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Abstract—This paper considers a multipair amplify-and-
forward massive MIMO relaying system with one-bit ADCs and
one-bit DACs at the relay. The channel state information is esti-
mated via pilot training, and then utilized by the relay to perform
simple maximum-ratio combining/maximum-ratio transmission
processing. Leveraging on the Bussgang decomposition, an ex-
act achievable rate is derived for the system with correlated
quantization noise. Based on this, a closed-form asymptotic
approximation for the achievable rate is presented, thereby
enabling eff cient evaluation of the impact of key parameters on
the system performance. Furthermore, power scaling laws are
characterized to study the potential energy eff ciency associated
with deploying massive one-bit antenna arrays at the relay. In
addition, a power allocation strategy is designed to compensate
for the rate degradation caused by the coarse quantization.
Our results suggest that the quality of the channel estimates
depends on the specif ¢ orthogonal pilot sequences that are used,
contrary to unquantized systems where any set of orthogonal
pilot sequences gives the same result. Moreover, the sum rate
gap between the double-quantized relay system and an ideal non-
quantized system is a moderate factor of 4/7> in the low power
regime.

Index Terms—Massive MIMO, relays, one-bit quantization,
power allocation

I. INTRODUCTION

Multipair multiple-input multiple-output (MIMO) relaying
networks have recently attracted considerable attention since
they can provide a cost-effective way of achieving perfor-
mance gains in wireless systems via coverage extension and
maintaining a uniform quality of service. In such a system,
multiple sources simultaneously exchange information with
multiple destinations via a shared multiple-antenna relay.
Hence, multi-user interference is the primary system bot-
tleneck. The deployment of massive antenna arrays at the
relay has been proposed to address this issue due to their
ability to suppress interference, provide large array and spatial
multiplexing gains, and in turn to yield large improvements in
spectral and energy eff ciency.
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There has recently been considerable research interest in
multipair massive MIMO relaying systems. For example, [1]
derived the ergodic rate of the system when maximum ratio
combining/maximum ratio transmission (MRC/MRT) beam-
forming is employed and showed that the energy eff ciency
gain scales with the number of relay antennas in Rayleigh
fading channels. Then, [2] extended the analysis to the Ricean
fading case and obtained similar power scaling behavior. For
full-duplex systems, [3], [4] analytically compared the perfor-
mance of MRC/MRT and zero-forcing reception/transmission
and characterized the impact of the number of user pairs on
the spectral eff ciency.

All the aforementioned works are based on the assumption
of perfect hardware. However, a large number of antennas at
the relay implies a very large deployment cost and signif cant
energy consumption if a separate RF chain is implemented
for each antenna in order to maintain full beamforming
fexibility. In particular, the fabrication cost, chip area and
power consumption of the analog-to-digital converters (ADCs)
and the digital-to-analog converters (DACs) grow roughly
exponentially with the number of quantization bits [5], [6]. The
cumulative cost and power required to implement a relay with
a very large array can be prohibitive, and thus it is desirable
to investigate the use of cheaper and more energy-eff cient
components, such as low-resolution (e.g., one bit) ADCs and
DACs. Fortunately, it has been shown in [7], [8] that large
arrays exhibit a certain resilience to RF hardware impairments
that could be caused by such low-cost components.

A. Related Work

Several recent contributions have investigated the impact of
low-resolution ADCs on the massive MIMO uplink [9]-[18].
For example, [11] optimized the training pilot length to max-
imize the spectral eff ciency, while [12] revealed that in terms
of overall energy eff ciency, the optimal level of quantization
is 4-5 bits. In [13], the Bussgang decomposition [19] was used
to reformulate the nonlinear quantization using a second-order
statistically equivalent linear operator, and to derive a linear
minimum mean-squared error (LMMSE) channel estimator
for one-bit ADCs. In [14], a near-optimal low complexity bit
allocation scheme was presented for millimeter wave channels
exhibiting sparsity. The work of [15] examined the impact of
one-bit ADCs on wideband channels with frequency-selective
fading, while [20], [21] investigated the impact of the large-
scale fading and showed the importance of power control in
quantized systems. Other work has focused on balancing the



spectral and energy eff ciency, either through the combined
use of hybrid architectures with a small number of RF chains
and low resolution ADCs, or using mixed ADCs architectures
with high and low resolution.

In contrast to the uplink case, there are relatively fewer
contributions that consider the massive MIMO downlink with
low-resolution DACs. In [22], it was shown that performance
approaching the unquantized case can be achieved using DACs
with only 3-4 bits of resolution. The nearly optimal quantized
Wiener precoder in terms of minimizing the mean-square error
(MSE) with low-resolution DACs was studied in [23], and the
resulting solution was shown to outperform the conventional
Wiener precoder with 4-6 bits of resolution at high signal-
to-noise ratio (SNR). For the case of one-bit DACs, [7], [24]
showed that even simple MRT precoding can achieve reason-
able results. In [25], an LMMSE precoder that exploits analog
and digital processing was proposed by taking the quantization
non-linearities into account, and different precoding schemes
were compared in terms of uncoded bit error rate.

B. Contributions

All these prior works are for single-hop systems rather than
dual-hop connections via a relay. Recently, [26] considered
a relay-based system that uses mixed-resolution ADCs at the
base station. Unlike [26], we consider a multipair amplify-
and-forward (AF) relaying system where the relay uses both
one-bit ADCs and one-bit DACs. Since the channel estimation
is very critical for the one-bit receivers, and many important
work such as [27], [28] for channel estimation are missed, we
take the channel training into account in the paper. The one-
bit ADCs cause errors in the channel estimation stage and
subsequently in the reception of the uplink data; then, after
a linear transformation, the one-bit DACs produce distortion
when the downlink signal is coarsely quantized. In this paper,
we present a detailed performance investigation of the achiev-
able rate of such doubly quantized systems. In particular, the
main contributions are summarized as follows:

o We investigate a multipair AF relaying system that em-
ploys one-bit ADCs and DACs at the relay and uses
MRC/MRT beamforming to process the signals. We take
the correlation of the quantization noise into account,
and present an exact achievable rate by using the arcsine
law. Then, we use asymptotic arguments to provide an
approximate closed-form expression for the achievable
rate. Numerical results demonstrate that the approximate
rate is accurate in typical massive MIMO scenarios, even
with only a moderate number of users.

o We show that the channel estimation accuracy of the
quantized system depends on the specif ¢ orthogonal pilot
matrix that is used, which is in contrast to unquantized
systems where any orthogonal pilot sequence yields the
same result. We consider the specif ¢ case of identity and
Hadamard pilot matrices, and we show that the identity
training scheme provides better channel estimation per-
formance for users with weaker than average channels,
while the Hadamard training sequence is better for users
with stronger channels.

o We compare the achievable rate of different ADC and
DAC conf gurations, and show that a system with one-
bit DACs and perfect ADCs outperforms a system with
one-bit ADCs and perfect DACs. Focusing on the low
transmit power regime, we show that the sum rate of the
relay system with one-bit ADCs and DACs is 4/7% times
that achievable with perfect ADCs and DACs. Also, it
is shown that the transmit power of each source or the
relay can be reduced inversely proportional to the number
of relay antennas, while maintaining a given quality-of-
service.

o We formulate a power allocation problem to allocate
power to each source and the relay, subject to a sum
power budget. Locally optimum solutions are obtained
by solving a sequence of geometric programming (GP)
problems. Our numerical results suggest that the power
allocation strategy can eff ciently compensate for the rate
degradation caused by the coarse quantization.

C. Paper Outline and Notations

The remainder of the paper is organized as follows. Section
II introduces the multipair AF relaying system model under
consideration. Section III presents an approximate closed-form
expression for the sum rate, and compares the rate achieved
with different ADC and DAC conf gurations. Section IV
formulates a power allocation problem to compensate for the
rate loss caused by the coarse quantization. Numerical results
are provided in Section V. Finally, Section VI summarizes the
key fndings.

Notation: We use bold upper case letters to denote matrices,
bold lower case letters to denote vectors and lower case letters
to denote scalars. The notation (-), (-)*, (:)¥, and (-)~!
respectively represent the conjugate transpose operator, the
conjugate operator, the transpose operator, and the matrix
inverse. The Euclidian norm is denoted by || - ||, the absolute
value by | - |, and [A],  represents the (m,n)-th entry of A.
Also, x ~ CN(0,X) denote a circularly symmetric complex
Gaussian random vector with zero mean and covariance matrix
3, while Ij is the identity matrix of size k. The symbol ®
is the Kronecker product, vec (A) represents a column vector
containing the stacked columns of matrix A, diag (B) denotes
a diagonal matrix formed by the diagonal elements of matrix
B, R(C) and S (C) stand for the real and imaginary part of
C, respectively. Finally, the statistical expectation operator is
represented by E{-}, the variance operator is Var(-), and the
trace is denoted by tr(-).

II. SYSTEM MODEL

Consider a multipair relaying system with one-bit quantiza-
tion, as shown in Fig. 1. There are K single-antenna user pairs,
denoted as S; and Dy, £ = 1,..., K, intending to exchange
information with each other with the assistance of a shared
relay. The relay is equipped with M receive antennas with
one-bit ADCs and M transmit antennas with one-bit DACs.
The one-bit ADCs cause errors in the channel estimation stage
and subsequently in the reception of the uplink data; then, after
a linear transformation, the one-bit DACs produce distortion



when the downlink signal is coarsely quantized. Thus, the
system we study is double quantized. We assume that direct
links between Sy and Dy do not exist due to large obstacles or
severe shadowing [29]. In addition, we further assume that the
relay operates in half-duplex mode, and hence it cannot receive
and transmit signals simultaneously. Accordingly, information
transmission from Sy, to Dy, is completed in two phases'. In the
frst phase, the K sources transmit independent data symbols
to the relay, and in the second phase the relay broadcasts the
double-quantized signals X to the destinations. The signals
at the relay’s receive antennas and at the destinations before
quantization are respectively given by

yr = GspPs'/?xs + ng (D
¥ = 7GgpXr + 1, )

where ~ is chosen to satisfy a total power constraint pg
at the relay, i.c., E{|[vXr||?} = pr, which will be speci-
fed shortly. The source symbols are represented by xs =
[s,1, .-, :csyK]T, whose elements are assumed to be Gaussian
distributed with zero mean and unit power. Pg is a diagonal
matrix that denotes the transmit power of the sources with
[Ps],,. = ps,k. The vectors ng and np represent additive white
Gaussian noise (AWGN) at the relay and destinations, whose
elements are both identically and independently distributed
(i.i.d.) CN(0, 1). Note that to keep the notation clean and with-
out loss of generality, we take the noise variance to be 1 here,
and also in the subsequent sections. With this convention, ps
and also the subsequent transmit powers can be interpreted as
the normalized SNR. The matrices Gsg = [gsr.1, - - - 8SR, K]
and Grp = [grD.1,---,8RrD, K| respectively represent the
uncorrelated Rayleigh fading channels from the K sources to
the relay with gsg 1 € CA (0, Bsr,xIas) and the channels from
the relay to the K destinations with grp 1 € CA (0, Brp,xInr).
The terms fsr ; and Prp,r model the large-scale path-loss,
which is assumed to be constant over many coherence intervals
and known a priori.

Relay

Fig. 1: Illustration of the multipair half-duplex relaying with
one-bit ADCs and DACs.

A. Channel Estimation

We assume training pilots are used to estimate the channel
matrices Ggsg and Ggp, as in other massive MIMO AF relay-
ing systems [30]. Therefore, during each coherence interval
of length 7, (in symbols), all sources simultaneously transmit
their mutually orthogonal pilot sequences ®g5 € C*X satis-
fying @/ ®g = 7,1 to the relay while the destinations remain

IThe whole communication consists of two stages, i.c., channel training
and data transmission stages. Both stages are split into two phases.

silent (K < 7, < 7./2). Afterwards, all destinations simul-
taneously transmit their mutually orthogonal pilot sequences
@, € C* K satisfying @ ®p = 7,1 to the relay while the
sources remain silent.

Since the channels Gsg and Ggp are estimated in the same
fashion, we focus only on the frst link Ggg. The received
training signal at the relay is given by

Yy = P Gse®s + Ny, )

where p, represents the transmit power of each pilot symbol,
and N, denotes the noise at the relay, which has i.i.d.
CN (0, 1) elements. After vectorizing the matrix Y,, we obtain

¥p = vee (Yp) = @sgsr + My, @
where (i’s = Py ® \/p_pIM, gsr = VecC (GSR), and n, =

vec (IN).

1) One-bit ADCs: After the one-bit ADCs, the quantized
signal can be expressed as

rp = Q (yp) ) ©)

where Q (-) denotes the one-bit quantization operation, which
separately processes the real and imaginary parts of the
signal. Therefore, the output set of the one-bit ADCs is
% {£1 £ 15}. Using the Bussgang decomposition [19], [31],
r, can be represented by a linear signal component and an
uncorrelated quantization noise qp:

T, = Ap}’p + dp, (6)

where A, is the linear operator obtained by minimizing the
power of the quantization noise E {||q|[*}, and expressed as

[8], [13]
2 . _
Ap = \/;dlag (Rypyp) v ) (7

where
Ry y, = ®sDsg @8 + Iy, )]

with Dgg = (Dsgr ® Is) and Dggr being a diagonal matrix
whose elements are [Dgg|,, = fsgx for b =1,..., K.

The covariance matrix of the quantization noise qp is given
by [8], [13]

2 2
Rq,q, = — (arcsin (J) + jarcsin (K)) — = (J + jK), (9)
s

™

where
J= dlag (RYPYP)il/Z §R (RYPYP) dlag (RYPYP)il/Z (10)
K= d]ag (RYPYP)_1/2 S (RYPYP) d]ag (Rypyp)_1/2 . (1 1)

2) LMMSE estimator: Based on the observation ry, and the
training pilots ®g, we use the LMMSE technique to estimate
Ggr. Hence, the estimated channel gsg is given by

gsr = Rggr, Ry 1 Ty

TpT'p

(12)



As a result, the covariance matrix of the estimated channel
gsr is expressed as
1
R RQSRPpRrPrPR

SSRESR ESRTp

(13)
— D@ (@SDSR@S + A AT ¢ quqp) &sDer,

where &g = A <I’S

Remark 1: From (13), we can see that Rggg, 1s @ non-
trivial function of ®g, which indicates that the quality of
the channel estimates depends on the specifc realization of
the pilot sequence, which is contrary to unquantized systems
where any set of orthogonal pilot sequences gives the same
result.

Remark 2: Although our conclusion in Remark 1 is ob-
tained based on the LMMSE estimator, it also holds for the
maximum likelihood estimator [32].

In the following, we study the performance of two specifc
pilot sequences to show how the pilot matrix affects the
channel estimation. Here, we choose 7, = K, which is the
minimum possible length of the pilot sequence.

a) Identity Matrix. In this case, s = vV K1k, and hence
we have

Ry,y, = KppDsg + Ink. (14)
Consequently,
2 -1/2
p KppDSR+IMK) =A, @Iy (15
ClpCIp (1 ) IIVIK7 (16)
where Ap is a diagonal matrix with [A,], =~ = apx

2 = KpszR g Substituting (15) and (16) into (13), we obtain

gSRgSR Qs ® IM; (17)
where Q(s}{) is a diagonal matrix with elements
[ (1)} g2 2 Kppﬁgk,k (18)
SR | ke SRE T KppBsrg + 17

b) Hadamard Matrix. In this case, every element of ®g is
+1 or —1, and hence we have

2 1
A, = T & vk (19)
Dp > Bsri + 1
n=1
2
Rg,q,= | 1— - Tyk. (20)
Substituting (19) and (20) into (13), we obtain
RgSRgSR = ng) ® I, (21)
where Q(sfz) is a diagonal matrix with entries
~2 32
[ (2)} B Kapfg kPp (22)
SElge T Ka2Bg app a2 +1— 27

s

where

. 2 1
Gp= | (23)

™
DPp Z ﬂSR,k +1
k=1

For both cases, the channels from the sources to the relay
gsr,k can be decomposed as

gsr,k = &SR,k T €Sk ks (24)

where esg,, is the estimation error vector which includes
the effect of the coarse quantization. The elements of gsg i
and egg ) are respectively distributed as CN (0,0§R7k) and
CN (0,68 ) when ®sp is an identity matrix, while they
are distributed as CA(0, k3 ;) and CN (0 Rk when Y
is a Hadamard matrix, where O'SR k= BSRk — O’SR . and
nSRk = Psrk — IiSRk In what follows we defne GSR =
[gSR,h oo BsR K and Egg = [esr 1, - - -5 €SR K-

Similarly, the channels from the relay to the destinations
grp,k can be decomposed as

grD.k = &rD,k + €RD. &, (25)

where grp 1 1s the estimated channel and erp, is the esti-
mation error vector which includes the effect of the coarse
quantization The elements of gRD , and egrp j, are distributed
as CN(0,03p ;) and CN(0, O'RD ) when ®gp is an identity
matrix, while they are CA(0, k2p, ) and CA(0, 725, ) when
®rp i1s a Hadamard matrix, wheré 7

o2 = 2 Embios (26)
RDE ™ KpyBrp,i + 1
2 Ké‘gﬁ%ukpp
K/RD,k = KAQ ~9 1 27 (2’7)
ap/BRD,kpp + O[p +1-— T
with
N 2 1
Gp = e (28)
Pp > Prog +1
k=1
and 51%1),1@ = 51§D7k - Ul%D,k’ Fﬁ%n,k Brp,i — "912<D,k~
We also defne GRD = [gRD,h RN gRD,K] and ERD =
[eRD,l, cee aeRD,K]~

For the channel from the k-th source to the relay, the MSE
is given by

MSEsr i = E {||&sr.x — gsr.k|[*} -

Based on the above results, we have MSEggr 1, = 5§R,k for
the identity matrix and MSEgg ;, = Fo%R’ .. for the Hadamard
matrix. The following proposition compares the MSE of the
two approaches.

(29)

Proposition 1: For estimating the channel gsr , the iden-
tity matrix is preferable to the Hadamard matrix for user k if
K

~ 3" Bsr,i» and vice versa.
=1

) . . . . ~2 ~2 .
Proof: The proof is trivial since g ;, < Rsg 5, if Ssrk <

ﬂSR Q- |

Bsr.i < 7

||Mx

1
K ;



Proposition 1 reveals that the accuracy of the individual
channel estimates depends on the particular choice of the
orthogonal training scheme, contrary to the ideal case without
quantization. This f nding agrees with the results in [13], [32].
More precisely, the scaled identity matrix is benef cial for any
user with higher path loss than the average. This is because
a weak user benefts from being the only one transmitting
at a given time, without the presence of stronger users that
dominate the behavior of the ADC. In the case of Hadamard
matrix, all users are transmitting simultaneously, resulting in
an average quantization noise level for all users jointly, which
is advantageous for users with stronger channels.

The question of optimizing the pilot sequence for a given
performance metric is an interesting one, but is beyond the
scope of the paper. For simplicity, we will assume the identity
matrix approach in which each user’s channel is estimated one
at a time.

B. Data Transmission

1) Quantization with One-bit ADCs: With one-bit ADCs at
the receiver, the resulting quantized signals can be expressed
as

yr = Q(Yr) = Aayr + Qa, (30)

where A, is the linear operator, which is chosen to make the
quantization noise g, uncorrelated with yr. By adopting the
same technique in the previous subsection, we have

9 _
A, = \/;diag (Rypye) /2

31
2
Rqaqa = -

(X+7Y),
™
(32)

2
= (arcsin (X) + jarcsin (Y))
™

where
. —1/2 : -
X = diag (Ry,y) Vg (Ryuye) diag (Ryye) Ve
. —1/2 : -
Y = diag (Ry,y,) Vg (Ryuye) diag (Ryye) i
RYRYR = GSRPSng + IM (33)

2) Digital Linear Processing: We assume that the relay
adopts an AF protocol to process the quantized signals by
one-bit ADCs yg, yielding

XR = WS’R? (34)

where W = G, GE: for MRC/MRT beamforming?.

3) Quantization with One-bit DACs: Assuming one-bit
DACs at the transmitter, the resulting quantized signals to be
sent by the relay’s transmit antennas can be expressed as 3

Xr = Q (xr) = AgXgr + g, (35)

where A4 is the linear operator, and qq is the quantization
noise at the relay’s transmit antennas, which is uncorrelated

2To keep the relay as simple as possible, here we use MRC/MRT to
guarantee low power consumption and very simple computation.

3Note that the explanation of how the actual system (considering, e.g., pulse
shaping flter) would work with one-bit DACs can be found in our previous
work [33], [34].

with xg. Due to the one-bit DACs, we have E {||xg|[*} = M.
Therefore, the normalization factor v (c.f. (2)) can be ex-

pressed as
_ [
gl M

Following in the same fashion as with the ADCs derivations,
we obtain [7]

2 _
Ag =/ Zdiag (R ) *
iy

2
Rqas = - (arcsin (U) + jarcsin (V))

(36)

(37)
2 .
- —(U+35V),
(38)
where
U = diag (R~ /” R (R ditg (Roy) /2
V = diag (Rucue) 7S (Rocea) diag (Roggoe) 2
Roxn = WRg, 5, W
Ry5: = AaRy,y Al + Rgyq,-

III. ACHIEVABLE RATE ANALYSIS

In this section, we investigate the achievable rate of the
considered system. In particular, we frst provide an expression
for the exact achievable rate, which is applicable to arbitrary
system conf gurations. Then we use asymptotic arguments to
derive an approximate rate to provide some key insights.

A. Exact Achievable Rate Analysis

We consider the realistic case where the K destinations
do not have access to the instantaneous CSI, which is a
typical assumption in the massive MIMO literature since
the dissemination of instantancous CSI leads to excessively
high computational and signaling costs for very large antenna
arrays. Hence, Dj uses only statistical CSI to decode the
desired signal. Combining (1), (2), (30), (34), and (35) yields
the received signal at the A-th destination

T ~
YD,k = Y/Ps,kE {gRD,kAd WAagSR,k} Tsk+  nNpk
—~—~
effective noise

desired signal

(39)
where where 7ip ,, =

Yv/Ds ik (8o rAdWALgsr & — E {8kp s AdWALEsR 1 | ) Ts.k

estimation error

+ Z VPs,i8kp k- AdWALESsR i Ts,i + V8ip 1 Ad WADR
iEk

noise at the relay

interpair interference

+ 8o AdWd  + V&Rp, + np,k
— N——

quantization noise of ADCs  quantization noise of DACs ~ noise at k-th destination
where np , is the k-th element of the noise vector np. Noticing
that the “desired signal” and the “effective noise” in (39) are
uncorrelated, and capitalizing on the fact that the worst-case
uncorrelated additive noise is independent Gaussian, we



obtain the following achievable rate for the k-th destination:
Ry = (40)
— A
Te =2 log, [ 1+ b |
27 Bk+0k+Dk+Ek+Fk+?

where

A = ps.k|E {8kp s AdWALgsr k| | (41)

By, = ps, i Var (ggn,kAdWAagSR,k) (42)

Cr = ZPS,z‘E {Igkp r AdWA gsr,i|* } (43)
i2k

Dy = E{||grp 1 AaWA,|*} (44)

Ey, = E{|gip s AdWRaa, W Afgin 1|} (49)

Fr,=E {|ggD,kRQdegED,k|} . (46)

B. Asymptotic Simplif cations

As we can see, the matrices Rgq,q,, Ad, and Rg,q, all
involve arcsine functions, which does not give much insight
into how the rate changes with various parameters. To facilitate
the analysis, we focus on the asymptotic regime for a large
number of users (/ > 1), in which (33) can be approximated
by

K
RYRYR ~ diag (RYRYR) ~ <1 + Zps,kBSR,k> IM- (47)
k=1

Substituting (47) into (31) and (32), we have

2 1
Aa ~ \/j e IM = OzaIM (48)
14 " ps,kOsr,k
k=1
2
Rgia, ® (1 - —) Lar. (49)
m
Similarly, asymptotically we have
RXRXR ~ dlag (RXRXR) ~ &dII\/[7 (50)
where
o\ XK
aa=M (a? +1- ;) > %k kORD,k (51)
k=1

K K

Ma? 2 105 M 2 BsR i

+ Moy OSR,kORD,k DS, kOSR 1 + ps,iBsr,i | -
k=1 i=1

Note that the justifcation of calculating the approximate
Rx.x; can be found in the frst part of Appendix A.

As aresult, the matrices Ag and Rq,q, can be approximated
by

2
W@d
2
quqd =~ (1 — ;) IM

Ay

Inr = agdns (52)

Q

(53)

C. Approximate Rate Analysis

In this section, we derive a simpler closed-form approxi-
mation for the achievable rate. Substituting (48), (49), (52),
and (53) into (40), the exact achievable rate Rj can be
approximated by

Ry = (54)

— A
e logy [ 1+ = = -k = = |

27 B+ Cy+ D+ E, + Fr, + Gy,

where

Ay, = ps x|E {gkp s Wesr.k } %, (55)
By = ps i Var (gkp s WEsr k) - (56)
Cr = ZPS,iE {lgko,s Wesri*} (57)
ik
Dy, = E{|lgrp s WII*} (58)
~ 2 1
Ey = <1 - —> —E {||ggD,kW||2} ) (59
T ) a2
o= (1-2) S5 {llgwl?} (60)
) aaj ' ’
~ 1
G = ———. 61)
agog

With this expression, we can compute R}, by using random
matrix theory and present a closed-form approximate rate for
the k-th destination, as formalized in the following theorem.

Theorem 1: With one-bit ADCs and DACs and MRC/MRT
beamforming at the relay, the approximate achievable rate of
the k-th destination is given by (54), where

/Ik = pS,kM4U§R,kUﬁD,ka (62)
By = psM? (Mogg 10p 1 Br0,k + Bsr klk) (63)
Cy = M? Zps,i (Mogg ;0w iBro.k + Bsr,itk) (64)
itk
Dy, = M?ty, (65)
R K
5 (T 2
Ly, = (2 1) <1 + ZPS,kﬁSR,k) M=ty (66)
k=1
- K
Fy = Bro,k (5 - 1) M? Zps,kagR,kUl%D,k (67)
k=1
M?*n /7 K K
+ Bro,k 5 (5 - 1) <1 + ZPS,kﬁSR,k) Zoék,ka%w
k=1 k=1
A M7 - 4 2
= DS, kOSR 1O 68
N ; S, kSR, kORD, k (68)
T (D SR D SN

K
- _ar4 2 2 9
with ¢, = Mogp .08g 1, + BrD,k 21 O3R,nORD,n-
n=

Proof: See Appendix A. |

From Theorem 1, we can more readily see the impact
of key parameters on the achievable rate. For instance, Ry



decreases with the number of user pairs K according to (63)-
(68). This is expected since a higher number of users increases
the amount of inter-user interference. In addition, R, is an
increasing function of M noticing that the SINR of (54) can
be expressed as b‘jﬁ:c, where a and b are independent of M,
which reveals that increasing the number of relay’s antennas
always boosts the system performance. As psj approaches
infnity, R; converges to a constant that is independent of
ps,k- In this case, the system becomes interference-limited.

To quantify the impact of the double quantization on system
performance, in the following corollaries we compare the
achievable rate with several different ADC and DAC conf gu-
rations.

Corollary 1: With perfect ADCs and one-bit DACs, and
using MRC/MRT beamforming, the achievable rate of the -
th destination can be approximated as (69) (shown on the top
of the next page), where

K
g =MD 62 .62 (70)
Qq = OSR,kORD,k
k=1
K K
M 62, .62 Mps 62 Bsr.i
+ OSR,kORD, k PskOspk + ) DsiBskii |
k=1 i=1
s K B3 1P . K BRp.uP ip
2 _ SR,k Pp 2 _ RD,kPp
With O5p . = KBt A9 kol = KBy 15 e B

Cr, Dy, can be obtained by replacing 03p  and ogp . with
&gR,k and &]%D,k in Ay, By, C, Dy, respectively.

Corollary 2: With perfect DACs and one-bit ADCs, and
using MRC/MRT beamforming, the achievable rate of the .-
th destination can be approximated as

RZDM]og2<1+~ — ~Ak = 2~>.
27 Bk+ck+Dk+Ek+;Gk
(71)
Corollary 3: With perfect ADCs and DACs, and using
MRC/MRT beamforming, the achievable rate of the k-th
destination can be approximated as

—2K A
T gy (14— ). (72)
27 B+ Cy + Di + 5%

Corollaries 1-3 together with Theorem 1 provide four cases
with different ADC/DAC conf gurations at the relay: 1) Case I:
perfect ADCs and DACs; 2) Case II: perfect ADCs and one-
bit DACs; 3) Case III: one-bit ADCs and perfect DACs; 4)
Case 1V: one-bit ADCs and DACs. The relative performance
of these four conf gurations is described below.

Proposition 2: As the number of relay antennas becomes
very large, we have

p PA pD >
R, > R, > R, > Ry.

R

(73)

Proof: See Appendix B. [ ]
Proposition 2 indicates that the rate of the system with
perfect ADCs and one-bit DACs is higher than that of one-bit
ADCs and perfect DACs system. This is because one-bit ADCs
cause both channel estimation errors and rate degradation,
while one-bit DACs only lead to a rate reduction. For what

follows, we defne the three rate ratios
PA  ppD 5
R, R, Ry

[61,02,03) = | =, s 25 (74)
Ry’ Ry R

We will compare these ratios for low SNR situations where
massive MIMO systems are likely to operate. Here, we con-
sider two cases: a) the transmit power of each source scales
as ps = Eg/M (where we defne ps = ps i fork =1,..., K)
with fxed Es, while p, and pr are fxed. This case focuses
on the potential power savings of the sources; b) the transmit
power of the relay scales as pg = Exr /M with fxed Eg, while
ps and p, are fxed. This case focuses on the potential power
savings of the relay.

Proposition 3: With ps = Es/M, and Es, p,, pr fxed, we
have

Te — 2K 2 9
— 1 1+ —-F
oy 082 ( + —ESOSR

C

Rk — (75)

T — 2K .
Ri — C? 10g2 (1 -+ ESO—%R,I@) N

C

(76)
as M — oo. In addition, if E5 — 0, the rate ratios are given
by

(61,82, 63) = [1,4/n% 4/x%] . (77)

Proposition 4: With pr = Fr /M, and Eg, Dp, ps fxed, we
have

_ —2K 2FR O 1OR
R Te log, | 1+ R - SR,kIRD, & (78)
27 S ok o2
SR,kPRD, k
k=1
T — 2K 6§R,k&ﬁD,k
Ri — CT 1Og2 1 -+ ERKi s (79)
¢ Z 54 52
= TSR ETRD

as M — oo. In addition, if Egx — 0, the rate ratios are given
by

[61,62,03) = [2/m,2/m, 4/7%] . (80)

From Propositions 3 and 4, we can see that the transmit
power of each source or the relay can be reduced proportional
to 1/M to maintain a constant rate, which means the system
with one-bit ADCs and DACs has the same power scaling
laws as the perfect hardware case, which is an encouraging
result. In addition, for both Propositions 3 and 4, 03 = 4/ 72,
revealing that for the double-quantized system, the rate ratio
is 4/7% times less than the perfect ADC/DAC case, for low
transmit power at the sources or low transmit power at the
relay. This result is the same as that in the system which is
only quantized once [35]. Interestingly, focusing on the values
of 41 and d2, we observe that the process to achieve the fnal
scaling of 4/ w2 is quite different. For low ps ;, case, the value
4/72 only results from d; = 4 /72, implying that the rate loss
is only caused by the one-bit ADCs. In contrast, for the low pr
case, the value 4/72 is generated by J; = 2/7 and 53 = 2/,
indicating that the rate degradation comes from both one-bit



Ay,

A 7. — 2K

Bk-i‘ék—f-Dk-l-(g—

. = | (69)
1) M Brp xéa + %)

ADCs and one-bit DACs.

IV. POWER ALLOCATION

In the quantized systems, a wide range of [ causes
signif cant rate degradation [20], [21]. To address this issue,
we formulate a power allocation problem maximizing the sum

rate of the system for a given total power budget Fr, i.e.,
K

> ps.k+pr < Pr.
k=1

A. Problem Formulation

Defning ps = [ps,1, .- - ,ps,K]T, the problem is expressed
as

L. 7. — 2K

P1 : maximize —— Z logy (1 + k) (81)
Ps,Pr
k=1
subject to 'yk:—’,kzl,...,K (82)
&k
> psi+pr < Pr (83)
i=1
ps > 0,pr > 0, (84)
where

K K
& =D psitki+ g (Z br,ips,i + Ck) +dp  (85)

i=1 i=1
Ck = OSR, nURD n (86)

AM2od (o USR kURD k ,LZ:I
™ 7T25RD k

dy, = ’ SR.nOR 87
g 2M‘7§R,k 4M2‘7§1R,k01%13 k Z Tsknfiomr - (87)

n=1
and ay,; and by, are respectively given by (88) and (89),
shown on the top of the next page.

Since log (+) is an increasing function, problem P; can be
reformulated as

K
P5 : minimize H (1+~v) " (90)
Ps,Pr el
subject to 7k<p§k k=1,....,K (91
k
K
> psitpr < Pr (92)
=1
ps = 0,p, >0, (93)

which can be identifed as a complementary geometric pro-
gram (CGP) [36]. Note that the equality constraints (82)
of P; have been replaced with inequality constraints (91).
Since the objective function of P- decreases with -y, we can
guarantee that the inequality constraints (91) must be active

at any optimal solution of Po, which means that problem Ps
is equivalent to P;.

B. Successive Approximation Algorithm

CGP problems are in general nonconvex. Fortunately, we
can frst approximate the CGP by solving a sequence of GP
problems. Then, each GP can be solved very eff ciently with
standard convex optimization tools such as CVX. The key idea
is to use a monomial function w7y, " to approximate 1 +
near an arbitrary point 4, > 0. To make the approximation
accurate, we need to ensure that

?+%%%k

o (%94)
prwrAl Tt =1

These results will hold if the parameters wy and fur; are chosen
as wy =9, " (14 4x) and py = 1+
GP is obtained by replacing the posyn0m1a1 objective functlon
with its best local monomial approximation near the solution
obtained at the previous iteration. The following algorithm
shows the steps to solving Po.

Algorithm 1 Successive approximation algorithm for Po

1) Initialization. Defne a tolerance ¢ and parameter 6. Set
7 =1, and set the initial value of 4, according to the signal-to-
interference—plus noise ratio (SINR) in Theorem 1 with pg ;, =
—T and p, = L 5.

2) Iteration j. Compute pr = T

GP problem Ps:

P53 : minimize 95
s : minimiz ﬂ7 (95)
subject to 074, < v < OAp, k=1,...,K  (96)

K
> psitpe < Pr (98)

=1
ps > 0,p, > 0. (99)

Denote the optimal solutions by fy,(fj ), fork=1,..., K.
3) Stopping criterion. If maxy, |fy(j)
go to step 4).

4) Update initial values. Set 7y, =

step 2).

—Ak| < €, stop; otherwise,

fy,(cj), and j = j+ 1. Go to

We have neglected wjy in the objective function of Pj
since they are constants at each iteration and do not affect
the problem solution. Also, some trust region constraints are
added, i.e., 0714, < v, < 04, which limits how much the
variables are allowed to differ from the current guess ;. The
parameter 6 > 1 controls the desired accuracy. More precisely,
when 6 is close to 1, it provides good accuracy for the
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monomial approximation but with slower convergence speed,
and vice versa if 6 is large. As discussed in [37], 8 = 1.1 offers
a good tradeoff between accuracy and convergence speed.

V. NUMERICAL RESULTS

In this section, we present numerical results to validate
previous analytical results and demonstrate the benef ts of the
power allocation algorithm.

A. Impact of the input pilot matrix

In this section, we evaluate the channel estimation accuracy
of the identity and Hadamard pilot matrices. We choose
K 4, and the large scale fading coeffcients [Ssg =
[0.6,0.3,0.1,0.9].

Fig. 2 illustrates the MSE of each channel from the sources
to the relay versus the transmit power of each pilot symbol.
The curves associated with “Identity matrix” and “Hadamard
matrix” are respectively obtained based on ¢Z; and #Z;. For
Bsr.r = {0.1,0.3} which are less than the average large scale
fading value of 0.475, the identity matrix pilot outperforms
the Hadamard matrix, in agreement with Proposition 1.

—©— Identity matrix
— * — Hadamard matrix

MSE (dB)

-15
-20

-15

Fig. 2: MSE versus p, for K =4 and M = 128.

B. Validation of analytical results

In this section, we validate the theoretical derivations. For
simplicity, we set the large-scale fading coeff cients as Ssg r, =

Brp,kx = 1 and adopt an equal power allocation strategy, i.e.,
Ps,k = Ps-

Fig. 3 shows the sum rate versus the number of user pairs
K. The curves associated with “Exact numerical results” and
“Approximate numerical results” are respectively generated
by Monte-Carlo simulations according to (40) and (54) by
averaging over 10? independent channel realizations, and the
“Theoretical results” curves are obtained based on Theorem 1.
As can be seen, there exists a gap between “Exact numerical
results” (where the matrices Rq,q, and Rq,q, are not diagonal,
which means that the quantization noise is correlated) and
“Approximate numerical results” (where the matrices Rq,q,
and R ,q, are approximated by identity matrices) when the
number of user pairs is small, while the gap narrows and
fnally disappears as K becomes large. The reason is that
the correlation effect is stronger with smaller K and weaker
with larger K. In this example, our approximate model is very
accurate when the number of user pairs is greater than 15. In
addition, we observe that the “Approximate numerical results”
curve overlaps with that for the “Theoretical results”, which
verif es our analytical derivations in Theorem 1.

Sum rate (bit/s/Hz)

—#— Exact numerical results
O Approximate numerical results

— — Theoretical results

é 1‘0 15 20 25
Number of user pairs K

Fig. 3: Sum rate versus the the number of user pairs K for
ps = 10 dB, pr = 10 dB, and p, = 10 dB.

Fig. 4 shows the sum rate versus the number of relay
antennas. From Fig. 4(a), we can see that when K = 10,
the gap between the exact and approximate numerical results
increases with the number of relay antennas. This suggests that
for large antenna arrays, the correlation of the quantization
noise becomes important and cannot be neglected. However,



we are interested in the typical massive MIMO setup where the
ratio between the number of relay antennas and the users is on
the order of about M/K = 10, and thus we plot Fig. 4(b). In
this f gure, we can see the gap slightly narrows (from 0.2791
bit/s/Hz at M = 80 to 0.2505 bit/s/Hz at M = 200) as the
number of relay antennas increases, which indicates that our
approximate model is accurate for massive MIMO scenarios.

Sum rate (bit/s/Hz)

—#— Exact numerical results
1r O Approximate numerical results
— - — Theoretical results

20 40 60 80 100 120 140 160 180 200
Number of relay antennas M

(a) K = 10

Sum rate (bit/s/Hz)

—*— Exact numerical results
O  Approximate numerical results
— - — Theoretical results

20 40 60 80 100 120 140 160 180 200
Number of relay antennas M

(b) K = M/10

Fig. 4: Sum rate versus the number of relay antennas M for
ps = 10 dB, pr = 10 dB, and p, = 10 dB.

Fig. 5(a) shows the transmit power ps of each source
required to maintain a given sum rate of 5 bit/s/Hz. We can see
that when the number of relay antennas increases, the required
ps is signif cantly reduced. Furthermore, if the number of relay
antennas is very large, the required pg is irrelevant to the
resolution of the DACs. In other words, the sources transmit
the same power in Case I and Case 11, and pay the same power
in Case III and Case IV. Fig. 5(b) plots the three rate ratios
versus the number of relay antennas when Ejg is very low. We
observe that the three rate ratio curves converge to two nonzero
limits 1 and 4/72, which is consistent with Proposition 3. This
property provides an effcient way to predict the sum rate
with one-bit quantization according to the known sum rate
of perfect ADC and/or DAC systems in low source transmit
power regimes and with large-scale relay antennas.

Fig. 6(a) shows the transmit power pr of the relay required
to maintain a given sum rate of 5 bit/s/Hz. As in the previous
case, the required power is substantially reduced when the
number of relay antennas grows, which indicates the great
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(b) Rate ratio: ps = Es/M with Es = —20 dB

Fig. 5: Required ps and rate ratio versus the number of relay
antennas M for K =5, p, = 10 dB, and pr = 10 dB.

benef'ts of employing large antenna arrays. In addition, when
pr is very small, e.g., pr = —10 dB, the four curves
show quite different results. The required number of relay
antennas with one-bit ADCs and DACs is M = 512, which is
approximately 2.5 times more than the case with perfect ADCs
and DACs which requires M = 208 antennas. For Case II
and Case 111, the required number of relay antennas is almost
the same, respectively M = 314 and M = 345. Fig. 6(b)
compares the three rate ratios when FEy is very low. We can
see that the three rate ratio curves converge to three nonzero
limits 2/, 2/7, and 4/72, which agrees with Proposition 4.

C. Power allocation

Fig. 7 illustrates the impact of the optimal power allocation
scheme on the sum rate when all users experience different
large-scale fading. The large-scale fading coeff cients are ar-
bitrarily generated by Ssg.x = zk (rsr.x/70)" and Brpr =
2k (TRD,k/T0)", Where zj is a log-normal random variable
with standard deviation 8 dB, rsg; and 7grpj respectively
represent the distances from the sources and destinations to
the relay, x = 3.8 is the path loss exponent, and ry denotes
the guard interval which specif es the nearest distance between
the users and the relay. The relay is located at the center of
a cell with a radius of 1000 meters and r; = 100 meters.
We choose fSsg = [0.2688,0.0368,0.00025,0.1398,0.0047],
and Srp = [0.0003,0.00025,0.0050,0.0794,0.0001]. As a
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(b) Rate ratio: pr = Er/M with Er = —20 dB

Fig. 6: Required pr and rate ratio versus the number of relay
antennas M for K =5, p, = 10 dB, and ps = 10 dB.

benchmark scheme for comparison, we also plot the sum rate
with uniform power allocation, i.e., ps = 2% and pr = %. For
uniform power allocation, we can see that the rate of Case I is
the highest, Case IV is the lowest, while Case II outperforms
Case III. These results are in agreement with Proposition 2. In
addition, we observe that the optimal power allocation strategy
signif cantly boosts the sum rate. By focusing on M = 200,
we can see that the optimal power allocation strategy brings
a 31% improvement for perfect ADCs and DACs scenario,
while a 43% increase for one-bit ADCs and DACs scenario.
This demonstrates the great importance of power allocation in
quantized systems.

VI. CONCLUSIONS

We have analyzed the achievable rate of a multipair half-
duplex massive antenna relaying system assuming that one-bit
ADCs and DACs are deployed and MRC/MRT beamforming is
used at the relay. An approximate closed-form expression for
the achievable rate was derived, based on which the impact
of key system parameters was characterized. It was shown
that the sum rate with one-bit ADCs and DACs is 4/7 times
less than that achieved by an unquantized system in the low
power regime. Despite the rate loss due to the use of one-
bit ADCs and DACs, employing massive antenna arrays still
enables signifcant power savings; i.e., the transmit power
of each source or the relay can be reduced proportional to

11

25

Sum rate (bit/s/Hz)

/| = * — Optimal power allocation: Perfect ADCs and DACs
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Fig. 7: Sum rate versus the number of relay antennas M for
K =5, p, =10 dB, and Pr = 10 dB.

1/M to maintain a constant rate, as in the unquantized case.
Finally, we show that a good power allocation strategy can
substantially compensate for the rate loss caused by the coarse
quantization.

APPENDIX A
JUSTIFICATION OF THEOREM 1

The end-to-end SINR given in (54) consists of six expec-
tation terms: 1) desired signal /Ik; 2) estimation error Bk;
3) interpair interference C’k; 4) noise at the relay Dk; 5)
quantization noise of ADCs Ej; 6) quantization noise of DACs
F},. Besides, we also need to calculate an approximation of
Ryx.xz- We compute them one by one as follows.

1) Approximate R,x,:

Ryixy =E { e EDG&RyRyR GSRGED}

~ Ong { G;D Gg{GSRPS G&GSRGED }

(100)

+ (ag . %) B { Gip GGG
By using the fact that E {||gsg x||*} = M (M + 1) 58 ;.. we
have
E{ Gip Gl GsnPsGL Gsn Gl | (101)
— £ { Gin Gl GsePs Gl Gor Gl |
+E {GEDGﬁESRPSEﬁGSRGRTD}

K K
2 9 2
— MZUSR,kURD,k Mps ko5 1 + Zps,iﬁsk,i I
k=1

i=1
K
E {G;;DGgGSRG{D} =M o%otplu.  (102)
k=1
Then, by substituting (101) and (102) into (100), we directly
obtain

K
2
Ryyny ~ M (ag +1— ;) I;agRykaﬁDykIM (103)

K K
2 2 2 2
+ Moy Z OSR,kORD,k <MpS,kUSR,k + E ps,zﬂsR,z) Ins.



2) Ay: Since

E{gkp r Wgsr,x} =E {ggD,kgED,kgg{,kgSR,k} (104)
= M2U§R,ko—l%D,ka
we have
Ay, = ps M o kORp k- (105)
3) By:
E {|ggD,kG§DnggSR,k|2} = (106)

K K
T A % ~H H A AT *
E E E 8RrD,kERD, mESR,m SSR, kB3R, kESR,nERD,n8RD, % ( -

m=1n=1

which can be decomposed into three different cases:

a)form=n==Fk,
E {|ggD,kG§DG§{<gSR,k|2}
= E{|/8sr.x/[*l|8rox |}
+E {||QSR,k||4|ggD,ke§D,k|2}
+E{||§RD,k||4|§gz,keSR,k|2}
+E {|ggi,keSR,k|2|ggD,ke]§D,k|2}
=M (M + 1)2 UéR,kUI%D,k
+ M?* (M +1) UgR,kUl%D,k&l%D,k
+ M?* (M +1) UﬁD,kagR,k&gR,k

2.2 =2 2 =2
+ M70%R 1,0SR kORD,kORD, k-

(107)

b) for m =n # k,
E {|ggD,kGEDG§{{gSR,k|2}

2 2 2
= M*Bsr xR0,k E TSR, nORD,n-
n#k

(108)

¢c) for m # n # k,

E { g« Gio Glhgsn sl } = 0. (109)

Combining a), b), and c), and by utilizing the fact of 02 , +
G3p = Osr .k and ogp, . + G . = Brok, We have

T Aok AVH 2
E{|gRD,kGRDGSRgSR,k| }
_ 44 4 3 4 2
= ps,kM"0gg Orp i + Ps,EM°OsR 1ORD, kORDk

3.4 2
+ ps,k M ogp 1OSR & OSR K

(110)

K
2 2 2
+ ps, M= Bsr 1 BrD, k E OSR, nORD,n-

n=1

Thus,

By, = ps e M® (ng,kU%D,kﬂRD,k + O—I%D,ko—gk,kBSR,k) (111)

K
2 2 2
+ ps, i M= Bsr,kBRD, k E TSR nORD,n-

n=1

12
4) Cy:
E {|ggD,kGl§DG§{(gSR,i|2} =

K K
T Ak ~H H & ~T *
E E E 8RD,kERD,m ESR,m SSR.i8sR,i8SR,nERD,n8RD,k (

m=1n=1

(112)

which can be decomposed as six cases:
a) for m #n # k, 1,

E {'ggD,kGEDGg{gSRJF} =0.

b) for m =n # k, i,

(113)

E Z |§gz,ngSR,i|2|ggD,k§I§D,n|2 (114)

n#k,i
= M?Bs ik Z 3R nTRD -
n#i,k
c) form =n ==k (k # 1),

E {8k resr.il*18ro 1 &hp.kl” } (115)

= M?03 1.0rp 1Bsr,i (M + 1) 0p 1, + Grp.k) -
d) form=n=1 (i £ k),
E {|grp, 8o, |’ |85k, i&sr.il* } (116)
= MQJ%R,iJl%D,iﬂRD,k ((M +1) UgR,i + 5§R,i) .
e) form=i,n==Fk E {|g§D7kG§DnggSR’Z—|2} =0.

f) form=k,n=14,E {|gi{D’kG’]§DG’§{(gSR7i|2} =0.
Combining a), b), ¢), d), e), and f), we have

K
= 2 2 2
Cpr=M E s,iBsR,i BrD, k E TSR nORD,n
ik
3 2 4 4 2
+ M E Ds,i (USR,kURD,kﬂsR,i + USR,zURD,zﬂRD,k) .
ik

(117)

n=1

5) Dy.: Following the same approach as with the derivations
of By, we obtain

K
Dy, = M*0% y0tp i + M*Brok D 0%k nOapa-  (118)
n=1
6) Ey: By using the fact that E, =
obtain the result for Ej.
7) By By, = ;;—EE{HgRuHP} = (1-2) M
8) ék:~Combining (36), (48), and (52), we can fnd the
value of Gy.

(1-2) &Ds we

APPENDIX B
PROOF OF PROPOSITION 2

We can readily observe that RQD > Ry, and R} > RQA.
Thus, we only focus on comparing R?* and R?”. Due to the

fact that 63y, = S0dg ; and 67y, . = Soqp . (c.f. (18), (26),

and Corollary 1), and by neglecting the low order terms as
M — oo, the ratio between the SINR of RQA and that of RZD



can be expressed as

27 pA
Qchszk —1
2, (119)
o er e _q f1

where

2
fi= R

2
4 4 2
;PS,kUSR,kURD,kﬁRD,k + ;ps,kO—RD,kUSR,kﬂSR,k (120)

2
2 4 4 2
+ ; Zps,i (USRJQO-RD,]’WBSRai + O-SR,’L'O-RD;LBRD,k)
i£k

9 K
2 4 4 2
+ OSR kORD,k T (1 - ;) BRD, k E DS,iOSR iORD,i

i=1

| X
4 2
+ — ) DPS,i0Osr iORD,i
PR —

4 2 4 2
f2 = DS kOSR kORD kORD.k + DS kORD kSR kISR k (121)

2 4 4 2
+ ZPSJ (08r xORD £ OsR,i + TSR iTRD, i ORD,k )

ik
- K
2 4
+ (5 — 1) 1+ Zps,kﬁsmk OSR,kORD, k
k=1
1K
4 2
+— ZPS,iUSR,iURD,i'
PRG

Since f; < f2, we conclude that RZA > RZD.
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