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Abstract—We consider a multipair half-duplex relay commu-
nication network, where the relay is deployed with one-bit ADCs
and one-bit DACs. To suppress the interpair interference and
quantization artifacts, we propose nonlinear precoding schemes
to forward the quantized signals at the relay. We first present
a technique based on gradient projection, and then show how
to refine the solution using successive decoding and perturbation
methods. For the single-user case with BPSK symbols, we obtain
a closed-form solution for the optimal transmit vector. Numerical
results verify that the proposed precoding design significantly
outperforms quantized linear precoding strategies.

I. INTRODUCTION

Multipair massive multiple-input multiple-output (MIMO)
relays can greatly improve communication system perfor-
mance and expand the coverage of wireless networks [1], [2],
since massive antennas at the relay are capable of reaping large
array and spatial multiplexing gains. Such enhancement comes
at the cost of increased power consumption and hardware
complexity. One promising approach to address this issue
is to deploy one-bit ADCs and one-bit DACs at the relay,
since this substantially reduces the required complexity and
power usage. Furthermore, one-bit quantization eliminates the
need for highly linear and energy inefficient power amplifiers,
automatic gain controls, and can simplify the baseband digital
signal processing and reduce on-chip data transfers. These
savings come of course at the cost of significant quantization
noise that must be accounted for.

Most previous work has adopted linear beamforming
schemes for multipair massive MIMO relaying systems [3],
[4], such as the maximum ratio conbiming/maximum ratio
transmission (MRC/MRT), and zero-forcing reception/zero-
forcing transmission (ZFR/ZFT), since such schemes can be
implemented with low computational complexity and still pro-
vide good performance. However, when the system employs
low-resolution ADCs/DACs, simply quantizing the output of
the linear approaches is likely insufficient to mitigate the inter-
user interference [5], [6]. Thus, it is desirable to investigate
the use of nonlinear precoding techniques in multipair relaying
networks.
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Some recent contributions have studied the nonlinear pre-
coding problem for massive MIMO systems with one-bit
quantization. For example, [7] formulates a problem that max-
imizes the product of the distances to the decision thresholds
via the gradient projection algorithm, while [8] focuses on
the minimum distance to the decision threshold and then
optimizes it using the branch-and-bound method. The work in
[9] presents two nonlinear one-bit precoding algorithms based
on biconvex relaxation to minimize the mean-square error at
the receiver. Other techniques based on coding theory and
vector perturbation are provided in [10] and [11]. However,
with the exception of [6], all of the work cited above focuses
only on the massive MIMO downlink, and not on the one-bit
multipair relay problem, where the data to be relayed has been
quantized. In this paper we present several nonlinear precod-
ing methods for amplify-and-forward (AF) multipair massive
MIMO relays, based on the objective of minimizing the bit-
error rate (BER) at the single antenna receivers. For the special
case of a single user, we analytically solve the optimization
problem and provide a closed-form optimal solution.

The remainder of the paper is organized as follows. Section
II introduces the considered multipair AF relaying system.
Section III formulates the optimization problem to design the
transmit vector at the relay, and presents several algorithms
for solving the problem. Numerical results illustrating the
algorithms’ performance are provided in Section IV.

Notation: We use bold upper case letters to denote matrices,
bold lower case letters to denote vectors and lower case letters
to denote scalars. The notation (·)H , (·)∗, (·)T , and (·)−1

respectively represents the conjugate transpose, the conjugate,
the transpose, and the matrix inverse. We let x ∼ CN (0,Σ)
denote a circularly symmetric complex Gaussian random vec-
tor with zero mean and covariance matrix Σ, while Ik is the
identity matrix of size k. Finally, we define [·]ℜ = ℜ (·) and
[·]ℑ = ℑ (·) as the real and imaginary parts.

II. SYSTEM MODEL

Consider a multipair relaying system, where K single-
antenna sources simultaneously transmit information to K
single-antenna destinations via a shared relay, as shown in
Fig. 1. The relay is equipped with M antennas with one-
bit ADCs on receive and one-bit DACs for transmit. We
assume that direct links between the sources and destinations
do not exist. In addition, we assume that the relay operates
in half-duplex mode; hence it cannot receive and transmit
signals simultaneously. Accordingly, the whole information
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transmission is completed in two phases. In the first phase,
the K sources transmit signals to the relay, and the M × 1
received vector at the relay after one-bit quantization is

yR = Q (
√
pSGSRs+ nR) , (1)

where Q (·) denotes the one-bit quantization operation, which
separately processes the real and imaginary parts of the signal.
Therefore, the elements of yR lie in the set 1√

2
{±1± 1j}.

The matrix GSR = [gSR,1, . . . ,gSR,K ]∈ C
M×K represents the

channel coefficients from the K sources to the relay with
gSR,k ∈ CN (0, βSR,kIM ), where βSR,k models the path-loss
and shadow fading which is assumed to be constant over
many coherence intervals and known a priori, s denotes the
transmitted signal vector from the K sources, pS is the transmit
power of the sources, and nR is additive white Gaussian noise
(AWGN) at the relay, whose elements are identically and
independently distributed (i.i.d.) CN (0, 1).

Rf

Fig. 1: Illustration of the multipair relaying system with
one-bit ADCs and DACs

The relay adopts a general nonlinear precoding technique
to process the signals, where the function f (yR) maps yR to
xR. Due to the use of one-bit DACs, the elements of xR also
lie in the set 1√

2
{±1± 1j}. In the second phase, the relay

forwards the signal xR to the K destinations. As a result, the
K × 1 received vector at the destinations is given by

yd =
pR

M
GT

RDxR + nd, (2)

where the matrix GRD = [gRD,1, . . . ,gRD,K ]∈ C
M×K repre-

sents the channel coefficients from the relay to the K desti-
nations with gRD,k ∈ CN (0, βRD,kIM ), xR∈ C

M×1 denotes
the transmitted signal from the relay, where βRD,k models the
path-loss and shadow fading which, like βSR,k, is assumed to
be constant over many coherence intervals and known a priori,
pR is the transmit power of the relay, and nd is AWGN at the
destination, whose elements are i.i.d. CN (0, 1). Afterwards,
the signal yd is decoded as d by applying the hard-decision
rule d =

√
1/2sign (yd) applied elementwise and separately

for the real and imaginary parts.

III. NONLINEAR PRECODING DESIGN

Given yR and xR, the probability of correct decoding at the
K receivers can be expressed as

P (d = s|yR,xR)
(a)
=

∏
v∈V

P (s = v|yR) · P (d = v|xR) (3)

=
∏
v∈V

P (s = v)

P (yR)
P (yR|s = v) · P (d = v|xR) (4)

where in (a) we used the fact that s is independent of xR and
d is independent of yR, and the vector v ∈ V is determined
by the adopted modulation technique. For instance, the set V

consists of 4K possible vectors for QPSK signaling, while it
contains 2K vectors for BPSK. The probabilities P (yR|s = v)
and P (d = v|xR) are respectively given by

P (yR|s = v) =
[

c∈{�,�}

M[
i=1

Φ
)√

2pSy
c
R,i [gSR,iv]

c
(

P (d = v|xR) =
[

c∈{�,�}

K[
j=1

Φ

)
2pR

M
vcj

]
gT

RD,jxR
(c{

,

where Φ (z) = 1√
2π

∑z

−∞ e−u2/2du, yR,i denotes the i-th
element of yR, and vj is the j-th element of v.

Our goal is to design the transmit signals xR to maximize
the probability P (d = s|yR,xR). Since P (s = v) and P (yR)
are fixed, the optimization problem can be formulated as

P1 : maximize
xR

∏
v∈V

[
c∈{�,�}

M[
i=1

Φ
)√

2pSy
c
R,i [gSR,iv]

c
(
(5)

·
[

c∈{�,�}

K[
j=1

Φ

)
2pR

M
vcj

]
gT

RD,jxR
(c{

subject to xR ∈ 1√
2
{±1± 1j} . (6)

Problem P1 is not convex since the constraint xR ∈
1√
2
{±1± 1j} is non-convex.

A. Gradient projection algorithm

Solving P1 is prohibitively expensive, since: 1) the objective
function is a sum of numerous terms (for example, the number
of terms is 4K for QPSK signals), and 2) a direct solution
would require a search over 4M possible vectors xR. To
address these issues, we first narrow down the set V to v = ŝ,
where ŝ is the estimated signal at the relay, obtained in this
case using coherent detection ŝ = Q (FyR), where F is the
standard MRC receiver F = GH

SR. Then, we relax the QPSK
constraint on xR to |x�R,i| ≤ 1√

2
and |x�R,i| ≤ 1√

2
to further

reduce the complexity, where xR,i is the i-the element of xR.
The relaxed optimization problem reads as

P2 : maximize
xR

[
c∈{�,�}

K[
j=1

Φ

)
2pR

M
ŝcj

]
gT

RD,jxR
(c{

(7)

subject to |x�R,i| ≤
1√
2
, |x�R,i| ≤

1√
2
, (8)

where ŝj is the j-th element of ŝ.
We further reformulate the problem by taking the logarithm

of (7) and decomposing it into real and imaginary parts:

P3 : maximize
x̃R

K∏
j=1

log

)
Φ

)
2pR

M
ŝ�j a

T
j x̃R

{{
(9)

+

K∏
j=1

log

)
Φ

)
2pR

M
ŝ�j b

T
j x̃R

{{

subject to |x̃R,i| ≤ 1√
2
, (10)
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where x̃R,i is the i-th element of x̃R, and

aj =
]
g�RD,j

[T
,− g�RD,j

[T√T
(11)

bj =
]
g�RD,j

[T
, g�RD,j

[T√T
(12)

x̃R =
]
x�R

[T
, x�R

[T√T
. (13)

Problem P3 is convex (detailed proof is omitted here). Thus,
we resort to the gradient projection algorithm to perform the
maximization. Before proceeding, we first need to compute
the first derivative of (9) with respect to x̃R, which is

d =

K∏
j=1

(d1,j + d2,j) , (14)

where

dn,j =

√
2pR
M qn,j exp

)
−
)√

2pR
M qT

n,j x̃R

(2

/2

{

√
2πΦ

)√
2pR
M qT

n,j x̃R

( , (15)

with n ∈ {1, 2}, q1,j = ŝ�j aj , and q2,j = ŝ�j bj . When the
number of relay antennas is very large or pR is very high,

the values of Φ

)√
2pR
M qT

n,j x̃R

(
approach 1, which leads to

a zero-valued cost-function. This causes P3 to be unsolvable
since zero is the function’s maximum value. To overcome this
difficulty, we make the following approximations:

log

)
Φ

)
2pR

M
qT
n,j x̃R

{{
≈ −Φ

)
− 2pR

M
qT
n,j x̃R

{
,

by invoking the properties log (1 + x) ≈ x as x → 0 and
Φ(x) = 1 − Φ(−x). Based on the above discussions, we
summarize our approach in Algorithm 1.

Algorithm 1 Gradient projection algorithm for P3

1: Initialization.
1.1: Define a tolerance ε and iteration step μ.

2.2: Set x̃(1)
R =

]
Q (�{WyR})T ,Q (�{WyR})T

√T
, where

W = G∗RDG
H
SR. Set i = 1.

2: Calculation. Substitute x̃
(1)
R into (9) and (14), and then

compute the objective function c(1), and the first derivative of
the cost function d(1).
3: Iteration i.
3.1: x̃

(i+1)
R = x̃

(i)
R + μd(i).

3.2: Let x̃(i+1)
R =

√
1/2sign

)
x̃
(i+1)
R

(
.

3.3: Calculate the cost function (9).
3.4: If c(i+1) < c(i) then μ = μ/2.
4: Stopping criterion. If c(i+1) − c(i)

[
/c(i) < ε, set x̃opt

R =

x̃
(i+1)
R and stop; otherwise, go to step 5.

5: Update initial values. Set i = i+ 1. Go to step 3.

Algorithm 1 provides the optimal solution of problem P3,

which can be expressed as x̃opt
R =

]
x̃opt

R,1, x̃
opt
R,2, . . . , x̃

opt
R,2M

√T
,

where −√
1/2 ≤ x̃opt

R,m ≤ √
1/2. Due to the one-bit quantiza-

tion, we adjust the elements of the vector to be either ±√
1/2

using a hard limiter:

x∗,gR =
]
x∗,gR,1 + jx∗,gR,M+1, . . . , x

∗,g
R,M + jx∗,gR,2M

√T
, (16)

where x∗,gR,i =
√
1/2sign

)
x̃opt

R,i

(
.

The computational complexity of each iteration of Algorith-
m 1 is O(MK), which is of the same order as calculating the
non-iterative quantized linear precoders. While the solution to
Algorithm 1 is optimal for problem P3, it does not satisfy
the discrete QPSK constraint imposed by the quantization.
Due to this and the discrete nature of the solution space (a
vector with QPSK entries), there are many local minima in
the vicinity of the solution provided by Algorithm 1. While
Algorithm 1 finds a reasonable operating point, perturbing the
solution around this operating point will often lead to a higher
value for the cost function. The following are two methods for
implementing this perturbation.

Successive decoding – Instead of crudely applying the
sign (·) function when shaping the vector x̃opt

R , here the cri-
terion for judging each element of x̃opt

R as positive or negative
is based on which value makes the cost function larger. Since
elements of x̃opt

R with larger absolute values have a greater
impact on the cost function, we successively determine each
element of x̃opt

R in descending order.
Vector perturbation – We examine small perturbations to the

transmit vector near
√
1/2sign x̃opt

R

[
to improve performance.

In this case, we first obtain 2M vectors by changing the
sign of only one element of

√
1/2sign x̃opt

R

[
while keeping

the others fixed. Then, among these 2M + 1 vectors (2M
perturbed versions of

√
1/2sign x̃opt

R

[
and itself), we select

the candidate vector that maximizes the cost function (9).
The two above approaches can enhance the system perfor-

mance with relatively minimal computational cost since they
operate one element of the vector at a time. When changing
only one element of the vector, one need not compute the en-
tire cost function again; all that is required is a simple addition
and subtraction. As a result, the additional computational cost
for these methods is only O(M), less than one iteration of the
gradient search.

B. Single-user case

For the single-user case, the input signal at the source
is denoted by s, the received signal at the destination is
represented by d, and the channels from the source to the relay
and from the relay to the destination are respectively expressed
as gSR ∈ CN (0, βSRIM ) and gRD ∈ CN (0, βRDIM ), where
βSR and βRD model the path-loss and shadow fading that
follow the same distributions as βSR,k and βRD,k. Therefore,
for BPSK input signals, the probability of correct decoding is
expressed as

P (d = s|yR,xR)

=
∏

v∈{+1,−1}

P (yR|s = v)P (s = v)

P (yR)
P (d = v|xR) , (17)
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where v denotes the possible transmit symbol from the source,
and lies in the set v ∈ {+1,−1},

P (yR|s = v) =
[

c∈{�,�}

M[
i=1

Φ
)
v
√

2pSy
c
R,ig

c
SR,i

(
(18)

P (d = v|xR) = Φ
)
v
√
2pR/M

]
gT

RDxR
(�(

(19)

P (s = v) =
1

2
(20)

P (yR) =
∏

v∈{+1,−1}
P (yR|s = v)P (s = v) , (21)

with gSR,i denoting the i-th element of gSR. By letting
P (yR|s=+1)P (s=+1)

P (yR)
= α, we have

P (d = s|yR,xR) (22)
= αP (d = +1|xR) + (1− α)P (d = −1|xR) .

Thus, problem P1 reduces to

P4 : maximize
xR

αΦ
)√

2pR/M
]
gT

RDxR
(�(

(23)

+ (1− α) Φ
)
−
√

2pR/M
]
gT

RDxR
(�(

subject to xR ∈ 1√
2
{±1± 1j} . (24)

The following theorem provides the solution to P4.
Theorem 1: The solution of problem P4 is given by

x∗R =

∫
Q (g∗RD) , α > 0.5,

−Q (g∗RD) , α < 0.5.
(25)

Proof: By observing that g (x) = αΦ(x) +
(1− α) Φ (−x) is an increasing function for α > 0.5 and a
decreasing function for α < 0.5, problem P4 can be reduced to
maximizing

]
gT

RDxR
(� for α > 0.5 and minimizing

]
gT

RDxR
(�

for α < 0.5. This completes the proof.

IV. NUMERICAL RESULTS

In this section, we compare our proposed algorithms with
quantized linear precoding strategies. For quantized MR-
C/MRT, the transmit vector is given by xR = Q G∗RDG

H
SRyR

[
,

while for quantized ZFR/ZFT it is expressed as xR =

Q
)
G∗RD GT

RDG
∗
RD

[−1
GH

SRGSR
[−1

GH
SRyR

(
. We also de-

fine SNR � pS, and choose pR = pS. The large-scale fading
parameters are calculated as βAR,k = zk (rAR,k/r0)

α and
βRB,k = zk (rBR,k/r0)

α, where zk is a log-normal random
variable with standard deviation 8 dB, rAR,k and rRB,k are
the distances of the sources and destinations from the relay,
α = 3.8 is the path loss exponent, and r0 denotes nearest
possible distance between the users and the relay. The relay
is assumed to be located at the center of a cell with a radius
of 1000 meters and r0 = 100 meters.

Fig. 2 studies the the impact of SNR and the number
of relay antennas M on the BER for QPSK signals with
K = 10. As can be observed, our proposed nonlinear schemes
outperform quantized MRC/MRT and ZFR/ZFT precoding,
especially for high SNRs and large M . Compared to our
proposed nonlinear approaches, quantized ZFR/ZFT requires

approximately 5 dB more power or approximately 2 times
more antennas to achieve the same target BER = 10−2

(see Fig. 2(a) when M = 128, and Fig. 2(b) when SNR
= 20 dB). Furthermore, successive decoding achieves the same
performance when M is moderate, while it outperforms the
vector perturbation method when M is very large. The average
number of iterations needed to obtain the optimal solution are
respectively 8, 12, and 25 for M = 32, M = 64, and M = 128
when ε = 10−3 and μ = 10. Thus, the improved performance
comes at the cost of an increase in computational load.

(a) Impact of SNR

 M

(b) Impact of M

Fig. 2: Average BER for QPSK signaling with K = 10.

Fig. 3 illustrates the BER versus SNR for the single user
case and BPSK signals, with quantized MRC/MRT precoding
as a benchmark. For MRC/MRT, the transmit vector is given
by xR = Q g∗RDg

H
SRyR

[
, and we observe about a 1-2 dB

improvement in BER for the nonlinear precoder.

Fig. 3: Average BER versus SNR for single-user system with
BPSK signaling

V. CONCLUSION

We have formulated a nonlinear precoding problem in terms
of minimizing the BER for the multipair relaying system
with one-bit quantization. The problem was reformulated to
be convex by relaxing the one-bit constraint, and gradient
projection was proposed to maximize the resulting cost func-
tion. Two approaches based on successive decoding and vector
perturbation were then proposed to refine the approximate
solution. Numerical results demonstrated that the proposed
nonlinear precoding methods require approximately 5 dB less
transmit power or only half the number of relay antennas to
achieve the same BER as quantized ZFR/ZFT. For the single-
user case, a closed-form solution was derived and shown to
provide performance similar to that of an optimal exhaustive
search.
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