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ABSTRACT

Let G be a plane graph with outer cycle C' and let (L(v) : v € V(G)) be a family of non-
empty sets. By an L-coloring of G we mean a (proper) coloring ¢ of G such that ¢(v) € L(v)
for every vertex v of G. Thomassen proved that if vy, v, € V(C') are adjacent, L(vy) # L(vs),
|L(v)| > 3forevery v € V(C)—{vy, v} and |L(v)| > 5 for every v € V(G)—V(C), then G has
an L-coloring. What happens when v; and vy are not adjacent? Then an L-coloring need not
exist, but in the first paper of this series we have shown that it exists if |L(v1)|, |L(v2)| > 2.
Here we characterize when an L-coloring exists if |L(vq)| > 1 and |L(vq)| > 2.

This result is a lemma toward a more general theorem along the same lines, which we
will use to prove that minimally non-ZL-colorable planar graphs with two precolored cycles
of bounded length are of bounded size. The latter result has a number of applications which
we pursue elsewhere.
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1 Introduction

All graphs in this paper are finite and simple; that is, they have no loops or parallel edges.
Paths and cycles have no repeated vertices or edges. If G is a graph and L = (L(v) : v €
V(G)) is a family of non-empty sets, then we say that L is a list assignment for G. It is a
k-list-assignment, if |L(v)| > k for every vertex v € V(G). An L-coloring of G is a (proper)
coloring ¢ of G such that ¢(v) € L(v) for every vertex v of G. We say that a graph G
is k-choosable, also called k-list-colorable, if for every k-list-assignment L for GG, G has an
L-coloring.

One notable difference between list coloring and ordinary coloring is that the Four Color
Theorem [1, 2] does not generalize to list-coloring. Indeed, Voigt [9] constructed a planar
graph that is not 4-choosable. On the other hand Thomassen [7] proved that every planar
graph is 5-choosable. His proof is remarkably short and beautiful. For the sake of the

inductive argument he proves the following stronger statement.

Theorem 1.1 If G is a plane graph with outer cycle C' and P = pips is a path of length
one in C and L is a list assignment with |L(v)| > 5 for allv € V(G) —V(C), |L(v)| > 3 for
allv e V(C)—=V(P), and |L(p1)|, |L(p2)| > 1 with L(py) # L(p2), then G is L-colorable.

What if p; and p, are not adjacent? In that case G need not be L-colorable, but it
is possible to characterize instances when it is not. In fact, we are able to extract useful
information even when more vertices are pre-colored, but it will take some effort. We began
this line of research in our previous paper [6], where we proved a generalization of Theorem 1.1

conjectured by Hutchinson [4], who proved the result for outerplanar graphs.

Theorem 1.2 If G is a plane graph with outer cycle C' and py,ps € V(C) and L is a list
assignment with |L(v)| > 5 for allv € V(G) —V(C), |L(v)| > 3 for allv € V(C) — {p1,p2},
and |L(p1)|,|L(p2)| > 2, then G is L-colorable.

The main result of this paper is to characterize when an L-coloring exists, if in Theo-
rem 1.2 we only assume that |L(p;)| > 1. In order to state the theorem we need to define a
family of obstructions.

Let G be a connected plane graph, and let u, v, w be distinct vertices of G incident with
the outer face of G, let u be adjacent to v, let the edge uv be incident with the outer face of
G and let L be a list assignment for G. We say that the pair (G, L) is a coloring harmonica

from uv to w if either
e G is a triangle with vertex set {u,v,w}, L(u) = L(v) = L(w) and |L(u)| = 2, or

e there exists a vertex z € V(@) incident with the outer face of G such that wvz is a
triangle in G, L(u) = L(v) C L(z), |L(u)| = |L(v)| = 2, |L(z)| = 3, and (G',L’) is a



coloring harmonica from z to w, where G’ is obtained from G by deleting one or both
of the vertices u,v, and L’ satisfies L'(z) = L(z) — L(u) and L'(x) = L(x) for every
z e V(G) —{z}.

We say that the pair (G, L) is a coloring harmonica from u to w if

e there exist vertices x,y € V(G) incident with the outer face of G' such that uxy is
a triangle in G, |L(u)| = 1, L(x) — L(u) = L(y) — L(u), |L(z) — L(u)|] = 2, and
(G', L") is a coloring harmonica from zy to w, where G' := G\ u, L'(x) = L(z) — L(u),
L'(y) = L(y) — L(u) and L'(z) = L(z) for every z € V(G') — {z,y}.

See Figure 1. We say that the pair (G, L) is a coloring harmonica if it is either a coloring
harmonica from uv to w or a coloring harmonica from u to w, where u, v, w are as specified
earlier. We say that the pair (G, L) contains a coloring harmonica (G', L") if G’ is a subgraph
of G and L'(z) = L(z) for every z € V(G').

{1,2,3} {2,3,4}

{2,3,4}

1}
{5,6,7}

{2,3,5}

{5,6,7} {6,7}
Figure 1: A coloring harmonica from u to w.

We can now state the main result of this paper. Hutchinson [4] proved it for outerplanar

graphs.

Theorem 1.3 Let G be a plane graph with outer cycle C, let py, p2 € V(C), and let L be a list
assignment with |L(v)| > 5 for allv € V(G) —V(C), |L(v)| > 3 for allv € V(C) — {p1,pa},
|L(p1)| > 1 and |L(ps)| > 2. Then G is L-colorable if and only if the pair (G, L) does not

contain a coloring harmonica from p; to ps.

2 Canvases

We also recall the definition of the graphs we are working with, first introduced in our

previous paper [6].



Definition 2.1 (Canvas) We say that (G, S, L) is a canvas if G is a plane graph, S is
a subgraph of the boundary of the outer face of GG, and L is a list assignment for some
supergraph of G such that |L(v)| > 5 for all v € V(G) — V(C), where C' is the boundary of
the outer face of G, |L(v)| > 3 for all v € V(G) — V/(S), and there exists a proper L-coloring
of 5.

We should remark that we allow L to be a list assignment of some supergraph of G’ merely
for convenience when passing to subgraphs. Given this definition of a canvas, we can state

a slightly more general version of Theorem 1.1 as follows.

Theorem 2.2 If (G, S, L) is a canvas and S is path of length one, then G is L-colorable.

We can also restate Theorem 1.2 in these terms.

Theorem 2.3 (Two with List of Size Two Theorem) If (G, S, L) is a canvas with V (S) =
{v1,v2} and |L(vy)|, |L(ve)| > 2, then G is L-colorable.

It should be noted that Thomassen [8] characterized the canvases (G, S, L) where S is
a path of length two and G is not L-colorable. For our main theorem, we do not need this
full characterization. However, we do need the following lemma that can be found in [8,
Lemma 1]. A chord of a walk in a graph G is a subgraph of G consisting of two vertices that

belong to the walk and an edge joining them that does not belong to the walk.

Lemma 2.4 Let T = (G, S, L) be a canvas such that S is an induced path of length two. If
there does not exist a chord of the boundary of the outer face of G, then there exists at most

one proper L-coloring of S that does not extend to an L-coloring of G.

We also need a notion of containment for canvases as follows.

Definition 2.5 A canvasT = (G, S, L) contains a canvas T" = (G', ', ') if G’ is a subgraph
of G, S =S’ and the restrictions of L and L' to G’ are equal.

3 Governments and Reductions

In this section, we will develop notation and definitions for characterizing how the colorings
of P in Theorem 1.1 extend to colorings of other paths of length one on the boundary of
the outer walk. We introduce a notion called a government to describe sets of colorings
that come in two types which we call dictatorships and democracies. Our main theorem will
show that a government extends to at least two governments unless a very specific structure

occurs.



3.1 Coloring Extensions

Definition 3.1 Suppose T' = (G, P, L) is a canvas where P = p;ps is a path of length one
in the boundary C' of the outer face of G. Suppose we are given a collection C of L-colorings
of P. Let P’ be an edge of G with both ends in C. We let ®7(P’,C) denote the collection
of proper L-colorings of P’ that can be extended to a proper L-coloring ¢ of G such that ¢
restricted to P is an L-coloring in C. We will drop the subscript T" when the canvas is clear

from context.

We may now restate Theorem 1.1 in these terms.

Theorem 3.2 Let T = (G, P, L) be a canvas with P a path of length one, and let C be the
outer cycle of G. If C is a non-empty collection of proper L-colorings of P, and P’ is an
edge of G with both ends in C, then ®(P’,C) is nonempty.

Note the following easy proposition.

Proposition 3.3 Let T, P, P',C be as in Theorem 3.2. If U = uyus is a chord of C' sepa-
rating P from P’', dividing T into Ty = (G1, P, L) and Ty = (Gs,U, L), then

O, (P, @7, (U,C)) = &1(P',C).

3.2 Governments

To explain the structure of extending larger sets of colorings, we focus on two special sets of

colorings, defined as follows.

Definition 3.4 (Government) Let C = {¢1, da, ..., 0r}, k > 2, be a collection of distinct
proper colorings of a path P = p;psy of length one. For p € P, let C(p) denote the set
{o(p)lo € C}.

We say C is a dictatorship if there exists ¢ € {1,2} such that ¢;(p;) is the same for all
1 < j <k, in which case, we say p; is the dictator of C. We say C is a democracy if k = 2
and ¢1(p1) = ¢2(p2) and ¢o(p1) = ¢1(p2). We say C is a government if C is a dictatorship or

a democracy.

We also need a generalized form of government as follows.

Definition 3.5 Let C be a collection of disjoint proper colorings of a path P = pipy of
length one. We say C is a confederacy if C is not a government and yet C is the union of two

governments.



3.3 Reductions

Thomassen found a useful reduction in his proof of 5-choosability. We will need a general-

ization of that reduction as follows.

Definition 3.6 (Democratic Reduction) Let T'= (G, S, L) be a canvas and L, be a set
of two colors. Let G be connected, and let C' be the boundary of the outer face of G. Suppose
that P = py...pg is an induced path in C' such that, for every vertex v in P, v is not the
end of a chord of C or a cut-vertex of C, V(C) # V(P), and Ly C L(v). If k > 2, let « be
the vertex of C adjacent to p; other than py and y be the vertex of C' adjacent to p, other
than p,_;. If £ =1, then we assume that p; has two distinct neighbors on C', and let x and
y be the two neighbors of p; on C'. We assume that L(x) — Lo # 0.

We define the democratic reduction of P in T with respect to Ly and centered at =z,
denoted as T'(P, Ly, x), as (G \ V(P),S’, L") where L'(w) = L(w) — Lyg if either w = z, or
w # y is a neighbor of a vertex in P, and L'(w) = L(w) otherwise; and §" = S\ V(P) if
|L'(x)| > 3 and otherwise let S’ be obtained from S\ V(P) by adding x as an isolated vertex.

Proposition 3.7 Let T(P, Ly, x) = (G',S", L") be a democratic reduction of a path P in a
canvas T = (G, S, L) with respect to Ly and centered at x. The following statements hold:

1. T(P, Lo, x) is a canvas.

2. If ¢ is an L'-coloring of G', then ¢ can be extended to an L-coloring of G.

Proof. Let C be the boundary of the outer face of G. If v € V(G’) such that |L'(v)| < 5,
then either v € C' or v is adjacent to a vertex of w in P. In either case, v is in the boundary
of the outer face of G'. Note that if v € V(G’) such that L'(v) # L(v), then either v = x
or v & C. In the latter case, |L(v)| = 5 and hence |L'(v)| > 3. Thus, if v € V(G’) such
that |L'(v)] < 3, then v € V(S5) U {z}. Recall that by definition, V(5") = V(S) U {z} if
|L'(z)| < 3 and V(S") = V(S) otherwise. In either case, it follows that if v € V(G’) such
that |L'(v)| < 3, then v € V(S'). This proves (1).

Let ¢ be an L’-coloring of G'. Let P = p;...p, where p; is adjacent to x. If k = 1, let
y be the neighbor of p; in C' other than z. If £ > 2, let y be the neighbor of p; in C' other
than py—1. Let ¢(pr) € Lo —{¢(y)}. For all i with 1 <i <k —1, let ¢(p;) € Lo — {¢(pit1) }-
Now ¢ is an L-coloring of G. This proves (2). O

We note that Thomassen’s reduction corresponds to a democratic reduction where |V (P)| =

1,z € V(S) and |L(z)| = 1.



4 Harmonicas

In this section, we rework the definition of coloring harmonica to an object involving gov-
ernments which we call a harmonica. We then prove a stronger version of our main theorem
which shows that harmonicas are the only obstacle to extending a government to a confed-
eracy. We will then show that this implies that coloring harmonicas are the only obstruction
to generalizing Theorem 2.3 to the case of one vertex with a list of size one and one with a

list of size two. That is, we finally prove Theorem 1.3.

Definition 4.1 (Harmonica) Let T' = (G, P, L) be a canvas where P is path of length
one. Let C be a government for P and let P’ be another (not necessarily distinct) path of
length one incident with the outer face of G. We say T is a harmonica from P to P’ with

government C if
e G=P=P,or
e C is a dictatorship, G = PU P', V(P) NV (P’') = {z} where z is the dictator of C, or

e C is a dictatorship and there exists a triangle zujus where z € V(P) is the dictator
of C in color ¢, for i = 1,2 we have L(u;) = Lo U {c} if u; & V(P) and C(u;) = Lo
otherwise, where |Ly| = 2 and the canvas (G \ (V(P) — V(U)),U, L) is a harmonica

from U = ujus to P" with democracy C’' where C'(u;) = C'(ug) = Ly, or

e C is a democracy and there exists z adjacent to pi,ps, where P = pips such that
L(z) = Ly U {c}, where Ly = C(p1) = C(p2) and there exists ¢ € {1,2} such that the
canvas (G \ p;,U, L) is a harmonica with dictatorship C' = {¢1, ¢2}, where U = zp;_;
and ¢1(2) = ¢2(z) = c and {¢1(ps—i), P2(p3-i)} = Lo.

Note that &1 (P’,C) is a government. We remark that the notion of harmonica is closely
related to the notion of coloring harmonica, introduced earlier. Lemma 4.16 clarifies the

relation between the two.

We need the following easy lemma, whose proof we omit.

Lemma 4.2 Let T = (G, P, L) be a harmonica from P to P with government C, and let
v € V(G)—=V(P) be such that if v € V(P'), then v has degree at least two. Then |L(v)| = 3.

The following is our main result.

Theorem 4.3 LetT = (G, P, L) be a canvas and P, P" be paths of length one in the boundary
of the outer face of G. Given a collection C of proper colorings of P such that C is a

government or a confederacy, then ®(P',C) contains a government, and furthermore, either



e O(P' C) contains a confederacy, or,

e C is a government and T contains a harmonica from P to P with government C.

Proof.  Suppose that T' = (G, P, L) is a counterexample with |V (G)| minimized and,
subject to that, C is a government if possible. Let C' be the boundary of the outer face of G.

Claim 4.4 G is connected.

Proof. Suppose not. Let GG; be the component of GG containing P. First suppose that G,
contains P' and let Gy be a component of G other than G;. Let 7" = (G \ V(Gs), P, L).
By the minimality of G, ®¢(P’,C) contains a government and hence ®r(P’,C) contains
a government by Theorem 1.1. Furthermore, either ®7(P’,C) contains a confederacy, a
contradiction as then ®7(P’,C) contains a confederacy by Theorem 1.1, or 7" contains a
harmonica from P to P’ with government C, in which case so does T, a contradiction.

So we may assume that G does not contain P’ and let G5 be the component of G
containing P’. It follows from Theorem 2.2 that every L-coloring of P U P’ extends to an
L-coloring of G. In particular, let P' = p)p) and ¢; € L(p}), c2 € L(py). We let C; = {¢1, 2}
where ¢1(p}) = ¢2(p1) = 1 and {d1(ph), d2(p5)} be a subset of L(p;) — {c1} of size two.

Similarly let Co = {11, %2} where 1 (ph) = ¥o(py) = co and {¥1(p}), V2(p})} be a subset of
L(p)) — {ca} of size two. Thus C; is a dictatorship with dictator p} and Cs is a dictatorship

with dictator p). Hence C; U Cy is a confederacy and C; UCy C ®(P’,C), a contradiction. [

Claim 4.5 There does not exist a vertex in an open disk bounded by a cycle of length at

most four.

Proof. Let C be a cycle of length at most four in G. Let A be the closed disk bounded by C'.
Let G = G\ (A\C) and G5 = GNA. Suppose GN(A\C) # (. Let ¢ be an L-coloring ¢ of
G1. It follows from a theorem of Bohme et al [3] that ¢ can be extended to an L-coloring of G
and hence to an L-coloring of G. Let T} = (Gy, P, L). From above, @7, (P’,C) C &1 (P, C).
Since P, P’ C Gy, it follows from the minimality of 7" that &7, (P’,C) contains a government
C'. Furthermore, either ®7, (P’,C) contains a confederacy, a contradiction, or, 7} contains a

harmonica 7" from P to P’ with government C, and hence so does T', a contradiction. [

Claim 4.6 G is 2-connected.

Proof. Suppose not. Then there exists a cut-vertex v of G. So suppose v divides G into
two graphs G1,Gy # G such that G; U Gy = G, V(G1) N V(Gy) = {v} and without loss
of generality V/(P) C V(G;). Consider the canvases 71 = (G1, P, L) and Ty, = (G2, U’, L)
where U’ = vw is an edge of the outer walk of G5 containing v. If V(P’) C V(G;), then



by the minimality of 7', &1, (P’,C) contains a government, and hence so does ®7(P’,C), and
either @7, (P’,C) contains a confederacy, or T} contains a harmonica 7" from P to P’ with
government C. In the former case, it follows from Theorem 2.2 that every L-coloring of G
extends to an L-coloring of G and hence @, (P, C) contains a confederacy, a contradiction. In
the latter case, T" also contains 7", a contradiction. So we may assume that V(P") C V(Gy).

Now suppose there exist two L-colorings ¢, ¢9 of T such that ¢1(v) # ¢2(v). Then there
exists a confederacy C’ for U’ (a union of two dictatorships) such that every coloring in C’
extends back to 7T7. As T is a minimum counterexample, it follows that &, (P’,C’) has a
confederacy. Hence ®7(P’,C) has a confederacy, contradicting that T is a counterexample.

Let U be an edge of the outer walk of G; containing v. Hence, by the previous paragraph
we may assume that &7, (U,C) is a dictatorship with dictator v. Let ¢ be the color of v
in that dictatorship. As 7T is a minimum counterexample, it follows that T) contains a
harmonica 7] = (G, P,L) from P to U. Let Co = {t1,1¢2} where ¥1(v) = ¢s(v) = ¢
and {1 (w),¥o(w)} is a subset of L(w) — {c} of size two. Note that Cy is a dictatorship
with dictator v. It follows from the minimality of T" that ®1,(P’,Cy) contains a government
and hence ®7(P’,C) contains a government. Furthermore, either ®r,(P’,Cy) contains a
confederacy, a contradiction as then ®7(P’,C) contains a confederacy, or that Ty contains
a harmonica Ty = (G4, U, L) from U’ to P'. Let G’ be the union of G and G} where we
delete vertices of U \ V(P) that have degree one in G| and vertices of U’ \ V(P’) that have
degree one in G5. Then 7" = (G', P, L) is a harmonica from P to P’ with government C, a

contradiction. |

Claim 4.7 There does not exist a chord of C.

Proof. Suppose there exists a chord U of C. Now U divides G into graphs G, Gy # G such
that G; U Gy = G and G; N Gy = U, where we may assume without loss of generality that
P C G,. Consider the canvases T) = (G4, P, L) and T, = (G2, U, L). If V(P') C V(G,), then
by the minimality of T'; &1, (P’,C) contains a government, and hence so does ®7(P’,C), and
either &, (P’,C) contains a confederacy, or 7 contains a harmonica 7" from P to P’ with
government C. In the former case, it follows from Theorem 2.2 that every L-coloring of G
extends to an L-coloring of G and hence ®7(P’,C) contains a confederacy, a contradiction.
In the latter case, T also contains 7", a contradiction.

So we may assume that V(P') C V(G3). By the minimality of T, @7, (U,C) contains a
government C’. Furthermore, either ®7, (U,C) contains a confederacy C”, or, there exists a
harmonica 7] = (G, P, L) from P to U with government C. Suppose the former. But then
by the minimality of T', &1, (P’,C”) contains a confederacy and hence &1 (P’,C) contains a
confederacy by Proposition 3.3, a contradiction.

So we may suppose the latter. By the minimality of T, ®1,(P’,C’) contains a government

and hence ®r(P’,C) contains a government. Furthermore, either ®,(P’,C’) contains a
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confederacy or there exists a harmonica Ty = (G5, U, L) from U to P' with government C’. If
the former holds, then ®1(P’,C) contains a confederacy by Proposition 3.3, a contradiction.
So suppose the latter. Let G’ be obtained from G and G, by deleting vertices of U \ (V(P)U
V(P’)) that have degree one in both G; and Gy. Then 7" = (G’, P, L) is a harmonica from

P to P’ with government C, a contradiction. ([l

Claim 4.8 P # P'.

Proof. Suppose not. Note that every L-coloring of P extends to an L-coloring of G by
Theorem 2.2 and hence ®(P’, ') contains C. Thus if C is a confederacy, ®r(P’,C) contains
a confederacy, a contradiction. So we may assume that C is a government but then (P, P, L)

is a harmonica from P to P’ with government C, a contradiction. O

Claim 4.9 V(P)UV/(P’) does not induce a triangle.

Proof. Suppose it does. Let {z} = V(P)NV(P’) and let P = zz and P’ = yz. Thus z is
adjacent to y. By Claims 4.5 and 4.7, V/(G) = V(P) UV (P).

Let Co C C be a government of P and let ¢1 # ¢o € Cy. Note that &, (P',Cy) C
O, (P',C). If Cp is a democracy, then for every ¢ € L(y) — {¢1(2), p2(2) }, ®r(P’,Cpy) contains
a dictatorship with dictator y in color ¢. Hence if there are two such colors, ®r(P’,Cp)
contains a confederacy, a contradiction. So in this case, |Co| = 2, |L(y)| = 3 and L(y) =
{c, 91(2), P2(2)} for some ¢, D1 (P’,Cy) contains a dictatorship with dictator y in color ¢, and
hence T contains a harmonica from P to P’ with government Cj.

If Cp is a dictatorship with dictator z in color a, then ®1(P’,Cy) contains a dictatorship
with dictator z in color a, and T contains a harmonica from P to P’ with government Cj.

Next we claim that if Cy is a dictatorship with dictator = in color b, then &7 (P’,Cy)
contains a confederacy, a contradiction, unless |Co| = 2 and L(y) = {b, $1(2), d2(2)}, in
which case ®7(P’,Cy) contains a democracy with colors {¢1(z), ¢2(2)}, and T contains a
harmonica from P to P’ with government Cy. To see this, note that for every color d €
L(y) — {b, $1(2), p2(2)}, @7 (P’,Cy) contains a dictatorship with dictator y in color d. Thus
if &7 (P, Cy) does not contain a confederacy, there exists at most one such color as otherwise
it contains two dictatorships with dictator y in two different colors. But if there exists
only one such color, then there exists d’ € L(y) — {b,d} since |L(y)| > 3. But then there
exists d”’ € {¢1(z2), p2(2)} — {d'} and hence ¢ (P’,C) contains a dictatorship with dictator
z in color d”, a contradiction since then ®1(P’,Cy) contains a confederacy, a contradiction.
Finally note that |Cy| = 2 as otherwise there exists ¢3 € C and the same arguments as above
imply that L(y) = {b, $1(2), ¢3(2)}, a contradiction.
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Thus if C is a government, the arguments above imply that &7 (P’,C) contains a govern-
ment and furthermore that ®7(P’,C) contains a confederacy unless 7' contains a harmonica
from P to P’ with government C, contradicting that T is a counterexample.

So suppose that C = C; U, is a confederacy where Cy, Cy are governments. From above,
there exist governments C; C &¢(P’,C;) and C, C $7(P',Cy). Since C7UC) C O (P, C),
it follows that Cj and C} are either both democracies in the same colors, or they are both
dictatorship with the same dictator in the same color. But then from the arguments above,

it follows that the same is true of C; and C, and hence C is not a confederacy, a contradiction.
O

Claim 4.10 V(P)NV(P') = 0.

Proof. Suppose not. By Claim 4.8, P # P’. Let {z} = V(P)NV(P’) and let P = zz and
P’ = yz. By Claim 4.9, = is not adjacent to y. That is to say that PU P’ is an induced path
of length two and yet there does not exist a chord of C' by Claim 4.7. By Lemma 2.4, there
exists a unique L-coloring ¢y of P U P’ that does not extend to an L-coloring of G.

Suppose there do not exist ¢1, o € C such that ¢;(z) # ¢2(z). But then C is a dictatorship
with dictator z, say in color ¢. Let ¢1(z) = 12(z) = ¢ and let {¢1(y), ¥2(y)} be a subset of
L(y) — {c} of size two. Thus C' = {¢1,1»} is a dictatorship on P’ with dictator z in color
c. Moreover, there exists ¢ € C such that ¢(x) # ¢o(x). Thus we can extend ; and 1, to
L-colorings of G by letting ¥4 (x) = ¥a(x) = ¢(x). Hence C' C &1 (P',C), and (PU P’ P, L)
is a harmonica from P to P’ with government C, a contradiction.

So we may assume that there exist ¢y, ¢ € C such that ¢;(2) # ¢2(2). Let i € {1,2} be
such that ¢;(z) # ¢o(2z). Hence there is a dictatorship C; C ®(P’, C') such that ¢(z) = ¢i(z)
for all ¢ € C;.

Suppose L(y) — {¢1(2), $2(z), ¢o(y)} # 0. Let ¢ be a color in L(y) — {p1(2), p2(2), do(y)}
Hence there exists a dictatorship Co € ®(P’,C) such that ¢(y) = ¢ for all ¢ € Cy. But then
®(P’,C) contains the confederacy C; U Cy, a contradiction.

So we may assume that L(y) = {¢o(y), d1(2), p2(2)} as |L(y)| > 3. Hence, ¢o(y) #
¢1(2), P2(z). Thus the democracy Cs in colors ¢1(2), ¢2(z) is in ®(P’,C). But then ®(FP’,C)

C
contains the confederacy C; U Cs, a contradiction. U

Claim 4.11 C is a government.

Proof. Suppose not. Then C = C; Uy is a confederacy. Note that by Claim 4.8, P # P/,
and by Claim 4.9, V(P) U V(P’) does not induce a triangle. By the minimality of T, since
®(P’,Cy) does not contain a confederacy, there exists a harmonica 7" = (G', P, L) from

P to P’ with government C;. Since there does not exist a chord of C' by Claim 4.7 and
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V(P)UV(P') does not induce a triangle, we find that G’ = P U P’, contrary to Claim 4.10.
O

Claim 4.12 C s a dictatorship.

Proof. Suppose not. Hence C is a democracy. Let Ly be the colors of C. Let Q =q1 ... qx
be a maximal path in C' such that E(Q) N E(P') = 0, V(P) C V(Q), Ly C L(v) for all
v € V(Q). Note that C is a cycle since G is 2-connected by Claim 4.6.

We claim that ¢; € V(P'). Suppose not. Let qyv; € E(C)— E(Q). Let Q1 be the shortest
subpath of @ that includes ¢; and both vertices of P. Let T" = (G \ V(Q1),v1, L") be the
democratic reduction T'(Q1, Lo, v1) of Q1 with democracy Lg centered around v;. Note that
P’ C G\V(Q,) since V(P)NV(P’) = () by Claim 4.10. As @ is maximal and v; € V(Q), Lo is
not a subset of L(v;) as otherwise Q+v; would also be a path satisfying the above conditions,
contradicting that @ is maximal. Hence |L'(v1)| = |L(v1)| — |L(v1) N Lo| > 3 —1 = 2. Let
P” be a path of length one of the boundary of the outer face of G\ V(Q1) containing v,
and let 77 = (G \ V(Q1), P",L"). Now the set of L’-colorings of P” contains a confederacy
C’. By the minimality of 7', ®7~(P’,C’) contains a confederacy. By Lemma 3.7(2), every
L'-coloring of G\ V(Q1) extends to an L-coloring of G. Thus every coloring in &7~ (P’,C’)
is in &7 (P’,C). Hence &7 (P’,C) contains a confederacy, a contradiction. This proves the
claim that ¢; € V(P'). By symmetry, it follows that g, € V(P’).

Yet V(P)NV(P') = 0 by Claim 4.10. So q1,qx € V(P). Let ¢; € L(q1) — Lo and
¢z € L(qr) — Lo. Let C1 = {¢1,¢1} where ¢1(q1) = ¢1(q1) = c1 and {¢1(qr), ¢ (ax)} = Lo.
Similarly, let Co = {2, ¢} where ¢a(qr) = ¢5(qr) = c2 and {d2(q1), d5(q1)} = Lo. Hence C;
and Cy are distinct governments of P’ and C' = C; U Cy is a confederacy.

Moreover, for all ¢ € C', ¢ € &(P’,C). To see this, consider the democratic reductions
T =T Q\{q1,qx}, Lo, q1) and To, = T(Q\{q1, g}, Lo, gx). By Theorem 2.2, every L-coloring
of the path ¢;¢; extends to an L-coloring of T} and every L-coloring of the path ¢;q; extends
to an L-coloring of T,. Thus if ¢ € C;, then ¢ extends to an L-coloring of T} as noted above
and can then be extended to Q \ {q1, gx} by Proposition 3.7. Hence ¢ € &1 (P’,C). Similarly
if ¢ € Cy, then ¢ extends to an L-coloring of T, as noted above and can then be extended to
Q\{q1,qr} by Proposition 3.7. Hence ¢ € &1 (P’,C). Thus &1 (P’,C) contains a confederacy,

a contradiction. O

Suppose without loss of generality that p; is the dictator of C in color ¢. Let vy, vy be
the vertices of C' adjacent to p;. Suppose without loss of generality that P = pyv;. Our
next objective is to consider two democratic reductions centered at p;, one removing v; and
the other removing vy. However, for the one removing v we need to define a new canvas so
as to ensure that v; has a proper list. Moreover, we first have to show that vy, vy & V(P’)

if we are to study the colorings that extend to P’ in these reductions. Let ¢1,¢, € C.
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Then ¢ = ¢1(p1). Let My = {¢1(v1), p2(v1)}. Let L'(vy) = My U {c}, L'(p1) = {c} and let
L'(w) = L(w) otherwise. Let 7" = (G, py, L’). Let M; be a subset of L(vy) — {c} of size two.

Claim 4.13 Neither vy nor vy is in P’.

Proof.  Suppose not. By Claim 4.10 it follows that vy is in P'. Let P’ = wvyz. Let
S" = pvez and let 7" = (G, S', L'). Since there does not exist a chord of C' by Claim 4.7,
S’ is an induced path of length two. Thus by Lemma 2.4, there exists at most one proper
L'-coloring of S’, call it ¢g, that does not extend to an L’-coloring of G.

Let ¢; € L(vy) — {c,po(v2)}. Let C; = {t1,¢1} where 91(v2) = ) (v2) = ¢; and
{1(2),¢1(2)} is a subset of L(z) — {c1} of size two. Thus C] is a dictatorship on P’ with
dictator vy. Suppose that My = {co,c3}. If there exists ¢y € L(z) — ({¢o(2)} U My),
then let C) = {u9, 1)} where 1s(z) = ¥4(z) = ¢4 and {9(ve), Yh(ve)} = My, Otherwise
L(z) = My U {¢o(2)}. In that case, let C) = {13, ¢4} where ¥3(vy) = 9¥5(2) = ¢ and
Ph(ve) = 13(2) = c3. Thus in the first case, C} is a dictatorship with dictator z and in the
second case Cj is a democracy. Thus in either case, C' = C] UC) is a confederacy. Yet in
either case, C'C &1 (P',C) C O (P',C), since in every coloring in C’ either vy or z receives a

color different from the color it receives in ¢q, a contradiction. 0

Now consider the democratic reductions Ty = T"(vy, My, p1), To = T"(ve, M, p1). Suppose
that 77 = (Gy,p1, L1) and Ty = (Ga,p1, Le). Let T = (G, p1va, L1) and Ty = (Ga, P, Ly).
By the minimality of 7', @1, (P’,C) contains a government Cy. Furthermore, either ®7;(F’,C)
contains a confederacy, a contradiction as then so does &1 (F’,C), or T} contains a harmonica
Ty = (GY, P, Ls) from P to P’ with government C.

Let C* = {¢1, ¢, ... ¢} where ¢1(p1) = da(p1) = ... = ¢u(p1) = cand {¢1(v2), Pa(v2), .. -,
¢r(v2)} = L(vy) —{c}. By the minimality of T', where we consider the canvas T7, we find that
@7 (P',C*) contains a government C;. Furthermore, either ®/(FP’,C*) contains a confeder-
acy, a contradiction as then so does ®7(P’,C), or T} contains a harmonica 77 = (G, p1va, L1)
from P to P’ with government C*.

Let P' = p)p}, where p) is on the subpath of C' from pj to v; not containing p;.

Claim 4.14 There exists v & C' such that v is adjacent to py, vy, ve, py, ph.

Proof. Let W be the outer walk of G| and W; be the outer walk of GY. Since T is
obtained by an application of the third rule by Claim 4.13, the vertex p; has two neighbors
uy, ug such that | Ly (u;)| = 3 if u; # ve. But not both uy, uy can be adjacent to vy by planarity
and Claim 4.5, and hence one of them, say uy belongs to C. It follows from Claim 4.7 that
ug = v9. Thus vy € Wy and p; is not a cut-vertex of G. Let W] be the subwalk of W} from

p1 to P’ not containing vy. Let W} be the subwalk of W; from p; to P’ containing v,.
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Note if z € V(G])—V(C), then |L,(z)| < 3 by Lemma 4.2. Hence |L(2)| =5, |L1(2)| = 3,
M, C L(z) and z is adjacent to v;. However if z € V/(W]") — V/(W]), then z is not adjacent
to vy since G is planar and hence z € V/(C).

We claim that there exists wy € V(G)) — V(C) such that w; is adjacent to v; and p),. To
see this, note that there exists a vertex wy; € V(W7) in a triangle R in G} such that either
R = wpp) or R = wipiu for some i € {1,2} where u € V(W) — V(W]). In the former
case, wy; € V(C) by Claim 4.7 and hence w; is adjacent to v; as desired. In the latter case,
it follows that u is not adjacent to vy, and hence u € V(C) by the result of the previous
paragraph. But then i = 2 by Claim 4.7. Moreover, by Claim 4.7, wy ¢ V(C') given that w,
is adjacent to v and hence w; is adjacent to vy, as desired.

By symmetry, there exists we € V(GY) such that wy is adjacent to vy and p). As G is
planar, we find that w; = ws, call it v, and hence v is adjacent to uy, us, vy, v9. Moreover as
TY is a harmonica with government C and C is a dictatorship with dictator p;, we find that

v is adjacent to p;. O

Claim 4.15 There exist vertices vy = 21, 22, ..., 2k = Dby, all adjacent to v such that for all
i=1,2,...,k the canvas (G}, \ {p1, 21, ..., zi_1},v2i, L1) is a harmonica from vz; to P with

a democracy or a dictatorship depending on the parity of 1.

Proof.  The canvas (G} \ p1,vz1, Ly) is a harmonica from vz; to P’ with a democracy
obtained from 77" by application of the third rule, (G} \ {p1,v2}, v22, L1) is a harmonica from
vzy to P’ with a dictatorship obtained from (G} \ pi1,vz1, L1) by application of the fourth
rule, and so on. We note that the vertex v cannot be the vertex that is being deleted during
the construction of the next harmonica, because the next-to-last harmonica in the sequence

leading up to P’ involves the vertex v. This proves Claim 4.15. U

We are now ready to complete the proof of Theorem 4.3. It follows that M; is a subset of
L(v) and L(z;) for all 4,1 <4 < k. Similarly there exist vertices vy = wy, ..., w; = p} and M,
is a subset of L(v) and L(w;) for all 4,1 < i <. Since M; U My U {c} = L(v) by Lemma 4.2,
we see that M; and M, are disjoint. Since |L(p})| = |L(py)| = 3 by Lemma 4.2 as T} and
T} are harmonicas, and M; C L(p}) and My C L(p)), it follows that the last step in the
construction of 77 is according to the second rule of the definition of harmonica. In other
words, p), is a dictator of C;. Similarly, p] is a dictator of C5. Thus C; U Cy is a confederacy,

as desired. This completes the proof of Theorem 4.3. ([l

In the following lemma we clarify the relationship between harmonicas and coloring

harmonicas before we can prove Theorem 1.3.

Lemma 4.16 LetT = (G, P, L) be a canvas and P, P' be paths of length one in the boundary

of the outer face of G. Let P = uwv, let P' = ww', where u,v,w are pairwise distinct, and let
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T be a harmonica from P to P" with government C. Assume that ®(P’,C) is a dictatorship
with dictator w in color d, that if C is a democracy, then |L(u)| = |L(v)| = 2, and that if C is
a dictatorship, then u is the dictator, |L(u)| = 1 and if v has degree in G of at least two, then
|L(v) — L(u)| = 2. Let G be obtained from G by deleting either or both of v and w' if either
has degree one in G, let L'(w) = L(w) — {d} and L'(x) = L(z) for allx € V(G") — {w}. If
C is a dictatorship, then (G',L') is a coloring harmonica from u to w. If C is a democracy,

then (G', L) is a coloring harmonica from uv to w.

Proof. We proceed by induction on |V (G)|. If |V (G)| = 3, then, since w is the dictator of
O(P',C), and w € V(P), we deduce that T is obtained according to the fourth rule in the
definition of harmonica. Thus C is a democracy, u, v, w form a triangle, L' (u) = L'(v) = L' (w)
and |L(u)| = 2. Thus (G’, L') is a coloring harmonica from uv to w. We may therefore assume
that |V(G)| > 4.

Assume now that C is a democracy. Thus T is obtained according to the fourth rule in
the definition of harmonica. Consequently, there exists a vertex z adjacent to u and v such
that L(z) = LoU {c} where Ly = C(u) = C(v) and there exist z,y such that {z,y} = {u, v},
the canvas 7" = (G \ z,U, L) is a harmonica with dictatorship C' = {¢1, ¢2}, where U = zy
and ¢(2) = ¢2(2) = c and {¢1(y), p2(y)} = Lo. It follows that L(u) = L(v) = Lg. If z = w,
then 7" is obtained according to the second rule in the definition of harmonica, and hence w’
has degree one in G. It follows that (G’, L') is a coloring harmonica from uv to w, because
G' is obtained from G by deleting w’. We may therefore assume that z # w.

Thus T” is obtained according to the third rule in the definition of harmonica. Let wuy, uy
be as in that rule, and let G} = G' \ z if y € {uy,u2} and G| = G’ \ {x,y} otherwise. Let
Li(z) = L(2) — Lo and Ly(2') = L(2') for all 2/ € V(G) — {z}, and let L|(2') = L'(2) for
all 2 € V(G). Tt follows by induction applied to the canvas (G \ z,U, Ly) that (G, L)) is
a coloring harmonica from z to w, and hence (G’, L') is a coloring harmonica from uv to w,
as desired.

We may therefore assume that C is a dictatorship. Since w ¢ V(P), it follows that T
is obtained according to the third rule in the definition of harmonica. Thus there exists a
triangle uujus and letting ¢ denote the color in which u is the dictator, for « = 1,2 we have
L(u;) = LoUA{c} if u; ¢ V(P) and C(u;) = Lo otherwise, where |Lg| = 2 and the canvas
(G\ (V(P)—=V(U)),U,L) is a harmonica from U = wjus to P’ with democracy C’, where

C'(uy) = C'(uz) = Lg. Let us note that |L(u)| = 1 and if w; € V(P), then u; = v, and hence
|L(u;) — L(u)| = 2. Let G} = G"\ u, let Li(uy) = Li(uy) = L(uy) — L(u), Li(ug) = L (ug) =
L(uy) — L(u), and let Ly(u') = L(u') and Li(v') = L'(«) for all ' € V(G}) — {us,us}.
It follows by induction applied to the canvas (G \ (V(P) — V(U)),U, L,) that (G}, L}) is a
coloring harmonica from wyuy to w, and hence (G’, L) is a coloring harmonica from u to w,
as desired. O

15



Proof of Theorem 1.3. We prove only the backward direction as the forward direction is
trivial. So let G, p1, p2, L be as in the statement of the theorem and suppose for the sake of
contradiction that G is not L-colorable and yet (G, L) does not contain a coloring harmonica
from p; to ps.

Let pivi,pove € E(C) and let P = pjv; and P’ = povy. Let ¢ € L(py). Let C. =
{b1, P2, ... or} where ¢;(p1) = c for all i,1 < i < k, and {¢1(v1), P2(va),. .., dk(v1)} =
L(vy) — {c}. Note that C. is a dictatorship on P with dictator p; in color c. If there exists
¢ € L(p1) —{c}, then let C = C.UC., in which case C is a confederacy; otherwise let C = C,.,
in which case C is a dictatorship on P with dictator p; in color ¢. Let ¢y be a new color and
let L'(py) = L(p2) U{co}, and let L'(z) = L(x) for all z € V(G) — {p2}. Let T = (G, P, L’).
By Theorem 4.3, &7 (P’,C) contains a government C’. Furthermore, either &1 (P’,C) contains
a confederacy C”, or, C is a government and there exists a harmonica 7" = (G’, P, L) from
P to P’ with government C.

In the former case, there exists a coloring ¢ € C” such that ¢(py) # ¢o. But then ¢
extends to an L’-coloring of G as ¢ € ®p(P’',C) and yet ¢ is an L-coloring of G since
®(pa2) # co, a contradiction. So we may assume the latter case. Thus |L(p;)| = 1, because C
is a government; and if v; has degree at least two in G, then k = 2, because 1" is a harmonica
obtained according to the third rule. As above, there does not exist a coloring ¢ € C’ such
that ¢(ps) # co. Hence C’ is a dictatorship with dictator py in color ¢y. Let G” be obtained
from G’ by deleting either or both of v; and vy if either has degree one in G'. Now (G”, L)

is a coloring harmonica from p; to ps by Lemma 4.16, a contradiction. 0

Acknowledgment

The results of this paper form part of the doctoral dissertation [5] of the first author, written

under the guidance of the second author.

References

[1] K. Appel and W. Haken, Every planar map is four colorable, Part I: discharging, Illinois
J. of Math. 21 (1977), 429-490.

[2] K. Appel, W. Haken, J. Koch, Every planar map is four colorable, Part II: reducibility,
[linois J. of Math. 21 (1977), 491-567.

[3] T. Bohme, B. Mohar and M. Stiebitz, Dirac’s map-color theorem for choosability, J.
Graph Theory 32 (1999), 327-339.

[4] J. Hutchinson, On list-coloring extendable outerplanar graphs, Ars Mathematica Con-
temporanea 5 (2012) 171-184.

16



[5] L. Postle, 5-list-coloring graphs on surfaces, Ph.D. Dissertation, Georgia Institute of
Technology, 2012.

[6] L. Postle and R. Thomas, Five-List-Coloring Graphs on Surfaces 1. Two Lists of Size
Two in Planar Graphs. Journal of Combinatorial Theory Ser. B 111 (2015), pp. 234-241.

[7] C. Thomassen, Every planar graph is 5-choosable, J. Combin. Theory Ser. B 62 (1994),
180-181.

[8] C. Thomassen, Exponentially many 5-list-colorings of planar graphs, J. Combin. Theory
Ser. B 97 (2007), 571-583.

[9] M. Voigt, List colourings of planar graphs, Discrete Mathematics 120 (1993) 215-219.

17



