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ABSTRACT

A cubic graph G is cyclically 5-connected if G is simple, 3—connected, has at least 10
vertices and for every set F' of edges of size at most four, at most one component of G\ F
contains circuits. We prove that if G and H are cyclically 5-connected cubic graphs and H
topologically contains G, then either G and H are isomorphic, or (modulo well-described
exceptions) there exists a cyclically 5-connected cubic graph G’ such that H topologically
contains G’ and G’ is obtained from G in one of the following two ways. Either G’ is
obtained from G by subdividing two distinct edges of G and joining the two new vertices
by an edge, or G’ is obtained from G by subdividing each edge of a circuit of length five
and joining the new vertices by a matching to a new circuit of length five disjoint from
G in such a way that the cyclic orders of the two circuits agree. We prove a companion
result, where by slightly increasing the connectivity of H we are able to eliminate the
second construction. We also prove versions of both of these results when G is almost
cyclically 5-connected in the sense that it satisfies the definition except for 4-edge cuts
such that one side is a circuit of length four. In this case G’ is required to be almost
cyclically 5-connected and to have fewer circuits of length four than G. In particular, if
G has at most one circuit of length four, then G’ is required to be cyclically 5-connected.
However, in this more general setting the operations describing the possible graphs G’ are

more complicated.



1. INTRODUCTION

The primary motivation for this work comes from Tutte’s 3—edge-coloring conjecture [13],

the following (definitions are given later).

(1.1) Conjecture. Every 2-edge-connected cubic graph that does not topologically

contain the Petersen graph is 3—edge-colorable.

Our strategy is to reduce (1.1) to “apex” and “doublecross” graphs, two classes of graphs
that are close to planar graphs, and then modify our proof of the Four Color Theorem [§]
to show that graphs belonging to those classes satisfy (1.1). We began the first part of
this program in [10], but in order to complete it we need to understand the structure
of reasonably well-connected cubic graphs that do not topologically contain the Petersen
graph. That is the subject of [11], where we apply the structure theory of cyclically 5-
connected cubic graphs developed in this paper. We have completed the second part of
the project for doublecross graphs in [5]; the apex case is harder and is currently under
preparation.

To motivate our structure theorems let us mention a special case of a theorem of

Tutte [12].

(1.2) Let G, H be non-isomorphic 3—connected cubic graphs, and let H contain G topol-
ogically. Then there exists a cubic graph G’ obtained from G by subdividing two distinct
edges of GG and joining the new vertices by an edge in such a way such that H topologically

contains G'.

Our objective is to prove a similar theorem for cyclically 5-connected cubic graphs.
An ideal analog of (1.2) for cyclically 5-connected cubic graphs would assert that there is
a graph G’ as in (1.2) that is cyclically 5-connected. That is unfortunately not true, but
the exceptions can be conveniently described. We will do so now.

Let G be a cyclically 5-connected cubic graph. Let e, f be distinct edges of G with
no common end and such that no edge of G is adjacent to both e and f, and let G’ be
obtained from G by subdividing e and f and joining the new vertices by an edge. We say
that G’ is a handle expansion of G. We show in (2.2) that G’ is cyclically 5-connected.

Let €1, €2, 3, €4, €5 (in order) be the edges of a circuit of G of length five. Let us subdivide

3



e; by a new vertex v;, add a circuit (disjoint from G) with vertices uq, ug, us, uq, us (in
order), and for i = 1,2,...,5 let us add an edge joining u; and v; to form a graph G”. In
these circumstances we say that G” is a circuit expansion of G. It is not hard to see, for
instance by repeatedly applying (2.1), that G” is cyclically 5-connected.

Let p be an integer such that p > 5 if p is odd and p > 10 if p is even. Let G be a cubic
graph with vertex-set {ug,u1,...,%p—1,v0,v1,...,0p—1} such that fori =0,1,...,p—1, u;
has neighbors u;_1, u;4+1 and v;, and v; has neighbors wu;, v;_2 and v;42, where the index
arithmetic is taken modulo p (see Figure 1). We say that G is a biladder on 2p vertices. We
remark that the Petersen graph is a biladder on 10 vertices, and that the Dodecahedron

is a biladder on 20 vertices.

p even

Figure 1: Biladders

The following is our first main result.



(1.3) Let G, H be non-isomorphic cyclically 5-connected cubic graphs such that not both
of them are biladders, let H contain G topologically, and assume that if G is isomorphic to
the Petersen graph, then H does not topologically contain the biladder on 14 vertices (that
is, for p = 7), and if G is isomorphic to the Dodecahedron, then H does not topologically
contain the biladder on 24 vertices (that is, for p = 12). Then there exists a cyclically

5-connected handle or circuit expansion G’ of G such that H contains G’ topologically.

There is a variation of (1.3), which is easier to apply, but which involves a stronger

assumption about the graph H. Dodecahedral connectivity is defined in Section 5.

(1.4) Let G, H be non-isomorphic cyclically 5-connected cubic graphs such that not both
of them are biladders, let H be dodecahedrally connected, let H contain GG topologically,
and assume that if G is isomorphic to the Petersen graph, then H does not topologically
contain the biladder on 14 vertices (that is, for p = 7), and if G is isomorphic to the
Dodecahedron, then H does not topologically contain the biladder on 24 vertices (that is,
for p = 12). Then there exists a cyclically 5-connected handle expansion G’ of G such that
H topologically contains G'.

Since every biladder is either planar (if p is even), or topologically contains the Petersen

graph (if p is odd) we deduce the following corollary.

(1.5) Let G,H be non-isomorphic cyclically 5-connected cubic graphs, let G be non-
planar, let H be dodecahedrally connected, let H contain G topologically, and assume
that H does not topologically contain the Petersen graph. Then there exists a cyclically
5-connected handle expansion G' of G such that H topologically contains G'.

The last three theorems describe how to obtain a bigger cyclically 5-connected cubic
graph from a smaller one. But what are the initial graphs to start from? The graphs
Petersen, Triplex, Box, Ruby and Dodecahedron are defined in Figure 2. The following
theorem of McCuaig [6, 7] was also obtained in [1].

(1.6) Every cyclically 5-connected cubic graph topologically contains one of Petersen,

Triplex, Box, Ruby or Dodecahedron.



s

& &8 B

Petersen Triplex Box
Ruby Dodecahedron

Figure 2. The five minimal cyclically 5-connected graphs

Theorems (1.3), (1.4) and (1.6) have the following corollary, the first part of which
was proved for planar graphs in [2, 3|, and for general graphs in [6, 7].

(1.7) Every cyclically 5-connected cubic graph can be obtained from Triplex, Box, Ruby or
a biladder by repeatedly applying the operations of handle expansion or circuit expansion.
Every dodecahedrally connected cubic graph can be obtained from Triplex, Box, Ruby or
a biladder by repeatedly applying the operation of handle expansion.

It follows from (5.1) that a handle expansion of a dodecahedrally connected graph is again
dodecahedrally connected.

Our proofs of (1.3) and (1.4) are indirect, and proceed by way of auxiliary results,
stated as (4.10) and (5.6) below, that are themselves quite useful. Those auxiliary results

allow G to violate the definition of cyclic 5-connectivity, but only in a limited way. For
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instance, if GG satisfies the definition of cyclic 5-connectivity, except for one circuit of length
four, then we can still insist that G’ be cyclically 5-connected. However, the operations
that describe how to obtain G’ are more complicated, and therefore we defer the exact

statements to Section 4.

Let us introduce some terminology now. All graphs in this paper are finite and simple.
Thus we may denote the edge of a graph with ends v and v by uv without any ambiguity.
If G is a graph we denote its vertex-set and edge-set by V(G) and E(G), respectively. Let
G be a graph. If K, L are subgraphs of G we denote by K U L the graph with vertex-set
V(K)UV(L), edge-set E(K)U E(L) and the obvious incidences. If A C V(G) we denote
by dg A (or 6 A if the graph can be understood from the context) the set of edges of G with
one end in A and the other end in V(G) — A. An edge-cut of G is a set of edges of the
form 0 A, where A C V(G) and ) # A # V(G). If X is a vertex, a set of vertices, an edge,
or a set of edges, we denote by G\ X the graph obtained from G by deleting X. If X is
a set of vertices we denote by G|X the graph G\(V(G) — X). Paths and circuits have no
“repeated” vertices and no “repeated” edges. A quadrangle is a circuit of length four. A
graph G is cubic if every vertex of G has degree three and it is subcubic if every vertex has
degree at most three. Let £k > 4 be an integer. We say that a cubic graph G is cyclically
k—connected if G is 3—connected, has at least 2k vertices, and for every edge-cut A of G
of cardinality less than k, one of G\ A, G|A has no circuits.

Let e be an edge of a graph G. A graph H is obtained from G by subdividing e if H
is obtained by deleting e, adding a new vertex v € V(G), and joining v to both ends of e
by new edges. We say that v is the new vertex of H. We say that a graph H topologically
contains a graph G if some graph obtained from G by repeatedly subdividing edges is
isomorphic to a subgraph of H.

The paper is organized as follows. In Sections 2 and 3 we introduce some terminology
and prove several lemmas. In Section 4 we solve the following problem: Suppose that a
cyclically 5-connected cubic graph H contains a graph G topologically and is minimal with
this property, where G is “almost” cyclically 5-connected (quad-connected, as defined in
the next section). What can we say about H? In Section 5 we strengthen the conclusion

of the result of Section 4 under the assumption that H is dodecahedrally connected. In
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Section 6 we prove a preliminary version of (1.3), where we allow adding two handles,

rather than one. We prove (1.3) and (1.4) in Section 7.

2. EXTENSIONS

Let G be a cubic graph. We say that G is quad-connected if

G is cyclically 4-connected,

G has at least 10 vertices,

if G has more than one quadrangle, then it has at least 12 vertices, and

for every edge-cut §A of G of cardinality exactly four, one of G|A and G\ A is isom-
orphic to K5 or to a quadrangle.

Thus a cubic graph is cyclically 5-connected if and only if it is quad-connected and has no
quadrangle. It follows that in a quad-connected graph no two quadrangles share an edge.

Let u,v,z,y be vertices of a graph G such that u is adjacent to v, x is adjacent to
y, and {u,v} # {x,y}. We define G + (u,v,z,y) to be the graph obtained from G by
subdividing the edges uv and xy, where the new vertices are k and [, respectively, and
adding an edge joining k and [. The vertices k,l (in this order) will be called the new
vertices of G + (u,v, z,y). We remark that if u, v, z, y are pairwise distinct and G has no
circuits of length at most three, then neither does G + (u, v, z,y). If the vertices u, v, x,y
are pairwise distinct, then we say that G + (u, v, x,y) is a 1-extension of G. If, in addition,
neither u nor v is adjacent to x or y, then we say that G + (u,v, z,y) is a long 1-extension
of GG; otherwise we say that it is short. Thus if G is cyclically 5-connected, then long
l-extension and handle expansion mean the same thing.

Now let C' be a quadrangle in G. We say that the 1-extension G + (u, v, z,y) is based
at C if wv is an edge of C and x,y ¢ V(C), and we will apply the qualifiers long and short
as in the previous paragraph. Let G be quad-connected, let C' be a quadrangle in G, let
G + (u,v,z,y) be a short l-extension of G based at C, and let k,l be the new vertices.
Then one of u, v is adjacent to one of z,y, and so we may assume that, say, u is adjacent
to x. Then {u,x,k, [} is the vertex-set of a quadrangle D in G’. The next lemma implies
that D is the only quadrangle of G’ containing the edge kl. We say that D is the new
quadrangle of G’.



(2.1) Let G be a quad-connected cubic graph, and let G' be a l-extension of G such
that if G has a quadrangle, then G’ is a 1-extension of G based at some quadrangle of G.
Then G’ is quad-connected. In particular, G' has at most one quadrangle that is not a

quadrangle of G.

Proof. The second assertion follows from the first, for every quadrangle of G’ that is not
a quadrangle of G uses the edge joining the new vertices of G’ and in a quad-connected
graph every edge belongs to at most one quadrangle. To prove that G’ is quad-connected it
suffices to verify the last condition in the definition of quad-connectivity, because the other
conditions are clear. The graph G’ is clearly 3—connected. Let k,l be the new vertices
of G'. Let dg'A be an edge-cut of G’ of cardinality at most four such that both G’|A
and G’\ A contain circuits. We must show that |6 A| = 4 and that G’'|A or G'\A is a
quadrangle. We have 4 < |A| < |V(G")| — 4. Let B = A — {k,l}. Then ) # B # V(G),
and so g B is an edge-cut of G of cardinality at most four. Thus one of G|B and G\B is
a forest or a quadrangle.

Suppose first that G|B is a quadrangle. Since 4 = |dgB| < |0g'A| < 4, we see that
dgB = g A. The definition of 1-extension implies that {u,v} € B and {x,y} € B. Thus
G|B = G'|A, and so G’|A is a quadrangle, as desired. This completes the case where G|B
is a quadrangle.

By symmetry between G|B and G\ B we may therefore assume that G|B is a forest.
Since |0gB| < 4 we see that |B| < 2, and since |A| > 4 we have |B| = 2, say B = {a, b}.
Thus A = {a,b,k,l}, |6 A| =4, and G’|A is a quadrangle, as required. O

(2.2) Let G be a quad-connected cubic graph with at most one quadrangle, and let G’
be a long 1-extension such that if G has a quadrangle C, then G’ is a 1-extension based

at C. Then G’ is cyclically 5-connected.

Proof. The graph G’ is quad-connected by (2.1). Since the extension is long, the graph G’

has no quadrangle, and hence is cyclically 5-connected. O

(2.3) Let G be a quad-connected cubic graph, let the vertices uy,us2,us, ug, us (in order)

form the vertex-set of a path of G, let G' = G + (uy, us, u4, us), and assume that either G
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is cyclically 5-connected, or G has a quadrangle C with uy,us € V(C') and ug,us € V(C).

Then G’ is a short extension of G if and only if uy and us are adjacent.

Proof. If u; and us are adjacent, then G’ is clearly a short extension. Conversely, if G’ is
a short extension, then one of uy,us is adjacent to one of uyg, us. Since G has no triangles
we may assume for a contradiction that either w; is adjacent to uy4, or us is adjacent to
us. In either case G has a quadrangle D # C, and hence G is not cyclically 5-connected.

Thus C exists, but the existence of C' and D contradicts the quad-connectivity of G. O

Let G be a cyclically 4—connected cubic graph, let uy,uso,...,ug be the vertices of
a path in G in order, let G; = G + (u1,us,us3,uq), and let k1,0 be the new vertices
of G1. We define G&(uy,uq,us, ug, us,ug) to be the graph Go = G + (us,l1,us, ug).
Let ko,l> be the new vertices of Go. We say that ki,ly, ks, ls are the new vertices of

G&(Ula Uz, U3, Uq,Us, UG)-

(2.4) Let G be a cubic graph, and let uq,us,...,us be vertices of G forming the vertex-
set of a path in the order listed. Let G' = G&(uy,us,us, uy, us, ug). Assume that G is
quad-connected with at most one quadrangle, and that if it has a quadrangle, then it
has a quadrangle C' with uy,us € V(C) and ug,us,us € V(C). Then G’ is cyclically

5-connected.

Proof. By (2.1) G1 = G + (u1,us,us,uys) is quad-connected, and it has exactly one qu-
adrangle. By another application of (2.1) the graph G’ is cyclically 5-connected, because

it has no quadrangle. O

(2.5) Let G be a cubic graph, let uy,us,...,us be the vertices of a circuit of G in order,
and assume that G is either cyclically 5-connected, or quad-connected with a quadrangle
C' such that uz,uq € V(C) and uy,us,us ¢ V(C). Let v; be the neighbor of uy other than

ug and us, and let G' = G + (us, ug,u1,v1). Then G’ is a long 1-extension of G.

Proof. The vertex us is not adjacent to v; in G, for otherwise G has a quadrangle D
with vertex-set {v1,u1,us, us}, which implies that C' exists, but the existence of C' and D

contradicts the quad-connectivity of G. Hence G’ is a long 1-extension by (2.3). 0O
(2.6) Let G be a quad-connected cubic graph, and let C' be a quadrangle in G with
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vertices uy, us, us, u4 in order. Let v be the neighbor of u; not on C', and let vy be defined
analogously. Let wy # w1 be a neighbor of vy, and let z; # v, be a neighbor of wi. Then
G + (ug,us,v1,w1) is a long 1-extension of G, and if z; # vy then G + (uy,ug,wi,21) is a

long 1-extension of G.

Proof. The vertices wy and us are not adjacent, for otherwise the set {uq, ug, us, ug, vy, wy}
contradicts the quad-connectivity of G. Thus the 1-extension G + (us,u4,v1,w1) is long

by (2.3), and so is G + (u1, ug, w1, z1) if 21 # va. O

3. HOMEOMORPHIC EMBEDDINGS

Let G, H be graphs. A mapping n with domain V(G)UE(G) is called a homeomorphic

embedding of G into H if for every two vertices v, v’ and every two edges e, e’ of G

(i) n(v) is a vertex of H, and if v, v’ are distinct then n(v),n(v") are distinct,

(ii) if e has ends v,v’, then n(e) is a path of H with ends n(v),n(v’), and otherwise disjoint
from n(V(G)), and

(iii) if e, e’ are distinct, then n(e) and n(e’) are edge-disjoint, and if they have a vertex in
common, then this vertex is an end of both.

We shall denote the fact that 7 is a homeomorphic embedding of G into H by writing

n : G — H, and we shall write G — H to mean that there exists a homeomorphic

embedding of G into H. If K is a subgraph of G we denote by n(K) the subgraph of H

consisting of all vertices n(v), where v € V(K), and all vertices and edges that belong to

n(e) for some e € E(K). It is easy to see that H contains G topologically if and only if

there is a homeomorphic embedding G — H.

Let Gg be a quad-connected graph, let Cy be a quadrangle in GG, and let n > 1 be
an integer. We say that GG, is an n-extension of Gy based at Cj if there exists a sequence
G1,C1,Go,C5, ..., Gy, such that for ¢ = 1,2,...,n, the graph G; is a 1-extension of G;_1
based at C;_1, and if ¢ < n then this 1-extension is short and C; is the new quadrangle in
G;. We say that G, is a short n-extension of G if G,, is a short 1-extension of GG,,_1, and

we say that it is a long n-extension otherwise. We say that the sequence G1,Go, ..., G, is
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a generating sequence of the n-extension G,, from G, based at Cy. We say that a graph
H is an extension of Gy if it is an n-extension for some integer n > 1.

Let G, H, K be graphs, and let n : G — H and ¢ : H — K. For v € V(G) we put
£(v) = ¢(n(v)), and for e € E(G) we define £(e) to be the union of ((f) over all edges
f € E((e)). Then ¢ : G — K, and we write { =no (.

If Go,Gq,...,G, are as in the paragraph before the previous one, then for each
t=1,2,...,n there is a natural homeomorphic embedding G;_1 — G;, and hence there is
a natural homeomorphic embedding ¢ : Gy — G, called the canonical embedding determ-
ined by the generating sequence G1,Gs,...,G,. When there is no danger of confusion
we will drop the reference to the generating sequence and simply talk about a canonical
embedding.

We will frequently need to construct new homeomorphic embeddings from old ones by
means of “rerouting”. We now introduce these constructions formally. Let G, H be graphs,
and let n : G — H be a homeomorphic embedding. Let e € E(G), and let P’ be a path in
H of length at least one with both ends on 7n(e), and otherwise disjoint from 7(G). Let P
be the subpath of 7(e) with ends the ends of P’. Let n’(e) be the path obtained from 7(e)
by replacing the interior of P by P’, and let n'(z) = n(z) for all z € V(G) U E(G) — {e}.
Then 1’ : G — H is a homeomorphic embedding, and we say that 1’ was obtained from 7
by rerouting n(e) along P’.

Let e, f, g be three distinct edges of G, all incident with a vertex v of degree three.
Let 2 be an interior vertex of n(e), let y be an interior vertex of n(f), and let P’ be a
path in H with ends z and y, and otherwise disjoint from n(G). Let n'(v) =y, let n'(e)
be obtained from 7(e) by deleting the part from z to n(v) (including n(v) but not x) and
adding P’, let 7' (f) be obtained from n(f) by deleting the part from y to n(v) (including
n(v) but not y), and let n'(g) be obtained from 7(g) by adding the subpath of n(f) with
ends y and n(v). For z € V(G) U E(G) — {v,e, f,g} let n’(2) = n(z). Thenn' : G — H,
and we say that 1’ was obtained from n by rerouting n(e) along P’.

Let e be an edge of G with ends u, v of degree three, let f1, fo be the other two edges
incident with u, and let g1, g2 be the other two edges incident with v. Let x be an interior

vertex of n( f1), let y be an interior vertex of 1(gy1), and let P’ be a path in H with ends x and
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y, and otherwise disjoint from 7n(G). Let n'(u) = z, let ' (v) =y, let n'(e) = P’, let n'(f1)
be the path obtained from 7n(f1) by deleting the subpath between x and n(u) (including n(u)
but not x), let n’(g1) be the path obtained from 7(g;) by deleting the subpath between
y and n(v) (including n(v) but not y), let n'(f2) be obtained from n(f;) by adding the
subpath of n(f1) between z and n(u), and let n'(g2) be obtained from 7(g2) by adding the
subpath of n(g1) with ends y and n(v). For z € V(G) U E(G) — {u,v,e, f1, f2,91,92} let
n'(z) =n(z). Then n' : G — H, and we say that ' was obtained from 7 by rerouting n(e)
along P’.
Our next objective is to analyze augmenting paths relative to homeomorphic embeddings.

The next lemma follows by a standard application of network flow theory. A proof may

be found in [4, Lemma 3.3.3].

(3.1) Let k > 0 be an integer, let G, H be cubic graphs, let ¢ A = {e1,ea,...,er} be
an edge-cut of G of cardinality k, and for i = 1,2,...,k let the ends of e; be u; € A and
v; € V(G) — A. Let n: G — H be a homeomorphic embedding, and assume that there is
no edge-cut 0y B of H of cardinality k withn(A) C B andn(V(G)—A) C V(H)—B. Then
there exist an integer n and disjoint paths Q1,Qs, ..., Q, in H, where (); has distinct ends
x; and y; such that

(i) z1 € V(n(G|A)) — {n(u),n(uz),...,n(ur)} and yn € V(n(G\A)) = {n(v1),n(vz),
SIS
(ii) for all integers i € {1,2,...,n — 1}, the vertices x;11,y; € V(n(es)) for some t €
{1,2,...,k}, and n(us), xit1,yi,n(ve) are pairwise distinct and occur on n(e;) in the
order listed,
(iii) if z;,y; € V(n(e)) for some t € {1,2,...,k} and i,j € {1,2,...,n} withi > j + 1,
then n(ut),y;, i, m(ve) occur on n(et) in the order listed, and

(iv) for i =1,2,...,n, if a vertex of Q); belongs to V(n(G)), then it is an end of Q;.

In the situation described in (3.1) we call the sequence of paths v = (Q1,Q2,...,Qx)
an augmenting sequence with respect to G, H, A and n. Let F be a subgraph of G. We
say that ~ is reduced modulo F' if the following conditions are satisfied:

(i) If e € E(GJA) and t € {1,2,...,k} are such that z; € V(n(e)) and y; € V(n(er)),
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then e and e; have no common end, and no end of e is adjacent to an end of e; in
(ii) If t € {1,2,...,k} and f € E(G\A) are such that z,, € V(n(e;)) and y,, € V(n(f)),

then e; and f have no common end, and no end of e; is adjacent to an end of f in
(iii) If ¢t,¢' € {1,2,...,k} and i € {2,3,...,n — 1} are such that z; € V(n(e;)) and

yi € V(n(ey)), then t # ', uy is not adjacent to uy in G\ E(F'), and v, is not adjacent

to vy in G\E(F).

Let G, H be graphs, let n : G — H, and let F' be a graph of minimum degree at
least two (which includes the possibility that F is empty). We say that the homeomorphic
embedding n fixes F' if F' is a subgraph of both G and H, n(v) = v for every vertex
v € V(F) and for every edge e € E(F') the image n(e) is the path with edge-set {e}. In
many of our lemmas and theorems we will be able to find a homeomorphic embedding
that fixes a specified graph F. This feature will not be needed in this or the follow-up
paper [11], but is included because it may be useful in future applications. As far as this
paper and [11] are concerned, the reader may take F' to be the null graph.

The lemma we need is the following.

(3.2) Let G, H be cubic graphs, let 6 A be an edge-cut in G such that no two members of
d0cA have a common end, let F' be a graph of minimum degree at least two, let n: G — H
be a homeomorphic embedding that fixes F', and let v be an augmenting sequence with
respect to G, H, A and n of length n. Let us assume that 7 is minimal in the sense that
there is no homeomorphic embedding n' : G — H that fixes F' and an augmenting sequence

with respect to G, H, A and ) of length n’ such that n’ < n. Then ~ is reduced modulo F.

Proof. Let G, H,A,n and 7 be as stated, let 6¢A = {e1,ea,...,ex}, and let v = (Q1, Q2,

.., Qn). To prove that v satisfies (i) let ¢ and e be as in (i), and suppose for a contradiction
that either e and e; have a common end, or that some end of e is adjacent to some end
of e; in G\E(F). Since G and H are cubic, x; is an interior vertex of n(e) and y; is an
interior vertex of n(e;). Let i’ be obtained from 7 by rerouting n(e) (if e and f have a
common end) or 7(g) (where g is an edge of G\ E(F’) adjacent to both e and f) along Q1.
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Then Qs,Q3,Q4,...,Q, is an augmenting sequence with respect to G, H, A and 7, and
hence 7 is not minimal, a contradiction.

Condition (ii) follows similarly, and so it remains to prove (iii). To that end let ¢, ¢’
and i be as in (iii). Suppose first that ¢ = t’. Then n(u¢), s, yi—1, Tiv1, Yi, n(ve) all belong
to n(et) and occur on n(e;) in the order listed. Let i’ be obtained from 1 by rerouting
n(et) along Q;, and let @ be the union of Q;_1, Q;+1 and the subpath of n(e;) with ends
Yi—1 and z;41. Then Q1,Q2,...,Qi—2,Q,Qii2,...,Q, is an augmenting sequence with
respect to G, H, A and n’, and hence v is not minimal, a contradiction.

Thus t # t'. Next we suppose for a contradiction that u; is adjacent to uy in G\ E(F).
Let ' be obtained from 7 by rerouting n(usuy) along Q;; then Q;i1,Qit2,...,Qy is
an augmenting sequence with respect to G, H, A and n’, and hence ~ is not minimal, a
contradiction. Similarly we deduce that v; is not adjacent to vy. Thus ~ is reduced, as

required. O

Let G, H be cubic graphs, let 7 : G — H be a homeomorphic embedding, let eq, es be
two edges of G with ends ui,v; and wus,vo, respectively, where uq,v1,us, v are pairwise
distinct, and assume that there exists a path @ in H with ends z; € V(n(e;)) (i = 1,2)
and otherwise disjoint from n(G). Let G' = G + (u1,v1,u2,v2), and let ki, ks be the
new vertices of G’; then G’ is a l-extension of G. For i = 1,2 let n/(k;) = x;, let
n' (kike) = Q, let n'(u;k;) be the subpath of n(u;v;) with ends n(u;),x;, let n'(vik;) be
defined analogously, and let n'(x) = n(z) for all z € V(G) U E(G) — {e1,e2}. Then
1 : G’ — H is a homeomorphic embedding. We say that the pair G’, " was obtained from
n by routing the new edge along ().

(3.3) Let G be a cubic graph, let H be a cyclically 5-connected cubic graph, let F' be a
graph of minimum degree at least two, let n : G — H fix I, let C' be a quadrangle in
G that is disjoint from F', and assume that G has a circuit disjoint from C. Then there
exist a 1-extension G’ of G based at C' and a homeomorphic embedding ' : G' — H that
fixes F.

Proof. Since H is cyclically 5-connected and G\V(C') contains a circuit, by (3.1) there
exists an augmenting sequence v = (Q1,Q2,...,Q,) with respect to G, H,V(C) and 7.
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By (3.2) we may assume that ~ is reduced modulo F. Let G’,n’ be obtained from 7 by
routing the new edge along Q1. Then G’,n’ satisfy the conclusion of (3.3). O

(3.4) Let G, H be non-isomorphic cubic graphs, let F' be a graph of minimum degree at
least two, let n : G — H fix F', and let G and H be cyclically 4—connected. Then there
exist a 1-extension G’ of G and a homeomorphic embedding n' : G' < H such that n’
fixes F.

Proof. Since G is not isomorphic to H, and H is cyclically 4-connected, there exists a
path P in H with at least one edge, with both ends on 7(G), and otherwise disjoint from
n(G). Let 1 € n(e1) and x2 € n(ez) be the ends of P, where e1,e2 € E(G). Let u,uy
be the ends of ey, and let v, us be the ends of es. If u, uy,v,us are pairwise distinct, then
G' = G + (u,u1,v,uz) and n’ obtained from 7 by routing the new edge along P satisfy
the conclusion of the lemma. We may therefore assume that say u = v. The case when
u1 = ug can be reduced to the case u; # us by a similar, though easier argument, and is

omitted. Thus we assume that v = v and u; # us.

Let GG; be obtained from G by subdividing e; and es and joining the new vertices
by an edge. Let v; and vy be the new vertices of G; numbered so that v, resulted by
subdividing e;. Let m7 : G; < H be obtained by routing the new edge along P, and let
A = {u,v1,v2}. Since H is cyclically 4—connected, there exists, by (3.1), an augmenting
sequence with respect to G, H, A and n;. By (3.2) we may assume, by replacing n; by
a different homeomorphic embedding if necessary, that there exists a path @) that is
the first term of a reduced augmenting sequence modulo F' with respect to G1, H, A and
m. Let x € V(n1(G1]A)) and y € V(n1(G1\A)) be the ends of Qq; let f € E(G\A) be
such that y € V(n1(f)). From the symmetry between e; and es we may assume that z
belongs to n(e1) Uni(vive). Thus P U @ has a subpath R with one end in 7n(e;), the
other end y and otherwise disjoint from 7n(G). If f is not incident with uy, then the graph
and homeomorphic embedding obtained from G by routing the new edge along R are as
desired. Thus we may assume that f is incident with u;. Let ' : G — H be obtained
from G by rerouting n(es)[u,vs] along P; then the graph and homeomorphic embedding

obtained from 7’ by routing the new edge along @)1 are as desired. O
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4. FIXING A QUADRANGLE

Let G be a quad-connected cubic graph, and let C' be a quadrangle in GG. In this section we
study the following problem: If H is cyclically 5-connected and topologically contains G,
is there a quad-connected cubic graph G’ such that G’ is obtained from G by one of a set
of well-defined operations, G is topologically contained in G’, G’ is topologically contained
in H and has fewer quadrangles than G?7 The following simple result gives a preliminary

answer. Let us recall that extensions were defined at the beginning of Section 3.

(4.1) Let G be a quad-connected cubic graph, let H be a cyclically 5-connected cubic
graph, let F' be a graph of minimum degree at least two, and let n : G — H fix F. Let
C be a quadrangle in G that is disjoint from F. Then there exist an integer n > 1, a
long n-extension G’ of G based at C and a homeomorphic embedding n' : G’ — H that
fixes F.

Proof. Let n be the maximum integer such that there exists an n-extension G’ of G based
at C' and a homeomorphic embedding 0’ : G’ — H that fixes F. This is well-defined,
because 2k < |V (J)| — |V(G)| for every k-extension J of G. We claim that G’ is long. To
prove the claim suppose to the contrary that it is short, and let C’ be the new quadrangle
of G'. Tt follows that C’ is disjoint from F. By (3.3) there exists a l-extension G” of G’
based at C' and a homeomorphic embedding n” : G < H that fixes F. Then G” is an
(n + 1)-extension of G based at C, contrary to the choice of n. This proves our claim
that G’ is a long extension of GG, and hence the pair G’,n’ satisfies the conclusion of the

lemma. O

In the rest of this section we strengthen (4.1) in two ways: we give a bound on the
minimum integer n that satisfies the conclusion of (4.1), and we give an explicit list of
long extensions based at C' such that one of them is guaranteed to satisfy (4.1). We now
introduce these extensions.

Let G be a quad-connected graph, let C be a quadrangle in G, let w1, uo, uz, ug be the
vertices of C' in order, for i = 1,2, 3,4 let v; be the unique neighbor of u; not on C, and let
v, # u; be a neighbor of v;. It follows that v] & {v1,ve,vs,v4}. Let G1 = G+ (u1,u2, z,y)
be a 1-extension of G with z,y € V(C).
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Type A expansion

Type D expansion

Type E expansion

Figure 3. Type A-E expansions

e If G; is a long extension of G, we say that G is a type A expansion of G based at C.

See Figures 3, 4 and 5. Otherwise we may assume that say x = v; and y = v]. Let C}

be the new quadrangle of Gy; thus C; has vertex-set {vq,u1, k, [}, where k,[ are the new

vertices of GGy.

e Let Go = Gy + (v1,l,a,b) be a 1-extension of G;. If G5 is a long extension of G we
say that G5 is a type B expansion of G based at (', and that the sequence G1,G> is
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a standard generating sequence of Gs.

e Let G5 be G1 + (k,l,va,v5) or Gy + (u1,v1,v4,v)). If G5 is a long extension of G we
say that G3 is a type C expansion of G based at C', and that the sequence G1,G3 is
a standard generating sequence of Gj.

(We apologize for the double use of the letter C and hope it causes no confusion.)

e Let G4 be the graph Gy + (u1, k, us, v3); we say that G4 is a type D expansion of G
based at C', and that the sequence G1, Gy is a standard generating sequence of Gy.

e Let Gi be the graph Gy + (u1,k,us,uq), let a,b be the new vertices of G%, and let
G5 be the graph G% + (b, u4, vs,v5). The graph G is called a type E expansion of G
based at C.

Type F expansion Type G expansion

Figure 4. Type F and G expansions

o If v] = v}, then let G = Gy + (u2, k,v2,v5), let ko, lo be the new vertices of G§, let
¢ = Gg+ (ka, k,us,ug), and let G¢ = G{ + (k,l, k2,1l2). The graph Gg is called a
type F expansion of G based at C. We also say that Gg is a type F expansion of
G based on (uy,us), and that k,1, ko, ls, k3, l3, k4,14 (in the order listed) are the new

vertices of Gg, where ks, l3 are the new vertices of Gf and ky,l4 are the new vertices
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of Gg. We say that
{ul,UQ,U3,U4,U1,'U2,U/1, kvlv k2; l27k37l37k47l4}

is the core of the type F expansion Gg.

e Let G7 be a type F expansion of Gy based on (u1, k). We say that G7 is a type G
expansion of G based at C.

(Again, apologies for the double use of the letter G.)

e Assume now that G has a quadrangle D with vertex-set 1, x2, 23,24 € V(G) —V(C)
such that z; is adjacent to uy, the vertices us and x5 have a common neighbor, and
uy and x4 have a common neighbor. Assume further that {z,y} = {1, 22}, and let
us recall that k, [l are the new vertices of G;. Let Gg be a type F expansion of G,
based on (z1,[); in those circumstances we say that Gg is a type H expansion of G.

The quad-connectivity of G' implies that in this case |V (G)| < 14.

Us U4

Figure 5. Type H expansion

It follows from the quad-connectivity of G that G4, G5, Gg, G7, Gg are long extensions
of G. We offer the following easy but important remark. Let us recall that generating

sequences were defined at the beginning of Section 3.
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(4.2) Let Gy be a quad-connected cubic graph, let Cy be a quadrangle in Gy, let G’
be a type B, C, D, E, F, G or H expansion of Gy based at Cy, let G1,G2,...,G} be a
generating sequence of G' from G based at Cy, and let F' be a graph of minimum degree
at least two disjoint from Cy. Let the vertices of Cy be uy,us,us,us in order, let v be
the neighbor of u; not on Cy, and let v{,v{ be the two neighbors of vy other than uy. If
G1 = Go + (u1,ug,v1,v]), then there exists a generating sequence G',G5, ..., G} of G’

from Gy based at Cy such that

fori=1,2,... k the graph G is isomorphic to Gj,

/ 124
G| = Go + (u1, uq,vy,vY),

if F' is a subgraph of both G and Gy, then F' is a subgraph of G}, and

if the sequence G1,Gy is a standard generating sequence of G5, then the sequence

', GY is a standard generating sequence of GY.
The proof is clear.

(4.3) Let F' be a graph of minimum degree at least two, let G be a quad-connected cubic
graph, let C' be a quadrangle in G, and let G, be a long 2-extension of G based at C' such
that F' is a subgraph of both G and G and F' is disjoint from C. Then there exist an
expansion G’ of G of type A, B, C, or D based at C, and a homeomorphic embedding
n' : G' — G5 such that ) fixes F'.

Proof. Let G,C, G2 be as stated, let uy,us, us, ugy be the vertices of C' (in order), and let
v; be the neighbor of u; not on C. Let G2 = G1 + (u,v,z,y) and G1 = G + (u1, ug, v1,v}),
where v} ¢ V(C) is adjacent to v, and {u,v} is one of {v1,l1}, {k1,01}, {u1,v1}, {u1,k1},
where k1,[; are the new vertices of GG;. Let ks, l> be the new vertices of Gs.

First, if {u,v} = {v1,1;}, then G5 is a type B expansion of G, and hence G5 and the
identity homeomorphic embedding G5 — G4 satisfy the conclusion of the lemma. Second,
let us assume that {u,v} = {k1,l1}. By considering the path kikoly we see that there
exists a homeomorphic embedding G + (uy, u4, x,y) < G2 that fixes F', and hence we may
assume that the 1-extension G + (uq,uq,x,y) is short. It follows that {z,y} equals one of
{vg,v4}, {us,vs}, {ug,us} or {ug,va}, where vy # wuy is a neighbor of vy. We break the

analysis into three subcases. First, if {x,y} = {v4,v}}, then G5 is a type C expansion of G,
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and hence (G5 and the identity homeomorphic embedding G5 < G5 satisfy the conclusion
of the lemma. For the second subcase assume that {z,y} = {us,vs} or {ug,us}. Let
G' = G + (us,uq,v1,v]); then G’ is a long l-extension of G by (2.6), and hence is a
type A expansion of G. Let n : G — G5 be the canonical homeomorphic embedding
determined by the generating sequence G1,G>. Let n' : G’ — G5 be obtained from 7
first by rerouting usus along kjkslo, and then routing the new edge along koli. Since
uy, U2, Uz, Uy, k1,101, ko, lo & F we deduce that 0’ fixes F. (In the future we will omit this
kind of argument, because it will be clear that all the homeomorphic embeddings that we
will construct will fix F.) The pair G’,n’ satisfies the conclusion of the lemma. The third
and last subcase is that {z,y} = {u2,v2}. Let G’ = G+ (uz,us,v1,v!), where v{ & {v],u1}
is the third neighbor of v;. Then G’ is a long l-extension of G by (2.6). Let ' : G’ — G5
be obtained from 7 first by rerouting n(u;v1) along kqkolq, then rerouting n(kjuius) along
kalo, and finally routing the new edge along n(uguivy). Then G, 7 satisfy the conclusion

of the lemma. This completes the case {u,v} = {k1,1}.

The third case {u,v} = {u1,v1} is symmetric to the previous case by (4.2), and so we
proceed to the fourth and last case, namely {u,v} = {u,k1}. Let G' = G + (u1, uq, z,y)
and 7’ : G’ < G5 be obtained from G,n by routing the new edge along n(kslz). We may
assume that G’ is a short 1-extension of G, for otherwise the lemma holds. Thus either
{z,y} = {us,vs}, or {z,y} = {v4,v}}, where v} # uy is a neighbor of vs. In the former
case G5 is a type D expansion of G, and so the lemma holds, and hence we may assume
that the latter case holds. Since by (4.2) there is symmetry between ujv; and kil; we
deduce that also {z,y} = {ve,v5}, where v # us is a neighbor of vy. It follows that v
and vy are adjacent in (G, contrary to the quad-connectivity of G. This completes the

fourth case, and hence the proof of the lemma. O

(4.4) Let F be a graph of minimum degree at least two, let G be a quad-connected cubic
graph, let C' be a quadrangle in G, and let G3 be a long 3-extension of G based at C' such
that F' is a subgraph of both G and G3 and F is disjoint from C. Then there exist a graph
G’ and a homeomorphic embedding n' : G' < G3 such that n’ fixes F and G’ is either a

type E expansion or a long 1- or 2-extension of G based at C.
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Proof. Let GG1 be a short 1-extension of G based at C' such that (G5 is a long 2-extension of
G based at the new quadrangle C of G;. By (4.3) applied to the graph G; and circuit C;
there exist an expansion G5 of G of type A, B, C, or D based at C, and a homeomorphic
embedding 75 : G4 — Gj3 that fixes F. If G% is of type A, then it is a long 2-extension of G
based at C, and the lemma holds. Thus we may assume that G% is of type B, C, or D. It
follows that G5 and G% have the same number of vertices, and hence 74 is an isomorphism
of G3 and G%. It follows that if the conclusion of the lemma holds for G%, then it holds
for G3. Therefore we may assume that G4 = G35 and that 75 is the identity homeomorphic
embedding. In other words, GG3 is a type B, C, or D expansion of G; based at C;.

Let G2, G3 be a standard generating sequence of the expansion GGz. Then G, G2, G3
are quad-connected by (2.1). Let the vertices of C' be uy, ug, us, uy4 in order. Fori =1,2,3,4
let v; be the neighbor of u; not on C, let v}, v be the neighbors of v; different from w;,
and let w;, w} be the neighbors of v/ different from v;. Let Gy = G1 + (a1, a2, a3, a4). We
may assume that G; = G + (u1,uyg,v1,v]). Let us,vs be the new vertices of Gy; then

V(C1) = {v1,u1,us,vs5}. We claim the following.

(1)  We may assume that {a1,as} = {u1,v1}, and that {as,as} is equal to one of
{uz,us}, {uz, va} or {vf, wi}.

To prove (1) we first note that by (4.2) there is symmetry between {us,vs} and
{u1,v1}, and so we may assume that {a1, a2} # {us,vs}. Secondly, assume that {a1, a2} =
{v1,v5}. Since G2 is not a long extension of G1, one of a3, ay equals one of v,v]. Let
us assume that ag = vf; the argument for v} is symmetric. We may assume from the
symmetry that ay = w}. It follows from (4.2) applied to the graph G; and cycle C that
we may replace Gy by the graph G+ (u1, v1, v}, w1) and thus arrange for the first assertion
of (1) to hold. The case {ai,a2} = {u1,us} follows similarly. This proves that we may
assume that {aq,as} = {u1,v1}. Since G5 is a short extension of G, we see that {as3, a4}
is equal to one of {ug,us}, {uz,va}, {v{,wi} or {v{,wi}. Since the last two cases are

symmetric, we may assume that one of the first three occurs. This proves (1).

Let ko, 1y be the new vertices of Ga, let G = G3 + (as, a6, x,y), and let ks, l3 be the

new vertices of G3. Let  : G < G5 be the canonical homeomorphic embedding determined
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by the generating sequence G1, Ga, Gs. Since F' has minimum degree at least two and is a
subgraph of both G and G3 we deduce that
(2) i, usg,us,ug, us, V1, U5, ko, lo, ks, ls & F.

To make the forthcoming case analysis easier to follow let us make an outline. There
will be three supercases depending on {as, as}. These will be divided into cases depending
on the type of the expansion G3, and the cases will sometimes be further divided into
subcases depending on G3. In each subcase we shall construct a pair G’,n’ that satisfies
the conclusion of the theorem. We first dispose of the supercase {ag,as} = {ug,us}. Let
G' = G+ (ug,u3,v1,v]), and let ' : G’ — G3 be obtained from 7 by rerouting u;v; along
usvs and then routing the new edge along the path lokovi. By (2.6) and (2) the pair G,/
satisfies the conclusion of the lemma. This completes the first supercase.

For the second supercase we assume that {as, a4} = {u2,v2}. This will be divided into
cases. As a first case assume that G3 is a type B expansion of G;. Then {as, ag} = {l2,us}.
Assume as a first subcase that {x,y} is not equal to any of {vs,v5}, {vs, v}, {u4,v4}, or
{ug,us}. Let G',n’ be obtained from n first by rerouting ujus along loks and then by
routing the new edge along ksls if {z,y} # {us,vs} and along k3lsvs otherwise. Then G’
is a long 1-extension of G, and so the lemma holds. We may therefore assume that {z, y} is
equal to one of the sets specified above. As a second subcase assume that {x,y} = {vs, v}}
or {z,y} = {vs,v{}. Then G3 is isomorphic to a type E expansion of G, and so the
lemma holds. Thirdly, let us assume that {x,y} = {ug,vs} or {z,y} = {ug,us}. Let G' =
G1 + (uy,us,usz,v3); then G’ is a long 2-extension of G. Thus G’ and the homeomorphic
embedding obtained from the canonical homeomorphic embedding G; — G3 (determined
by the generating sequence Ga, G3) first by rerouting ujug along loko, then rerouting uguy
along k3l3, and finally routing the new edge along u,us satisfy the conclusion of the lemma.
This completes the case when G5 is a type B expansion.

For the second case assume that G3 is a type C expansion of G;. There are two
subcases. Assume first that {as,a¢} = {u1,us}. Then {x,y} = {ug,v4}, because {z,y} #
{us, us}, since G is a long 1-extension. Let G' = G + (ug, uq,v1,v7) and let 0’ : G' — G
be obtained from 7 first by rerouting w;u4 along ksls, and then by routing the new edge

along uqusvs. The graph G’ is a long l-extension of G by (2.6), and hence (4.4) holds.
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The second subcase is that {as,a¢} = {k2,l2}. Then say x = v{ and y is a neighbor
of v{ different from v;. Since Gj is a long extension of G we deduce that vy # y. Let
G' = G + (uy,uz,v{,y) and let ' : G’ — G3 be obtained from 7 first by rerouting ujus
along l2ko and then routing the new edge along k3ls. Then G’ is a long 1-extension of G by
(2.6), and hence (4.4) holds. This completes the second case. For the third case we assume
that G3 is a type D expansion of Gy. Then {as,a¢} = {u1, k2} and {z,y} = {v],vs}. Let
G' = Gy + (uyg,v4,v1,v5); then G’ is a long l-extension of G; by (2.6), and hence it is a
long 2-extension of G. Let n’ be obtained from the canonical homeomorphic embedding
G1 — G first by rerouting uqus along ksls, then rerouting usvs along ksls, then rerouting
usuy along ujuo, and finally routing the new edge along usvs. Again, the pair G',n’
satisfies the conclusion of the lemma. This completes the third case and hence the second

supercase.

The third and last supercase is that {as,as} = {v{,w]}. We claim that we may
assume that w] = vy. Indeed, suppose that w] # ve, let G' = G + (u1, ug, v}, w}) and let
1’ be obtained from 7 by rerouting uiv; along usvs and by routing the new edge along
urksls. Then G',n' satisfy the conclusion of the lemma by (2.6). This proves that we may
assume that w] = vy. From the symmetry we may assume that v5, = v{. We distinguish

three cases depending on whether Gj is of type B, C, or D.

For the first case assume that Gj is of type B. Then {as,a¢} = {l2,v{}. Let us first
dispose of the case when one of x,y is equal to v5; say x = v§. Then y # vy, because G3 is
a long extension of G. Let G’ and 1’ : G’ — G35 be obtained from 7 by first rerouting vov4
along ksl3, then rerouting ujus along ksls, then routing the first new edge along usvs, then
routing the second new edge along u;us, and finally routing the third new edge along vovf.
Then G’ is a type E expansion of GG, and thus G’, ' satisfy the conclusion of the lemma.
We may therefore assume that x,y # v}. Let us assume next that {z,y} is not equal to
any of the pairs {uy,us}, {ui,u2}, {us,us}. Let £ be obtained from 7 by first rerouting
n(uyvy) along usvs, and then rerouting n(vevh) along lokovy. Let G and " : G — G35 be
obtained from £ by routing the first new edge along u ks, and then routing the second new
edge along lovh. Then G” is a long 2-extension of GG, and hence the pair G”,n satisfies the

conclusion of the lemma. We may therefore assume that {x,y} is equal to one of the pairs
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{ur,us}, {ur,us}, {us,us}. Let G’ and n"” : G" — G3 be obtained from & by routing the
new edge along vhksls. Then G is a long l-extension of G, and hence the pair G"',n"”
satisfies the conclusion of the lemma. This completes the first case.

For the second case assume that G is of type C. Then {as,a¢} = {v1,v{} or {as,a6} =
{ka,l2}. Thus we distinguish two subcases. Assume as a first subcase that {as,a¢} =
{v1,v]}. It follows that one of x,y equals v}, say x = v]. Then y # vs; let ¢ & {vs,y}
be the third neighbor of v{. Let ¢’ be obtained from 7 by rerouting viv] along k3ls. Let
G' = G + (u1,uq,v],y’) and ' : G' < G3 be obtained from ¢’ by routing the new edge
along usvsvy; if vg # ¢’ then G, 7’ satisfy the lemma by (2.6). Thus we may assume that
Yy = vy. Let G" = G + (uy,uq,v],v4) + (u2,us,v2,v5) and let n” be obtained from (’
first by rerouting uius along vivsus, then by rerouting usvs along kolo, then routing the
first new edge along vsv], and then routing the second new edge along usvy. Let G',n’ be
obtained from 1" by routing the new edge along n3(ujus). Then G’ is a type E expansion
of G, and thus G’,n’ satisfy the conclusion of the lemma. This completes the first subcase.
For the second subcase assume that {as,as} = {k2,l2}; then {z,y} = {u9,us}, because
{z,y} # {u2,v2} by the fact that G is a long 1-extension of G. Let G' = G+ (u2, ug, v1,vY)
and let ’ be obtained from 7 by rerouting u;v; along usvs and then routing the new edge
along l3kskov,. Then G',n' satisfy the conclusion of the lemma by (2.6). This completes
the second subcase and hence the second case.

For the third case assume that G5 is of type D. Then {as, ag} = {v1, k2} and {z,y} =
{ug,us}. Let G' = G + (u1,u2,v2,v5) + (a,usz,v1,v]) (where a,b are the new vertices of
G + (u1,uz,v2,v5)) and ' : G’ < G35 be obtained from 7 by rerouting n(uiuy) along ksls,
then routing the first new edge along kslo, and then routing the second new edge along
uiusvs. Then G’ is a long 2-extension of G by (2.6), and hence the pair G, 7’ satisfies the
conclusion of the lemma. This completes the third case, and hence the third supercase,

and thus the proof of the lemma. O

(4.5) Let F be a graph of minimum degree at least two, let G be a quad-connected cubic
graph, let C' be a quadrangle in G, and let G4 be a long 4-extension of G based at C
such that F is a subgraph of both G and G, and F' is disjoint from C'. Then there exist

a graph G' and a homeomorphic embedding n' : G' < G4 such that 0’ fixes F' and G’ is
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either a type F expansion of G based at C or a long n-extension of G based at C' for some

n e {1,2,3}.

Proof. Similarly as in the proof of (4.4) we may assume that there exists a short 1-extension
G1 = G+ (u1,uq,v1,v]) of G based at C' such that G4 is a type E expansion of G based
at the new quadrangle C; of G. Since G is short one of uy, uy is adjacent to one of vy, v},
and so we may assume that u; is adjacent to vi. Let the vertices of C' be uy,us,us, uy in
order, and for ¢ = 1,2, 3,4 let v; be the neighbor of u; not on C. Let us,v5 be the new
vertices of G1; then V(C1) = {v1,u1,us,v5}. By (4.2) there is symmetry between ujv;
and usvs; hence there are only two cases to consider, namely G3 = Go+ (u1,v1, uz, u3) and
Gs = G + (ug,v1,u9,v2), where Gy = G1 + (us, vs, v}, w), G4 = G + (k2,vs5,u1, k), w is
a neighbor of v} different from vs and k;, [; are the new vertices of G; for i = 2,3,4. Let us
first dispose of the former case. Let G’,n’ be obtained from 7 by first rerouting uyv, along
uskoksvs, and then routing the new edge along lsksvi. Then by (2.6) G',n’ satisfy the
conclusion of the lemma and so we may assume that the latter case holds. We claim that
we may assume that w = vg. Otherwise let G’ = G + (u1,uq4, v}, w) and 1’ be obtained
from 1 by routing the new edge along uskslo; then G’, 1’ again satisfy the conclusion of
the lemma by (2.6). Thus we may assume that w = vs. Now G4 is isomorphic to a type

F expansion of (G, and so the conclusion of the lemma is satisfied. O

(4.6) Let F be a graph of minimum degree at least two, let G be a quad-connected cubic
graph, let C' be a quadrangle in G, and let G5 be a long 5-extension of G based at C' such
that F' is a subgraph of both G and G5 and F is disjoint from C. Then there exist a graph
G’ and a homeomorphic embedding n' : G' < G5 such that n’ fixes F' and G’ is either a
type G or type H expansion of G based at C or a long n-extension of G based at C' for
some n € {1,2,3,4}.

Proof. Similarly as in the previous two proofs we may assume that there exists a short
l-extension G; = G + (uy, uq,v1,v]) of G based at C such that G5 is a type F expansion
of G based at the new quadrangle C; of GG;. Since (31 is a short extension, one of w1, uy is
adjacent to one of vy, v}, and so we may assume that u; is adjacent to v;. Let the vertices

of C' be uy,us,us,uys in order, and for ¢ = 1,2,3,4 let v; be the neighbor of w; not on
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C. Let v & {u1,v]} be the third neighbor of v;. Let us,vs be the new vertices of Gy;
thus V(Cy) = {v1,u1,us,v5}. Since by (4.2) there is symmetry between ujv; and usvs
there are only three cases to consider, namely whether G5 is based on ujus, v1vs or usvs.
If G5 is based on ujus then G5 is a type G expansion of GG, and so G5 and the identity
homeomorphic embedding satisfy the conclusion of the lemma.

Next we assume that G5 is based on vyvs. It follows that v} and v} have a common
neighbor, say w, and {vq, v}, w,v}} is the vertex-set of a quadrangle in G. Let z be the
neighbor of v] in G other than v; and w. By a rerouting argument similar to ones used in
previous proofs it is easy to construct a homeomorphic embedding G + (u1, ug, v], 2) — G5
that fixes F'. By (2.6) the lemma holds, unless z = v4. Thus we may assume that z = vy,
and similarly that vy and v{ have a common neighbor. We deduce that G5 is a type H
expansion of GG, as desired.

We may therefore assume that G5 is based on usvs. Then vy and v} are adjacent. Let
G’ be obtained from G5 by deleting the edge usus and suppressing the resulting degree
two vertices. Then G’ is isomorphic to a type F expansion of G, and it is easy to construct
a homeomorphic embedding ' : G’ < G5 that fixes F. Hence G’,n’ satisfy the conclusion

of the lemma. O

(4.7) Let F be a graph of minimum degree at least two, let G be a quad-connected cubic
graph, let C' be a quadrangle in G, let n > 1 be an integer, and let GG3 be a long n-extension
of G based at C' such that F' is a subgraph of both G and G3 and F' is disjoint from C.
Then there exist a graph G' and a homeomorphic embedding n' : G' < G35 such that n’
fixes F' and G’ is a long n'-extension of G based at C' for some n’ € {1,2,3,4,5}.

Proof. Similarly as in the previous three proofs we may assume that there exists a short
l-extension G; = G + (u1,uq,v1,v]) of G based at C such that G5 is a type G or H
expansion of G; based at the new quadrangle C; of G;. Thus one of uq,uy is adjacent
to one of vy, v], and so we may assume that u; is adjacent to v;. Let the vertices of C
be u1,ug, uz, uy in order, and for ¢ = 1,2, 3,4 let v; be the neighbor of u; not on C. Let
vy & {uy,v]} be the third neighbor of v; in G. Let us, vs be the new vertices of G;. Thus
V(C1) = {v1,u1,us,v5}. Then G, is quad-connected by (2.1).
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We first assume that G3 is a type G expansion of G;. Let G2 be a 1-extension of G
such that G5 is a type F expansion of Gs, and let ks, 5 be the new vertices of G3. From
the symmetry it suffices to consider three subcases. We consider them separately in the
next three paragraphs.

As a first subcase assume that Go = G1 + (uq1, v1, u2, ug). Let G’',n’ be obtained from
n by first rerouting n(uivy) along n(usvs), and then routing the new edge along lakovy.
Then G’, 7’ satisfy the conclusion of the lemma.

In the second subcase Gy = G + (u1,v1,us,v2), and G3 is based on (uq, ks). Let G’
be obtained from G3 by deleting the edge usu4, and suppressing the resulting vertices of
degree two. Then G’ is isomorphic to a type G expansion of GG, and it is easy to construct
a homeomorphic embedding 1’ : G’ < G5 that fixes F'. Then the pair G’,n’ satisfies the
conclusion of the lemma.

In the third and last subcase G2 = Gy + (us,vs, v}, 2), where z is a neighbor of v}
different from vs, and Gs is based on (vs, k2). Let G' = G + (uq, uq, v}, 2); by considering
the path usksls it is easy to construct a homeomorphic embedding ' : G < G3 that fixes
F. If z # vy then by (2.6) the pair G’,n’ satisfies the conclusion of the lemma. We may
therefore assume that z = vy. Let G’ be obtained from G3 by deleting the edges u4vy
and usug and suppressing the resulting degree two vertices. and let 1’ be the canonical
homeomorphic embedding G’ < G3. Then G’ is isomorphic to a type F expansion of G,
and it is easy to construct a homeomorphic embedding n’ : G’ — G3 that fixes F. Hence
the pair G’,n’ satisfies the conclusion of the lemma.

We now assume that G3 is a type H expansion of G based at C;. By (4.2) there
is symmetry between u; and us. Let D be as in the definition of expansion of type H.
Thus some vertex of D is adjacent in G; to some vertex of C'. By symmetry it suffices to
consider only two subcases. In the first subcase v{ € V(D) is adjacent to v; € V(C1), and
a neighbor of v} in D is adjacent to v}. But then the set V(D) U {vy,v]} contradicts the
quad-connectivity of GG. In the second subcase some vertex of D is adjacent to us, and the

set V(D) U {u1,us} contradicts the quad-connectivity of G. a

(4.8) Let F' be a graph of minimum degree at least two, let G be a quad-connected cubic

graph, let C' be a quadrangle in GG, let n > 1 be an integer, and let GG3 be a long n-extension
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of G based at C such that F' is a subgraph of both G and G3 and F' is disjoint from C.
Then there exist a graph G' and a homeomorphic embedding 1’ : G' — G3 such that 7’
fixes F' and G’ is a type A, B, C, D, E, F, G or H expansion of G based at C.

Proof. Let us choose an integer no > 1, a graph G2 and a homeomorphic embedding
12 : Gy — G3 such that G5 is a long ne-extension of G based at C, the homeomorphic
embedding 7, fixes F', and, subject to that, ny is minimum. Such a choice is possible, bec-
ause no = n, Gy = G3 and the identity homeomorphic embedding satisfy the requirements
(except minimality).

We claim that there do not exist an integer ny, graph (G; and homeomorphic embedding
m : G1 — Gg such that 1 < n; < ng, G is a long ni-extension of G based at C' and m;
fixes F'. Indeed, otherwise the graph G; and homeomorphic embedding 7n; o 1y violate the
choice of G2, 7. This proves our claim that ny,G1,n; do not exist.

It follows from (4.3), (4.4), (4.5), (4.6), and (4.7) that there exist a graph G’ and a
homeomorphic embedding ' : G’ < G5 such that 7’ fixes F' and G’ is a type A, B, C,
D, E, F, G or H expansion of G based at C. Thus G’ and the homeomorphic embedding

1’ o 1y satisfy the conclusion of the lemma. O

(4.9) Let G,H be cubic graphs, let F' be a graph of minimum degree at least two, let
n:G — H fix F, let C' be a quadrangle in G disjoint from F, let G be quad-connected,
and let H be cyclically 5-connected. Then there exist an expansion G’ of G based at C of
type A, B, C, D, E, F, G, or H and a homeomorphic embedding n’ : G' — H that fixes F.

Proof. By (4.1) there exist an integer n > 1, a long n-extension Gs of G based at C, and
a homeomorphic embedding 72 : G2 — H that fixes F. By (4.8) there exist a type A,
B, C, D, E, F, G, or H expansion G; of G based at C' and a homeomorphic embedding
n : G1 — G9 that fixes F'. Thus G; and 7, o 1, are as desired. O

When F is the null graph we obtain the following corollary.

(4.10) Let G,H be cubic graphs, let G — H, let C' be a quadrangle in G, let G be
quad-connected, and let H be cyclically 5-connected. Then there exist an expansion G’ of

G based at C of type A, B, C, D, E, F, G, or H and a homeomorphic embedding G’ — H.
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5. DODECAHEDRAL CONNECTION

In this section we introduce dodecahedral connectivity, a notion of connectivity that is
stronger than cyclic 5-connectivity. The main result of this section, (5.6) below, says that
if the graph H in (4.9) is dodecahedrally connected, then the last three outcomes of (4.9)
can be eliminated.

A guild is a pair (G, 7), where G is a graph with every vertex of degree 1 or 3, and
7 is a cyclic ordering of the set of vertices of G of degree 1. (We consider (1,2,3,4,5)
and (3,2,1,5,4) to be the same cyclic ordering.) This is closely related to the notion
of a society, introduced in [9]. If (G,7) and (G',7’) are guilds and n : G — G’ is a
homeomorphic embedding, we say that 7 is a homeomorphic embedding of (G, ) into
(G',7’) if n maps 7 onto «’. (That is, if 7 = (vy,v2,...,v,), then 7’ is the cyclic ordering
(n(v1),n(v2),...,n(vy,)).) If that is the case we write n : (G,7) — (G',n’). If §A is an
edge-cut of a cubic graph G of cardinality k£ such that § A is a matching, and vy, v, ..., vk
are all the vertices of V(G) — A incident with an edge of JA, then let H be the graph
G|(AU{v1,va,...,vk}). We say that (H, (v1,va,...,vx)) is a shore guild corresponding to
A. Thus if k > 2 there are (k — 1)!/2 shore guilds corresponding to A.

Let G be the Dodecahedron, and let C' be a circuit of G of length five with vertices
Uy, Us,...,us in order. For ¢ = 1,2,...,5 let v; be the neighbor of u; not on C. Let G’ be
the graph obtained from G by deleting the edges of C; then D = (G, (u1, us, uz, ug,us)) is
a guild, called the Dodecahedron guild. Let G” = G' + (u,v,x,y) be a 1-extension of G’.
We say that D' = (G”, (u1,us, us, us, us)) is a non-planar expansion of the Dodecahedron
guild if {u,v} # {u;,v;} for all ¢ = 1,2,...,5, and neither u nor v is equal or adjacent to
x ory.

Let G be a cyclically 5-connected cubic graph. We say that G is dodecahedrally
connected if for every edge-cut d A of cardinality five and every shore guild S corresponding
to A, if n: D — S is a homeomorphic embedding of the Dodecahedron guild into S, then
there exist a non-planar expansion D’ of D and a homeomorphic embedding ' : D" < S.

The following proposition from [11] is not needed in this paper, but is stated for
the reader’s convenience as it sheds some light on the seemingly mysterious definition of

dodecahedral connection. A guild (G, ) is planar if G can be drawn in a closed disc A
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with the vertices of degree one drawn in the boundary of A in the order given by 7.

(5.1) A cyclically 5-connected cubic graph G is dodecahedrally connected if and only if
for every edge-cut §A of cardinality 5 with |A| > 7 and |V (G) — A| > 7, no shore guild

corresponding to A is planar.
We need the following lemma.

(5.2) Let G,G1, H be cubic graphs, let G be quad-connected, let F' be a graph of minimum
degree at least two, let C' be a quadrangle in G, let G be a type F expansion of G with
core R based at C' such that R is disjoint from F', let H be dodecahedrally connected,
and let n; : G; — H be a homeomorphic embedding that fixes F'. Then there exist a
l-extension Gy = G1 + (u,v,z,y) of G1 and a homeomorphic embedding Go — H that

fixes F' and such that u,v € R, and either G5 is a long 1-extension of Gy or x,y ¢ R.

Proof. Let G,G1, H,C, R,n be as stated. Then R is an edge-cut of GGy of cardinality five
such that some shore guild corresponding to R is isomorphic to the Dodecahedron guild.
Let 6R = {ey,e9,...,e5}. If there exists an edge-cut A of H of cardinality five with
m(R) € Aand n(V(G1)— R) C V(H) — A then the conclusion follows from the definition
of dodecahedral connection. We may therefore assume that no such edge-cut exists. Thus
by (3.1) there exists an augmenting sequence v = (Q1, Q2, ..., Q) with respect to G1, H, R
and n;. By (3.2) we may assume (by replacing 7; by a different embedding if necessary)
that the conclusion of (3.2) holds. Let G2, 12 be obtained from 7; by routing the new edge

along @); it follows that G5 and 7y satisfy the conclusion of the lemma. O

The following result will allow us to eliminate type F expansions when the graph H

is dodecahedrally connected.

(5.3) Let G,G4,H be cubic graphs, let C' be a quadrangle in G, let F' be a graph of
minimum degree at least two, let G be quad-connected, let G4 be a type F expansion of
G based at C with core R, and let G5 = G4+ (u,v,x,y) be a 1-extension of G4 such that
u,v € R, and either G5 is a long 1-extension of G4 or x,y ¢ R. Assume further that F is a
subgraph of both G and G5. Then there exist an integer n € {1,2,3}, a long n-extension
G’ of G based at C, and a homeomorphic embedding ' : G’ — G5 that fixes F.
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Proof. Let uy,us,us,us be the vertices of C in order, for « = 1,2,3,4 let v; be the
neighbor of u; not on C, and let v},v) be the neighbors of v; other than ;. Since G
has a type F expansion we may assume that vj = v5. Let w ¢ {vi,v2} be the third
neighbor of v]. Choose G1, G2, G5 such that each of G,G1, G, G3, Gy, G5 is a 1-extension
of the previous. For i = 0,1,2,3,4 let n; be the canonical homeomorphic embedding
G; — G5 determined by the generating sequence G;41,G;+2,...,Gs, where Go means G,
for i = 1,2,3,4 let let k;,l; be the new vertices of G;, and let G; = G + (uy, ug, v1,v}),
Gy = Gy + (k1,u2,v2,v)), Gs = G2 + (k1, ka,us,uq) and G4 = Gs + (k1,l1,ko,l2). Then

R = {uq,ug,us, ug, v1,v2,v], k1,11, ko, la, k3, ka,l4}. From (2.6) we deduce that
(1) the vertices in R U {v{,w,vy, vs,v4} are pairwise distinct, except that possibly
w = vz or w = v4, but not both.

We also point out for future reference that

(2)  there is symmetry fixing vi,w and taking uy,u4, vy, vy, vs onto us,us,ve,vl, vs,

respectively.
(3)  Ifu € {ki,ko, ks, ka,ls} and x,y & R — {v]} then the lemma holds.

To prove (3) let u,x,y be as stated, and let G' = G + (u1, us, x,y) and ' be obtained
from 79 by routing the new edge along 15 (ksl5) U @, where @ is an appropriate subpath of
N4(G4). Then G',n’ satisfy the conclusion of the lemma, and (3) follows.

(4)  Ifu =13 {z,y} N{vs,va} =0, {z,y} # {u1,k1} and {z,y} # {u2, k2} then the
lemma holds.

To prove (4) we may assume by (2) that {z,y} does not equal {us,va}, {k1,ks} or
{ks,11}. Let G’,n’ be obtained from 7y by rerouting ns;(ujv1) along 71 (k1l1), and then
by routing the new edge along Q U n5(ksls) U Q', where Q is n5(ksl3) if v = ks and null
otherwise, and Q' is n5(I5v1) if {x,y} = {u1,v1}, a subpath of n4(kals) Uns(lale) Una(lsks)
with ends 75(l5) and n4(l2) if Iy € {z,y}, and null otherwise. Then G’,n’ satisfy the

conclusion of the lemma and (4) follows.

(5)  If{u,v} = {ks,l3}, then the lemma holds.

This follows immediately from (3) and (4).
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(6) Ifu € {ug, ko} and x,y & {ki,va,l2,us,l3,kq,ls,v5} then the lemma holds.

To prove (6) let G’ and 1’ be obtained from 7y by first rerouting no(usus) along
n5(ksls), then routing the first new edge along n5(k1ks) U n5(kals) U m5(lsle), and then
routing the second new edge along 75 (ksl5) U @, where @ is 05 (ksuz) if v = us, n5(ksks) if
v = l4, and null otherwise. Then G’,n’ satisfy the conclusion of the lemma, because G’ is

a long 2-extension of G. This proves (6).

(7)  Ifwvs and vl are adjacent, then the lemma holds.

To prove (7) let G',n’ be obtained from 7y by
e first rerouting n4(ugus) along n4(ksls),
e then rerouting 14 (kauz) U ng(ugvs) along n(kals),
e then rerouting n4(uiv1) along 71 (k1ly),
e then rerouting n4(k1ks3) along n4(kaly),
e then rerouting 74(vsvh) along n4(usus) U na(ugve),
e then routing the first new edge along n4(u2ks),
e then routing the second new edge along n4(k1ks),
e and finally routing the third new edge along n4(ujv1).
Then G’ is a type E expansion of GG, and hence the pair G’,n’ satisfies the conclusion of

the lemma. This proves (7).

(8)  If{u,v} is one of {ug,us}, {us,ls}, {ls,us} or {uy,us}, then the lemma holds.

To prove (8) we may assume by (2) that {u,v} = {ug,us} or {us,ls}. Assume first
that vs, vy & {x,y}. Let G’',n' be obtained from 7y by
e first rerouting n4(ujug) along n4(lsks),
e then rerouting 14 (ksk1) Una(krur) Ung(uivr) along ng(kalsy) Una(laks) Ung(kale),
e then rerouting n4(l1v}) along n4(l4l2) and
e finally routing the new edge along 715(ksl5) U @, where @ is either null, or a path of
n4(G4) with one end 75(l5), the other end in n’(vivy), and otherwise disjoint from
' (G).
The graph G’ is a long extension of G, unless {u,v} = {us,ls} and {z,y} = {ko,l4}, in

which case (8) follows from (4). Thus (8) holds if vs,vs € {x,y}, and so we may assume
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that either x = v3 or = vy. As a second case assume that x = vy. If {u,v} = {u2,us},
then (8) follows from (6), and so let {u,v} = {us,l3}. Let G’ be obtained from G4 by
deleting the edges ksls and k407 and suppressing degree two vertices. Then G’ is isomorphic
to a type E expansion of GG, and so (8) follows. This completes the second case. Thirdly,
let © = vs. Since the cases {u,v} = {ug,usz} and {u,v} = {us,l3} are symmetric by (4.2),
we may assume that {u,v} = {ug,us}. If v3 and v§ are adjacent, then (8) follows from

(7); otherwise it follows from (6). This proves (8).

(9)  Ifu = ks then the lemma holds.

To prove (9) let u = k3. By (5) we may assume that v # I3 (and hence {z,y} #
{k4,14}), by (3) we may assume that {z,y} N R # 0, and by (2) we may assume that
{z,y} # {u2,v2} and {z,y} # {l1,ks}. By (8) we may assume that {z,y} # {us,us} and
{z,y} # {u1,us}. Let G',n' be obtained from nq first by rerouting n4(k1ks) U ns(ksks)
along n4(k1ks) U na(kaly) U ny(lyks), then rerouting ny(uivi) along n4(kyly), and finally
routing the new edge along n4(l3ks) U ns(ksks) U ns(ksls) U @, where @ is either null or
N5 (lals) or ns(v1ls). If {x,y} # {u4,v4} and {z,y} # {us,v3} then G’ is a long extension
of G, and hence the lemma holds. From the symmetry we may assume that {z,y} =
{ug,vs}. If {u,v} = {ks,k2} then (9) follows from (6), and so we may assume that
{u,v} = {k1, ks}. Let G’,n' be obtained from 7y by first rerouting n4(uiu4) along ns(ksls),
then rerouting n4(k1u1 ) Ung(uivy) along ny(k1ks)Ung(kaly), and then routing the new edge
along n4(uquq) Ung(uivr). Then G', ' satisfy the conclusion of the lemma, and hence (9)

holds.

(10) Ifu € {l1,k4} and x = vo then the lemma holds.

To prove (10) we first define two paths @, Q. Let @ be the path of n4(vals)Ung(vous)U
N4(vovh)) with one end 75(l5) and the other end in ny(vaus) Ung(vavy), and let @ be the
path of n1(k1ly) U ng(viv}) U ng(kely) with one end n5(ks) and the other end in ng(viv}).
Let G’ = G + (u1,us2,v],w) and 1’ be obtained from 7y by rerouting an appropriate path
along Q Uns(lsks) U Q', and then routing the new edge along n2(k2l2) U n2(lav]). Then
G',n' satisfy the conclusion of the lemma, thus proving (10).

(11)  If{u,v} equals one of {ug,va}, {ui,v1}, {us, ka} or {uy, k1}, then the lemma holds.
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To prove (11) we may assume by (2) that {u,v} = {ug,v2} or {u,v} = {ug, ka}. If
{z,y} = {ua,v4} or {x,y} = {vs, v}, where v # usz is a neighbor of vz, then (11) follows
from (6) and (7). If {z,y} = {k1,ks} then (11) follows from (9), and if {z,y} = {k4,ls},
then (11) follows from (10). We may therefore assume that none of the above hold.
Let G',n' be obtained from 7y by first rerouting n4(uius) along n4(ksls), then rerouting
n4(v1ly) along n1(kil1), then rerouting n4(ugvs) along ne(kels), then rerouting ny(lov})
along n4(k4ls), and finally routing the new edge along Q U ns(ksls) U Q', where @ is either
null or 75(ksuz), and @’ is either null or a subpath of ny(lav]) U na(ugus) U ng(vily) with
one end 75(l5) and the other end in {n4(v]),na(u1),n4(v1)}. Then the graph G’ is a long
extension of G, and hence (11) holds.

(12) Ifue {l1,ks}, x € V(G) — (RU{v{,w}) and y # v}, then the lemma holds.

To prove (12) let G’,n’ be obtained from 7y first by rerouting n4(uqu;) along n4(ksls),
then rerouting n4(k1ks) along n4(kols) U na(laks) U na(kaky), then by rerouting no(vq1v])
along n4(l4l3), then routing a first new edge along n4(k1ks), and finally routing a second
new edge along Q U ns(ksls), where @ is a suitable path of n4(G4) with one end 75(ks)
and the other end in n4(k1ks) U na(kaly). Then G, 7 satisfy the conclusion of (12) thus
proving (12).

(13)  If{u,v} = {ka4,l4} then the lemma holds.

This follows from (2), (3), (5), (8), (10), (11) and (12).

(14)  If{u,v} equals one of {k1,ka}, {ka,l1}, {ko,ls4} or {ls,l5} then the lemma holds.

To prove (14) we may assume by (2) that {u,v} = {k1,ks} or {u,v} = {kq,l1}. By (3),
(5), (8), (10), (11) and (12) we may assume that {u,v} = {ki,kq4}, and {z,y} = {l2, 0]}
or {z,y} = {v1,v}. Let {u,v} = {ki1,ks}, and assume first that {x,y} = {l3,v]}. Let
G',n' be obtained from 7 first by rerouting ng(vilz) along n4(l1ks) U na(kals) U na(lyls),
and then routing the new edge along 5 (k1ks) Uns(ksls) Uns(lsv]). Then G’ n' satisfy the
conclusion of the lemma. We may therefore assume that {x,y} = {v1,v{}. In this case let
G',n' be obtained from 79 by routing the first new edge along n4(k1k4) Una(kals) Una(lyls),
and routing the second new edge along 75(ksls). Then G’ is a long 2-extension of G by
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(2.1) and (2.5) (or by (1)), and hence the pair G’,n’ satisfies the conclusion of the lemma.
This proves (14).

(15)  If {u,v} = {vo,la} or {u,v} = {v1,11} then the lemma holds.

To prove (15) we may assume by (2) that {u,v} = {v1,l1}. By (5), (8), (9), (10), (11)
and (12) we may assume that {z,y} = {v{, z}, where z # v; is a neighbor of v{'. But then
G5 is isomorphic to G4 + (uy,v1,vY, 2"), where 2’ & {vy, z} is the third neighbor of v{, and

hence (15) follows from (11).

(16) If{u,v} = {lo,v}} or {u,v} = {l1,v}} then the lemma holds.

To prove (16) we may assume by (2) that {u,v} = {ls,v1}. By (2), (5), (8), (9),
(11), (12) and (14) we may assume that {z,y} = {vY, z}, where z # v is a neighbor of
vY. Let G',n’ be obtained from 7y by first rerouting ny(vov4) along ns(ksls), then rerout-
ing n4(ugv2) Uny(vels) along na(kals), and finally routing the new edge along ny(ugvs) U
na(vavy). If vf is not adjacent to vs, then G’ is a long extension of G' by (2.1), and hence
the pair G',n’ satisfies the conclusion of the lemma. On the other hand if v and v} are

adjacent, then (16) follows from (7). This completes the proof of (16).
The lemma now follows from (5), (8), (9), (11), (13), (14), (15) and (16). O

(5.4) Let G,G4,H be cubic graphs, let C' be a quadrangle in G, let F' be a graph of
minimum degree at least two, let G be quad-connected, let G4 be a type F expansion of
G based at C' such that its core is disjoint from F', let n : G4 — H fix F', and let H be
dodecahedrally connected. Then there exist an integer n € {1,2,3}, a long n-extension G’

of G based at C and a homeomorphic embedding n' : G' — H that fixes F.
Proof. This follows immediately from (5.2) and (5.3). O

(5.5) Let G,G5,H be cubic graphs, let C' be a quadrangle in G, let F' be a graph of
minimum degree at least two, let G be quad-connected, let G5 be a type G or H expansion
of G based at C, let F' be a subgraph of both G and G5, and let H be dodecahedrally
connected. Then there exist an integer n € {1,2,3}, a long n-extension G’ of G based at

C' and a homeomorphic embedding n' : G’ — H that fixes F.
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Proof. Let GG; be a short 1-extension of G such that G5 is a type F expansion of G; based
at the new quadrangle of G;. By (5.4) applied to G; and the new quadrangle of G; there
exist an integer k € {1, 2,3}, a long k-extension G2 of G1, and a homeomorphic embedding
Gy — H. Then G5 is a long (k + 1)-extension of G based at C, and so if k < 2, then the
lemma holds. We may therefore assume that £ = 3. By (4.5) we may assume that there
exist a type F expansion G3 of GG based at C' and a homeomorphic embedding G5 — H
that fixes F'. The conclusion of the lemma now follows from (5.4) applied to the graph G
and quadrangle C'. O

(5.6) Let G, H be cubic graphs, let C' be a quadrangle in G, let F' be a graph of minimum
degree at least two disjoint from C, let n : G — H fix F', let G be quad-connected, and let
H be dodecahedrally connected. Then there exist an expansion G’ of G of type A, B, C,
D, or E based at C, and a homeomorphic embedding G' — H that fixes F.

Proof. By (4.9) there exist an expansion G; of G of type A, B, C, D, E, F, G or H and a
homeomorphic embedding 77, : G; — H that fixes F'. We may assume that G; is of type
F, G, or H, for otherwise G, n; satisfy the theorem. By (5.4) and (5.5) applied to G, Gy, H
and 7; there exist an integer n € {1,2,3}, a long n-extension G5 of G based at C' and a
homeomorphic embedding 72 : Go < H that fixes F. By (4.3) and (4.4) there exist an
expansion G3 of G of type A, B, C, D, or E and a homeomorphic embedding 73 : G3 — H
that fixes F', as desired. O

6. A TWO-EXTENSION THEOREM
In this section we prove a preliminary weaker version of (1.3). In (6.1) we prove it when H

is dodecahedrally connected, and in (6.2) we prove it for cyclically 5-connected graphs H.

(6.1) Let G, H be cubic graphs, let G be cyclically 5-connected, let H be dodecahedrally
connected, and let n : G — H be a homeomorphic embedding. Then there exist a cyclically
5-connected cubic graph G’ and a homeomorphic embedding ' : G' < H such that G’ is

a 1- or 2-extension of (.

Proof. Let G, H,n be as stated. By (3.4) there exist a 1-extension Gy = G+ (ug, vs, u1,v4)

of G and a homeomorphic embedding 7y : Gog — H. Let us, us be the new vertices of Gj.
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If Gy is cyclically 5-connected, then Gg,ng satisfy the conclusion of (6.1), and so we may
assume that Gy is not cyclically 5-connected. By (2.1) we may assume that say wu; is
adjacent to us. Then Gy is quad-connected, and has a unique quadrangle Cy, where
V(Co) = {u1,uz,u3,us}. By (5.6) there exist an expansion Gs of Gy of type A, B, C, D
or E based C, and a homeomorphic embedding 7y : Go — H. If G5 is of type A, then
the pair G, 7 satisfies the conclusion of the lemma, and so it remains to consider types
B, C, D and E.

Let us assume now that Gs is of type B, C or D, and let G;,G2 be a standard
generating sequence for Gy. Let Gy = Gg + (a1, a2,v1,w), where ay,as € V(Cp), v1,w &
V(Cy), and let k1,11 be the new vertices of G;. Since G is a short extension of Gy, by (2.1)
we may assume that say a; is adjacent to vy, and hence G has a unique quadrangle, say
C1, and its vertex-set is {ai,v1,k1,l1}. Let & : G — G2 be the canonical homeomorphic
embedding determined by the generating sequence G, G1, G2, let (o = £ o 12, let (3 be
obtained from (y by rerouting (o(ujuz) along 1 (usus), and let o be obtained from ¢y by
rerouting 72 (ayv1) along n2(k1ly).

(1)  We may assume that {a1, a2} = {uy,us}.
To prove (1) we first notice that by (4.2) we may assume that {a1,a2} = {us,us} or

{a1,a2} = {us,us}. But if {a1,a2} = {us,us}, then by replacing n by ¢; we can arrange

that (1) holds.

From the symmetry between u; and us we may assume that a; = uy and as = us.
Then v, is the neighbor of u; in Gy that does not belong to Cy. Let vy be the neighbor of
ug in G that does not belong to Cy.

(2)  We may assume that w and vy are adjacent in G.

To prove (2) suppose that w and vy are not adjacent, and let G' = G + (u2,va, v1,w)
and 1’ be obtained from (; by routing the new edge along (i(ugk;) U (1(kily). Since
G + (ug2,v2,v1,w) is cyclically 5-connected by (2.3), (2) holds.

By (2) G has a circuit with vertex-set {uy, ug, v2, w,v1}. Let v} be the neighbor of vy
not on this circuit, and let v} be defined similarly. We distinguish cases depending on the

type of the expansion Gs.
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Let us assume first that G is a type B expansion of Gg. Then Gy = Gy + (v1, 11, z,y)
for some z,y € V(G1). Let ko,ly be the new vertices of Go. Let us assume first that
{z,y} = {u4,v4}. Let G’ = G+ (ug, v2,v1,v]) and 1’ be obtained from (; by first rerouting
(1(viuq) along mo(kals), and then routing the new edge along n;(ujus) Uny(ujvy). Since
G + (ug, v9,v1,v]) is cyclically 5-connected by (2.5), the pair G’,n’ satisfies the conclusion
of the theorem, as required. We may therefore assume that {z,y} # {u4,vs}. Let G',n/
be obtained from (y by routing the first new edge along 7, (k1l/1), and then routing the
second new edge along 12 (kals) (or along na(kale) U ne(loug) if {x,y} = {us,us}). Then
G',n’ satisfy the conclusion of the theorem. This completes the case when Gs is a type B
expansion of Gg.

We now assume that G is a type C expansion of Gy. Since Gy + (ki,l1,v2,w) is
not cyclically 5-connected, there are only two cases to consider. Assume first that G, =
G1+ (k1,11,v9,v5), and let ks, I3 be the new vertices of Go. Let G’ = G+ (uq, vy, v2,v)) and
7’ be obtained from (s by routing the new edge along 12 (k2l3). Since G’ is cyclically 5-con-
nected by (2.5) the theorem holds. Secondly, let us assume that Go = G1 + (u1, v1, v4, V),
where v} # uy is a neighbor of vy in G, and let ks, [ be the new vertices of G5. Let G/ = G+
(v1,v],v4,v)) and 1’ be obtained from (s by routing the new edge along ns(v1ks)Uns(kals).
If G’ is cyclically 5-connected, then the pair G', ' is as desired. We may therefore assume
that G + (v1,v], vq,v}) is not cyclically 5-connected, and hence v} and v are adjacent by
(2.3). Let G’ and 1’ be obtained from (, by first rerouting (5 (vjv}) along no(v1ke)Uns(kels),
then routing a first new edge along 71 (usuy4) and then routing a second new edge along
n2(koui). Then G’ is isomorphic to Go + (u1,uq,v],v)). Since Go + (u1,uq,v],v)) is
cyclically 5-connected by (2.3), the pair G’,n’ is as desired. This completes the case when
G5 is a type C expansion.

We now assume that G» is a type D expansion of Go; then Gy = Gy + (k1,u1,us, vs).
Let ko, ly be the new vertices of Go. Let G’ = G + (v1,w, ug,v3) and i’ be obtained from
(1 by routing the new edge along 73 (kalz) U n2(keki) U n2(k1ly). Since G’ is cyclically
5-connected by (2.5) the theorem holds in this case. This completes the case that G5 is a

type D expansion.

Finally we assume that Gs is a type E expansion of Gg. Let G1, G5, G2 be a standard
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generating sequence for Ga. From the symmetry we may assume that G, = G; +
(us,uq,vs3,v5), where v # ug is a neighbor of vs, and Ga = G4 + (kb, us, k1,u1), where
kS, 15 are the new vertices of G. Let ka,ls be the new vertices of Go. Let G’ and 1’ be
obtained from (y by routing the first new edge along 12 (laka) Una(kak) Una(k5l5) and then
routing the second new edge along n2(k1l1). Since G’ is cyclically 5-connected by (2.4),
the theorem holds in this case. This completes the case when G5 is a type E expansion of

Gy, and hence the proof of the theorem. O
Let us recall that circuit expansion was defined prior to (1.3).

(6.2) Let G, H be non-isomorphic cyclically 5-connected cubic graphs, and letn : G < H
be a homeomorphic embedding. Then there exist a cyclically 5-connected cubic graph G’
and a homeomorphic embedding 1’ : G' — H such that G’ is either a 1- or 2-extension or

a circuit expansion of G.

Proof. Let G, H,n be as stated. By (3.4) there exist a 1-extension Gy = G+ (ug, vs, u1, v4)
of G and a homeomorphic embedding 7y : Gog — H. Let us,us be the new vertices of Gj.
If Gy is cyclically 5-connected, then Gg,ng satisfy the conclusion of (6.1), and so we may
assume that Gy is not cyclically 5-connected. By (2.1) we may assume that say wu is
adjacent to us. Then G is quad-connected, and has a unique quadrangle Cy, where
V(Co) = {u1,uz,us,us}. By (4.10) there exist an expansion Gy of Gy of type A, B, C,
D, E, F, G or H based at Cjy, and a homeomorphic embedding 7y : Gy — H. If G5 is an
expansion of type A, B, C, D or E then the theorem holds by the proof of (6.1). We may
therefore assume that G, is an expansion of type F, G or H. Let (; be defined as in the
proof of (6.1).

Assume first that G4 is an expansion of type F. Since G is cyclically 5-connected, vy
and v4 have no common neighbor in GG, and similarly v5 and vs have no common neighbor
in G. Therefore G5 is based on either uqus, or ugus. In either case G5 is a circuit expansion
of GG, and so the pair G5, 7, satisfies the conclusion of the theorem.

Secondly, let us assume that G5 is an expansion of type G. Let G; be a short 1-
extension of Gy based at Cy such that G5 is a type F expansion of G, and let C be the

unique quadrangle of G;. By replacing n by (; and by using symmetry we may assume that
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Gy = Go + (u1, u2,v1,w), where w # wu; is a neighbor of vy. Let ky,l; be the new vertices
of G1; then the vertex-set of Cy is {u1,v1,l1,k1}. From claim (1) in the proof of (6.1) we
may assume that w and vy are adjacent. Let G’ be obtained from G5 by deleting the edge
vow and suppressing the resulting vertices of degree two, and let " be the restriction of 79
to G'. Then G’ is isomorphic to a circuit expansion of G, and so the theorem holds.
Finally let us assume that G5 is an expansion of type H. Using the same symmetry
as before we may assume that Gy has a quadrangle D with vertex-set {z1,x2,x3, 24},
where u; is adjacent to z1, the vertices us and x5 have a common neighbor, and u4 and
x4 have a common neighbor, say z. Then the set V(D) U {uy, z} violates the dodecahedral
connectivity of GG. This completes the case when G5 is a type H expansion, and hence a

proof of the theorem. O

7. A ONE-EXTENSION THEOREM

In this section we prove (1.3) and (1.4).

(7.1) Let G, H be cyclically 5-connected cubic graphs, let uy,us,us, us,us (in order) be
the vertices of a path of G, let Gy = G + (u1,us2,us,uyg) + (u2,us, uq,us), and let ny :
Go < H. Then there exist a cyclically 5-connected handle expansion G’ of G and a

homeomorphic embedding G' — H.

Proof. Let vg & {uy,us} be the third neighbor of us, and let v and vy be defined similarly.
Let G1 = G + (u1,ug,us,uy), let k1,03 be the new vertices of G1, let ko, ly be the new
vertices of G1 + (ug, us, u4,us), and let n be the restriction of 73 to G. Let (; be obtained
from 7 by rerouting 72 (ugus) along n2(k1ly). By considering the path 12 (loks) U n2(kaus)
we can extend (; to a homeomorphic embedding G + (ve, ug,ug,us) — H. We deduce
that if G + (ve, ug,uq,us) is cyclically 5-connected, then the lemma holds. Thus we may
assume that that is not the case, and hence vy and us are adjacent in G by (2.3).

Let G' = G + (us, vs3,us,v2) and 1’ be obtained from (; by first rerouting 7, (vous)
along n2(kala) U na(kaus), and then by routing the new edge along ns(kous). Since G’ is
cyclically 5-connected by (2.5), the lemma follows. O
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(7.2) Let G be a cyclically 5-connected cubic graph, and let ..., u_1,ug,uy,... and
...,V_1,00,01,... be two doubly infinite sequences of (not necessarily distinct) vertices of
G such that for all integers i, the neighbors of u; are w;_1, u;+1 and v;, and the neighbors
of v; are v;_s, v;1o and u;. Then there exists an integer p > 5 (p > 10 if p is even) such
that u; = u;4+p and v; = v;4p, for all integers i, and the vertices uy, U, ..., Up, V1, V2, ..., Up

are pairwise distinct. Thus G is a biladder.

Proof. Choose p > 0 minimum such that for some integer i, one of u;,v; equals one of
Uitp, Vitp. Suppose first that u; = v;1,. Then p > 2, and the neighborhood set of u;
equals the neighborhood set of v;1,, so one of w;_1,u;+1,v; equals v;4,_2, contrary to
the choice of p. If v; = u;4,, then similarly one of w;4p—1,Uitp+1,Vitp €quals vi42, again
contrary to the choice of p.

So either u; = w;4p or v; = v;4p; and then as before, it follows that u; = u;4, and
v; = Vi4p for all integers i. It follows from the choice of p that the vertices uq,us, ..., up,

v1, V2, ..., Vp are pairwise distinct. O

(7.3) Let G,H be cyclically 5-connected cubic graphs, let H be a long 2-extension of
GG, and assume that there does not exist a handle expansion G' of G which admits a

homeomorphic embedding G' < H. Then both G, H are biladders.

Proof. Since H is a 2-extension of GG, there exist vertices vy, vs,us, us of G and vertices
ay,as,as,as of Gy = G+ (v1,v3,us, ug) such that H = G1+(aq, a2, as,a4). Let k1,11 be the
new vertices of G;. Then G is not cyclically 5-connected, and so by (2.1) we may assume
that v is adjacent to ug in G. Thus G, is quad-connected and has a unique quadrangle
C1, where C; has vertex-set vs,us,l1,k;. Furthermore, one of {a1, a2}, {as,as} is equal
to one of {vs,us}, {us,l1}, {l1,k1} or {ki,v3}. From the symmetry (and making use
of the homeomorphic embedding obtained from the canonical homeomorphic embedding
G — H by rerouting vsus along k1l;) we may assume that either {a;,as} = {vs,us},
or {ay,as} = {us,l1}. Let vy # ug be a neighbor of uy in G. In the former case, since
G + (a1,a2,a3,a4) is not cyclically 5-connected, we may assume from the symmetry that
{as,as} = {ua,v2}, in which case we obtain a contradiction from (7.1) applied to the path

of G with vertex-set {vy,vs, us, us,va}.
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We may therefore assume that {a1,a2} = {us,l1}, and further (by replacing vo if
necessary) that {as,as} = {ve,v4}, where vy # usy is a neighbor of vy. Then vy # vy, bec-
ause G is cyclically 5-connected. Thus G has a path P with vertex-set vy, vs, us, us, va, vy
(in order) such that H = G&(v1,v3,us, us,v2,v4). (The & operator was defined prior
to (2.4)). Let u; be the neighbor of us not on P, and let uy be the neighbor of u3 not on
P. Assume that for some integers m,n with m < 1 and n > 4 we have already constructed
(not necessarily distinct) vertices Uy, Um+t1s - -+ s Uny Vmy Um+1, - - - , Up, of G such that for all
t=m+1m+2,...,.n—1

(i) wu; is adjacent in G to w;41 and u,, is adjacent in G to Uy, 41,
(ii) w, is adjacent in G to v;,

(iii) v;—1 is adjacent in G to v;41,

)
(iv) there exists a homeomorphic embedding
Nn - G&('Un—i%a Un—1,Un—1,Un—-2,VUn—2, Un) — H7

and

(v) there exists a homeomorphic embedding

Nm * G& (Vs Umt2y Umt-2, Uint1, Umt1s Umts) < H.

We shall construct w,;,—1, Vm—1, Un+1, Unt1s Pm—1, Tn+1 sSuch that (i)-(v) are satisfied for all
t1=m,m+1,...,n.

Let L = G&(vp—3,Vn—1,Up—1,Upn—2,Vn_2,Vy), and let k, [, k' I’ be the new vertices of
L. Let ' be obtained from the restriction of 7, to G by rerouting 7, (v,—1u,—1) along
Nn(kl). By considering the path 1, (k'l’) we can extend 1’ to a homeomorphic embedding
N G+ (Un—1,Un, Vp—2,0y) < H. Since G + (up_1, Un,Vp_2,v,) is not cyclically 5-con-
nected by hypothesis, we deduce from (2.3) that w,,, v, are adjacent. Let uy+1 & {tpn—1,vn}
be the third neighbor of u,,, and let v, 1 & {u,_1,v,_3} be the third neighbor of v,,_1. By
considering the homeomorphic embedding 1" and the path 7, (4,—1v,—1) we can construct
a homeomorphic embedding 7,41 : G&(Vy—2, U, Un, Un—1, Vn—1, Un+1) <> H. The vertices

Um—1,Um—1 and homeomorphic embedding 7,,_; are defined analogously.
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This completes the definition of two doubly infinite sequences of vertices ...u_1,ug,
U,...and ...v_1,v0,v1,... of G such that (i), (ii), (iii) hold for all integers i. It follows

from (7.2) that both G, H are biladders, as required. O

(7.4) Let G, Gy be biladders, where |V (G1)| = |V(G)| + 4 and |V (G)| € {10,20}, and
let Go be a handle expansion of G1. Then there exist a handle expansion G’ of G and a

homeomorphic embedding G' — G5.

Proof. Let us assume that the vertices of G| are numbered ug, u1, ..., Up41, 00,1, ..., Vp—1,
as in the definition of biladder. The edges of the form u;v; will be called rungs. Let us say
that two edges e, f in a graph are diverse if they share no end and no end of e is adjacent
to an end of f. It follows by inspection that if e, f are two diverse edges of GG1, then there
exist two consecutive rungs such that they are not equal to e, f and upon the deletion of
the rungs and suppression of the resulting degree two vertices the edges (corresponding
to) e, f remain diverse in the smaller biladder. Since deleting two consecutive rungs and
suppressing the resulting degree two vertices produces a graph isomorphic to G, we deduce

that the theorem holds. O
The following variation of (7.4) is easy to see.

(7.5) Let G, G1 be biladders, where |V (G1)| = |V(G)| + 4, and let G2 be a circuit
expansion of G1. Then there exist a circuit expansion G' of G and a homeomorphic

embedding n' : G' — Gs.
The following theorem implies (1.3) and (1.4).

(7.6) Let G,H be non-isomorphic cyclically 5-connected cubic graphs, assume that H
topologically contains G, and assume that not both GG, H are biladders. Assume further
that if G is isomorphic to the Petersen graph, then H does not topologically contain the
biladder on 14 vertices, and if G is isomorphic to the Dodecahedron, then H does not
topologically contain the biladder on 24 vertices. Then there exist a cyclically 5-connected
cubic graph G’ and a homeomorphic embedding G' < H such that G’ is either a handle
or circuit expansion of G. Moreover, if H is dodecahedrally connected, then G’ can be

chosen to be a handle expansion.
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Proof. We proceed by induction on |V (H)| — |[V(G)|. Let G, H be as stated, and assume
that the theorem holds for all pairs G', H' with |V(H")| — |[V(G")| < |[V(H)| — |V(G)|. By
(6.2) there exist a cyclically 5-connected cubic graph G; and a homeomorphic embedding
G1 — H such that G is a 1- or 2-extension or a circuit expansion of G. If H is dodec-
ahedrally connected, then by (6.1) G; can be chosen to be a 1- or 2-extension of G. We
may assume that G is a 2-extension of G, for otherwise the conclusion of the theorem
is satisfied. From (7.3) we deduce that either the conclusion of the theorem is satisfied,
or both G,G; are biladders, and so we may assume the latter. Thus |V (G)| # 20 by
the hypothesis of the theorem. By the induction hypothesis applied to the pair G, H
we deduce that there exist a handle or circuit expansion G, of G; and a homeomorphic
embedding G2 — H. Moreover, if H is dodecahedrally connected, G5 can be chosen to
be a handle expansion. By (7.4) and (7.5) there exist a handle or circuit expansion G’
of G and a homeomorphic embedding n’ : G’ < H. Moreover, if H is dodecahedrally
connected, then G’ is a handle expansion. Thus the pair G’,n’ satisfies the conclusion of

the theorem. 0
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