≤ n),

and the depth of (G, Ω) is the minimum depth of a linear decomposition of (G, Ω). Theo-

rems (6.1), (7.1) and (8.1) of [11] imply the following.

Theorem 5.1 There exists an integer d such that every 4-connected society (G, Ω) either

has a separated doublecross, three crossed paths or a leap of length five, or some planar

truncation of (G, Ω) has depth at most d.
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In light of Theorems 4.1 and 5.1, in the remainder of the paper we concentrate on societies

of bounded depth. We need a few definitions. Let (G, Ω) be a society, let u1, u2, . . . , u4t be

clockwise in Ω, and let P1, P2, . . . , P2t be disjoint bumps in G such that for i = 1, 2, . . . , 2t

the path P2i−1 has ends u4i−3 and u4i−1, and the path P2i has ends u4i−2 and u4i. In those

circumstances we say that (G, Ω) has t disjoint consecutive crosses.

Now let u1, v1, w1, u2, v2, w2, . . . , ut, vt, wt be clockwise in Ω, let x ∈ V (G) − {u1, v1,

w1, . . . , ut, vt, wt}, for i = 1, 2, . . . , t let Pi be a path in G\x with ends ui and wi and

otherwise disjoint from V (Ω), let Qi be a path with ends x and vi and otherwise disjoint

from V (Ω), and assume that the paths Pi and Qi are pairwise disjoint, except that the paths

Qi meet at x. Let W be the union of all the paths Pi and Qi. We say that W is a windmill

with t vanes, and that the graph Pi ∪ Qi is a vane of the windmill.

Finally, let u1, u2, . . . , ut and v1, v2, . . . , vt be vertices of V (Ω) such that for all xi ∈ {ui, vi}

the sequence x1, x2, . . . , xt is clockwise in Ω. Let z1, z2 ∈ V (G)−{u1, v1, . . . , ut, vt} be distinct,

for i = 1, 2, . . . , t let Pi be a path in G\z2 with ends z1 and ui and otherwise disjoint from

V (Ω), and let Qi be a path in G\z1 with ends z2 and vi and otherwise disjoint from V (Ω).

Assume that the paths Pi and Qj are disjoint, except that the Pi share z1, the Qi share z2

and Pi and Qi are allowed to intersect. Let F be the union of all the paths Pi and Qi. Then

we say that F is a fan with t blades, and we say that Pi∪Qi is a blade of the fan. The vertices

z1 and z2 will be called the hubs of the fan. In Section 8 we prove the following theorem.

Theorem 5.2 For every two integers d and t there exists an integer k such that every 6-

connected k-cosmopolitan society (G, Ω) of depth at most d contains one of the following:

(1) t disjoint consecutive crosses, or

(2) a windmill with t vanes, or

(3) a fan with t blades.

Unfortunately, windmills and fans are nearly rural, and so for our application we need to

improve Theorem 5.2. We need more definitions.

Let x, ui, vi, wi, Pi, Qi be as in the definition of a windmill W with t vanes, let a, b, c, d ∈

V (G) be such that u1, v1, w1, . . . , ut, vt, wt, a, b, c, d is clockwise in Ω, and let (P, Q) be a cross

disjoint from W whose paths have ends in {a, b, c, d}. In those circumstances we say that

W ∪ P ∪ Q is a windmill with t vanes and a cross.

Now let ui, vi, Pi, Qi be as in the definition of a fan F with t blades, and let a, b, c, d ∈ V (Ω)

be such that all xi ∈ {ui, vi} the sequence x1, x2, . . . , xt, a, b, c, d is clockwise in Ω. Let (P, Q)

be a cross disjoint from F whose paths have ends in {a, b, c, d}. In those circumstances we

say that W ∪ P ∪ Q is a fan with t blades and a cross.

Let z1, z2, ui, vi, Pi, Qi be as in the definition of a fan F with t blades, and let a1, b1, c1, a2,

b2, c2 ∈ V (G) be such that all xi ∈ {ui, vi} the sequence x1, x2, . . . , xt, a1, b1, c1, a2, b2, c2 is

clockwise in Ω, except that we permit c1 = a2. For i = 1, 2 let Li be a path in G\V (F ) with
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ends ai and ci and otherwise disjoint from V (Ω), and let Si be a path with ends zi and bi

and otherwise disjoint from V (F ) ∪ V (Ω). If the paths L1, L2, S1, S2 are pairwise disjoint,

except possibly for L1 intersecting L2 at c1 = a2, then we say that F ∪ L1 ∪ L2 ∪ S1 ∪ S2 is

a fan with t blades and two jumps.

Now let ui, vi, Pi, Qi be as in the definition of a fan F with t+1 blades, and let a, b ∈ V (Ω)

be such that all xi ∈ {ui, vi} the sequence x1, x2, . . . , xt, a, xt+1, b is clockwise in Ω. Let P be

a path in G\V (F ) with ends a and b, and otherwise disjoint from V (F ). We say that F ∪P

is a fan with t blades and a jump. In Section 9 we improve Theorem 5.2 as follows.

Theorem 5.3 For every two integers d and t there exists an integer k such that every 6-

connected k-cosmopolitan society (G, Ω) of depth at most d is either nearly rural, or contains

one of the following:

(1) t disjoint consecutive crosses, or

(2) a windmill with t vanes and a cross, or

(3) a fan with t blades and a cross, or

(4) a fan with t blades and a jump, or

(5) a fan with t blades and two jumps.

For t = 4 each of the above outcomes gives a turtle, and hence we have the following

immediate corollary.

Corollary 5.4 For every integer d there exists an integer k such that every 6-connected

k-cosmopolitan society (G, Ω) of depth at most d is either nearly rural, or has a turtle.

The next four sections are devoted to proofs of Theorems 5.2 and 5.3. The proof of

Theorem 5.2 will be completed in Section 8 and the proof of Theorem 5.3 will be completed

in Section 9. At that time we will be able to deduce Theorem 1.8.

6 Crosses and goose bumps

In this section we prove that a society (G, Ω) either satisfies Theorem 5.2, or it has many

disjoint bumps. If X is a set and Ω is a cyclic permutation, we define Ω\X to be Ω|(V (Ω)−

X). Let P1, P2, . . . , Pk be a set of pairwise disjoint bumps in (G, Ω), where Pi has ends ui

and vi and u1, v1, u2, v2, . . . , uk, vk is clockwise in Ω. In those circumstances we say that

P1, P2, . . . , Pk is a goose bump in (G, Ω) of strength k.

Lemma 6.1 Let b, d and t be positive integers, and let (G, Ω) be a society of depth at most

d. Then either (G, Ω) has a goose bump of strength b, or there is a set X ⊆ V (G) of size at

most (b − 1)d such that the society (G\X, Ω\X) has no bump.
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Proof. Let (t1, t2, . . . , tn) and (X1, X2, . . . , Xn) be a linear decomposition of (G, Ω) of depth

at most d, and for i = 1, 2, . . . , n − 1 let Yi = Xi ∩ Xi+1. If P is a bump in (G, Ω), then the

axioms of a linear decomposition imply that

IP := {i ∈ {1, 2, . . . , n − 1} : Yi ∩ V (P ) 6= ∅}

is a nonempty subinterval of {1, 2, . . . , n − 1}. It follows that either there exist bumps

P1, P2, . . . , Pb such that IP1
, IP2

, . . . , IPb
are pairwise disjoint, or there exists a set I ⊆

{1, 2, . . . , n− 1} of size at most b− 1 such that I ∩ IP 6= ∅ for every bump P . In the former

case P1, P2, . . . , Pb is a desired goose bump, and in the latter case the set X :=
⋃

i∈I Yi is as

desired. �

The proof of the following lemma is similar and is omitted.

Lemma 6.2 Let t and d be positive integers, and let (G, Ω) be a society of depth at most d.

Then either (G, Ω) has t disjoint consecutive crosses, or there is a set X ⊆ V (G) of size at

most (t − 1)d such that the society (G\X, Ω\X) is cross-free.

Lemma 6.3 Let d, b, t be positive integers, let k ≥ (b − 1)d + (t − 1)
(

(b−1)d
2

)

+ 1 and let

(G, Ω) be a 3-connected society of depth at most d such that at least k vertices in V (Ω) have

at least two neighbors in V (G). Then (G, Ω) has either a fan with t blades, or a goose bump

of strength b.

Proof. By Lemma 6.1 we may assume that there exists a set X ⊆ V (G) of size at most

(b − 1)d such that (G\X, Ω\X) has no bump. There are at least (t − 1)
(

(b−1)d
2

)

+ 1 vertices

in V (Ω) − X with at least two neighbors in V (G). Let v be one such vertex, and let H

be the component of G\X containing v. Since (G\X, Ω\X) has no bumps it follows that

V (H) ∩ V (Ω) = {v}. By the fact that v has at least two neighbors in G (if V (H) = {v}) or

the 3-connectivity of (G, Ω) (if V (H) 6= {v}) it follows that H has at least two neighbors in

X. Thus there exist distinct vertices z1, z2 such that for at least t vertices of v ∈ V (Ω) − X

the component of G\X containing v has z1 and z2 as neighbors. It follows that (G, Ω) has

a fan with t blades, as desired. �

7 Intrusions, invasions and wars

Let Ω be a cyclic permutation. A base in Ω is a pair (X, Y ) of subsets of V (Ω) such that

|X ∩Y | = 2, X ∪Y = V (Ω) and for distinct elements x1, x2 ∈ X and y1, y2 ∈ Y the sequence

(x1, y1, x2, y2) is not clockwise. Now let (G, Ω) be a society. A separation (A, B) of G is

called an intrusion in (G, Ω) if there exists a base (X, Y ) in Ω such that X ⊆ A, Y ⊆ B and

there exist disjoint paths (Pv)v∈A∩B , each with one end in X, the other end in Y and with
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v ∈ V (Pv). The intrusion (A, B) is minimal if there is no intrusion (A′, B′) of order |A ∩B|

with base (X, Y ) such that A′ is a proper subset of A. The paths Pv will be called longitudes

for the intrusion (A, B). We say that (A, B) is based at (X, Y ), and that (X, Y ) is a base

for (A, B). An intrusion (A, B) in (G, Ω) is an invasion if |A ∩ B ∩ V (Ω)| = 2.

Lemma 7.1 Let d be a positive integer, and let (G, Ω) be a society of depth at most d − 1.

Then for every base (X, Y ) in Ω there exists an intrusion of order at most 2d based at (X, Y ).

Proof. Let (t1, t2, . . . , tn) and (X1, X2, . . . , Xn) be a linear decomposition of (G, Ω) of depth

at most d − 1, and let X ∩ Y = {ti, tj}. Let i′, j′ ∈ {1, 2, . . . , n} be such that |i − i′| =

|j − j′| = 1, and let Z := (Xi ∩ Xi′) ∪ (Xj ∩ Xj′) ∪ {ti, tj}. It follows from the axioms of a

linear decomposition that |Z| ≤ 2d and that Z separates X from Y in G. Thus there exists

a separation (A, B) of G of order at most 2d with X ⊆ A and Y ⊆ B. Any such separation

(A, B) with |A ∩ B| minimum is as desired by Menger’s theorem. �

An intrusion (A, B) in a society (G, Ω) is t-separating if (G, Ω) has goose bumps P1, P2, . . . , Pt

and Q1, Q2, . . . , Qt such that V (Pi) ⊆ A − B and V (Qi) ⊆ B − A for all i = 1, 2, . . . , t.

Lemma 7.2 Let d, s, t be positive integers, and let (G, Ω) be a society of depth at most d−1

with a goose bump of strength t(s + 2d). Then there exist s-separating minimal intrusions

(A1, B1), (A2, B2), . . . , (At, Bt) of order at most 2d such that Ai ∩Aj ⊆ Bi ∩ Bj for all pairs

of distinct indices i, j = 1, 2, . . . , t.

Proof. Let P be the set of paths comprising a goose bump of strength t(s+2d). Thus there

exist bases (X1, Y1), (X2, Y2), . . . (Xt, Yt) such that the sets Xi are pairwise disjoint and for

each i = 1, 2, . . . , t exactly s+2d of the paths in P have both ends in Xi. By Lemma 7.1 there

exists, for each i = 1, 2, . . . , t, an intrusion (Ai, Bi) of order at most 2d based at (Xi, Yi).

Let us choose, for each i = 1, 2, . . . , t, an intrusion (Ai, Bi) of order at most 2d based at

(Xi, Yi) in such a way that
t

∑

i=1

|Ai| is minimum. (1)

We claim that Ai ∩ Aj ⊆ Bi ∩ Bj . To prove the claim suppose to the contrary that say

x ∈ A1 ∩ A2 − B1 ∩ B2. Let

A′

1 = A1 ∩ B2,

B′

1 = A2 ∪ B1,

A′

2 = A2 ∩ B1,

B′

2 = A1 ∪ B2.

Then (A′

1, B
′

1) and (A′

2, B
′

2) are separations of G with X1 ⊆ A′

1, Y1 ⊆ B′

1, X2 ⊆ A′

2 and

Y2 ⊆ B′

2. We have

|A1 ∩ B1| + |A2 ∩ B2| = |A′

1 ∩ B′

1| + |A′

2 ∩ B′

2|.
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Furthermore, since each longitude for (A1, B1) intersects A′

1∩B′

1 we deduce that |A′

1∩B′

1| ≥

|A1∩B1|, and similarly |A′

2∩B′

2| ≥ |A2∩B2|. Thus the last two inequalities hold with equality,

and hence the longitudes for (A1, B1) are also longitudes for (A′

1, B
′

1), and the longitudes

for (A2, B2) are longitudes for (A′

2, B
′

2). It follows that for i = 1, 2 the separation (A′

i, B
′

i)

is an intrusion in (G, Ω) based at (Xi, Yi) of order |Ai ∩ Bi|. Since A1 ∩ A2 − (B1 ∩ B2) =

(A1 ∩ A2 − B1) ∪ (A1 ∩ A2 − B2) we may assume that x ∈ A1 − B2. But then replacing

(A1, B1) by (A′

1, B
′

1) produces a set of intrusions that contradict (1). This proves our claim

that Ai ∩ Aj ⊆ Bi ∩ Bj for all distinct integers i, j = 1, 2, . . . , t.

Since at most 2d of the paths in P with ends in Xi can intersect Ai ∩Bi, we deduce that

each intrusion (Ai, Bi) is s-separating. Moreover, each (Ai, Bi) is clearly minimal by (1). �

We need a lemma about subsets of a set.

Lemma 7.3 Let d and t be positive integers, and let F be a family of 2(d+1

2 )td distinct subsets

of a set S, where each member of F has size at most d. Then there exist a set X ⊂ S of

size at most
(

d+1
2

)

and a family F ′ ⊆ F of size at least t such that F ∩F ′ ⊆ X for every two

distinct sets F, F ′ ∈ F ′.

Proof. We proceed by induction on d + t. If d = 1 or t = 1, then the lemma clearly holds,

and so we may assume that d, t > 1. Let F0 ∈ F be minimal with respect to inclusion. If

F has a subfamily F1 of at least 2(d+1

2 )(t − 1)d sets disjoint from F0, then the result follows

from the induction hypothesis applied to F1 and by adding F0 to the family thus obtained.

If the family F2 = {F −F0 : F ∈ F , F ∩F0 6= ∅} includes at least 2(d

2)td−1 distinct sets, then

the result follows from the induction hypothesis applied to F2 by adding F0 to the set thus

obtained. Thus we may assume neither of the two cases holds. Thus

|F| ≤ 2(d+1

2 )(t − 1)d − 1 + 2d2(d

2)td−1 − 1 + 1 < 2(d+1

2 )td,

a contradiction. �

Lemma 7.4 Let d, s, t be positive integers, and let (G, Ω) be a society of depth at most d−1

with a goose bump of strength 2(2d+1

2 )t2d(s + 2d). Then there exist a set X ⊆ V (G) of size at

most
(

2d+1
2

)

and s-separating intrusions (A1, B1), (A2, B2), . . . , (At, Bt) in (G\X, Ω\X) such

that Ai ∩ Aj = ∅ for all pairs of distinct indices i, j = 1, 2, . . . , t.

Proof. Let T = 2(2d+1

2 )t2d. By Lemma 7.2 there exist s-separating minimal intrusions

(A1, B1), (A2, B2), . . . , (AT , BT ) of order at most 2d such that Ai ∩Aj ⊆ Bi ∩Bj for all pairs

of distinct indices i, j = 1, 2, . . . , t. By Lemma 7.3 applied to the sets Ai ∩ Bi there exist

a set X ⊆
⋃T

i=1(Ai ∩ Bi) of size at most
(

2d+1
2

)

and a subset of t of those intrusions, say

(A1, B1), (A2, B2), . . . , (At, Bt), such that Ai ∩ Bi ∩ Aj ∩ Bj ⊆ X for all distinct integers

i, j = 1, 2, . . . , t. It follows that (Ai − X, Bi − X) are as required for (G\X, Ω\X). �
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Our next objective is to prove, albeit with weaker bounds, that the conclusion of Lemma 7.4

can be strengthened to assert that the intrusions (Ai, Bi) therein are actually invasions.

Let (A, B) be an intrusion in a society (G, Ω) based at (X, Y ). A path P in G[A] is a

meridian for (A, B) if its ends are the two vertices of X ∩ Y . If P is a meridian for (A, B)

and (Lv)v∈A∩B are longitudes for (A, B), then the graph (P ∪
⋃

v∈A∩B Lv)\(B −A) is called

a frame for (A, B).

Lemma 7.5 Let λ and s be positive integers, let s′ = (s − 1)(λ − 1) + 1, let (G, Ω) be a

cross-free society, and let (A, B) be an s′-separating minimal intrusion in (G, Ω) of order

at most λ. Then there exists an s-separating minimal invasion (C, D) in (G, Ω) of order at

most λ with a frame F such that V (F ) − V (Ω) ⊆ A.

Proof. We may assume that

(1) there is no integer λ′ ≤ λ and an ((s − 1)(λ′ − 1) + 1)-separating minimal intrusion

(A′, B′) in (G, Ω) of order at most λ′ with A′ a proper subset of A,

for if (A′, B′) exists, and it satisfies the conclusion of the lemma, then so does (A, B). We

first show that (A, B) has a meridian. Indeed, suppose not. Let (X, Y ) be a base of (A, B)

and let X ∩ Y = {u, v}; then G[A] has no u-v path. Since (G, Ω) is cross-free it follows that

G[A] has a separation (A1, A2) of order zero such that both X1 = X ∩A1 and X2 = X ∩A2

are intervals in Ω. It follows that there exist Y1, Y2 such that (X1, Y1) and (X2, Y2) are bases.

Thus (A1, A2 ∪B ∪ (X1 ∩ Y1)) and (A2, A1 ∪B ∪ (X2 ∩ Y2)) are minimal intrusions, and one

of them violates (1). This proves that (A, B) has a meridian.

Let M be a meridian in (A, B), let (Lv)v∈A∩B be a collection of longitudes for (A, B) and

let F = M ∪
⋃

v∈A∩B(Lv\(B −A)). By the same argument that justifies (1) we may assume

that

(2) there is no integer λ′ < λ and an ((s − 1)(λ′ − 1) + 1)-separating minimal intrusion

(A′, B′) in (G, Ω) of order at most λ′ with frame F ′ such that F ′\V (Ω) is a subgraph of F .

We claim that |A ∩ B ∩ V (Ω)| = 2. We first prove that A ∩ B ∩ X = {u, v}. To this

end suppose for a contradiction that w ∈ A ∩ B ∩ X − {u, v}; then w divides X into two

cyclic intervals X1 and X2 with ends u, w and w, v, respectively. Let Y1 and Y2 be the

complementary cyclic intervals so that (X1, Y1) and (X2, Y2) are bases.

For i = 1, 2 let Ai consist of w and all vertices a ∈ A such that there exists a path in

G[A]\w with one end a and the other end in Xi − {w}, and let A3 = A − A1 − A2. It

follows that A1 ∩ A2 = {w}, for if P is a path in G[A]\w with one end in X1 and the other

end in X2, then (P, Pw) is a cross in (G, Ω), a contradiction. Thus (A1, A2 ∪ A3 ∪ B) and

(A2, A1 ∪ A3 ∪ B) are minimal intrusions based on (X1, Y1) and (X2, Y2), respectively, with

A1, A2 ⊆ A. Thus one of them violates (2).
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Next we show that |A ∩ B ∩ Y | = 2, and so we suppose for a contradiction that there

exists z ∈ A ∩ B ∩ Y − {u, v}. We define B1, B2, B3, X1, Y1, X2, Y2 analogously as in the

previous paragraph, but with the roles of A and B reversed. Similarly we find that one of

(A∪B1∪B3, B2) and (A∪B2∪B3, B1) is an ((s−1)(λ′−1)+1)-separating minimal intrusion

in (G, Ω) of order at most λ′, for some λ′ < λ, and so from the symmetry we may assume

that (A∪B1∪B3, B2) has this property. Since (M, Pz) is not a cross in (G, Ω) it follows that

M and Pz intersect. Thus M ∪ Pz includes a meridian for (A ∪ B1 ∪ B3, B2). Finally, since

Z = B2 ∩ (A ∪ B1 ∪ B3) ⊆ A ∩ B, the paths (Lv)v∈Z form longitudes for (A ∪ B1 ∪ B3, B2),

contrary to (2).

Thus we have shown that A ∩ B ∩ V (Ω) = {u, v}. Let Z be the set of all vertices z ∈ A

such that there is no path in G[A] with one end z and the other end in X, let C = A − Z

and D = B∪Z. Then (C, D) is an intrusion with C∩D = A∩B and F is a frame for (C, D)

with V (F ) − V (Ω) ⊆ C. Since the order of (C, D) is at least two, it satisfies the conclusion

of the lemma. �

We are ready to deduce the main result of this section. By a war in a society (G, Ω)

we mean a set W of minimal invasions such that each invasion in W has a meridian, and

A ∩ A′ = ∅ for every two distinct invasions (A, B), (A′, B′) ∈ W. We say that the war W

is s-separating if each invasion in W is s-separating, we say W has order at most λ if each

member of W has order at most λ, and we say that W is a war of intensity |W|.

Lemma 7.6 Let s, t and d be positive integers, and let b = 2(2d+1

2 )(2dt)2d(s(2d − 1) + 2).

Then if a cross-free society (G, Ω) of depth at most d − 1 has a goose bump of strength b,

then it has a set X of at most
(

2d+1
2

)

vertices such that the society (G\X, Ω\X) has an

s-separating war of intensity t and order at most 2d.

Proof. Let s′ = (2d − 1)(s − 1) + 1. By Lemma 7.4 there exist a set X ⊆ V (G) with

at most
(

2d+1
2

)

elements and s′-separating intrusions (A1, B1), (A2, B2), . . . , (A2dt, B2dt) in

(G\X, Ω\X) of order at most 2d such that Ai ∩ Aj = ∅ for every pair i, j = 1, 2, . . . , 2dt of

distinct integers. By 2dt applications of Lemma 7.5 there exist, for each i = 1, 2, . . . , 2dt,

and s-separating minimal invasion (Ci, Di) in (G\X, Ω\X) of order at most 2d with a frame

Fi such that V (Fi) − V (Ω) ⊆ V (Ai). Let Mi be a meridian for (Ci, Di), and let (Xi, Yi) be

the base for (Ci, Di). Since (G, Ω) has depth at most d there exists a set I ⊆ {1, 2, . . . , 2dt}

of size t such that the sets {Xi}i∈I are pairwise disjoint. By symmetry we may assume that

I = {1, 2, . . . , t}. We claim that (C1, D1), (C2, D2), . . . , (Ct, Dt) are as desired. To prove the

claim suppose for a contradiction that say x ∈ Ci ∩ Cj. Since (Ci, Di) is an invasion there

exists a path in G[Ci] from x to Xi ⊆ Yj; therefore this path intersects Cj ∩Dj. Thus there

exists a vertex v ∈ Cj ∩Dj ∩Ci; let L be the longitude of Fj that includes v. But L connects

v ∈ Ci to a vertex of Xj ⊆ Yi ⊆ Di, and hence intersects Ci ∩ Di ⊆ V (Fi). Thus Fi and Fj
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intersect. But V (Fi)∩V (Fj)−V (Ω) ⊆ Ai∩Aj = ∅ and V (Fi)∩V (Fj)∩V (Ω) ⊆ Xi∩Xj = ∅,

a contradiction. Thus (C1, D1), (C2, D2), . . . , (Ct, Dt) satisfy the conclusion of the lemma. �

8 Using wars

Lemma 8.1 Let l, t, r be positive integers such that r ≥ (t − 1)
(

l

2

)

+ 1, let (G, Ω) be a con-

nected society, and let Z ⊆ V (G) be a set of size at most l such that the society (G\Z, Ω\Z)

has a war W of intensity r such that for every (A, B) ∈ W at least two distinct members of

Z have at least one neighbor in A. Then (G, Ω) has a fan with t blades.

Proof. There exist distinct vertices z1, z2 ∈ Z and a subset W ′ of W of size t such that

for every (A, B) ∈ W ′ both z1 and z2 have a neighbor in A. Furthermore, since (A, B) is a

minimal intrusion, it follows that for every vertex a ∈ A there exists a path in G[A] from a

to V (Ω). It follows that (G, Ω) has a fan with t blades, as desired. �

Let (A, B) be an invasion in a cross-free society (G, Ω), based at (X, Y ), and let (Lv)v∈A∩B

be longitudes for (A, B). Let Ω′ be a cyclic permutation in A defined as follows: for each

u ∈ Y , if u is an end of Lv, then we replace u by v, and otherwise we delete u. Then

(G[A], Ω′) is a society, and we will call it the society induced by (A, B). Since (G, Ω) is

cross-free the definition does not depend on the choice of longitudes for (A, B).

Assume now that (G[A], Ω′) is rural. A path P in G[A] is called a perimeter path in

(G[A], Ω′) if A ∩ B ⊆ V (P ) and G[A] has a drawing in a disk with vertices of Ω′ appearing

on the boundary of the disk in the order specified by Ω′ and with every edge of P drawn in

the boundary of the disk.

The next lemma is easy and we omit its proof.

Lemma 8.2 Let (A, B) be an invasion with longitudes {Pv}v∈A∩B in a cross-free society

(G, Ω). Then the society induced by (A, B) is cross-free.

Lemma 8.3 Let (G, Ω) be a 5-connected society, let Z ⊆ V (G) be such that (G\Z, Ω\Z) is

cross-free, and let (A, B) be an invasion in (G\Z, Ω\Z). If at most one vertex of Z has a

neighbor in A, then the society induced in (G\Z, Ω\Z) by (A, B) is rural and has a perimeter

path.

Proof. Let (G[A], Ω′) be the society induced in (G\Z, Ω\Z) by (A, B). By Lemma 8.2 it

is cross-free and by Theorem 3.1 it is rural. Thus it has a drawing in a disk ∆ with V (Ω′)

drawn on the boundary of ∆ in the order specified by Ω′. When ∆ is regarded as a subset

of the plane, the unbounded face of G[A] is bounded by a walk W . Let P be a subwalk of

W containing A ∩ B. If P is not a path, then it has a repeated vertex, say x, and G[A] has

a separation (C, D) with C ∩D = {x} and A∩B ∩V (Ω) ⊆ C. Since (G[A], Ω′) is cross-free,
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the latter inclusion implies that D − C is disjoint from V (Ω) or from A ∩ B. However,

the latter is impossible, which can be seen by considering the drawing of G[A] in ∆. Thus

(D−C)∩V (Ω) = ∅, and since (A, B) has longitudes we deduce that |(D−C)∩A∩B| ≤ 1.

Let z ∈ Z be such that no vertex of Z−{z} has a neighbor in A. Since (G, Ω) is 4-connected,

the fact that ((D −C)∩A∩B)∪ {x, z} does not separate G implies that D −C consists of

a unique vertex, say d, and d ∈ A ∩ B. Furthermore, the only neighbor of d in A is x. But

then (A− {d}, B ∪ {x}) contradicts the minimality of (A, B). This proves that P is a path,

and it follows that it is a perimeter path for (G[A], Ω′). �

Let (G, Ω) be a society. A set T of bumps in (G, Ω) is called a transaction in (G, Ω) if

there exist elements u, v ∈ V (Ω) such that each member of T has one end in uΩv and the

other end in V (Ω) − uΩv. The first part of the next lemma is easy, and the second part is

proved in [11, Theorem (8.1)].

Lemma 8.4 Let (G, Ω) be a society, and let d ≥ 1 be an integer. If (G, Ω) has depth d, then

it has no transaction of cardinality exceeding 2d. Conversely, if (G, Ω) has no transaction of

cardinality exceeding d, then it has depth at most d.

Lemma 8.5 Let (G, Ω) be a society of depth d, and let X ⊆ V (G). Then the society

(G\X, Ω\X) has depth at most 2d.

Proof. By Lemma 8.4 the society (G, Ω) has no transaction of cardinality exceeding 2d.

Then clearly (G\X, Ω\X) has no transaction of cardinality exceeding 2d, and hence has

depth at most 2d by another application of Lemma 8.4. �

We need one last lemma before we can prove Theorem 5.2. The lemma we need is

concerned with the situation when a society of bounded depth “almost” has a windmill with

t vanes, except that the paths Pi are not necessarily disjoint and their ends do not necessarily

appear in the right order. We begin with a special case when the ends of the paths Pi do

appear in the right order.

Lemma 8.6 Let t ≥ 1 be an integer, and let ρ = d(t−1)(t′−1)+1, where t′ = d(t−1)2 + t.

Let (G, Ω) be a society of depth d, let (u1, z1, v1, u2, z2, v2, . . . , uρ, zρ, vρ) be clockwise, let

z ∈ V (G), for i = 1, 2, . . . , ρ let Pi be a bump with ends ui and vi, and let Qi be a path of

length at least one with ends z and zi disjoint from V (Ω) − {z, zi}. Assume that the paths

Qi are pairwise disjoint except for z, and that each is disjoint from every Pj. Then (G, Ω)

has either a windmill with t vanes, or a fan with t blades.

Proof. By the proof of Lemma 6.1 applied to the paths Pi either some t of those paths

are vertex-disjoint, in which case (G, Ω) has a windmill with t vanes, or there exists a set

X ⊆ V (G) of size at most (t− 1)d such that each Pi uses at least one vertex of X. We may
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therefore assume the latter. For i = 1, 2, . . . , ρ the path Pi has a subpath P ′

i with one end

ui, the other end xi ∈ X and no internal vertex in X. Thus there exist x ∈ X and a set

I ⊆ {1, 2, . . . , ρ} of size t′ such that x = xi for all i ∈ I. Let H be the union of all P ′

i over

i ∈ I. By an application of Lemma 6.1 to the graph H\x we deduce that either H\x has

a goose bump of strength t, in which case (G, Ω) has a windmill with t vanes, or H has a

set Y of size at most (t − 1)d such that H\Y \x has no bumps. In the latter case for each

i ∈ I there is a path P ′′

i in H with one end ui, the other end yi ∈ Y ∪ {x} and otherwise

disjoint from Y ∪{x}. Thus there is a vertex y ∈ Y ∪{x} and a set J ⊆ I of size t such that

yi = y for every i ∈ J . Since H\Y \x has no bumps it follows that P ′′

j and P ′′

j′ share only y

for distinct j, j′ ∈ J . Thus (G, Ω) has a fan with t blades, as desired. �

Now we are ready to prove the last lemma in full generality.

Lemma 8.7 Let t ≥ 1 be an integer, and let ξ = (d + 1)ρ, where ρ is as in Lemma 8.6. Let

(G, Ω) be a society of depth d, let z ∈ V (G), for i = 1, 2, . . . , ξ let (ui, zi, vi) be clockwise,

and let (u1, z1, u2, z2, . . . , uξ, zξ) be clockwise. Let Pi be a bump with ends ui and vi, and let

Qi be a path of length at least one with ends z and zi disjoint from V (Ω) − {z, zi}. Assume

that the paths Qi are pairwise disjoint except for z, and that each is disjoint from every Pj.

Then (G, Ω) has either a windmill with t vanes, or a fan with t blades.

Proof. Let (t1, t2, . . . , tn) be a clockwise enumeration of V (Ω), and let (X1, X2, . . . , Xn) be a

corresponding linear decomposition of (G, Ω) of depth d. Let us fix an integer i = 1, 2, . . . , ρ,

and let I = {(i − 1)(d + 1) + 1, (i − 1)(d + 1) + 2, . . . , i(d + 1)}. For each such i we will

construct paths P ∗

i and Q∗

i satisfying the hypothesis of Lemma 8.6. In the construction we

will make use of the paths Pj and Qj for j ∈ I.

If (uj, zj , vj, ui(d+1)+1) is clockwise for some j ∈ I, then we put P ∗

i = Pj and Q∗

i = Qj .

Otherwise, letting s be such that ts = ui(d+1), we deduce that Pj intersects Xts ∩ Xts+1
for

all j ∈ I. Since |I| > |Xts ∩Xts+1
| it follows that there exist j < j′ ∈ I such that Pj and Pj′

intersect. Let P ∗

i be a subpath of Pj ∪ Pj′ with ends uj and uj′, and let Q∗

i = Qj .

This completes the construction. The lemma follows from Lemma 8.6. �

Proof of Theorem 5.2. Let the integers d and t be given, let ξ be as in Lemma 8.7, let

ℓ = 2(t − 1)d +
(

4d+2
2

)

, let τ = (t − 1)
(

ℓ

2

)

+
(

2(t − 1)d +
(

8d+2
2

))

(6ξ − 1) + 1, let b be as in

Lemma 7.6 with s = 1, t = τ and d replaced by 4d+1, and let k be as in Lemma 6.3 applied

to b, t, and 4d. We will prove that k satisfies the conclusion of the theorem.

To that end let (G, Ω) be a k-cosmopolitan society of depth at most d, and let (G0, Ω0) be

a planar truncation of (G, Ω). Let S ⊆ V (Ω0). We say that S is sparse if whenever u1, u2 ∈ S

are such that there does not exist w ∈ S such that (u1, w, u2) is clockwise, then there exist

two disjoint bumps P1, P2 in (G0, Ω0) such that ui is an end of Pi. The reader should notice

that if H is one of the graphs listed as outcomes (1)-(3) of Theorem 5.2, then V (H)∩V (Ω0)
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is sparse. We say that (G0, Ω0) is weakly linked if for every sparse set S ⊆ V (Ω0) there exist

|S| disjoint paths from S to V (Ω) with no internal vertex in V (G0). Thus if the conclusion of

the theorem holds for some weakly linked truncation of (G0, Ω0), then it holds for (G, Ω) as

well. Thus we may assume that (G0, Ω0) is a weakly linked truncation of (G, Ω) with |V (G0)|

minimum. We will prove that (G0, Ω0) satisfies the conclusion of Theorem 5.2. Since (G0, Ω0)

is weakly linked, Lemma 8.4 implies that (G0, Ω0) has no transaction of cardinality exceeding

2d, and hence has depth at most 2d by Lemma 8.4.

By Lemma 6.2 there exists a set Z1 ⊆ V (G0) such that |Z1| ≤ 2(t − 1)d and the society

(G0\Z1, Ω1\Z1) is cross-free. By Lemma 8.5 the society (G0\Z1, Ω0\Z1) has depth at most

4d. By Lemma 6.3 we may assume that (G0\Z1, Ω0\Z1) has a goose bump of strength b. By

Lemma 7.6 there exists a set Z2 ⊆ V (G) − Z1 such that |Z2| ≤
(

4d+2
2

)

and in the society

(G0\Z, Ω0\Z) there exists a 1-separating war W of intensity τ and order at most 8d + 2,

where Z = Z1 ∪ Z2. If there exist at least (t − 1)
(

ℓ

2

)

+ 1 invasions (A, B) ∈ W such that at

least two distinct vertices of Z have a neighbor in A, then the theorem holds by Lemma 8.1.

We may therefore assume that this is not the case, and hence W has a subset W ′ of size at

least |Z|(6ξ− 1)+1 such that for every (A, B) ∈ W ′ at most one vertex of Z has a neighbor

in A.

Let (A, B) ∈ W ′ and let z ∈ Z be such that no vertex in Z − {z} has a neighbor in

A. By Lemma 8.3 the society (G0[A], Ω′) induced in (G0\Z, Ω0\Z) by (A, B) is rural and

has a perimeter path P . It follows that (A ∪ {z}, B ∪ {z}) is a separation of G0. Let

A ∩ B = {w0, w1, . . . , ws}, and let Li be the longitude containing wi. Let the ends of Li

be ui ∈ A and vi ∈ B. We may assume that (u0, u1, . . . , us) is clockwise. The vertices wi

divide P into paths P0, P1, . . . , Ps, where Pi has ends wi−1 and wi. We claim that no Pi

includes all neighbors of z. Suppose for a contradiction that Pi does. Let (G, Ω) be the

composition of (G0, Ω0) with a rural neighborhood (G1, Ω, Ω0). Let G′

1 = G1 ∪ G[A ∪ {z}],

let G′

0 = G0\(A − B) and let Ω′

0 consist of wsΩw0 followed by ws−1, ws−2, . . . , wi followed

by z followed by wi−1, wi−2, . . . , w1. Since (G[A], Ω′) is rural and all neighbors of z belong

to Pi, it follows that (G′

1, Ω, Ω′

0) is a rural neighborhood and (G, Ω) is the composition of

(G′

0, Ω
′

0) with this neighborhood. Thus (G′

0, Ω
′

0) is a planar truncation of (G, Ω). We claim

that (G′

0, Ω
′

0) is weakly linked. To prove that let S ′ ⊆ V (Ω′

0) be sparse. Since (A, B) is

a minimal intrusion there exists a set P ′ of |S ′| disjoint paths from S ′ to V (Ω0) with no

internal vertex in G′

0; let S be the set of their ends in V (Ω0). Since S ′ is sparse in (G′

0, Ω
′

0),

it follows that S is sparse in (G0, Ω0). Since (G0, Ω0) is weakly linked there exists a set P

of |S| disjoint paths in G from S to V (Ω) with no internal vertex in G0. By taking unions

of members of P and P ′ we obtain a set of paths proving that (G′

0, Ω
′

0) is weakly linked, as

desired. Since W is 1-separating this contradicts the minimality of G0, proving our claim

that no Pi includes all neighbors of z. The same argument, but with G′

1 = G1 ∪ G[A] and

Ω′

0 not including z shows that z has a neighbor in A − B.
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We have shown, in particular, that exactly one vertex of Z has a neighbor in A−B. Thus

there exists a subset W ′′ of W ′ of size 6ξ and a vertex z ∈ Z such that for every (A, B) ∈ W ′′

the vertex z has a neighbor in A − B. Now let w = (A, B) ∈ W ′′, and let the notation be

as before. We will construct paths Pw, Qw such that the hypotheses of Lemma 8.7 will be

satisfied for at least half the members w ∈ W ′′.

The facts that (A, B) is a minimal intrusion and that z has a neighbor in A − B imply

that there exists a path Qw in G[A∪{z}] from z to zw ∈ V (Ω0)∩A and a choice of longitudes

(Lv : v ∈ A∩B) for (A, B) such that Qw is disjoint from all Lv. Referring to the subpaths Pi

of the perimeter path P defined above, since no Pi includes all neighbors of z it follows that

there exists v ∈ A ∩ B − V (Ω0). We define Pw to be a path obtained from Lv by suitably

modifying Lv inside B such that Pw intersects A′ for at most one (A′, B′) ∈ W ′′ −{(A, B)}.

Such modification is easy to make, using the perimeter path of (A′, B′). Let uw ∈ A and

vw ∈ B be the ends of Pw.

The set W ′′ has a subset W ′′′ of size ξ such that, using to the notation of the previous

paragraph, either (uw, zw, vw) is clockwise for every w ∈ W ′′′ or (vw, zw, uw) is clockwise

for every w ∈ W ′′′, and for every w ∈ W ′′′ the path Pw is disjoint from A′ for every

(A′, B′) ∈ W ′′′ − {w}. The theorem now follows from Lemma 8.7. �

9 Using lack of near-planarity

In this section we prove Theorems 5.3 and 1.8. The first follows immediately from Theo-

rem 5.2 and the two lemmas below.

Lemma 9.1 Let (G, Ω) be a rurally 5-connected society that is not nearly rural, and let t be

a positive integer. If (G, Ω) has a windmill with 4t + 1 vanes, then it has a windmill with t

vanes and a cross.

Proof. Let x, ui, vi, wi, Pi, Qi be as in the definition of a windmill W with 4t+1 vanes. Since

(G\x, Ω\{x}) is rurally 4-connected and not rural, it has a cross (P, Q) by Theorem 3.1. We

may choose the windmill W and cross (P, Q) in (G\x, Ω\{x}) such that W ∪P ∪Q is minimal

with respect to inclusion. If the cross does not intersect the windmill, then the lemma clearly

holds, and so we may assume that a vane Pi ∪ Qi intersects P ∪ Q. Let v be a vertex that

belongs to both Pi ∪Qi and P ∪Q such that some subpath R of Pi ∪Qi with one end v and

the other end in V (Ω) has no vertex in (P ∪Q)\v. If R has at least one edge, then P ∪Q∪R

has a proper subgraph that is a cross, contrary to the minimality of W ∪ P ∪ Q. Thus v is

an end of P or Q. Since P and Q have a total of four ends, it follows that P ∪ Q intersects

at most four vanes of W . By ignoring those vanes we obtain a windmill with 4(t − 1) + 1

vanes, and a cross (P, Q) disjoint from it. The lemma follows. �
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Lemma 9.2 Let (G, Ω) be a rurally 6-connected society that is not nearly rural, and let t be

a positive integer. If (G, Ω) has a fan with 16t+5 blades, then it has a fan with t blades and

a cross, or a fan with t blades and a jump, or a fan with t blades and two jumps.

Proof. Let z1, z2 be the hubs of a fan F2 with 16t+5 blades. If (G\{z1, z2}, Ω\{z1, z2}) has

a cross, then the lemma follows in the same way as Lemma 9.1, and so we may assume not.

Since (G\z1, Ω\{z1}) has a cross, an argument analogous to the proof of Lemma 9.1 shows

that there exists a subfan F1 of F2 with 4t + 1 blades (that is, F1 is obtained by ignoring

a set of 12t + 4 blades), and two paths L2, S2 with ends a2, c2 and b2, z2, respectively, such

that x1, x2, . . . , x4t+1, a2, b2, c2 is clockwise in Ω for every choice of x1, x2, . . . , x4t+1 as in the

definition of a fan, and the graphs L2, S2\z2, F1 are pairwise disjoint. By using the same

argument and the fact that (G\z2, Ω\{z2}) has a cross we arrive at a subfan F of F1 with t

blades and paths L1, S1 satisfying the same properties, but with the index 2 replaced by 1.

We may assume that F, L1, L2, S1, S2 are chosen so that F ∪ L1 ∪ L2 ∪ S1 ∪ S2 is minimal

with respect to inclusion. This will be referred to as “minimality.”

If the paths L1, L2, S1, S2 are pairwise disjoint, except possibly for shared ends and pos-

sibly S1 and S2 intersecting, then it is easy to see that the lemma holds, and so we may

assume that an internal vertex of L1 belongs to L2 ∪ S2. Let v be the first vertex on L1

(in either direction) that belongs to L2 ∪ S2, and suppose for a contradiction that v is not

an end of L1. Let L′

1 be a subpath of L1 with one end v, the other end in V (Ω) and no

internal vertex in L2 ∪S2. Then by replacing a subpath of L2 or S2 by L′

1 we obtain either a

contradiction to minimality, or a cross that is a subgraph of L1 ∪ L2 ∪ S1 ∪ S2\{z1, z2}, also

a contradiction. This proves that v is an end of L1, and hence both ends of L1 are also ends

of L2 or S2. In particular, L1 and L2 share at least one end.

Suppose first that one end of L1 is an end of S2. Thus from the symmetry we may assume

that a1 is an end of L2 and c1 = b2; thus a2 = a1, because a2, b2, c2 is clockwise. But now

c2 is not an end of L1 or S1, and so the argument of the previous paragraph implies that no

internal vertex of L2 belongs to S1 ∪ L1. The paths S1, S2, L2 now show that (G, Ω) has a

fan with t blades and a jump.

We may therefore assume that a1 = a2 and c1 = c2. Let H be the union of L1, L2, S1\z1,

S2\z2, and V (Ω). Then the society (H, Ω) is rural, as otherwise (G\{z1, z2}, Ω) has a cross.

Let Γ be a drawing of (H, Ω) in a disk ∆ such that the vertices of V (Ω) are drawn on the

boundary of ∆ in the clockwise order specified by Ω. Let ∆′ ⊆ ∆ be a disk such that ∆′

includes every path in Γ with ends a1 and c1, and the boundary of ∆′ includes a1Ωc1 and

a path P of Γ from a1 to c1. Then L1 and L2 lie in ∆′, and since Li is disjoint from Si\zi

it follows that S1\z1 and S2\z2 are inside ∆′ and, in particular, are disjoint from P . By

considering P , S1 and S2 we obtain a fan with t blades and a jump. �
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Proof of Theorem 5.3. Let d and t be integers, let k be an integer such that Theorem 5.2

holds for d and 16t + 5, and let (G, Ω) be a 6-connected k-cosmopolitan society of depth at

most d. We may assume that (G, Ω) is not nearly rural, for otherwise the theorem holds. By

Theorem 5.2 the society (G, Ω) has t disjoint consecutive crosses, or a windmill with 4t + 1

vanes, or a fan with 16t + 5 blades. In the first case the theorem holds, and in the second

and third case the theorem follows from Lemma 9.1 and Lemma 9.2, respectively. �

For the proof of Theorem 1.8 we need one more lemma. Let us recall that presentation

of a neighborhood was defined prior to Theorem 1.7.

Lemma 9.3 Let d and s be integers, let (G, Ω) be an s-nested society, and let (G′, Ω′) be a

planar truncation of (G, Ω) of depth at most d. Then (G, Ω) has an s-nested planar truncation

of depth at most 2(d + 2s).

Proof. By a vortical decomposition of a society (G, Ω) we mean a collection (Zv : v ∈ V (Ω))

of sets such that

(i)
⋃

(Zv : v ∈ V (Ω)) = V (G) and every edge of G has both ends in Zv for some v ∈ V (Ω),

(ii) for v ∈ V (Ω), v ∈ Zv, and

(iii) if (v1, v2, v3, v4) is clockwise in Ω, then Zv1
∩ Zv3

⊆ Zv2
∪ Zv4

.

The depth of such a vortical decomposition is max |Zu ∩ Zv|, taken over all pairs of distinct

vertices u, v ∈ V (Ω) that are consecutive in Ω, and the depth of (G, Ω) is the minimum

depth of a vortical decomposition of (G, Ω). Thus if (G, Ω) has depth at most d, then

the corresponding linear decomposition also serves as a vortical decomposition of depth at

most d.

Let (G, Ω) be an s-nested society, and let it be the composition of a society (G0, Ω0) with

a rural neighborhood (G1, Ω, Ω0), where the neighborhood has a presentation (Σ, Γ1, ∆, ∆0)

with an s-nest C1, C2, . . . , Cs. Let ∆0, ∆1, . . . , ∆s be as in the definition of s-nest. Let

(G′, Ω′) be a planar truncation of (G, Ω) of depth at most d. Then (G, Ω) is the composition

of (G′, Ω′) with a rural neighborhood (G2, Ω, Ω′), and we may assume that (G2, Ω, Ω′) has a

presentation (Σ, Γ2, ∆, ∆′), where ∆0 ⊆ ∆′. We may assume that the s-nest C1, C2, . . . , Cs

is chosen as follows: first we select C1 such that ∆0 ⊆ ∆1 and the disk ∆1 is as small as

possible, subject to that we select C2 such that ∆1 ⊆ ∆2 and the disk ∆2 is as small as

possible, subject to that we select C3, and so on.

Let ∆∗ be a closed disk with ∆′ ⊆ ∆∗ ⊆ ∆. We say that ∆∗ is normal if whenever an

interior point of an edge e ∈ E(Γ1) belongs to the boundary of ∆∗, then e is a subset of the

boundary of ∆∗. A normal disk ∆∗ defines a planar truncation (G∗, Ω∗) in a natural way as

follows: G∗ is consists of all vertices and edges that of G either belong to G′, or their image

under Γ1 belongs to ∆∗, and Ω∗ consists of vertices of G whose image under Γ1 belongs to

the boundary ∆∗ in the order determined by the boundary of ∆∗.
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Given a normal disk ∆∗ and two vertices u, v ∈ V (G) we define ξ∆∗(u, v), or simply

ξ(u, v) as follows. If u is adjacent to v, and the image e under Γ1 of the edge uv is a subset of

the boundary of ∆∗, and for every internal point x on e there exists an open neighborhood

U of x such that U ∩∆∗ = U ∩∆i, then we let ξ(u, v) = i. Otherwise we define ξ(u, v) = 0.

A short explanation may be in order. If the image e of uv is a subset of the boundary of

∆∗, then this can happen in two ways: if we think of e as having two sides, either ∆∗ and

∆i appear on the same side, or on opposite sides of e. In the definition of ξ it is only edges

with ∆∗ and ∆i on the same side that count.

We may assume, by shrinking ∆′ slightly, that the boundary of ∆′ does not include

an interior point of any edge of Γ2. Then ∆′ is normal, and the corresponding planar

truncation is (G′, Ω′). Since a linear decomposition of (G′, Ω′) of depth at most d may be

regarded as a vortical decomposition of (G′, Ω′) of depth at most d, we may select a normal

disk ∆∗ that gives rise to a planar truncation (G∗, Ω∗) of (G, Ω), and we may select a vortical

decomposition (Zv : v ∈ V (Ω∗)) of (G∗, Ω∗) such that |Zu ∩ Zv| ≤ d + 2ξ(u, v) for every pair

of consecutive vertices of Ω∗. Furthermore, subject to this, we may choose ∆∗ such that the

number of unordered pairs u, v of distinct vertices of G with ξ(u, v) = s is maximum, subject

to that the number of unordered pairs u, v of distinct vertices of G with ξ(u, v) = s − 1 is

maximum, subject to that the number of unordered pairs u, v of distinct vertices of G with

ξ(u, v) = s − 2 is maximum, and so on.

We will show that (G∗, Ω∗) satisfies the conclusion of the theorem. Let (t1, t2, . . . , tn)

be an arbitrary clockwise enumeration of V (Ω∗), and let Xi := Zti ∪ (Zt1 ∩ Ztn). Then

(X1, X2, . . . , Xn) is a linear decomposition of (G∗, Ω∗) of depth at most 2(d + 2s).

To complete the proof we must show that (G∗, Ω∗) is s-nested, and we will do that by

showing that each Ci is a subgraph of G∗. To this end we suppose for a contradiction that

it is not the case, and let i0 ∈ {1, 2, . . . , s} be the minimum integer such that Ci0 is not a

subgraph of G∗.

If Ci0 has no edge in G∗, then we can construct a new society (G3, Ω3), where Ω3 consists

of the vertices of Ci0 in order, and obtain a contradiction to the choice of (G∗, Ω∗). Since

the construction is very similar but slightly easier than the one we are about to exhibit,

we omit the details. Instead, we assume that Ci0 includes edges of both G∗ and G\E(G∗).

Thus there exist vertices x, y ∈ V (Ci0) ∩ V (Ω∗) such that some subpath P of Ci0 with ends

x and y has no internal vertex in V (Ω∗). Let B denote the boundary of ∆∗. There are three

closed disks with boundaries contained in B ∪ P . One of them is ∆∗; let D be the one that

is disjoint from ∆0. If the interior of D is a subset of ∆i0 and includes no edge of Ci0 , then

we say that P is a good segment. It follows by a standard elementary argument that there

is a good segment.

Thus we may assume that P is a good segment, and that the notation is as in the

previous paragraph. There are two cases: either D is a subset of ∆∗, or the interiors of D
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and ∆∗ are disjoint. Since the former case is handled by a similar, but easier construction,

we leave it to the reader and assume the latter case. Let (s0, s1, . . . , st+1) be clockwise in

Ω∗ such that s0, s1, . . . , st+1 are all the vertices that belong to D ∩ ∆∗. Thus {s0, st+1} =

{x, y}. Let r0 = s0, r1, . . . , rk, rk+1 = st+1 be all the vertices of P , in order, let H be the

subgraph of G∗ consisting of all vertices and edges whose images under Γ1 belong to D,

and let X := {s0, s1, . . . , st+1, r0, r1, . . . , rk+1}. We can regard H as drawn in a disk with

the vertices s0, s1, . . . , st+1, rk, rk−1, . . . , r1 drawn on the boundary of the disk in order. We

may assume that every component of H intersects X. The way we chose the cycles Ci0

implies that every path in H\{s1, s2, . . . , sk} that joins two vertices of P is a subpath of

P . We will refer to this property as the convexity of H . For i = 0, 1, . . . , k + 1 let bi

be the maximum index j such that the vertex sj can be reached from {r0, r1, . . . , ri} by a

path in H with no internal vertex in X. We define b−1 := −1, and let Ri be the set of

all vertices of H that can be reached from {ri, sbi−1+1, sbi−1+2, . . . , sbi
} by a path with no

internal vertex in X. The convexity of H implies that for i < j the only possible member of

Ri ∩Rj is sbi
. We now define a new society (G∗∗, Ω∗∗) as follows. The graph G∗∗ will be the

union of G∗ and H , and the cyclic permutation Ω∗∗ is defined by replacing the subsequence

s0, s1, . . . , st+1 of Ω∗ by the sequence r0, r1, . . . , rk, rk+1. We define the sets Z∗∗

v as follows.

For v ∈ V (Ω∗) − V (Ω∗∗) we let Z∗∗

v := Zv. If v = ri and bi > bi−1 we define Z∗∗

v to be

the union of Ri ∪ {sbi
, ri−1} and all Zsj

for j = bi−1 + 1, bi−1 + 2, . . . , bi. If v = ri and

bi = bi−1 we define Z∗∗

v := Ri ∪ {sbi
, ri−1} ∪ (Zsbi

∩ Zsbi+1
). It is straightforward to verify

that (G∗∗, Ω∗∗) is a planar truncation of (G, Ω) and that (Z∗∗

v : v ∈ V (Ω∗∗)) is a vortical

decomposition of (G∗∗, Ω∗∗). We claim that ξ∆∗(sj, sj+1) < i0 for all j = 0, 1, . . . , t. To prove

this we may assume that sj is adjacent to sj+1, and let e be the image under Γ1 of the edge

sjsj+1. It follows that e is a subset of ∆i0 , and hence if sjsj+1 ∈ E(Ck) for some k, then

k ≤ i0. Furthermore, if equality holds, then ∆i0 and ∆∗ lie on opposite sides of e, and hence

ξ∆∗(sj , sj+1) = 0. This proves our claim that ξ∆∗(sj, sj+1) < i0. Since for i = 0, 1, . . . , k we

have Z∗∗

ri
∩ Z∗∗

ri+1
⊆ (Zsbi

∩ Zsbi+1
) ∪ {ri, sbi

}, and ξ∆∗∗(ri, ri+1) = i0, where ∆∗∗ denotes the

disk ∆∗ ∪ D, we deduce that

|Z∗∗

ri
∩ Z∗∗

ri+1
| ≤ |Zsbi

∩ Zsbi+1
| + 2 ≤ d + 2ξ∆∗(sbi

, sbi+1) + 2 ≤ d + 2ξ∆∗∗(ri, ri+1).

Thus the existence of (G∗∗, Ω∗∗) contradicts the choice of (G∗, Ω∗). This completes our proof

that C1, C2, . . . , Cs are subgraphs of G∗, and hence (G∗, Ω∗) is s-nested, as desired. �

Proof of Theorem 1.8. Let d be as in Theorem 5.1, and let k be as in Corollary 5.4

applied to 2(d + 2s) in place of d. We claim that k satisfies Theorem 1.8. To prove that

let (G, Ω) be a 6-connected s-nested k-cosmopolitan society that is not nearly rural. Since

(G, Ω) is an s-nested planar truncation of itself, by Theorem 5.1 we may assume that (G, Ω)

has either a leap of length five, in which case it satisfies Theorem 1.8 by Theorem 4.1, or

it has a planar truncation of depth at most d. In the latter case it has an s-nested planar

38



truncation (G′, Ω′) of depth at most 2(d + 2s) by Lemma 9.3, and the theorem follows from

Corollary 5.4 applied to the society (G′, Ω′). �

10 Finding a planar nest

In this section we prove a technical result that applies in the following situation. We will

be able to guarantee that some societies (G, Ω) contain certain configurations consisting

of disjoint trees connecting specified vertices in V (Ω). The main result of this section,

Theorem 10.5 below, states that if the society is sufficiently nested, then we can make sure

that the cycles in some reasonably big nest and the trees of the configuration intersect nicely.

A target in a society (G, Ω) is a subgraph F of G such that F is a forest with no isolated

vertices, and every vertex of F of degree one belongs to V (Ω). We say that a target F in

(G, Ω) is s-nested, where s ≥ 0 is an integer, if

(1) (G, Ω) can be expressed as a composition of some society with a rural neighborhood

(G′, Ω, Ω′) that has a presentation with an s-nest, and

(2) if P is path in F with distinct ends u, v ∈ V (Ω), then either

(a) there exists a vertex w ∈ V (Ω) such that w belongs to a component of F that

does not include P and u, w, v are clockwise in Ω, or

(b) there exists a vertex in V (P ) − V (G′) of degree in F of at least three.

In the above circumstances we say that (G′, Ω, Ω′) is a buffer for F in (G, Ω). We should

note that condition (b) will not be used in this paper, but is included for later applications.

We say that a vertex v ∈ V (G) is F -special if either v has degree at least three in F , or v

has degree at least two in F and v ∈ V (Ω).

Now let F be a target in (G, Ω) and let T be a component of F . Let P be a path in

G\V (Ω) with ends u, v such that u, v ∈ V (T ) and P is otherwise disjoint from F . Let C be

the unique cycle in T ∪ P , and assume that C has at most one F -special vertex. If C\u\v

has no F -special vertex, then let P ′ be the subpath of C that is complementary to P , and if

C\u\v has an F -special vertex, say w, then let P ′ be either the subpath of C\u with ends

v and w, or the subpath of C\v with ends u and w. Finally, let F ′ be obtained from F ∪ P

by deleting all edges and internal vertices of P ′. In those circumstances we say that F ′ was

obtained from F by rerouting. If G′ is a subgraph of G and C is a subgraph of G1, then

we say that F ′ was obtained from F by rerouting within G1. The next lemma explains the

significance of rerouting within G1.

39



Lemma 10.1 Let s ≥ 0 be an integer, let F be an s-nested target in a society (G, Ω), let

(G′, Ω, Ω′) be a buffer for F in (G, Ω), and let F ′ be obtained from F by rerouting within G′.

Then F ′ is s-nested.

Proof. Since the rerouting is within G′ it follows that if a path P in F satisfies condition

(2a) in the definition of s-nested target, then the corresponding path in F ′ also satisfies (2a).

The rest is straightforward. �

A subgraph F of a rural neighborhood (G, Ω, Ω0) is perpendicular to an s-nest (C1, C2, . . . , Cs)

if for every component P of F

(i) P is a path with one end in V (Ω) and the other in V (Ω0), and

(ii) P ∩ Ci is a path for all i = 1, 2, . . . , s.

The complexity of a forest F in a society (G, Ω) is

∑

(degF (v) − 2)+ +
∑

v∈V (Ω)

(degF (v) − 1)+,

where the first summation is over all v ∈ V (G) − V (Ω) and x+ denotes max(x, 0).

The following is a preliminary version of the main result of this section.

Theorem 10.2 Let w, s, k be positive integers, and let s′ = 2w(k + 1) + s. Then for every

s′-nested society (G, Ω) such that G has tree-width strictly less than w and for every s′-nested

target F0 in (G, Ω) with buffer (G1, Ω, Ω0) the following holds. If the complexity of G1 ∩ F

in the society (G1, Ω) is at most k, then there exists a target F in (G, Ω) obtained from

F0 by repeated rerouting within G1 such that (G, Ω) can be expressed as a composition of

some society with a rural neighborhood (G′, Ω, Ω′) that has a presentation with an s-nest

(C1, C2, . . . , Cs) such that G′ ∩ F is perpendicular to (C1, C2, . . . , Cs).

Proof. Suppose for a contradiction that the theorem is false for some integers w, s, k, a

society (G, Ω) and an s′-nested target F with buffer (G1, Ω, Ω0), and choose these entities

with |V (G1)| + |E(G1)| minimum. Let (G, Ω) be the composition of a society (G0, Ω0)

with the rural neighborhood (G1, Ω, Ω0). Let (Σ, Γ, ∆, ∆0) be a presentation of (G1, Ω, Ω0),

let (C1, C2, . . . , Cs′) be an s′-nest for it, and let κ be the complexity of F ∩ G1 in the

society (G1, Ω). The minimality of G implies that G = C1 ∪ C2 ∪ · · · ∪ Cs′ ∪ F . Likewise,

C1 ∪ C2 ∪ · · · ∪ Cs′ is edge-disjoint from F , for otherwise contracting an edge belonging to

the intersection of the two graphs contradicts the minimality of G.

By a dive we mean a subpath of F ∩G1 with both ends in V (Ω0) and otherwise disjoint

from V (Ω0). Let P be a dive with ends u, v, and let P ′ be the corresponding path in Γ. Then

∆0 ∪P ′ separates Σ; let ∆(P ′) denote the component of Σ−∆0 −P ′ that is contained in ∆,

and let H(P ) denote the subgraph of G1 consisting of all vertices and edges that correspond

to vertices or edges of Γ that belong to the closure of ∆(P ′). Thus P is a subgraph of
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Cd-t+1

Cd-t

Figure 7: Construction of H(Pt+1).

H(P ). We say that a dive P is clean if H(P )\V (Ω0) includes at most one F -special vertex,

and if it includes one, say v, then v ∈ V (P ), and no edge of E(F ) − E(P ) incident with

v belongs to H(P ). The depth of a dive P is the maximum integer d ∈ {1, 2, . . . , s′} such

that V (P ) ∩ V (Cd) 6= ∅, or 0 if no such integer exists. It follows from planarity that

|V (P ) ∩ V (Ci)| ≥ 2 for all i = 1, 2, . . . , d − 1.

(1) Every clean dive has depth at most 2w.

To prove the claim suppose for a contradiction that P1 is a clean dive of depth d ≥ 2w+1.

Thus V (P1) ∩ V (Cd) 6= ∅. Assume that we have already constructed dives P1, P2, . . . , Pt

for some t ≤ w such that V (Pi) ∩ V (Cd−i+1) 6= ∅ for all i = 1, 2, . . . , t and H(Pt) ⊆

H(Pt−1) ⊆ · · · ⊆ H(P1). Since V (Pt) ∩ V (Cd−t+1) 6= ∅, there exist distinct vertices x, y ∈

V (Pt)∩ V (Cd−t). Furthermore, it is possible to select x, y such that one of subpaths of Cd−t

with ends x, y, say Q, is a subgraph of H(Pt) and no internal vertex of Q belongs to Pt.

We claim that some internal vertex of Q belongs to F . Indeed, if not, then we can reroute

xPty along Q to produce a target F ′ and delete an edge of xPty; since P1 is clean and H(Pt) is

a subgraph of H(P1) this is indeed a valid rerouting within G1 as defined above. Furthermore,

F ′ has the same complexity as F and it is s′-nested by Lemma 10.1. But this contradicts

the minimality of G1, and hence some internal vertex of Q, say q, belongs to F . Since P1 is

clean and H(Pt) is a subgraph of H(P1) it follows from the third axiom in the definition of

s′-nested target that q belongs to a dive Pt+1 that is a subgraph of H(Pt)\V (Pt). It follows

that H(Pt+1) is a subgraph of H(Pt), thus completing the construction. (See Figure 7.)

The dives P1, P2, . . . , Pw+1 just constructed are pairwise disjoint and all intersect Cd−w.

Since d ≥ 2w+1 this implies that P1, P2, . . . , Pw+1 all intersect each of C1, C2, . . . , Cw+1, and

hence C1 ∪P1, C2 ∪P2, . . . , Cw+1 ∪Pw+1 is a “screen” in G of “thickness” at least w + 1. By
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[16, Theorem (1.4)] the graph G has tree-width at least w, a contradiction. This proves (1).

Our next objective is to prove that κ = 0. That will take several steps. To that end

let us define a dive P to be special if P\V (Ω0) contains exactly one F -special vertex. By

a bridge we mean a subgraph B of G1 ∩ F consisting of a component C of G1 ∩ F\V (Ω0)

together with all edges from V (C) to V (Ω0) and all ends of these edges.

(2) If a bridge B includes an F -special vertex not in V (Ω0), then B includes a special dive.

To prove Claim (2) let B be a bridge containing an F -special vertex not in V (Ω0). For

an F -special vertex b ∈ V (B) − V (Ω0) and an edge e ∈ E(B) incident with b let Pe be the

maximal subpath of B containing e such that one end of Pe is b and no internal vertex of

Pe is F -special or belongs to V (Ω0). Let ue be the other end of Pe. The second axiom in

the definition of an s′-nested target implies that at most one vertex of B belongs to V (Ω).

Since every F -special vertex in V (G1)−V (Ω) has degree at least three, it follows that there

exists an F -special vertex b ∈ V (B) − V (Ω0) such that ue1
, ue2

∈ V (Ω0) for two distinct

edges e1, e2 ∈ E(B) incident with b. Then Pe1
∪ Pe2

is as desired. This proves (2).

By (2) we may select a special dive P with H(P ) minimal. We claim that P is clean. For

let v ∈ V (P ) − V (Ω0) be F -special. If some edge e ∈ E(F ) − E(P ) incident with v belongs

to H(P ), then there exists a subpath P ′ of F containing e with one end v and the other end

in V (Ω0) ∪ V (Ω). But P ′ is a subgraph of H(P ), and hence the other end of P ′ belongs to

V (Ω0) by planarity. It follows that P ∪ P ′ includes a dive that contradicts the minimality

of H(P ). This proves that the edge e as above does not exist.

It remains to show that no vertex of H(P )\V (Ω0) except v is F -special. So suppose for

a contradiction that such vertex, say v′, exists. Then v′ 6∈ V (P ), because P is special, and

hence v′ belongs to a bridge B′ 6= B. But B′ includes a special dive by (2), contrary to the

choice of P . This proves our claim that P is clean.

By (1) P has depth at most 2w. In particular, the image under Γ of some F -special vertex

belongs to the open disk ∆2w+1 bounded by the image under Γ of C2w+1. Let G′

0 consist of G0

and all vertices and edges of G whose images under Γ belong to the closure of ∆2w+1, let G′

1

consist of all vertices and edges whose images under Γ belong to the complement of ∆2w+1,

and let Ω′

0 be defined by V (Ω′

0) = V (C2w+1) and let the cyclic order of Ω′

0 be determined by

the order of V (C2w+1). Then (G, Ω) can be regarded as a composition of (G′

0, Ω
′

0) with the

rural neighborhood (G′

1, Ω, Ω′

0). This rural neighborhood has a presentation with a σ-nest,

where σ = 2wκ + s. On the other hand, the complexity of F ∩G′

1 is at most κ− 1, contrary

to the minimality of G1. This proves our claim that κ = 0.

By repeating the argument of the previous paragraph and sacrificing 2w of the cycles Ci

we may assume that (G1, Ω, Ω0) has a presentation with an s-nest C1, C2, . . . , Cs and that

there are no dives. It follows that every component P of F ∩ G1 is a path with one end in
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V (Ω) and the other in V (Ω0). To complete the proof of the theorem we must show that

P ∩Ci is a path for all i = 1, 2, . . . , s. Suppose for a contradiction that that is not the case.

Thus for some i ∈ {1, 2, . . . , s} and some component P of F ∩ G1 the intersection P ∩ Ci is

not a path. Thus there exist distinct vertices x, y ∈ V (P ∩Ci) such that xPy is a path with

no edge or internal vertex in Ci. Let us choose P, i, x, y such that, subject to the conditions

stated, i is maximum. If i < s and xPy intersects Ci+1, then P ∩Ci+1 is not a path, contrary

to the choice of i. If i = 1 or xPy does not intersect Ci−1, then by rerouting one of the

subpaths of Ci with ends x, y along xPy we obtain contradiction to the minimality of G.

Thus we may assume that i > 1 and that xPy intersects Ci−1.

Exactly one of the subpaths of Ci with ends x, y, say Q, has the property that the image

under Γ of xPy ∪Q bounds a disk contained in ∆ and disjoint from ∆0. If no component of

F ∩ G1 other than P intersects Q, then by rerouting F along Q we obtain a contradiction

to the minimality of G. Thus there exists a component P ′ of F ∩ G1 other that P that

intersects Q, say in a vertex u. The vertex u divides P ′ into two subpaths P ′

1 and P ′

2. If

both P ′

1 and P ′

2 intersect Ci+1, then P ′ contradicts the choice of i. Thus we may assume

that say P ′

1 does not intersect Ci+1. But P ′

1 includes a subpath P ′′ with both ends on Ci and

otherwise disjoint from C1 ∪ C2 ∪ · · · ∪ Cs, and hence by rerouting Ci along P ′′ we obtain a

contradiction to the minimality of G. This completes the proof of the theorem. �

Before we state the main result of this section we need the following deep result from

[13]. A linkage in a graph G is a subgraph of G, every component of which is a path. A

linkage L in a graph G is vital if V (L) = V (G) and there is no linkage L′ 6= L in G such that

for every two vertices u, v ∈ V (G), the vertices u, v are the ends of a component of L if and

only if they are the ends of a component of L′.

Theorem 10.3 For every integer p ≥ 0 there exists an integer w such that every graph that

has a vital linkage with p components has tree-width less than w.

If F is a target in a society (G, Ω) we say that a vertex v ∈ V (G) is critical for F if v

is either F -special or a leaf of F . We say that two targets F, F ′ are hypomorphic if they

have the same set of critical vertices, say X, and u, v ∈ X are joined by a path in F with

no internal vertices in X if and only if they are so joined in F ′. The proof of the following

lemma is clear.

Lemma 10.4 Let s ≥ 0 be an integer, and let F be an s-nested target in a society (G, Ω).

Then every target hypomorphic to F is s-nested in (G, Ω).

Now we are ready to state and prove the main theorem of this section.

Theorem 10.5 For every three positive integers s, k, c there exists an integer s′ such that

for every s′-nested society (G, Ω) and for every s′-nested target F0 in (G, Ω) with buffer
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(G1, Ω, Ω0) the following holds. If F0 has complexity at most k and at most c components,

then there exists a target F in (G, Ω) obtained from a target hypomorphic to F0 by repeated

rerouting within G1 such that (G, Ω) can be expressed as a composition of some society with

a rural neighborhood (G′, Ω, Ω′) that has a presentation with an s-nest (C1, C2, . . . , Cs) such

that G′ ∩ F is perpendicular to (C1, C2, . . . , Cs).

Proof. Let p = 2k + c, let w be the bound guaranteed by Theorem 10.3, and let s′ :=

2(k + w)(k + 1) + s. We will prove by induction on |V (G)| + |E(G)| that s′ satisfies the

conclusion of the theorem. To that end let (G, Ω) be as stated in the theorem, and let it

be the composition of a society (G0, Ω0) with the rural neighborhood (G1, Ω, Ω0). Let X be

the set of all F -special vertices, and let L = F\X. Then L is a linkage in G\X. If it is

vital, then G has tree-width less than |X|+ w ≤ k + w, and hence the theorem follows from

Theorem 10.2, because the complexity of G1 ∩ F is at most k.

Thus we may assume that L is not vital. Assume first that there exists a vertex v ∈

V (G)−V (L). If v ∈ V (Ci) for some i ∈ {1, 2, . . . , s′}, then the theorem follows by induction

applied to the graph obtained from G by contracting one of the edges of Ci incident with v;

otherwise, the theorem follows by induction applied to the graph G\v.

Thus we may assume that V (L) = V (G), and hence there exists a linkage L′ 6= L linking

the same pairs of terminals. Thus there exists an edge e ∈ E(L) − E(L′). If e ∈ E(Ci)

for some i ∈ {1, 2, . . . , s′}, then the theorem follows by induction by contracting the edge e;

otherwise it follows by induction by deleting e, because the linkage L′ guarantees that G\e

has a target hypomorphic to F , and that target is s′-nested by Lemma 10.4. �

11 Chasing a turtle

In this section we prove Theorem 1.3, but first we need the following two theorems.

Theorem 11.1 There is an integer s such that if an s-nested society (G, Ω) has a turtle,

then G has a K6 minor.

Proof. Let k be the maximum complexity of a turtle, let s = 3, and let s′ be as in

Theorem 10.5. We claim that s′ satisfies the theorem. Indeed, let (G, Ω) be an s′-nested

society that has a turtle. Since every turtle is a target, and is s-nested for every integer

s ≥ 0, and every target obtained from a target hypomorphic to a turtle is again a turtle, we

deduce from Theorem 10.5 that (G, Ω) has a turtle F and can be expressed as a composition

of a society with a rural neighborhood (G′, Ω, Ω′) that has a presentation with a 3-nest

(C1, C2, C3) such that G′∩F is perpendicular to (C1, C2, C3). It is now fairly straightforward

to deduce that G has a K6 minor. The argument is illustrated in Figure 8. �
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Figure 8: A turtle giving rise to a K6 minor.

Theorem 11.2 There is an integer s such that if an s-nested society (G, Ω) has three crossed

paths, a separated doublecross or a gridlet, then G has a K6 minor.

Proof. The argument is analogous to the proof of the previous theorem, using Figures 9,

10 and 11 instead. We omit the details. �

Proof of Theorem 1.3. Let s be an integer large enough that both Theorem 11.1 and

Theorem 11.2 hold for s. Let k be an integer such that Theorem 1.8 holds for this integer.

Let t be such that Theorem 1.7 holds for t and the integer k just defined. Let h be an

integer such that Theorem 1.6 holds with t replaced by t+2s. Let w be an integer such that

Theorem 1.5 holds for the integer h just defined. Finally, let N be as in Theorem 1.4.

Suppose for a contradiction that G is a 6-connected graph on at least N vertices that is

not apex. Since G has minimum degree at least six, it does not have a triangle C such that

G\E(C) is planar. By Theorem 1.4 G has tree-width exceeding w. By Theorem 1.5 G has

a wall of height h. By Theorem 1.6 G has a planar wall H0 of height t + 2s. By considering

a subwall H of H0 of height t and s cycles of H0\V (H) we find, by Theorem 1.7, that the

anticompass society (K, Ω) of H in G is s-nested and k-cosmopolitan. By Theorem 1.8 the

society (K, Ω) has a turtle, three crossed paths, a separated doublecross, or a gridlet. By

Theorems 11.1 and 11.2 the graph G has a K6 minor, a contradiction. �
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Figure 9: Three crossed paths giving rise to a K6 minor.

Figure 10: A gridlet giving rise to a K6 minor.
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Figure 11: A separated doublecross giving rise to a K6 minor.
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