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ABSTRACT

Let G be a plane graph with outer cycle C and let (L(v) : v ∈ V (G)) be a family of non-
empty sets. By an L-coloring of G we mean a (proper) coloring φ of G such that φ(v) ∈ L(v)
for every vertex v of G. Thomassen proved that if v1, v2 ∈ V (C) are adjacent, L(v1) ̸= L(v2),
|L(v)| ≥ 3 for every v ∈ V (C)−{v1, v2} and |L(v)| ≥ 5 for every v ∈ V (G)−V (C), thenG has
an L-coloring. What happens when v1 and v2 are not adjacent? Then an L-coloring need not
exist, but in the first paper of this series we have shown that it exists if |L(v1)|, |L(v2)| ≥ 2.
Here we characterize when an L-coloring exists if |L(v1)| ≥ 1 and |L(v2)| ≥ 2.

This result is a lemma toward a more general theorem along the same lines, which we
will use to prove that minimally non-L-colorable planar graphs with two precolored cycles
of bounded length are of bounded size. The latter result has a number of applications which
we pursue elsewhere.
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1 Introduction

All graphs in this paper are finite and simple; that is, they have no loops or parallel edges.

Paths and cycles have no repeated vertices or edges. If G is a graph and L = (L(v) : v ∈

V (G)) is a family of non-empty sets, then we say that L is a list assignment for G. It is a

k-list-assignment, if |L(v)| ≥ k for every vertex v ∈ V (G). An L-coloring of G is a (proper)

coloring φ of G such that φ(v) ∈ L(v) for every vertex v of G. We say that a graph G

is k-choosable, also called k-list-colorable, if for every k-list-assignment L for G, G has an

L-coloring.

One notable difference between list coloring and ordinary coloring is that the Four Color

Theorem [1, 2] does not generalize to list-coloring. Indeed, Voigt [9] constructed a planar

graph that is not 4-choosable. On the other hand Thomassen [7] proved that every planar

graph is 5-choosable. His proof is remarkably short and beautiful. For the sake of the

inductive argument he proves the following stronger statement.

Theorem 1.1 If G is a plane graph with outer cycle C and P = p1p2 is a path of length

one in C and L is a list assignment with |L(v)| ≥ 5 for all v ∈ V (G)− V (C), |L(v)| ≥ 3 for

all v ∈ V (C)− V (P ), and |L(p1)|, |L(p2)| ≥ 1 with L(p1) ̸= L(p2), then G is L-colorable.

What if p1 and p2 are not adjacent? In that case G need not be L-colorable, but it

is possible to characterize instances when it is not. In fact, we are able to extract useful

information even when more vertices are pre-colored, but it will take some effort. We began

this line of research in our previous paper [6], where we proved a generalization of Theorem 1.1

conjectured by Hutchinson [4], who proved the result for outerplanar graphs.

Theorem 1.2 If G is a plane graph with outer cycle C and p1, p2 ∈ V (C) and L is a list

assignment with |L(v)| ≥ 5 for all v ∈ V (G)− V (C), |L(v)| ≥ 3 for all v ∈ V (C)−{p1, p2},

and |L(p1)|, |L(p2)| ≥ 2, then G is L-colorable.

The main result of this paper is to characterize when an L-coloring exists, if in Theo-

rem 1.2 we only assume that |L(p1)| ≥ 1. In order to state the theorem we need to define a

family of obstructions.

Let G be a connected plane graph, and let u, v, w be distinct vertices of G incident with

the outer face of G, let u be adjacent to v, let the edge uv be incident with the outer face of

G and let L be a list assignment for G. We say that the pair (G,L) is a coloring harmonica

from uv to w if either

• G is a triangle with vertex set {u, v, w}, L(u) = L(v) = L(w) and |L(u)| = 2, or

• there exists a vertex z ∈ V (G) incident with the outer face of G such that uvz is a

triangle in G, L(u) = L(v) ⊆ L(z), |L(u)| = |L(v)| = 2, |L(z)| = 3, and (G′, L′) is a

2



coloring harmonica from z to w, where G′ is obtained from G by deleting one or both

of the vertices u, v, and L′ satisfies L′(z) = L(z) − L(u) and L′(x) = L(x) for every

x ∈ V (G′)− {z}.

We say that the pair (G,L) is a coloring harmonica from u to w if

• there exist vertices x, y ∈ V (G) incident with the outer face of G such that uxy is

a triangle in G, |L(u)| = 1, L(x) − L(u) = L(y) − L(u), |L(x) − L(u)| = 2, and

(G′, L′) is a coloring harmonica from xy to w, where G′ := G \u, L′(x) = L(x)−L(u),

L′(y) = L(y)− L(u) and L′(z) = L(z) for every z ∈ V (G′)− {x, y}.

See Figure 1. We say that the pair (G,L) is a coloring harmonica if it is either a coloring

harmonica from uv to w or a coloring harmonica from u to w, where u, v, w are as specified

earlier. We say that the pair (G,L) contains a coloring harmonica (G′, L′) if G′ is a subgraph

of G and L′(x) = L(x) for every x ∈ V (G′).

{1,2,3}

{1}
u

{1,2,3}

{2,3,4}

{2,3,4}

{2,3,5}

{5,6,7}

{5,6,7} {6,7}

w

Figure 1: A coloring harmonica from u to w.

We can now state the main result of this paper. Hutchinson [4] proved it for outerplanar

graphs.

Theorem 1.3 Let G be a plane graph with outer cycle C, let p1, p2 ∈ V (C), and let L be a list

assignment with |L(v)| ≥ 5 for all v ∈ V (G)− V (C), |L(v)| ≥ 3 for all v ∈ V (C)−{p1, p2},

|L(p1)| ≥ 1 and |L(p2)| ≥ 2. Then G is L-colorable if and only if the pair (G,L) does not

contain a coloring harmonica from p1 to p2.

2 Canvases

We also recall the definition of the graphs we are working with, first introduced in our

previous paper [6].
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Definition 2.1 (Canvas) We say that (G,S, L) is a canvas if G is a plane graph, S is

a subgraph of the boundary of the outer face of G, and L is a list assignment for some

supergraph of G such that |L(v)| ≥ 5 for all v ∈ V (G)− V (C), where C is the boundary of

the outer face of G, |L(v)| ≥ 3 for all v ∈ V (G)−V (S), and there exists a proper L-coloring

of S.

We should remark that we allow L to be a list assignment of some supergraph of G merely

for convenience when passing to subgraphs. Given this definition of a canvas, we can state

a slightly more general version of Theorem 1.1 as follows.

Theorem 2.2 If (G,S, L) is a canvas and S is path of length one, then G is L-colorable.

We can also restate Theorem 1.2 in these terms.

Theorem 2.3 (Two with List of Size Two Theorem) If (G,S, L) is a canvas with V (S) =

{v1, v2} and |L(v1)|, |L(v2)| ≥ 2, then G is L-colorable.

It should be noted that Thomassen [8] characterized the canvases (G,S, L) where S is

a path of length two and G is not L-colorable. For our main theorem, we do not need this

full characterization. However, we do need the following lemma that can be found in [8,

Lemma 1]. A chord of a walk in a graph G is a subgraph of G consisting of two vertices that

belong to the walk and an edge joining them that does not belong to the walk.

Lemma 2.4 Let T = (G,S, L) be a canvas such that S is an induced path of length two. If

there does not exist a chord of the boundary of the outer face of G, then there exists at most

one proper L-coloring of S that does not extend to an L-coloring of G.

We also need a notion of containment for canvases as follows.

Definition 2.5 A canvas T = (G,S, L) contains a canvas T ′ = (G′, S ′, L′) ifG′ is a subgraph

of G, S = S ′ and the restrictions of L and L′ to G′ are equal.

3 Governments and Reductions

In this section, we will develop notation and definitions for characterizing how the colorings

of P in Theorem 1.1 extend to colorings of other paths of length one on the boundary of

the outer walk. We introduce a notion called a government to describe sets of colorings

that come in two types which we call dictatorships and democracies. Our main theorem will

show that a government extends to at least two governments unless a very specific structure

occurs.
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3.1 Coloring Extensions

Definition 3.1 Suppose T = (G,P, L) is a canvas where P = p1p2 is a path of length one

in the boundary C of the outer face of G. Suppose we are given a collection C of L-colorings

of P . Let P ′ be an edge of G with both ends in C. We let ΦT (P
′, C) denote the collection

of proper L-colorings of P ′ that can be extended to a proper L-coloring φ of G such that φ

restricted to P is an L-coloring in C. We will drop the subscript T when the canvas is clear

from context.

We may now restate Theorem 1.1 in these terms.

Theorem 3.2 Let T = (G,P, L) be a canvas with P a path of length one, and let C be the

outer cycle of G. If C is a non-empty collection of proper L-colorings of P , and P ′ is an

edge of G with both ends in C, then Φ(P ′, C) is nonempty.

Note the following easy proposition.

Proposition 3.3 Let T, P, P ′, C be as in Theorem 3.2. If U = u1u2 is a chord of C sepa-

rating P from P ′, dividing T into T1 = (G1, P, L) and T2 = (G2, U, L), then

ΦT2
(P ′,ΦT1

(U, C)) = ΦT (P
′, C).

3.2 Governments

To explain the structure of extending larger sets of colorings, we focus on two special sets of

colorings, defined as follows.

Definition 3.4 (Government) Let C = {φ1, φ2, . . . , φk}, k ≥ 2, be a collection of distinct

proper colorings of a path P = p1p2 of length one. For p ∈ P , let C(p) denote the set

{φ(p)|φ ∈ C}.

We say C is a dictatorship if there exists i ∈ {1, 2} such that φj(pi) is the same for all

1 ≤ j ≤ k, in which case, we say pi is the dictator of C. We say C is a democracy if k = 2

and φ1(p1) = φ2(p2) and φ2(p1) = φ1(p2). We say C is a government if C is a dictatorship or

a democracy.

We also need a generalized form of government as follows.

Definition 3.5 Let C be a collection of disjoint proper colorings of a path P = p1p2 of

length one. We say C is a confederacy if C is not a government and yet C is the union of two

governments.
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3.3 Reductions

Thomassen found a useful reduction in his proof of 5-choosability. We will need a general-

ization of that reduction as follows.

Definition 3.6 (Democratic Reduction) Let T = (G,S, L) be a canvas and L0 be a set

of two colors. Let G be connected, and let C be the boundary of the outer face of G. Suppose

that P = p1 . . . pk is an induced path in C such that, for every vertex v in P , v is not the

end of a chord of C or a cut-vertex of C, V (C) ̸= V (P ), and L0 ⊆ L(v). If k ≥ 2, let x be

the vertex of C adjacent to p1 other than p2 and y be the vertex of C adjacent to pk other

than pk−1. If k = 1, then we assume that p1 has two distinct neighbors on C, and let x and

y be the two neighbors of p1 on C. We assume that L(x)− L0 ̸= ∅.

We define the democratic reduction of P in T with respect to L0 and centered at x,

denoted as T (P, L0, x), as (G \ V (P ), S ′, L′) where L′(w) = L(w) − L0 if either w = x, or

w ̸= y is a neighbor of a vertex in P , and L′(w) = L(w) otherwise; and S ′ = S \ V (P ) if

|L′(x)| ≥ 3 and otherwise let S ′ be obtained from S \V (P ) by adding x as an isolated vertex.

Proposition 3.7 Let T (P,L0, x) = (G′, S ′, L′) be a democratic reduction of a path P in a

canvas T = (G,S, L) with respect to L0 and centered at x. The following statements hold:

1. T (P,L0, x) is a canvas.

2. If φ is an L′-coloring of G′, then φ can be extended to an L-coloring of G.

Proof. Let C be the boundary of the outer face of G. If v ∈ V (G′) such that |L′(v)| < 5,

then either v ∈ C or v is adjacent to a vertex of w in P . In either case, v is in the boundary

of the outer face of G′. Note that if v ∈ V (G′) such that L′(v) ̸= L(v), then either v = x

or v ̸∈ C. In the latter case, |L(v)| = 5 and hence |L′(v)| ≥ 3. Thus, if v ∈ V (G′) such

that |L′(v)| < 3, then v ∈ V (S) ∪ {x}. Recall that by definition, V (S ′) = V (S) ∪ {x} if

|L′(x)| < 3 and V (S ′) = V (S) otherwise. In either case, it follows that if v ∈ V (G′) such

that |L′(v)| < 3, then v ∈ V (S ′). This proves (1).

Let φ be an L′-coloring of G′. Let P = p1 . . . pk where p1 is adjacent to x. If k = 1, let

y be the neighbor of p1 in C other than x. If k ≥ 2, let y be the neighbor of pk in C other

than pk−1. Let φ(pk) ∈ L0 −{φ(y)}. For all i with 1 ≤ i ≤ k− 1, let φ(pi) ∈ L0 −{φ(pi+1)}.

Now φ is an L-coloring of G. This proves (2). �

We note that Thomassen’s reduction corresponds to a democratic reduction where |V (P )| =

1, x ∈ V (S) and |L(x)| = 1.
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4 Harmonicas

In this section, we rework the definition of coloring harmonica to an object involving gov-

ernments which we call a harmonica. We then prove a stronger version of our main theorem

which shows that harmonicas are the only obstacle to extending a government to a confed-

eracy. We will then show that this implies that coloring harmonicas are the only obstruction

to generalizing Theorem 2.3 to the case of one vertex with a list of size one and one with a

list of size two. That is, we finally prove Theorem 1.3.

Definition 4.1 (Harmonica) Let T = (G,P, L) be a canvas where P is path of length

one. Let C be a government for P and let P ′ be another (not necessarily distinct) path of

length one incident with the outer face of G. We say T is a harmonica from P to P ′ with

government C if

• G = P = P ′, or

• C is a dictatorship, G = P ∪ P ′, V (P ) ∩ V (P ′) = {z} where z is the dictator of C, or

• C is a dictatorship and there exists a triangle zu1u2 where z ∈ V (P ) is the dictator

of C in color c, for i = 1, 2 we have L(ui) = L0 ∪ {c} if ui ̸∈ V (P ) and C(ui) = L0

otherwise, where |L0| = 2 and the canvas (G \ (V (P ) − V (U)), U, L) is a harmonica

from U = u1u2 to P ′ with democracy C ′ where C ′(u1) = C ′(u2) = L0, or

• C is a democracy and there exists z adjacent to p1, p2, where P = p1p2 such that

L(z) = L0 ∪ {c}, where L0 = C(p1) = C(p2) and there exists i ∈ {1, 2} such that the

canvas (G \ pi, U, L) is a harmonica with dictatorship C ′ = {φ1, φ2}, where U = zp3−i

and φ1(z) = φ2(z) = c and {φ1(p3−i), φ2(p3−i)} = L0.

Note that ΦT (P
′, C) is a government. We remark that the notion of harmonica is closely

related to the notion of coloring harmonica, introduced earlier. Lemma 4.16 clarifies the

relation between the two.

We need the following easy lemma, whose proof we omit.

Lemma 4.2 Let T = (G,P, L) be a harmonica from P to P ′ with government C, and let

v ∈ V (G)−V (P ) be such that if v ∈ V (P ′), then v has degree at least two. Then |L(v)| = 3.

The following is our main result.

Theorem 4.3 Let T = (G,P, L) be a canvas and P, P ′ be paths of length one in the boundary

of the outer face of G. Given a collection C of proper colorings of P such that C is a

government or a confederacy, then Φ(P ′, C) contains a government, and furthermore, either
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• Φ(P ′, C) contains a confederacy, or,

• C is a government and T contains a harmonica from P to P ′ with government C.

Proof. Suppose that T = (G,P, L) is a counterexample with |V (G)| minimized and,

subject to that, C is a government if possible. Let C be the boundary of the outer face of G.

Claim 4.4 G is connected.

Proof. Suppose not. Let G1 be the component of G containing P . First suppose that G1

contains P ′ and let G2 be a component of G other than G1. Let T ′ = (G \ V (G2), P, L).

By the minimality of G, ΦT ′(P ′, C) contains a government and hence ΦT (P
′, C) contains

a government by Theorem 1.1. Furthermore, either ΦT ′(P ′, C) contains a confederacy, a

contradiction as then ΦT (P
′, C) contains a confederacy by Theorem 1.1, or T ′ contains a

harmonica from P to P ′ with government C, in which case so does T , a contradiction.

So we may assume that G1 does not contain P ′ and let G2 be the component of G

containing P ′. It follows from Theorem 2.2 that every L-coloring of P ∪ P ′ extends to an

L-coloring of G. In particular, let P ′ = p′1p
′

2 and c1 ∈ L(p′1), c2 ∈ L(p′2). We let C1 = {φ1, φ2}

where φ1(p
′

1) = φ2(p
′

1) = c1 and {φ1(p
′

2), φ2(p
′

2)} be a subset of L(p′2) − {c1} of size two.

Similarly let C2 = {ψ1, ψ2} where ψ1(p
′

2) = ψ2(p
′

2) = c2 and {ψ1(p
′

1), ψ2(p
′

1)} be a subset of

L(p′1)− {c2} of size two. Thus C1 is a dictatorship with dictator p′1 and C2 is a dictatorship

with dictator p′2. Hence C1 ∪ C2 is a confederacy and C1 ∪ C2 ⊆ Φ(P ′, C), a contradiction. �

Claim 4.5 There does not exist a vertex in an open disk bounded by a cycle of length at

most four.

Proof. Let C be a cycle of length at most four in G. Let ∆ be the closed disk bounded by C.

Let G1 = G\ (∆\C) and G2 = G∩∆. Suppose G∩ (∆\C) ̸= ∅. Let φ be an L-coloring φ of

G1. It follows from a theorem of Bohme et al [3] that φ can be extended to an L-coloring of G2

and hence to an L-coloring of G. Let T1 = (G1, P, L). From above, ΦT1
(P ′, C) ⊆ ΦT (P

′, C).

Since P, P ′ ⊆ G1, it follows from the minimality of T that ΦT1
(P ′, C) contains a government

C ′. Furthermore, either ΦT1
(P ′, C) contains a confederacy, a contradiction, or, T1 contains a

harmonica T ′ from P to P ′ with government C, and hence so does T , a contradiction. �

Claim 4.6 G is 2-connected.

Proof. Suppose not. Then there exists a cut-vertex v of G. So suppose v divides G into

two graphs G1, G2 ̸= G such that G1 ∪ G2 = G, V (G1) ∩ V (G2) = {v} and without loss

of generality V (P ) ⊆ V (G1). Consider the canvases T1 = (G1, P, L) and T2 = (G2, U
′, L)

where U ′ = vw is an edge of the outer walk of G2 containing v. If V (P ′) ⊆ V (G1), then
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by the minimality of T , ΦT1
(P ′, C) contains a government, and hence so does ΦT (P

′, C), and

either ΦT1
(P ′, C) contains a confederacy, or T1 contains a harmonica T ′ from P to P ′ with

government C. In the former case, it follows from Theorem 2.2 that every L-coloring of G1

extends to an L-coloring ofG and hence ΦT1
(P ′, C) contains a confederacy, a contradiction. In

the latter case, T also contains T ′, a contradiction. So we may assume that V (P ′) ⊆ V (G2).

Now suppose there exist two L-colorings φ1, φ2 of T1 such that φ1(v) ̸= φ2(v). Then there

exists a confederacy C ′ for U ′ (a union of two dictatorships) such that every coloring in C ′

extends back to T1. As T is a minimum counterexample, it follows that ΦT2
(P ′, C ′) has a

confederacy. Hence ΦT (P
′, C) has a confederacy, contradicting that T is a counterexample.

Let U be an edge of the outer walk of G1 containing v. Hence, by the previous paragraph

we may assume that ΦT1
(U, C) is a dictatorship with dictator v. Let c be the color of v

in that dictatorship. As T is a minimum counterexample, it follows that T1 contains a

harmonica T ′

1 = (G′

1, P, L) from P to U . Let C2 = {ψ1, ψ2} where ψ1(v) = ψ2(v) = c

and {ψ1(w), ψ2(w)} is a subset of L(w) − {c} of size two. Note that C2 is a dictatorship

with dictator v. It follows from the minimality of T that ΦT2
(P ′, C2) contains a government

and hence ΦT (P
′, C) contains a government. Furthermore, either ΦT2

(P ′, C2) contains a

confederacy, a contradiction as then ΦT (P
′, C) contains a confederacy, or that T2 contains

a harmonica T ′

2 = (G′

2, U, L) from U ′ to P ′. Let G′ be the union of G′

1 and G′

2 where we

delete vertices of U \ V (P ) that have degree one in G′

1 and vertices of U ′ \ V (P ′) that have

degree one in G′

2. Then T ′ = (G′, P, L) is a harmonica from P to P ′ with government C, a

contradiction. �

Claim 4.7 There does not exist a chord of C.

Proof. Suppose there exists a chord U of C. Now U divides G into graphs G1, G2 ̸= G such

that G1 ∪ G2 = G and G1 ∩ G2 = U , where we may assume without loss of generality that

P ⊆ G1. Consider the canvases T1 = (G1, P, L) and T2 = (G2, U, L). If V (P ′) ⊆ V (G1), then

by the minimality of T , ΦT1
(P ′, C) contains a government, and hence so does ΦT (P

′, C), and

either ΦT1
(P ′, C) contains a confederacy, or T1 contains a harmonica T ′ from P to P ′ with

government C. In the former case, it follows from Theorem 2.2 that every L-coloring of G1

extends to an L-coloring of G and hence ΦT (P
′, C) contains a confederacy, a contradiction.

In the latter case, T also contains T ′, a contradiction.

So we may assume that V (P ′) ⊆ V (G2). By the minimality of T , ΦT1
(U, C) contains a

government C ′. Furthermore, either ΦT1
(U, C) contains a confederacy C ′′, or, there exists a

harmonica T ′

1 = (G′

1, P, L) from P to U with government C. Suppose the former. But then

by the minimality of T , ΦT2
(P ′, C ′′) contains a confederacy and hence ΦT (P

′, C) contains a

confederacy by Proposition 3.3, a contradiction.

So we may suppose the latter. By the minimality of T , ΦT2
(P ′, C ′) contains a government

and hence ΦT (P
′, C) contains a government. Furthermore, either ΦT2

(P ′, C ′) contains a
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confederacy or there exists a harmonica T ′

2 = (G′

2, U, L) from U to P ′ with government C ′. If

the former holds, then ΦT (P
′, C) contains a confederacy by Proposition 3.3, a contradiction.

So suppose the latter. Let G′ be obtained from G′

1 and G
′

2 by deleting vertices of U \(V (P )∪

V (P ′)) that have degree one in both G1 and G2. Then T
′ = (G′, P, L) is a harmonica from

P to P ′ with government C, a contradiction. �

Claim 4.8 P ̸= P ′.

Proof. Suppose not. Note that every L-coloring of P extends to an L-coloring of G by

Theorem 2.2 and hence Φ(P ′, C) contains C. Thus if C is a confederacy, ΦT (P
′, C) contains

a confederacy, a contradiction. So we may assume that C is a government but then (P, P, L)

is a harmonica from P to P ′ with government C, a contradiction. �

Claim 4.9 V (P ) ∪ V (P ′) does not induce a triangle.

Proof. Suppose it does. Let {z} = V (P ) ∩ V (P ′) and let P = xz and P ′ = yz. Thus x is

adjacent to y. By Claims 4.5 and 4.7, V (G) = V (P ) ∪ V (P ′).

Let C0 ⊆ C be a government of P and let φ1 ̸= φ2 ∈ C0. Note that ΦT (P
′, C0) ⊆

ΦT (P
′, C). If C0 is a democracy, then for every c ∈ L(y)−{φ1(z), φ2(z)}, ΦT (P

′, C0) contains

a dictatorship with dictator y in color c. Hence if there are two such colors, ΦT (P
′, C0)

contains a confederacy, a contradiction. So in this case, |C0| = 2, |L(y)| = 3 and L(y) =

{c, φ1(z), φ2(z)} for some c, ΦT (P
′, C0) contains a dictatorship with dictator y in color c, and

hence T contains a harmonica from P to P ′ with government C0.

If C0 is a dictatorship with dictator z in color a, then ΦT (P
′, C0) contains a dictatorship

with dictator z in color a, and T contains a harmonica from P to P ′ with government C0.

Next we claim that if C0 is a dictatorship with dictator x in color b, then ΦT (P
′, C0)

contains a confederacy, a contradiction, unless |C0| = 2 and L(y) = {b, φ1(z), φ2(z)}, in

which case ΦT (P
′, C0) contains a democracy with colors {φ1(z), φ2(z)}, and T contains a

harmonica from P to P ′ with government C0. To see this, note that for every color d ∈

L(y)− {b, φ1(z), φ2(z)}, ΦT (P
′, C0) contains a dictatorship with dictator y in color d. Thus

if ΦT (P
′, C0) does not contain a confederacy, there exists at most one such color as otherwise

it contains two dictatorships with dictator y in two different colors. But if there exists

only one such color, then there exists d′ ∈ L(y) − {b, d} since |L(y)| ≥ 3. But then there

exists d′′ ∈ {φ1(z), φ2(z)} − {d′} and hence ΦT (P
′, C) contains a dictatorship with dictator

z in color d′′, a contradiction since then ΦT (P
′, C0) contains a confederacy, a contradiction.

Finally note that |C0| = 2 as otherwise there exists φ3 ∈ C and the same arguments as above

imply that L(y) = {b, φ1(z), φ3(z)}, a contradiction.
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Thus if C is a government, the arguments above imply that ΦT (P
′, C) contains a govern-

ment and furthermore that ΦT (P
′, C) contains a confederacy unless T contains a harmonica

from P to P ′ with government C, contradicting that T is a counterexample.

So suppose that C = C1 ∪ C2 is a confederacy where C1, C2 are governments. From above,

there exist governments C ′

1 ⊆ ΦT (P
′, C1) and C ′

2 ⊆ ΦT (P
′, C2). Since C ′

1 ∪ C ′

2 ⊆ ΦT (P
′, C),

it follows that C ′

1 and C ′

2 are either both democracies in the same colors, or they are both

dictatorship with the same dictator in the same color. But then from the arguments above,

it follows that the same is true of C1 and C2 and hence C is not a confederacy, a contradiction.

�

Claim 4.10 V (P ) ∩ V (P ′) = ∅.

Proof. Suppose not. By Claim 4.8, P ̸= P ′. Let {z} = V (P ) ∩ V (P ′) and let P = xz and

P ′ = yz. By Claim 4.9, x is not adjacent to y. That is to say that P ∪P ′ is an induced path

of length two and yet there does not exist a chord of C by Claim 4.7. By Lemma 2.4, there

exists a unique L-coloring φ0 of P ∪ P ′ that does not extend to an L-coloring of G.

Suppose there do not exist φ1, φ2 ∈ C such that φ1(z) ̸= φ2(z). But then C is a dictatorship

with dictator z, say in color c. Let ψ1(z) = ψ2(z) = c and let {ψ1(y), ψ2(y)} be a subset of

L(y) − {c} of size two. Thus C ′ = {ψ1, ψ2} is a dictatorship on P ′ with dictator z in color

c. Moreover, there exists φ ∈ C such that φ(x) ̸= φ0(x). Thus we can extend ψ1 and ψ2 to

L-colorings of G by letting ψ1(x) = ψ2(x) = φ(x). Hence C ′ ⊆ ΦT (P
′, C), and (P ∪ P ′, P, L)

is a harmonica from P to P ′ with government C, a contradiction.

So we may assume that there exist φ1, φ2 ∈ C such that φ1(z) ̸= φ2(z). Let i ∈ {1, 2} be

such that φi(z) ̸= φ0(z). Hence there is a dictatorship C1 ⊆ Φ(P ′, C) such that φ(z) = φi(z)

for all φ ∈ C1.

Suppose L(y)−{φ1(z), φ2(z), φ0(y)} ̸= ∅. Let c be a color in L(y)−{φ1(z), φ2(z), φ0(y)}.

Hence there exists a dictatorship C2 ⊆ Φ(P ′, C) such that φ(y) = c for all φ ∈ C2. But then

Φ(P ′, C) contains the confederacy C1 ∪ C2, a contradiction.

So we may assume that L(y) = {φ0(y), φ1(z), φ2(z)} as |L(y)| ≥ 3. Hence, φ0(y) ̸=

φ1(z), φ2(z). Thus the democracy C3 in colors φ1(z), φ2(z) is in Φ(P ′, C). But then Φ(P ′, C)

contains the confederacy C1 ∪ C3, a contradiction. �

Claim 4.11 C is a government.

Proof. Suppose not. Then C = C1 ∪ C2 is a confederacy. Note that by Claim 4.8, P ̸= P ′,

and by Claim 4.9, V (P ) ∪ V (P ′) does not induce a triangle. By the minimality of T , since

ΦT (P
′, C1) does not contain a confederacy, there exists a harmonica T ′ = (G′, P, L) from

P to P ′ with government C1. Since there does not exist a chord of C by Claim 4.7 and
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V (P ) ∪ V (P ′) does not induce a triangle, we find that G′ = P ∪ P ′, contrary to Claim 4.10.

�

Claim 4.12 C is a dictatorship.

Proof. Suppose not. Hence C is a democracy. Let L0 be the colors of C. Let Q = q1 . . . qk

be a maximal path in C such that E(Q) ∩ E(P ′) = ∅, V (P ) ⊆ V (Q), L0 ⊆ L(v) for all

v ∈ V (Q). Note that C is a cycle since G is 2-connected by Claim 4.6.

We claim that q1 ∈ V (P ′). Suppose not. Let q1v1 ∈ E(C)−E(Q). Let Q1 be the shortest

subpath of Q that includes q1 and both vertices of P . Let T ′ = (G \ V (Q1), v1, L
′) be the

democratic reduction T (Q1, L0, v1) of Q1 with democracy L0 centered around v1. Note that

P ′ ⊆ G\V (Q1) since V (P )∩V (P ′) = ∅ by Claim 4.10. As Q is maximal and v1 ̸∈ V (Q), L0 is

not a subset of L(v1) as otherwise Q+v1 would also be a path satisfying the above conditions,

contradicting that Q is maximal. Hence |L′(v1)| = |L(v1)| − |L(v1) ∩ L0| ≥ 3 − 1 = 2. Let

P ′′ be a path of length one of the boundary of the outer face of G \ V (Q1) containing v1,

and let T ′′ = (G \ V (Q1), P
′′, L′). Now the set of L′-colorings of P ′′ contains a confederacy

C ′. By the minimality of T , ΦT ′′(P ′, C ′) contains a confederacy. By Lemma 3.7(2), every

L′-coloring of G \ V (Q1) extends to an L-coloring of G. Thus every coloring in ΦT ′′(P ′, C ′)

is in ΦT (P
′, C). Hence ΦT (P

′, C) contains a confederacy, a contradiction. This proves the

claim that q1 ∈ V (P ′). By symmetry, it follows that qk ∈ V (P ′).

Yet V (P ) ∩ V (P ′) = ∅ by Claim 4.10. So q1, qk ̸∈ V (P ). Let c1 ∈ L(q1) − L0 and

c2 ∈ L(qk) − L0. Let C1 = {φ1, φ
′

1} where φ1(q1) = φ′

1(q1) = c1 and {φ1(qk), φ
′

1(qk)} = L0.

Similarly, let C2 = {φ2, φ
′

2} where φ2(qk) = φ′

2(qk) = c2 and {φ2(q1), φ
′

2(q1)} = L0. Hence C1

and C2 are distinct governments of P ′ and C ′ = C1 ∪ C2 is a confederacy.

Moreover, for all φ ∈ C ′, φ ∈ ΦT (P
′, C). To see this, consider the democratic reductions

T1 = T (Q\{q1, qk}, L0, q1) and T2 = T (Q\{q1, qk}, L0, qk). By Theorem 2.2, every L-coloring

of the path q1qk extends to an L-coloring of T1 and every L-coloring of the path q1qk extends

to an L-coloring of T2. Thus if φ ∈ C1, then φ extends to an L-coloring of T1 as noted above

and can then be extended to Q\{q1, qk} by Proposition 3.7. Hence φ ∈ ΦT (P
′, C). Similarly

if φ ∈ C2, then φ extends to an L-coloring of T2 as noted above and can then be extended to

Q\{q1, qk} by Proposition 3.7. Hence φ ∈ ΦT (P
′, C). Thus ΦT (P

′, C) contains a confederacy,

a contradiction. �

Suppose without loss of generality that p1 is the dictator of C in color c. Let v1, v2 be

the vertices of C adjacent to p1. Suppose without loss of generality that P = p1v1. Our

next objective is to consider two democratic reductions centered at p1, one removing v1 and

the other removing v2. However, for the one removing v2 we need to define a new canvas so

as to ensure that v1 has a proper list. Moreover, we first have to show that v1, v2 ̸∈ V (P ′)

if we are to study the colorings that extend to P ′ in these reductions. Let φ1, φ2 ∈ C.
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Then c = φ1(p1). Let M1 = {φ1(v1), φ2(v1)}. Let L′(v1) = M1 ∪ {c}, L′(p1) = {c} and let

L′(w) = L(w) otherwise. Let T ′ = (G, p1, L
′). Let M2 be a subset of L(v2)−{c} of size two.

Claim 4.13 Neither v1 nor v2 is in P ′.

Proof. Suppose not. By Claim 4.10 it follows that v2 is in P ′. Let P ′ = v2z. Let

S ′ = p1v2z and let T ′′ = (G,S ′, L′). Since there does not exist a chord of C by Claim 4.7,

S ′ is an induced path of length two. Thus by Lemma 2.4, there exists at most one proper

L′-coloring of S ′, call it φ0, that does not extend to an L′-coloring of G.

Let c1 ∈ L(v2) − {c, φ0(v2)}. Let C ′

1 = {ψ1, ψ
′

1} where ψ1(v2) = ψ′

1(v2) = c1 and

{ψ1(z), ψ
′

1(z)} is a subset of L(z) − {c1} of size two. Thus C ′

1 is a dictatorship on P ′ with

dictator v2. Suppose that M2 = {c2, c3}. If there exists c4 ∈ L(z) − ({φ0(z)} ∪ M2),

then let C ′

2 = {ψ2, ψ
′

2} where ψ2(z) = ψ′

2(z) = c4 and {ψ2(v2), ψ
′

2(v2)} = M2. Otherwise

L(z) = M2 ∪ {φ0(z)}. In that case, let C ′

2 = {ψ3, ψ
′

3} where ψ3(v2) = ψ′

3(z) = c2 and

ψ′

3(v2) = ψ3(z) = c3. Thus in the first case, C ′

2 is a dictatorship with dictator z and in the

second case C ′

2 is a democracy. Thus in either case, C ′ = C ′

1 ∪ C ′

2 is a confederacy. Yet in

either case, C ′⊆ ΦT ′(P ′, C) ⊆ ΦT (P
′, C), since in every coloring in C ′ either v2 or z receives a

color different from the color it receives in φ0, a contradiction. �

Now consider the democratic reductions T1 = T ′(v1,M1, p1), T2 = T ′(v2,M2, p1). Suppose

that T1 = (G1, p1, L1) and T2 = (G2, p1, L2). Let T ′

1 = (G1, p1v2, L1) and T ′

2 = (G2, P, L2).

By the minimality of T , ΦT ′

2
(P ′, C) contains a government C2. Furthermore, either ΦT ′

2
(P ′, C)

contains a confederacy, a contradiction as then so does ΦT (P
′, C), or T ′

2 contains a harmonica

T ′′

2 = (G′

2, P, L2) from P to P ′ with government C.

Let C∗ = {φ1, φ2, . . . φk} where φ1(p1) = φ2(p1) = . . . = φk(p1) = c and {φ1(v2), φ2(v2), . . . ,

φk(v2)} = L(v2)−{c}. By the minimality of T , where we consider the canvas T ′

1, we find that

ΦT ′

1
(P ′, C∗) contains a government C1. Furthermore, either ΦT ′

1
(P ′, C∗) contains a confeder-

acy, a contradiction as then so does ΦT (P
′, C), or T ′

1 contains a harmonica T ′′

1 = (G′

1, p1v2, L1)

from P to P ′ with government C∗.

Let P ′ = p′1p
′

2, where p
′

1 is on the subpath of C from p′2 to v1 not containing p1.

Claim 4.14 There exists v ̸∈ C such that v is adjacent to p1, v1, v2, p
′

1, p
′

2.

Proof. Let W1 be the outer walk of G′

1 and W2 be the outer walk of G′

2. Since T ′′

1 is

obtained by an application of the third rule by Claim 4.13, the vertex p1 has two neighbors

u1, u2 such that |L1(ui)| = 3 if ui ̸= v2. But not both u1, u2 can be adjacent to v1 by planarity

and Claim 4.5, and hence one of them, say u2 belongs to C. It follows from Claim 4.7 that

u2 = v2. Thus v2 ∈ W1 and p1 is not a cut-vertex of G′

1. Let W
′

1 be the subwalk of W1 from

p1 to P ′ not containing v2. Let W
′′

1 be the subwalk of W1 from p1 to P ′ containing v2.
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Note if z ∈ V (G′

1)−V (C), then |L1(z)| ≤ 3 by Lemma 4.2. Hence |L(z)| = 5, |L1(z)| = 3,

M1 ⊆ L(z) and z is adjacent to v1. However if z ∈ V (W ′′

1 )− V (W ′

1), then z is not adjacent

to v1 since G is planar and hence z ∈ V (C).

We claim that there exists w1 ∈ V (G′

1)−V (C) such that w1 is adjacent to v1 and p
′

2. To

see this, note that there exists a vertex w1 ∈ V (W ′

1) in a triangle R in G′

1 such that either

R = w1p
′

1p
′

2 or R = w1p
′

iu for some i ∈ {1, 2} where u ∈ V (W ′′

1 ) − V (W ′

1). In the former

case, w1 ̸∈ V (C) by Claim 4.7 and hence w1 is adjacent to v1 as desired. In the latter case,

it follows that u is not adjacent to v1, and hence u ∈ V (C) by the result of the previous

paragraph. But then i = 2 by Claim 4.7. Moreover, by Claim 4.7, w1 ̸∈ V (C) given that w1

is adjacent to u and hence w1 is adjacent to v1, as desired.

By symmetry, there exists w2 ∈ V (G′

2) such that w2 is adjacent to v2 and p′1. As G is

planar, we find that w1 = w2, call it v, and hence v is adjacent to u1, u2, v1, v2. Moreover as

T ′′

2 is a harmonica with government C and C is a dictatorship with dictator p1, we find that

v is adjacent to p1. �

Claim 4.15 There exist vertices v2 = z1, z2, ..., zk = p′2, all adjacent to v such that for all

i = 1, 2, . . . , k the canvas (G′

1 \ {p1, z1, ..., zi−1}, vzi, L1) is a harmonica from vzi to P
′ with

a democracy or a dictatorship depending on the parity of i.

Proof. The canvas (G′

1 \ p1, vz1, L1) is a harmonica from vz1 to P ′ with a democracy

obtained from T ′′

1 by application of the third rule, (G′

1 \{p1, v2}, vz2, L1) is a harmonica from

vz2 to P ′ with a dictatorship obtained from (G′

1 \ p1, vz1, L1) by application of the fourth

rule, and so on. We note that the vertex v cannot be the vertex that is being deleted during

the construction of the next harmonica, because the next-to-last harmonica in the sequence

leading up to P ′ involves the vertex v. This proves Claim 4.15. �

We are now ready to complete the proof of Theorem 4.3. It follows thatM2 is a subset of

L(v) and L(zi) for all i, 1 ≤ i ≤ k. Similarly there exist vertices v1 = w1, ..., wl = p′1 and M1

is a subset of L(v) and L(wi) for all i, 1 ≤ i ≤ l. Since M1 ∪M2 ∪{c} = L(v) by Lemma 4.2,

we see that M1 and M2 are disjoint. Since |L(p′1)| = |L(p′2)| = 3 by Lemma 4.2 as T ′′

1 and

T ′′

2 are harmonicas, and M1 ⊆ L(p′1) and M2 ⊆ L(p′2), it follows that the last step in the

construction of T ′′

1 is according to the second rule of the definition of harmonica. In other

words, p′2 is a dictator of C1. Similarly, p′1 is a dictator of C2. Thus C1 ∪ C2 is a confederacy,

as desired. This completes the proof of Theorem 4.3. �

In the following lemma we clarify the relationship between harmonicas and coloring

harmonicas before we can prove Theorem 1.3.

Lemma 4.16 Let T = (G,P, L) be a canvas and P, P ′ be paths of length one in the boundary

of the outer face of G. Let P = uv, let P ′ = ww′, where u, v, w are pairwise distinct, and let
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T be a harmonica from P to P ′ with government C. Assume that Φ(P ′, C) is a dictatorship

with dictator w in color d, that if C is a democracy, then |L(u)| = |L(v)| = 2, and that if C is

a dictatorship, then u is the dictator, |L(u)| = 1 and if v has degree in G of at least two, then

|L(v)−L(u)| = 2. Let G′ be obtained from G by deleting either or both of v and w′ if either

has degree one in G, let L′(w) = L(w)− {d} and L′(x) = L(x) for all x ∈ V (G′)− {w}. If

C is a dictatorship, then (G′, L′) is a coloring harmonica from u to w. If C is a democracy,

then (G′, L′) is a coloring harmonica from uv to w.

Proof. We proceed by induction on |V (G)|. If |V (G)| = 3, then, since w is the dictator of

Φ(P ′, C), and w ̸∈ V (P ), we deduce that T is obtained according to the fourth rule in the

definition of harmonica. Thus C is a democracy, u, v, w form a triangle, L′(u) = L′(v) = L′(w)

and |L(u)| = 2. Thus (G′, L′) is a coloring harmonica from uv to w. We may therefore assume

that |V (G)| ≥ 4.

Assume now that C is a democracy. Thus T is obtained according to the fourth rule in

the definition of harmonica. Consequently, there exists a vertex z adjacent to u and v such

that L(z) = L0 ∪ {c} where L0 = C(u) = C(v) and there exist x, y such that {x, y} = {u, v},

the canvas T ′ = (G \ x, U, L) is a harmonica with dictatorship C ′ = {φ1, φ2}, where U = zy

and φ1(z) = φ2(z) = c and {φ1(y), φ2(y)} = L0. It follows that L(u) = L(v) = L0. If z = w,

then T ′ is obtained according to the second rule in the definition of harmonica, and hence w′

has degree one in G. It follows that (G′, L′) is a coloring harmonica from uv to w, because

G′ is obtained from G by deleting w′. We may therefore assume that z ̸= w.

Thus T ′ is obtained according to the third rule in the definition of harmonica. Let u1, u2

be as in that rule, and let G′

1 = G′ \ x if y ∈ {u1, u2} and G′

1 = G′ \ {x, y} otherwise. Let

L1(z) = L(z) − L0 and L1(z
′) = L(z′) for all z′ ∈ V (G) − {z}, and let L′

1(x
′) = L′(x′) for

all x′ ∈ V (G′

1). It follows by induction applied to the canvas (G \ x, U, L1) that (G
′

1, L
′

1) is

a coloring harmonica from z to w, and hence (G′, L′) is a coloring harmonica from uv to w,

as desired.

We may therefore assume that C is a dictatorship. Since w ̸∈ V (P ), it follows that T

is obtained according to the third rule in the definition of harmonica. Thus there exists a

triangle uu1u2 and letting c denote the color in which u is the dictator, for i = 1, 2 we have

L(ui) = L0 ∪ {c} if ui ̸∈ V (P ) and C(ui) = L0 otherwise, where |L0| = 2 and the canvas

(G \ (V (P ) − V (U)), U, L) is a harmonica from U = u1u2 to P ′ with democracy C ′, where

C ′(u1) = C ′(u2) = L0. Let us note that |L(u)| = 1 and if ui ∈ V (P ), then ui = v, and hence

|L(ui)−L(u)| = 2. Let G′

1 = G′ \u, let L1(u1) = L′

1(u1) = L(u1)−L(u), L1(u2) = L′

1(u2) =

L(u2) − L(u), and let L1(u
′) = L(u′) and L′

1(u
′) = L′(u′) for all u′ ∈ V (G′

1) − {u1, u2}.

It follows by induction applied to the canvas (G \ (V (P ) − V (U)), U, L1) that (G
′

1, L
′

1) is a

coloring harmonica from u1u2 to w, and hence (G′, L′) is a coloring harmonica from u to w,

as desired. �
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Proof of Theorem 1.3. We prove only the backward direction as the forward direction is

trivial. So let G, p1, p2, L be as in the statement of the theorem and suppose for the sake of

contradiction that G is not L-colorable and yet (G,L) does not contain a coloring harmonica

from p1 to p2.

Let p1v1, p2v2 ∈ E(C) and let P = p1v1 and P ′ = p2v2. Let c ∈ L(p1). Let Cc =

{φ1, φ2, . . . φk} where φi(p1) = c for all i, 1 ≤ i ≤ k, and {φ1(v1), φ2(v2), . . . , φk(v1)} =

L(v1) − {c}. Note that Cc is a dictatorship on P with dictator p1 in color c. If there exists

c′ ∈ L(p1)−{c}, then let C = Cc∪Cc′ , in which case C is a confederacy; otherwise let C = Cc,

in which case C is a dictatorship on P with dictator p1 in color c. Let c0 be a new color and

let L′(p2) = L(p2) ∪ {c0}, and let L′(x) = L(x) for all x ∈ V (G)− {p2}. Let T = (G,P, L′).

By Theorem 4.3, ΦT (P
′, C) contains a government C ′. Furthermore, either ΦT (P

′, C) contains

a confederacy C ′′, or, C is a government and there exists a harmonica T ′ = (G′, P, L′) from

P to P ′ with government C.

In the former case, there exists a coloring φ ∈ C ′′ such that φ(p2) ̸= c0. But then φ

extends to an L′-coloring of G as φ ∈ ΦT (P
′, C) and yet φ is an L-coloring of G since

φ(p2) ̸= c0, a contradiction. So we may assume the latter case. Thus |L(p1)| = 1, because C

is a government; and if v1 has degree at least two in G, then k = 2, because T ′ is a harmonica

obtained according to the third rule. As above, there does not exist a coloring φ ∈ C ′ such

that φ(p2) ̸= c0. Hence C ′ is a dictatorship with dictator p2 in color c0. Let G
′′ be obtained

from G′ by deleting either or both of v1 and v2 if either has degree one in G′. Now (G′′, L)

is a coloring harmonica from p1 to p2 by Lemma 4.16, a contradiction. �
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