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Abstract— We study the impact of using one-bit analog-to-
digital and digital-to-analog converters in a multipair amplify-
and-forward MIMO relaying system. The relay estimates the
channel state information using training data, and then uses
the channel estimate to perform maximum ratio combining and
maximum ratio transmission. An exact achievable rate is derived
for the system under general assumptions on the quantization
noise, and then a closed-form asymptotic approximation is
derived, which enables efficient evaluation of the impact of key
parameters on system performance. Contrary to the conventional
unquantized systems, the performance is seen to depend on the
specific pilot sequences that are employed. In addition, the sum
rate gap between the double quantized relay system and an ideal
unquantized system is shown to be a factor of 4/π2 in the low
source power regime.

I. INTRODUCTION

Multipair multiple-input multiple-output (MIMO) relaying
systems have recently attracted considerable attention since
they can provide a cost-effective way of achieving perfor-
mance gains and maintaining a uniform quality of service.
For instance, [1] derived the ergodic rate of the system
when maximum ratio combining/maximum ratio transmission
(MRC/MRT) beamforming was employed and showed that
the energy efficiency gain scales with the number of relay
antennas in Rayleigh fading channels. Then, [2] extended the
analysis to the Ricean fading case and obtained similar power
scaling behavior. For full-duplex systems, [3], [4] analytically
compared the performance of MRC/MRT and zero-forcing
reception/transmission and characterized the impact of the
number of user pairs on the spectral efficiency.

All the aforementioned works are based on the assumption
of infinite-resolution analog-to-digital converters (ADCs) and
digital-to-analog converters (DACs). Since the fabrication cost,
chip area and power consumption of the ADCs and DACs
grow roughly exponentially with the number of quantization
bits, the cumulative cost and power required to implement a
relay with a very large array can be prohibitive. Therefore, it
is desirable to investigate the use of cheaper and more energy-
efficient one-bit ADCs and DACs.

For the case of one-bit ADCs, [5] reformulated the nonlinear
quantization using a second-order statistically equivalent linear
operator, and derived a linear minimum mean-squared error
(LMMSE) channel estimator. The work [6] examined the im-
pact of one-bit ADCs on wideband channels with frequency-
selective fading. For one-bit DACs, [7], [8] showed that even
simple MRT precoding can achieve reasonable results. In [9],
an LMMSE precoder was proposed by taking the quantization
non-linearities into account, and different precoding schemes

were compared in terms of uncoded bit error rate.
All these prior works deal with single hop systems, and

hence the impact of one-bit ADCs and DACs in relaying
systems remains unknown. To fill this gap, we consider a
multipair amplify-and-forward (AF) relaying system where
the relay uses both one-bit ADCs and one-bit DACs. Our
main contributions are summarized as follows: 1) We show
that the channel estimation accuracy of the quantized system
depends on the specific orthogonal pilot matrix that is used.
By considering the specific case of identity and Hadamard
pilot matrices, we show that the identity training scheme
provides better channel estimation performance for users with
weaker than average channels, and vice versa; 2) We present
an exact achievable rate by using the arcsine law. Then, we
use asymptotic arguments to provide an approximate closed-
form expression for the achievable rate; 3) We show that the
sum rate of the relay system with one-bit ADCs and DACs is
4/π2 times that achievable with perfect ADCs and DACs in
the low source power regime.

Notation: We use bold upper case letters to denote matrices,
bold lower case letters to denote vectors and lower case letters
to denote scalars. The notation (±)H , (±)∗, (±)T , and (±)−1

respectively represent the conjugate transpose operator, the
conjugate operator, the transpose operator, and the matrix
inverse. The Euclidian norm is denoted by √√±√√, and the
absolute value by √±√. Also, x ∼ NQ (0,Σ) denote a circularly
symmetric complex Gaussian random vector with zero mean
and covariance matrix Σ. The terms � (C) and C (C) stand
for the real and imaginary part of C, respectively. Finally, the
statistical expectation operator is represented by E}±| , and the
variance operator is Var (±).

II. SYSTEM MODEL

Consider a multipair massive MIMO relaying system serv-
ing K single-antenna user pairs, denoted as Sk and Dk, k =
1, . . . ,K. The relay is equipped with M receive antennas with
one-bit ADCs and M transmit antennas with one-bit DACs.
The one-bit ADCs cause errors in the channel estimation
stage and subsequently in the reception of the uplink data;
then, after a linear transformation, the one-bit DACs produce
distortion when the downlink signal is coarsely quantized.
Thus, the system we study is double quantized. We assume
that direct links between Sk and Dk do not exist due to large
obstacles or severe shadowing. In addition, we further assume
that the relay operates in half-duplex mode, and hence it cannot
receive and transmit signals simultaneously [10]. Accordingly,
information transmission from Sk to Dk is completed in two



separate phases. In the first phase, the K sources transmit
independent data symbols to the relay, and in the second phase
the relay broadcasts the double-quantized signals x̃R to the
destinations. The signals at the relay’s receive antennas and at
the destinations before quantization are respectively given by

yR = pSGSRxS + nR, (1)

yD = γGT
RDx̃R + nD, (2)

where γ is chosen to satisfy the total power constraint pR

at the relay, i.e., E
}√√γx̃R√√2

(
= pR, which will be speci-

fied shortly. The source symbols are represented by xS =
[xS,1, . . . , xS,K ]T , whose elements are assumed to be Gaussian
distributed with zero mean and unit power, and pS denotes
the transmit power of the sources. The vectors nR and nD

represent the additive white Gaussian noise (AWGN) at the
relay and destinations, whose elements are identically and in-
dependently distributed (i.i.d.) NQ (0, 1). The matrices GSR =
[gSR,1, . . . ,gSR,K ] and GRD = [gRD,1, . . . ,gRD,K ] respectively
represent the uncorrelated Rayleigh fading channels from the
K sources to the relay with gSR,k �NQ (0, βSR,kIM ) and the
channels from the relay to the K destinations with gRD,k �
NQ (0, βRD,kIM ). The terms βSR,k and βRD,k model the large-
scale path-loss, which is assumed to be constant over many
coherence intervals and known a priori.

A. Channel Estimation

During each coherence interval of length τc (in symbols),
all sources simultaneously transmit their mutually orthogonal
pilot sequences ΦS � C

τp×K satisfying ΦH
S ΦS = τpIK

to the relay while the destinations remain silent (τp ≈ K).
Afterwards, all destinations simultaneously transmit their mu-
tually orthogonal pilot sequences ΦD � C

τp×K satisfying
ΦH

D ΦD = τpIK to the relay while the sources remain silent.

Since the channels GSR and GRD are estimated in the same
fashion, we focus only on the first link GSR. The received
training signal at the relay is given by

Yp = ppGSRΦ
T
S +Np, (3)

where pp represents the transmit power of each pilot symbol,
and Np denotes the noise at the relay, which has i.i.d.
NQ (0, 1) elements. After vectorizing the matrix Yp, we obtain

yp = vec (Yp) = Φ̄SḡSR + n̄p, (4)

where Φ̄S = ΦS ≥ ppIM , ḡSR = vec (GSR), and n̄p =
vec (Np).

1) One-bit ADCs: After the one-bit ADCs, the quantized
signal can be expressed as

rp = { (yp) , (5)

where { (±) denotes the one-bit quantization operation, which
separately processes the real and imaginary parts of the
signal. Therefore, the output set of the one-bit ADCs is
1√
2
}⊗1⊗ 1j| . Using the Bussgang decomposition [11], [12],

rp can be represented by a linear signal component and an
uncorrelated quantization noise qp:

rp = Apyp + qp, (6)

where Ap is the linear operator obtained by minimizing the
power of the quantization error E

}√√qp√√2
(

:

Ap = RH
yprp

R−1
ypyp

, (7)

with Ryprp
denoting the cross-correlation matrix between the

received signal yp and the quantized signal rp, and Rypyp

representing the covariance matrix of yp. It is easy to show
that Rypyp

can be computed by

Rypyp
= Φ̄SD̃SRΦ̄

H
S + IMτp

, (8)

where D̃SR = (DSR ≥ IM ) and DSR is a diagonal matrix
whose elements are [DSR]kk = βSR,k for k = 1, . . . ,K.

For one-bit quantization, by invoking the results in [13,
Chapter 10] and applying the arcsine law [14], we have

Ryprp
=

2

π
Rypyp

diag Rypyp

[−1/2
, (9)

Rrprp
=

2

π
(arcsin (J) + jarcsin (K)) , (10)

where

J = diag Rypyp

[−1/2 � Rypyp

[
diag Rypyp

[−1/2
, (11)

K = diag Rypyp

[−1/2 C Rypyp

[
diag Rypyp

[−1/2
. (12)

Substituting (9) into (7), and after some simple mathematical
manipulations, we have

Ap =

√
2

π
diag Rypyp

[−1/2
. (13)

Since qp is uncorrelated with yp, we have

Rqpqp
= Rrprp

ApRypyp
AH

p . (14)

Substituting (10) into (14) yields

Rqpqp
=

2

π
(arcsin (J) + jarcsin (K))

2

π
(J+ jK) . (15)

2) LMMSE estimator: Based on the observation rp and the
training pilots ΦS, we use the LMMSE technique to estimate
GSR. Hence, the estimated channel ĝSR is given by

ĝSR = RḡSRrp
R−1

rprp
rp. (16)

As a result, the covariance matrix of the estimated channel
ĝSR is expressed as

RĝSRĝSR
= (17)

D̃SRΦ̃
H
S

)
Φ̃SD̃SRΦ̃

H
S +ApA

H
p +Rqpqp

(−1

Φ̃SD̃SR,

where Φ̃S = ApΦ̄S.

From (17), we can see that RĝSRĝSR
is a non-trivial function

of Φ̃S, which indicates that the quality of the channel estimates
depends on the specific choice of the pilot sequence. This
phenomenon is in sharp contrast to the unquantized systems
where any set of orthogonal pilot sequences gives the same
result.

In the following, we study the performance of two specific
pilot sequences to show how the pilot matrix affects the
channel estimation. Here, we choose τp = K, which is the
minimum possible length of the pilot sequence.

a) Identity Matrix. In this case, ΦS = KIK , and hence



we have

Rypyp
= KppD̃SR + IMK . (18)

Consequently,

Ap =

√
2

π

)
KppD̃SR + IMK

(−1/2

= Āp ≥ IM , (19)

Rqpqp
=

)
1

2

π

(
IMK , (20)

where Āp is a diagonal matrix with
]
Āp

{
kk

= αp,k =√
2
π

1
KppβSR,k+1 . Substituting (19) and (20) into (17), we obtain

RĝSRĝSR
= Q

(1)
SR ≥ IM , (21)

where Q
(1)
SR is a diagonal matrix with elements]

Q
(1)
SR

√
kk

= σ2
SR,k =

2

π

Kppβ
2
SR,k

KppβSR,k + 1
. (22)

b) Hadamard Matrix. In this case, every element of ΦS is
+1 or 1, and hence we have

Ap =

︷√√√√ 2

π

1

pp

K∑
n=1

βSR,k + 1

IMK , (23)

Rqpqp
→

)
1

2

π

(
IMK , (24)

where the approximation in (24) holds for low pp. Substituting
(23) and (24) into (17), we obtain

RĝSRĝSR
= Q

(2)
SR ≥ IM , (25)

where Q
(2)
SR is a diagonal matrix with entries]

Q
(2)
SR

√
kk

= κ2
SR,k =

Kᾱ2
pβ

2
SR,kpp

Kᾱ2
pβSR,kpp + ᾱ2

p + 1 2
π

, (26)

where

ᾱp =

︷√√√√ 2

π

1

pp

K∑
k=1

βSR,k + 1

. (27)

For both cases, the channels from the sources to the relay
gSR,k can be decomposed as

gSR,k = ĝSR,k + eSR,k, (28)

where eSR,k is the estimation error vector. The elements of
ĝSR,k and eSR,k are respectively distributed as NQ (0, σ2

SR,k)
and NQ (0, σ̃2

SR,k) when ΦSR is an identity matrix, while they

are distributed as NQ (0, κ2
SR,k) and NQ (0, κ̃2

SR,k) when ΦSR

is a Hadamard matrix, where σ̃2
SR,k = βSR,k σ2

SR,k and

κ̃2
SR,k = βSR,k κ2

SR,k. In what follows, we define ĜSR =
[ĝSR,1, . . . , ĝSR,K ] and ESR = [eSR,1, . . . , eSR,K ].

For the channel from the k-th source to the relay, the mean-
square error (MSE) is given by

MSESR,k = E
}√√̂gSR,k gSR,k√√2

(
. (29)

Based on the above results, we have MSESR,k = σ̃2
SR,k for

the identity matrix and MSESR,k = κ̃2
SR,k for the Hadamard

matrix. The following proposition compares the MSE of the
two approaches.

Proposition 1: For estimating the channel gSR,k, the iden-
tity matrix is preferable to the Hadamard matrix for user k if

βSR,k < 1
K

K∑
i=1

βSR,i, and vice versa.

Proof: The proof is straightforward since σ̃2
SR,k < κ̃2

SR,k

if βSR,k < 1
K

K∑
i=1

βSR,i.

Proposition 1 reveals that the scaled identity matrix is
beneficial for any user with higher path loss than the average.
This is because a weak user benefits from being the only one
transmitting at a given time, without the presence of stronger
users that dominate the behavior of the ADC. In the case of the
Hadamard matrix, all users are transmitting simultaneously,
resulting in an average quantization noise level for all users
jointly, which is advantageous for users with stronger channels.

The question of optimizing the pilot sequence for a given
performance metric is very interesting, but is beyond the scope
of the current paper. For simplicity, use identity matrix as the
training sequence. Therefore, the channels from the relay to
the destinations gRD,k can be decomposed as

gRD,k = ĝRD,k + eRD,k, (30)

where ĝRD,k and eRD,k are the estimated channel and esti-
mation error vectors. The elements of ĝRD,k and eRD,k are
distributed as NQ (0, σ2

RD,k) and NQ (0, σ̃2
RD,k), where σ2

RD,k =

2
π

Kppβ
2
RD,k

KppβRD,k+1 and σ̃2
RD,k = βRD,k σ2

RD,k. We also define

ĜRD = [ĝRD,1, . . . , ĝRD,K ] and ERD = [eRD,1, . . . , eRD,K ].

B. Data Transmission

1) Quantization with One-bit ADCs: With one-bit ADCs at
the receiver, the resulting quantized signals can be expressed
as

ỹR = { (yR) = AayR + qa, (31)

where Aa is the linear operator, which is uncorrelated with yR.
By adopting the same technique as in the previous subsection,
we have

Aa =

√
2

π
diag (RyRyR

)
−1/2

, (32)

Rqaqa
=

2

π
(arcsin (X) + jarcsin (Y))

2

π
(X+ jY) ,

(33)

where

X = diag (RyRyR
)
−1/2 � (RyRyR

) diag (RyRyR
)
−1/2

,

Y = diag (RyRyR
)
−1/2 C (RyRyR

) diag (RyRyR
)
−1/2

,

RyRyR
= pSGSRG

H
SR + IM .

2) Digital Linear Processing: We assume that the relay
adopts an AF protocol to process the quantized signals ỹR by
one-bit ADCs, yielding

xR = WỹR, (34)

where W = Ĝ∗RDĜ
H
SR for MRC/MRT beamforming.

3) Quantization with One-bit DACs: Assuming one-bit
DACs at the transmitter, the resulting quantized signals to be



transmitted by the relay can be expressed as

x̃R = { (xR) = AdxR + qd, (35)

where Ad is the linear operator, and qd is the quantization
noise at the relay’s transmit antennas, which is uncorrelated
with xR. Due to the one-bit DACs, we have E

}√√̃xR√√2
(

=
M . Therefore, the normalization factor γ (c.f. (2)) can be
expressed as

γ =

√
pR

M
. (36)

Following the same fashion as that of the ADCs derivations,
we obtain

Ad =

√
2

π
diag (RxRxR

)
−1/2

, (37)

Rqdqd
=

2

π
(arcsin (U) + jarcsin (V))

2

π
(U+ jV) ,

(38)

where

U = diag (RxRxR
)
−1/2 � (RxRxR

) diag (RxRxR
)
−1/2

,

V = diag (RxRxR
)
−1/2 C (RxRxR

) diag (RxRxR
)
−1/2

,

RxRxR
= WRỹRỹR

WH ,

RỹRỹR
= AaRyRyR

AH
a +Rqaqa

.

III. ACHIEVABLE RATE ANALYSIS

In this section, we investigate the achievable rate of the
considered system. In particular, we first provide an expression
for the exact achievable rate, which is applicable to arbitrary
system configurations. Then we use asymptotic arguments to
derive an approximate rate and provide some key insights.

A. Exact Achievable Rate Analysis

We consider the realistic case where the K destinations
do not have access to the instantaneous CSI, which is a
typical assumption in the massive MIMO literature since
the dissemination of instantaneous CSI leads to excessively
high computational and signaling costs for very large antenna
arrays. Hence, Dk uses only statistical CSI to decode the
desired signal. Combining (1), (2), (31), (34), (35), and (36)
yields the received signal at the k-th destination

yD,k = γ pSE
}
gT

RD,kAdWAagSR,k

(
xS,k︸ ︸︷

desired signal

+ ñD,k︸︸︷
effective noise

,

(39)

where where ñD,k =
γ pS gT

RD,kAdWAagSR,k E
}
gT

RD,kAdWAagSR,k

([
xS,k︸ ︸︷

estimation error

+ γ pS

[
i �=k

gT
RD,kAdWAagSR,ixS,i

︸ ︸︷
interpair interference

+ γgT
RD,kAdWAanR︸ ︸︷
noise at the relay

+ γgT
RD,kAdWqa︸ ︸︷

quantization noise of ADCs

+ γgT
RD,kqd︸ ︸︷

quantization noise of DACs

+ nD,k︸︸︷
noise at k-th destination

,

where nD,k is the k-th element of the noise vector nD. Noticing
that the “desired signal” and the “effective noise” in (39) are
uncorrelated, and capitalizing on the fact that the worst-case

uncorrelated additive noise is independent Gaussian, we
obtain the following achievable rate for the k-th destination:

Rk = (40)

τc 2τp

2τc

log2

)
1 +

Ak

Bk + Ck +Dk + Ek + Fk + 1
γ2

∑
,

where

Ak = pS√E
}
gT

RD,kAdWAagSR,k

(√2, (41)

Bk = pSVar gT
RD,kAdWAagSR,k

[
, (42)

Ck = pS

[
i �=k

E
}√gT

RD,kAdWAagSR,i√2
(
, (43)

Dk = E
}√√gT

RD,kAdWAa√√2
(
, (44)

Ek = E
}√gT

RD,kAdWRqaqa
WHAH

d g∗RD,k√
(
, (45)

Fk = E
}√gT

RD,kRqdqd
g∗RD,k√

(
. (46)

B. Asymptotic Simplifications

As can be observed, all the matrices Rqaqa
, Ad, and Rqdqd

involve arcsine functions, which do not give much insight
into how the rate changes with various parameters. Hence,
to facilitate the analysis, we focus on the asymptotic regime
for a large number of users, in which (8) can be approximated
by

RyRyR
→diag (RyRyR

)→
)
1 + pS

K[
k=1

βSR,k

∑
IM . (47)

Substituting (47) into (32) and (33), we have

Aa →
√

2

π

︷√√√√ 1

1 + pS

K∑
k=1

βSR,k

IM = αaIM , (48)

Rqaqa
→

)
1

2

π

(
IM . (49)

Similarly, asymptotically we have

RxRxR
→diag (RxRxR

)→α̂dIM , (50)

where

α̂d = M

)
α2

a + 1
2

π

( K[
k=1

σ2
SR,kσ

2
RD,k (51)

+Mα2
apS

K[
k=1

σ2
SR,kσ

2
RD,k

)
Mσ2

SR,k +

K[
i=1

βSR,i

∑
.

As a result, the matrices Ad and Rqdqd
can be respectively

approximated by

Ad →
√

2

πα̂d

IM = αdIM , (52)

Rqdqd
→

)
1

2

π

(
IM . (53)

C. Approximate Rate Analysis

In this section, we derive a simpler closed-form approxi-
mation for the achievable rate. Substituting (48), (49), (52),
and (53) into (40), the exact achievable rate Rk can be



approximated by

R̃k = (54)

τc 2τp

2τc

log2

)
1 +

Ãk

B̃k + C̃k + D̃k + Ẽk + F̃k + G̃k

∑
,

where

Ãk = pS√E
}
gT

RD,kWgSR,k

(√2, (55)

B̃k = pSVar gT
RD,kWgSR,k

[
, (56)

C̃k = pS

[
i �=k

E
}√gT

RD,kWgSR,i√2
(
, (57)

D̃k = E
}√√gT

RD,kW√√2( , (58)

Ẽk =

)
1

2

π

(
1

α2
a

E
}√√gT

RD,kW√√2( , (59)

F̃k =

)
1

2

π

(
1

α2
aα

2
d

E
}√√gRD,k√√2

(
, (60)

G̃k =
1

γ2α2
aα

2
d

. (61)

To this end, by invoking tools from random matrix theory,
we present a closed-form approximate rate for the k-th desti-
nation, as formalized in the following theorem.

Theorem 1: With one-bit ADCs and DACs at the relay, the
approximate achievable rate of the k-th destination is given by
(54), where

Ãk = pSM
4σ4

SR,kσ
4
RD,k, (62)

B̃k = pSM
2 Mσ4

SR,kσ
2
RD,kβRD,k + βSR,ktk

[
, (63)

C̃k = M2pS

[
i �=k

Mσ4
SR,iσ

2
RD,iβRD,k + βSR,itk

[
, (64)

D̃k = M2tk, (65)

Ẽk =
)π
2

1
()

1 + pS

K[
k=1

βSR,k

∑
M2tk, (66)

F̃k = βRD,k

)π
2

1
(
M3pS

K[
k=1

σ4
SR,kσ

2
RD,k (67)

+ βRD,k
M2π

2

)π
2

1
()

1 + pS

K[
k=1

βSR,k

∑
K[

k=1

σ2
SR,kσ

2
RD,k,

G̃k =
M3πpS

2pR

K[
k=1

σ4
SR,kσ

2
RD,k (68)

+
M2π2

4pR

)
1 + pS

K[
k=1

βSR,k

∑
K[

k=1

σ2
SR,kσ

2
RD,k,

with tk = Mσ4
RD,kσ

2
SR,k + βRD,k

K∑
n=1

σ2
SR,nσ

2
RD,n.

From Theorem 1, we can readily observe the impact of key
parameters on the achievable rate. For instance, R̃k decreases
with the number of user pairs K. This is expected since a
higher number of users increases the amount of inter-user
interference. In addition, R̃k is an increasing function of M ,
which reveals that increasing the number of relay’s antennas
always boosts up the system performance. As pS approaches
infinity, R̃k converges to a constant. In this case, the system
becomes interference-limited.

To quantify the impact of the double quantization on system
performance, we first present the achievable rate with perfect
ADCs and DACs in the following corollary:

Corollary 1: With perfect ADCs and DACs, the achievable
rate of the k-th destination can be expressed as

Rp
k =

τc 2τp

2τc

log2

)
1 +

Âk

B̂k + Ĉk + D̂k + α̃d

γ2

∑
, (69)

where

α̃d = M
K[

k=1

σ̂2
SR,kσ̂

2
RD,k (70)

+M
K[

k=1

σ̂2
SR,kσ̂

2
RD,kpS

)
Mσ̂2

SR,k +
K[
i=1

βSR,i

∑
,

with σ̂2
SR,k =

Kβ2
SR,kpp

KβSR,kpp+1 and σ̂2
RD,k =

Kβ2
RD,kpp

KβRD,kpp+1 ; Âk, B̂k,

Ĉk, D̂k can be obtained by replacing σ2
SR,k and σ2

RD,k with

σ̂2
SR,k and σ̂2

RD,k in Ãk, B̃k, C̃k, D̃k, respectively.
Armed with Corollary 1 and Theorem 1, we now compute

the rate ratio between the one-bit and perfect ADC/DAC cases
for the low signal-to-noise ratio (SNR) situation where massive
MIMO systems are likely to operate.

Proposition 2: With pS ∞ 0 and M ∞ ∈ , we have

R̃k

Rp
k

= 4/π2. (71)

Proposition 2 indicates that the rate of the double-quantized
system is 4/π2 times the rate of the system with perfect
ADCs/DACs, in the low SNR regime. Interestingly, this result
coincides with that reported for the single quantized system
[15], suggesting that in the low SNR regime, the performance
degradation due to double quantization is insignificant.

IV. NUMERICAL RESULTS

In this section, we present numerical results to validate
the derived analytical results and study the impact of coarse
quantization on the system performance.

Fig. 1 illustrates the MSE of each channel from the sources
to the relay versus the transmit power of each pilot symbol.
We set K = 4, and βSR = [0.6, 0.3, 0.1, 0.9]. For βSR,k =
}0.1, 0.3| which are less than the average large scale fading
value of 0.475, the identity matrix pilot outperforms the
Hadamard matrix, which is in agreement with Proposition 1. In
addition, observing the curves associated with the Hadamard
matrix, we can see that the approximate results nearly overlap
with the exact results in the low pp regime, indicating the
validity of our theoretical analysis. However, if pp increases,
the gap between the approximate and exact results grows.

Fig. 2 shows the sum rate versus the number of user pairs
K. For simplicity, unless otherwise specified, we set the large-
scale fading coefficients as βSR,k = βRD,k = 1. The curves
associated with “Exact numerical results” and “Approximate
numerical results” are respectively generated by Monte-Carlo
simulations according to (40) and (54) by averaging over 103

independent channel realizations, and the “Theoretical results”
curves are obtained based on Theorem 1. As can be seen,
there exists a gap between “Exact numerical results” (where
the matrices Rqaqa

and Rqdqd
are not diagonal, which means

that the quantization noise is correlated) and “Approximate
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Fig. 1. MSE versus pp for K = 4 and M = 128.

numerical results” (where the matrices Rqaqa
and Rqdqd

are
approximated by identity matrices) when the number of user
pairs is small, while the gap narrows and finally disappears
as K becomes large. The reason is that the correlation effect
is stronger with smaller K and weaker with larger K. In this
example, our approximate model is very accurate when the
number of user pairs is greater than 15, which is a reasonable
number for this size of array. In addition, we observe that
the “Approximate numerical results” curve overlaps with that
for the “Theoretical results”, which verifies our analytical
derivations in Theorem 1.
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Fig. 3 shows the transmit power pS of each source required
to maintain a given sum rate of 5 bit/s/Hz, and the rate ratio
in the low power regime. As can be seen, when the number
of relay antennas increases, the required pS is significantly
reduced. In addition, we observe that the rate ratio converges
to a nonzero limit 4/π2, which is consistent with Proposition
2. This property provides an efficient way to predict the sum
rate with one-bit quantization according to the known sum rate
of perfect ADC/DAC systems in low source transmit power
regimes.

V. CONCLUSIONS

We have analyzed the achievable rate of a multipair half-
duplex massive MIMO relaying system assuming that one-bit
ADCs and DACs are deployed at the relay. An approximate
closed-form expression for the achievable rate was derived,
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based on which the impact of key system parameters was
characterized. It was shown that the identity training scheme
provides better channel estimation performance for users with
weaker than average channels. Furthermore, we revealed that
the sum rate with one-bit ADCs and DACs is 4/π2 times that
achieved by an unquantized system in the low source power
regime.
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