
Accelerated Primal-Dual Proximal Block Coordinate Updating

Methods for Constrained Convex Optimization∗

Yangyang Xu† Shuzhong Zhang‡

Abstract

Block Coordinate Update (BCU) methods enjoy low per-update computational complexity

because every time only one or a few block variables would need to be updated among possibly

a large number of blocks. They are also easily parallelized and thus have been particularly

popular for solving problems involving large-scale dataset and/or variables. In this paper, we

propose a primal-dual BCU method for solving linearly constrained convex program in multi-

block variables. The method is an accelerated version of a primal-dual algorithm proposed by the

authors, which applies randomization in selecting block variables to update and establishes an

O(1/t) convergence rate under convexity assumption. We show that the rate can be accelerated

to O(1/t2) if the objective is strongly convex. In addition, if one block variable is independent of

the others in the objective, we then show that the algorithm can be modified to achieve a linear

rate of convergence. The numerical experiments show that the accelerated method performs

stably with a single set of parameters while the original method needs to tune the parameters

for different datasets in order to achieve a comparable level of performance.

Keywords: primal-dual method, block coordinate update, alternating direction method of

multipliers (ADMM), accelerated first-order method.

Mathematics Subject Classification: 90C25, 95C06, 68W20.

1 Introduction

Motivated by the need to solve large-scale optimization problems and increasing capabilities in

parallel computing, block coordinate update (BCU) methods have become particularly popular in

recent years due to their low per-update computational complexity, low memory requirements, and

their potentials in a distributive computing environment. In the context of optimization, BCU first

appeared in the form of block coordinate descent (BCD) type of algorithms which can be applied

to solve unconstrained smooth problems or those with separable nonsmooth terms in the objective

∗This work is partly supported by NSF grant DMS-1719549 and CMMI-1462408.
†xuy21@rpi.edu. Department of Mathematical Sciences, Rensselaer Polytechnic Institute
‡zhangs@umn.edu. Department of Industrial & Systems Engineering, University of Minnesota

1

(possibly with separable constraints). More recently, it has been developed for solving problems

with nonseparable nonsmooth terms and/or constraint in a primal-dual framework.

In this paper, we consider the following linearly constrained multi-block structured optimization

model:

min
x
f(x) +

M
∑

i=1

gi(xi), s.t.

M
∑

i=1

Aixi = b, (1)

where x is partitioned into disjoint blocks (x1, x2, . . . , xM), f is a smooth convex function with

Lipschitz continuous gradient, and each gi is proper closed convex and possibly non-differentiable.

Note that gi can include an indicator function of a convex set Xi, and thus (1) can implicitly include

certain separable block constraints in addition to the nonseparable linear constraint.

Many applications arising in statistical and machine learning, image processing, and finance can be

formulated in the form of (1) including the basis pursuit [7], constrained regression [23], support

vector machine in its dual form [10], portfolio optimization [28], just to name a few.

Towards finding a solution for (1), we will first present an accelerated proximal Jacobian alternating

direction method of multipliers (Algorithm 1), and then we generalize it to an accelerated random-

ized primal-dual block coordinate update method (Algorithm 2). Assuming strong convexity on the

objective function, we will establish O(1/t2) convergence rate results of the proposed algorithms by

adaptively setting the parameters, where t is the total number of iterations. In addition, if further

assuming smoothness and the full-rankness we then obtain linear convergence of a modified method

(Algorithm 3).

1.1 Related methods

Our algorithms are closely related to randomized coordinate descent methods, primal-dual coor-

dinate update methods, and accelerated primal-dual methods. In this subsection, let us briefly

review the three classes of methods and discuss their relations to our algorithms.

Randomized coordinate descent methods

In the absence of linear constraint, Algorithm 2 specializes to randomized coordinate descent (RCD),

which was first proposed in [31] for smooth problems and later generalized in [27,38] to nonsmooth

problems. It was shown that RCD converges sublinearly with rate O(1/t), which can be accelerated

to O(1/t2) for convex problems and achieves a linear rate for strongly convex problems. By choosing

multiple block variables at each iteration, [37] proposed to parallelize the RCD method and showed

the same convergence results for parallelized RCD. This is similar to setting m > 1 in Algorithm

2, allowing parallel updates on the selected x-blocks.

2

Primal-dual coordinate update methods

In the presence of linear constraints, coordinate descent methods may fail to converge to a solution of

the problem because fixing all but one block, the selected block variable may be uniquely determined

by the linear constraint. To perform coordinate update to the linearly constrained problem (1),

one effective approach is to update both primal and dual variables. Under this framework, the

alternating direction method of multipliers (ADMM) is one popular choice. Originally, ADMM

[14,17] was proposed for solving two-block structured problems with separable objective (by setting

f = 0 and M = 2 in (1)), for which its convergence and also convergence rate have been well-

established (see e.g. [2, 13, 22, 29]). However, directly extending ADMM to the multi-block setting

such as (1) may fail to converge; see [6] for a divergence example of the ADMM even for solving

a linear system of equations. Lots of efforts have been spent on establishing the convergence of

multi-block ADMM under stronger assumptions (see e.g. [4, 6, 16, 25, 26]) such as strong convexity

or orthogonality conditions on the linear constraint. Without additional assumptions, modification

is necessary for the ADMM applied to multi-block problems to be convergent; see [12, 19, 20, 39]

for example. Very recently, [15] proposed a randomized primal-dual coordinate (RPDC) update

method, whose asynchronous parallel version was then studied in [41]. Applied to (1), RPDC is a

special case of Algorithm 2 with fixed parameters. It was shown that RPDC converges with rate

O(1/t) under convexity assumption. More general than solving an optimization problem, primal-

dual coordinate (PDC) update methods have also appeared in solving fixed-point or monotone

inclusion problems [9, 34–36]. However, for these problems, the PDC methods are only shown to

converge but no convergence rate estimates are known unless additional assumptions are made such

as the strong monotonicity condition.

Accelerated primal-dual methods

It is possible to accelerate the rate of convergence from O(1/t) to O(1/t2) for gradient type methods.

The first acceleration result was shown by Nesterov [30] for solving smooth unconstrained problems.

The technique has been generalized to accelerate gradient-type methods on possibly nonsmooth

convex programs [1, 32]. Primal-dual methods on solving linearly constrained problems can also

be accelerated by similar techniques. Under convexity assumption, the augmented Lagrangian

method (ALM) is accelerated in [21] from O(1/t) convergence rate to O(1/t2) by using a similar

technique as that in [1] to the multiplier update, and [40] accelerates the linearized ALM using

a technique similar to that in [32]. Assuming strong convexity on the objective, [18] accelerates

the ADMM method, and the assumption is weakened in [40] to assuming the strong convexity

for one component of the objective function. On solving bilinear saddle-point problems, various

primal-dual methods can be accelerated if either primal or dual problem is strongly convex [3,5,11].

Without strong convexity, partial acceleration is still possible in terms of the rate depending on

some other quantities; see e.g. [8, 33].

3

1.2 Contributions of this paper

We accelerate the proximal Jacobian ADMM [12] and also generalize it to an accelerated primal-

dual coordinate updating method for linearly constrained multi-block structured convex program,

where in the objective there is a nonseparable smooth function. With parameters fixed during

all iterations, the generalized method reduces to that in [15] and enjoys O(1/t) convergence rate

under mere convexity assumption. By adaptively setting the parameters at different iterations,

we show that the accelerated method has O(1/t2) convergence rate if the objective is strongly

convex. In addition, if there is one block variable that is independent of all others in the objective

(but coupled in the linear constraint) and also the corresponding component function is smooth,

we modify the algorithm by treating that independent variable in a different way and establish a

linear convergence result. Numerically, we test the accelerated method on quadratic programming

and compare it to the (nonaccelerated) RPDC method in [15]. The results demonstrate that

the accelerated method performs efficiently and stably with the parameters automatically set in

accordance of the analysis, while the RPDC method needs to tune its parameters for different data

in order to have a comparable performance.

1.3 Nomenclature and basic facts

Notations. For a positive integerM , we denote [M] as {1, . . . ,M}. We let xS denote the subvector

of x with blocks indexed by S. Namely, if S = {i1, . . . , im}, then xS = (xi1 , . . . , xim). Similarly,

AS denotes the submatrix of A with columns indexed by S, and gS denotes the sum of component

functions indicated by S. We use ∇if(x) for the partial gradient of f with respect to xi at x and

∇Sf(x) with respect to xS . For a nondifferentiable function g, ∇̃g(x) denotes a subgradient of g at

x. We reserve I for the identity matrix and use ‖·‖ for Euclidean norm. Given a symmetric positive

semidefinite (PSD) matrix W , for any vector v of appropriate size, we define ‖v‖2W = v>Wv, and

∆W (v+, vo, v) =
1

2

[

‖v+ − v‖2W − ‖v
o − v‖2W + ‖v+ − vo‖2W

]

. (2)

If W = I, we simply use ∆(v+, vo, v). Also, we denote

g(x) =

m
∑

i=1

gi(xi), F (x) = f(x) + g(x), Φ(x̂, x, λ) = F (x̂)− F (x)− 〈λ,Ax̂− b〉. (3)

Preparations. A point (x∗, λ∗) is called a Karush-Kuhn-Tucker (KKT) point of (1) if

0 ∈ ∂F (x∗)−A>λ∗, Ax∗ − b = 0. (4)

For convex programs, the conditions in (4) are sufficient for x∗ to be an optimal solution of (1),

and they are also necessary if a certain qualification condition holds (e.g., the Slater condition:

there is x in the interior of the domain of F such that Ax = b). Together with the convexity of

F , (4) implies

Φ(x, x∗, λ∗) ≥ 0, ∀x. (5)

4

We will use the following lemmas as basic facts. The first lemma is straightforward to verify from

the definition of ‖ ·‖W ; the second one is similar to Lemma 3.3 in [15]; the third one is from Lemma

3.5 in [15].

Lemma 1.1 For any vectors u, v and symmetric PSD matrix W of appropriate sizes, it holds that

u>Wv =
1

2

[

‖u‖2W − ‖u− v‖
2
W + ‖v‖2W

]

. (6)

Lemma 1.2 Given a function φ, for a given x and a random vector x̂, if for any λ (that may

depend on x̂) it holds EΦ(x̂, x, λ) ≤ Eφ(λ), then for any γ > 0, we have

E
[

F (x̂)− F (x) + γ‖Ax̂− b‖
]

≤ sup
‖λ‖≤γ

φ(λ).

Proof. Let λ̂ = −γ(Ax̂−b)
‖Ax̂−b‖ if Ax̂− b 6= 0, and λ̂ = 0 otherwise. Then

Φ(x̂, x, λ̂) = F (x̂)− F (x) + γ‖Ax̂− b‖.

In addition, since ‖λ̂‖ ≤ γ, we have φ(λ̂) ≤ sup‖λ‖≤γ φ(λ) and thus Eφ(λ̂) ≤ sup‖λ‖≤γ φ(λ). Hence,

we have the desired result from EΦ(x̂, x, λ̂) ≤ Eφ(λ̂). �

Lemma 1.3 Suppose E
[

F (x̂)− F (x∗) + γ‖Ax̂− b‖
]

≤ ε. Then,

E‖Ax̂− b‖ ≤
ε

γ − ‖λ∗‖
, and −

ε‖λ∗‖

γ − ‖λ∗‖
≤ E

[

F (x̂)− F (x∗)
]

≤ ε,

where (x∗, λ∗) satisfies the optimality conditions in (4), and we assume ‖λ∗‖ < γ.

Outline. The rest of the paper is organized as follows. Section 2 presents the accelerated proximal

Jacobian ADMM and its convergence results. In section 3, we propose an accelerated primal-dual

block coordinate update method with convergence analysis. Section 4 assumes more structure on

the problem (1) and modifies the algorithm in section 3 to have linear convergence. Numerical

results are provided in section 5. Finally, section 6 concludes the paper.

2 Accelerated proximal Jacobian ADMM

In this section, we propose an accelerated proximal Jacobian ADMM for solving (1). At each iter-

ation, the algorithm updates all M block variables in parallel by minimizing a linearized proximal

approximation of the augmented Lagrangian function, and then it renews the multiplier. Specifi-

cally, it iteratively performs the following updates:

xk+1
i = argmin

xi

〈

∇if(x
k)−A>

i (λ
k − βkr

k), xi

〉

+ gi(xi) +
1

2
‖xi − x

k
i ‖Pk

i
, i = 1, . . . ,M, (7a)

λk+1 = λk − ρkr
k+1, (7b)

5

where βk and ρk are scalar parameters, P k is an M ×M block diagonal matrix with P k
i as its i-th

diagonal block for i = 1, . . . ,M , and rk = Axk − b denotes the residual. Note that (7a) consists of

M independent subproblems, and they can be solved in parallel.

Algorithm 1 summarizes the proposed method. It reduces to the proximal Jacobian ADMM in [12]

if βk, ρk and P k are fixed for all k and there is no nonseparable function f . We will show that

adapting the parameters as the iteration progresses can accelerate the convergence of the algorithm.

Algorithm 1: Accelerated proximal Jacobian ADMM for (1)

1 Initialization: choose x1, set λ1 = 0, and let r1 = Ax1 − b

2 for k = 1, 2, . . . do

3 Choose parameters βk, ρk and a block diagonal matrix P k

4 Let xk+1 ← (7a) and λk+1 ← (7b) with rk+1 = Axk+1 − b.

5 if a certain stopping criterion satisfied then

6 Return (xk+1, λk+1).

2.1 Technical assumptions

Throughout the analysis in this section, we make the following assumptions.

Assumption 1 There exists (x∗, λ∗) satisfying the KKT conditions in (4).

Assumption 2 ∇f is Lipschitz continuous with modulus Lf .

Assumption 3 The function g is strongly convex with modulus µ > 0.

The first two assumptions are standard, and the third one is for showing convergence rate of

O(1/t2), where t is the number of iterations. Note that if f is strongly convex with modulus

µf > 0, we can let f ← f −
µf

2 ‖ · ‖
2 and g ← g +

µf

2 ‖ · ‖
2. This way, we have a convex function

f and a strongly convex function g. Hence, Assumption 3 is without loss of generality. With only

convexity, Algorithm 1 can be shown to converge at the rate O(1/t) with parameters fixed for all

iterations, and the order 1/t is optimal as shown in the very recent work [24].

2.2 Convergence results

In this subsection, we show the O(1/t2) convergence rate result of Algorithm 1. First, we establish

a result of running one iteration of Algorithm 1.

6

Lemma 2.1 (One-iteration analysis) Under Assumptions 2 and 3, let {(xk, λk)} be the se-

quence generated from Algorithm 1. Then for any k and (x, λ) such that Ax = b, it holds that

Φ(xk+1, x, λ)

≤
1

2ρk

[

‖λ− λk‖2 − ‖λ− λk+1‖2 + ‖λk − λk+1‖2
]

− βk‖r
k+1‖2

−
1

2

[

‖xk+1 − x‖2Pk−βkA>A+µI − ‖x
k − x‖2Pk−βkA>A + ‖xk+1 − xk‖2Pk−βkA>A−Lf I

]

.

(8)

Using the above lemma, we are able to prove the following theorem.

Theorem 2.2 Under Assumptions 2 and 3, let {(xk, λk)} be the sequence generated by Algorithm 1.

Suppose that the parameters are set to satisfy

0 < ρk ≤ 2βk, P k � βkA
>A+ LfI, ∀k ≥ 1, (9)

and there exists a number k0 such that for all k ≥ 2,

k + k0 + 1

ρk
≤

k + k0
ρk−1

, (10)

(k + k0 + 1)(P k − βkA
>A) � (k + k0)(P

k−1 − βk−1A
>A+ µI). (11)

Then, for any (x, λ) satisfying Ax = b, we have

t
∑

k=1

(k + k0 + 1)Φ(xk+1, x, λ) +

t
∑

k=1

k + k0 + 1

2
(2βk − ρk)‖r

k+1‖2

+
t+ k0 + 1

2
‖xt+1 − x‖2P t−βtA>A+µI ≤ φ1(x, λ), (12)

where

φ1(x, λ) =
k0 + 2

2ρ1
‖λ− λ1‖2 +

k0 + 2

2
‖x1 − x‖2P 1−β1A>A. (13)

In the next theorem, we provide a set of parameters that satisfy the conditions in Theorem 2.2 and

establish the O(1/t2) convergence rate result.

Theorem 2.3 (Convergence rate of order 1/t2) Under Assumptions 1 through 3, let {(xk, λk)}

be the sequence generated by Algorithm 1 with parameters set to:

βk = ρk = kβ, P k = kP + LfI, ∀k ≥ 1, (14)

where P is a block diagonal matrix satisfying 0 ≺ P − βA>A � µ
2 I. Then,

max
{

β‖rt+1‖2, ‖xt+1 − x∗‖2P−βA>A

}

≤
2

t(t+ k0 + 1)
φ1(x

∗, λ∗), (15)

7

where k0 =
2Lf

µ
, and φ1 is defined in (13). In addition, letting γ = max {2‖λ∗‖, 1 + ‖λ∗‖} and

T =
t(t+ 2k0 + 3)

2
, x̄t+1 =

∑t
k=1(k + k0 + 1)xk

T
,

we have

|F (x̄t+1)− F (x∗)| ≤
1

T
max
|‖λ‖≤γ

φ1(x
∗, λ), (16a)

‖Ax̄t+1 − b‖ ≤
1

T max{1, ‖λ∗‖}
max
‖λ‖≤γ

φ1(x
∗, λ). (16b)

3 Accelerating randomized primal-dual block coordinate updates

In this section, we generalize Algorithm 1 to a randomized setting where the user may choose to

update a subset of blocks at each iteration. Instead of updating allM block variables, we randomly

choose a subset of them to renew at each iteration. Depending on the number of processors (nodes,

or cores), we can choose a single or multiple block variables for each update.

3.1 The algorithm

Our algorithm is an accelerated version of the randomized primal-dual coordinate update method

recently proposed in [15], for which we shall use RPDC as its acronym.1 At each iteration, it

performs a block proximal gradient update to a subset of randomly selected primal variables while

keeping the remaining ones fixed, followed by an update to the multipliers. Specifically, at iteration

k, it selects an index set Sk ⊂ {1, . . . ,M} with cardinality m and performs the following updates:

xk+1
i =

{

argmin
xi

〈∇if(x
k)−A>

i (λ
k − βkr

k), xi〉+ gi(xi) +
ηk
2 ‖xi − x

k
i ‖

2, if i ∈ Sk,

xki , if i 6∈ Sk
(17a)

rk+1 = rk +
∑

i∈Sk

Ai(x
k+1
i − xki), (17b)

λk+1 = λk − ρkr
k+1, (17c)

where βk, ρk and ηk are algorithm parameters, and their values will be determined later. Note that

we use ηk
2 ‖xi − x

k
i ‖

2 in (17a) for simplicity. It can be replaced by a PSD matrix weighted norm

square term as in (7a), and our convergence results still hold.

Algorithm 2 summarizes the above method. If the parameters βk, ρk and ηk are fixed during all the

iterations, i.e., constant parameters, the algorithm reduces to a special case of the RPDC method

1In fact, [15] presents a more general algorithmic framework. It assumes two groups of variables, and each has

multi-block structure. Our method in Algorithm 2 is an accelerated version of one special case of Algorithm 1 in [15].

8

in [15]. Adapting these parameters to the iterations, we will show that Algorithm 2 enjoys faster

convergence rate than RPDC if the problem is strongly convex.

Algorithm 2: Accelerated randomized primal-dual block coordinate update method for (1)

1 Initialization: choose x1, set λ1 = 0, let r1 = Ax1 − b, and choose parameter m

2 for k = 1, 2, . . . do

3 Select Sk ⊂ {1, 2, . . . ,M} uniformly at random with |Sk| = m.

4 Choose parameters βk, ρk and ηk.

5 Let xk+1 ← (17a) and λk+1 ← (17c).

6 if a certain stopping criterion satisfied then

7 Return (xk+1, λk+1).

3.2 Convergence results

In this subsection, we establish convergence results of Algorithm 2 under Assumptions 1 and 3, and

also the following partial gradient Lipschitz continuity assumption.

Assumption 4 For any S ⊂ {1, . . . ,M} with |S| = m, ∇Sf is Lipschitz continuous with a uniform

constant Lm.

Note that if ∇f is Lipschitz continuous with constant Lf , then Lm ≤ Lf and LM = Lf . In addition,

if x+ and x only differ on a set S ⊂ [M] with cardinality m, then

f(x+) ≤ f(x) + 〈∇f(x), x+ − x〉+
Lm

2
‖x+ − x‖2. (18)

Similar to the analysis in section 2, we first establish a result of running one iteration of Algorithm

2. Throughout this section, we denote θ = m
M
.

Lemma 3.1 (One iteration analysis) Under Assumptions 3 and 4, let {(xk, λk)} be the se-

quence generated from Algorithm 2. Then for any x such that Ax = b, it holds

E

[

Φ(xk+1, x, λk+1) + (βk − ρk)‖r
k+1‖2 +

µ

2
‖xk+1 − x‖2

]

(19)

≤ (1− θ)E
[

Φ(xk, x, λk) + βk‖r
k‖2 +

µ

2
‖xk − x‖2

]

− E

[

∆ηkI−βkA>A(x
k+1, xk, x)−

Lm

2
‖xk+1 − xk‖2

]

.

When µ = 0 (i.e., (1) is convex), Algorithm 2 has O(1/t) convergence rate with fixed βk, ρk, ηk.

This can be shown from (19), and a similar result in slightly different form has been established

in [15, Theorem 3.6]. For completeness, we provide its proof in the appendix.

9

Theorem 3.2 (Un-accelerated convergence) Under Assumptions 1 and 4, let {(xk, λk)} be

the sequence generated from Algorithm 2 with βk = β, ρk = ρ, ηk = η for all k, satisfying

0 < ρ ≤ θβ, η ≥ Lm + β‖A‖22,

where ‖A‖2 denotes the spectral norm of A. Then

∣

∣E[F (x̄t)− F (x∗)]
∣

∣ ≤
1

1 + θ(t− 1)
max
‖λ‖≤γ

φ2(x
∗, λ), (20a)

E‖Ax̄t − b‖ ≤
1

(1 + θ(t− 1))max{1, ‖λ∗‖}
max
‖λ‖≤γ

φ2(x
∗, λ), (20b)

where (x∗, λ∗) satisfies the KKT conditions in (4), γ = max{‖2λ∗‖, 1 + ‖λ∗‖}, and

x̄t =
xt+1 + θ

∑t
k=2 x

k

1 + θ(t− 1)
, φ2(x, λ) = (1− θ)

(

F (x1)− F (x)
)

+
η

2
‖x1 − x‖2 +

θ‖λ‖2

2ρ
.

When F is strongly convex, the above O(1/t) convergence rate can be accelerated to O(1/t2) by

adaptively changing the parameters at each iteration. The following theorem is our main result.

It shows an O(1/t2) convergence result under certain conditions on the parameters. Based on this

theorem, we will give a set of parameters that satisfy these conditions, thus providing a specific

scheme to choose the paramenters.

Theorem 3.3 Under Assumptions 3 and 4, let {(xk, λk)} be the sequence generated from Algorithm

2 with parameters satisfying the following conditions for a certain number k0:

θ(k + k0 + 1) ≥ 1, ∀k ≥ 2, (21a)

(βk−1 − ρk−1)(k + k0) ≥ (1− θ)(k + k0 + 1)βk, ∀2 ≤ k ≤ t, (21b)

θ(k + k0 + 1)− 1

ρk−1
≥

θ(k + k0 + 2)− 1

ρk
, ∀ 2 ≤ k ≤ t− 1, (21c)

θ(t+ k0 + 1)− 1

ρt−1
≥

t+ k0 + 1

ρt
, (21d)

βk(k + k0 + 1) ≥ βk−1(k + k0), ∀k ≥ 2, (21e)

(k + k0 + 1)(ηk − Lm)I � βk(k + k0 + 1)A>A, ∀k ≥ 1, (21f)

(k + k0)ηk−1 + µ
(

θ(k + k0 + 1)− 1
)

≥ (k + k0 + 1)ηk, ∀k ≥ 2. (21g)

Then for any (x, λ) such that Ax = b, we have

(t+ k0 + 1)EΦ(xt+1, x, λ) +
t
∑

k=2

(

θ(k + k0 + 1)− 1
)

EΦ(xk, x, λ)

≤ (1− θ)(k0 + 2)E
[

Φ(x1, x, λ1) + β1‖r
1‖2 +

µ

2
‖x1 − x‖2

]

+
η1(k0 + 2)

2
E‖x1 − x‖2

+
θ(k0 + 3)− 1

2ρ1
E‖λ1 − λ‖2 −

t+ k0 + 1

2
E‖xt+1 − x‖2(µ+ηt)I−βtA>A. (22)

10

Specifying the parameters that satisfy (21), we show O(1/t2) convergence rate of Algorithm 2.

Proposition 3.4 The following parameters satisfy all conditions in (21):

βk =
µ(θk + 2 + θ)

2ρ‖A‖22
, ∀k ≥ 1, (23a)

ρk =







θβk

(6−5θ) , for 1 ≤ k ≤ t− 1,

(t+k0+1)ρt−1

θ(t+k0+1)−1 , for k = t
(23b)

ηk = ρβk‖A‖
2
2 + Lm, ∀k ≥ 1, (23c)

where ρ ≥ 1 and

k0 =
4

θ
+

2Lm

θµ
. (24)

Theorem 3.5 (Accelerated convergence) Under Assumptions 1, 3 and 4, let {(xk, λk)} be the

sequence generated from Algorithm 2 with parameters taken as in (23). Then

∣

∣E[F (x̄t+1)−F (x∗)]
∣

∣ ≤
1

T
max
‖λ‖≤γ

φ3(x
∗, λ), E‖Ax̄t+1− b‖ ≤

1

T max{1, ‖λ∗‖}
max
‖λ‖≤γ

φ3(x
∗, λ), (25)

where γ = max{2‖λ∗‖, 1 + ‖λ∗‖},

x̄t+1 =
(t+ k0 + 1)xt+1 +

∑t
k=2

(

θ(k + k0 + 1)− 1
)

xk

T
,

φ3(x, λ) = (1− θ)(k0 + 2)
[

F (x1)− F (x) + β1‖r
1‖2 +

µ

2
‖x1 − x‖2

]

+
η1(k0 + 2)

2
‖x1 − x‖2 +

θ(k0 + 3)− 1

2ρ1
‖λ‖2

and

T = (t+ k0 + 1) +

t
∑

k=2

(

θ(k + k0 + 1)− 1
)

.

In addition,

E‖xt+1 − x∗‖2 ≤
2φ3(x

∗, λ∗)

(t+ k0 + 1)
(

(ρ−1)µ
2ρ (θt+ θ + 2) + 2µ+ Lm

) .

4 Linearly convergent primal-dual method

In this section, we assume some more structure on (1) and show that a linear rate of convergence is

possible. If there is no linear constraint, Algorithm 2 reduces to the RCD method proposed in [31].

It is well-known that RCD converges linearly if the objective is strongly convex. However, with

the presence of linear constraints, mere strong convexity of the objective of the primal problem

11

only ensures the smoothness of its Lagrangian dual function, but not its strong concavity. Hence,

in general, we do not expect linear convergence by only assuming strong convexity on the primal

objective function. To ensure linear convergence on both the primal and dual variables, we need

additional assumptions.

Throughout this section, we suppose that there is at least one block variable being absent in the

nonseparable part of the objective, namely f . For convenience, we rename this block variable to

be y, and the corresponding component function and constraint coefficient matrix as h and B.

Specifically, we consider the following problem

min
x,y

f(x1, . . . , xM) +

M
∑

i=1

gi(xi) + h(y), s.t.

M
∑

i=1

Aixi +By = b. (26)

One example of (26) is the problem that appears while computing a point on the central path of a

convex program. Suppose we are interested in solving

min
x
f(x1, . . . , xM), s.t.

M
∑

i=1

Aixi ≤ b, xi ≥ 0, i = 1, . . . ,M. (27)

Let y = b−
∑M

i=1Aixi and use the log-barrier function. We have the log-barrier approximation of

(27) as follows:

min
x,y

f(x1, . . . , xM)− µ
M
∑

i=1

e> log xi − µe
> log y, s.t.

M
∑

i=1

Aixi + y = b, (28)

where e is the all-one vector. As µ decreases, the approximation becomes more accurate.

Towards a solution to (26), we modify Algorithm 2 by updating y-variable after the x-update. Since

there is only a single y-block, to balance x and y updates, we do not renew y in every iteration but

instead update it in probability θ = m
M
. Hence, roughly speaking, x and y variables are updated in

the same frequency. The method is summarized in Algorithm 3.

4.1 Technical assumptions

In this section, we denote z = (x, y, λ). Assume h is differentiable. Similar to (4), a point z∗ =

(x∗, y∗, λ∗) is called a KKT point of (26) if

0 ∈ ∂F (x∗)−A>λ∗, (32a)

∇h(y∗)−B>λ∗ = 0, (32b)

Ax∗ +By∗ − b = 0. (32c)

Besides Assumptions 3 and 4, we make two additional assumptions as follows.

12

Algorithm 3: Randomized primal-dual block coordinate update for (26)

1 Initialization: choose (x1, y1), set λ1 = 0, and choose parameters β, ρ, ηx, ηy,m.

2 Let r1 = Ax1 +By1 − b and θ = m
M
.

3 for k = 1, 2, . . . do

4 Select index set Sk ⊂ {1, . . . ,M} uniformly at random with |Sk| = m.

5 Keep xk+1
i = xki , ∀i 6∈ Sk and update

xk+1
i = argmin

xi

〈

∇if(x
k)−A>

i (λ
k − βrk), xi

〉

+ gi(xi) +
ηx
2
‖xi − x

k
i ‖

2, if i ∈ Sk. (29)

Let rk+
1
2 = rk +

∑

i∈Sk
Ai(x

k+1
i − xki).

6 In probability 1− θ keep yk+1 = yk, and in probability θ let yk+1 = ỹk+1, where

ỹk+1 = argmin
y

h(y)−
〈

B>(λk − βrk+
1
2), y

〉

+
ηy
2
‖y − yk‖2. (30)

Let rk+1 = rk+
1
2 +B(yk+1 − yk).

7 Update the multiplier by

λk+1 = λk − ρrk+1. (31)

if a certain stopping criterion is satisfied then

8 Return (xk+1, yk+1, λk+1).

Assumption 5 There exists z∗ = (x∗, y∗, λ∗) satisfying the KKT conditions in (32).

Assumption 6 The function h is strongly convex with modulus ν, and its gradient ∇h is Lipschitz

continuous with constant Lh.

The strong convexity of F and h implies

F (xk+1)− F (x∗)− 〈∇̃F (x∗), xk+1 − x∗〉 ≥
µ

2
‖xk+1 − x∗‖2, (33a)

〈yk+1 − y∗,∇h(yk+1)−∇h(y∗)〉 ≥ ν‖yk+1 − y∗‖2. (33b)

4.2 Convergence analysis

Similar to Lemma 3.1, we first establish a result of running one iteration of Algorithm 3. It can be

proven by similar arguments to those showing Lemma 3.1.

Lemma 4.1 (One iteration analysis) Under Assumptions 3, 4, and 6, let {(xk, yk, λk)} be the

13

sequence generated from Algorithm 3. Then for any k and (x, y, λ) such that Ax+By = b, it holds

Eϕ(zk+1, z) + (β − ρ)E‖rk+1‖2 +
1

ρ
E∆(λk+1, λk, λ)

+E

[

∆P (x
k+1, xk, x)−

Lm

2
‖xk+1 − xk‖2

]

+ E∆Q(y
k+1, yk, y)

≤ (1− θ)Eϕ(zk, z) + β(1− θ)E‖rk‖2 +
1− θ

ρ
E∆(λk, λk−1, λ)

+βE〈A(xk+1 − x), B(yk+1 − yk)〉+ β(1− θ)E〈B(yk − y), A(xk+1 − xk)〉. (34)

where P = ηxI − βA
>A, Q = ηyI − βB

>B, and

ϕ(zk, z) = F (xk)− F (x) +
µ

2
‖xk − x‖2 +

〈

yk − y,∇h(yk)
〉

−
〈

λ,Axk +Byk − b
〉

. (35)

In the following, we let

Ψ(zk, z∗) = F (xk)− F (x∗)− 〈∇̃F (x∗), xk − x∗〉+
〈

yk − y∗,∇h(yk)−∇h(y∗)
〉

, (36)

and

ψ(zk, z∗;P,Q, β, ρ, c, τ)

= (1− θ)EΨ(zk, z∗) +
β(1− θ)

2
E‖rk‖2 +

1

2
E‖xk − x∗‖2P+µ(1−θ)I +

1

2
E‖yk − y∗‖2

Q+
β(1−θ)

τ
B>B

+
1

2ρ
E

[

‖λk − λ∗‖2 − (1− θ)‖λk−1 − λ∗‖2 +
1

θ
‖λk − λk−1‖2

]

. (37)

The following theorem is key to establishing linear convergence of Algorithm 3.

Theorem 4.2 Under Assumptions 3 through 6, let {(xk, yk, λk)} be the sequence generated from

Algorithm 3 with ρ = θβ. Let 0 < α < θ and γ = max
{

8‖A‖22
αµ

,
8‖B‖22
αν

}

. Choose δ, κ ≥ 0 such that

2

[

1− (1− θ)(1 + δ) (1− θ)(1 + δ)

(1− θ)(1 + δ) κ− (1− θ)(1 + δ)

]

�

[

θ 1− θ

1− θ 1
θ
− (1− θ)

]

, (38)

and positive numbers ηx, ηy, c, τ1, τ2, β such that

P � β(1− θ)τ2A
>A+ LmI (39a)

Q � 8cQ>Q+ 4cρ2(1− θ)(1 +
1

δ
)B>BB>B + βτ1B

>B. (39b)

Then it holds that

(1− α)EΨ(zk+1, z∗) +
1

2
E‖xk+1 − x∗‖2

P+(αµ
2
+µ)I− β

τ1
A>A

+
1

2
E‖yk+1 − y∗‖2

Q+(3αν
2

−8cL2
h
)I

+
(β − ρ

2
+

1

γ

)

E‖rk+1‖2 −

(

cρ2
(

κ+ 2(1− θ)(1 +
1

δ
)
)

+ 2c(β − ρ)2
)

E‖B>rk+1‖2

+

(

1

2ρ
+
c

2
σmin(BB

>)

)

E

[

‖λk+1 − λ∗‖2 − (1− θ)‖λk − λ∗‖2 +
1

θ
‖λk+1 − λk‖2

]

≤ ψ(zk, z∗;P,Q, β, ρ, c, τ2). (40)

14

Using Theorem 4.2, a linear convergence rate of Algorithm 3 follows.

Theorem 4.3 Under Assumptions 3 through 6, let {(xk, yk, λk)} be the sequence generated from

Algorithm 3 with ρ = θβ. Let 0 < α < θ and γ = max
{

8‖A‖22
αµ

,
8‖B‖22
αν

}

. Assume that B is full

row-rank and max{‖A‖2, ‖B‖2} ≤ 1. Choose δ, κ, ηx, ηy, c, β, τ1, τ2 satisfying (38) and (39), and in

addition,

α

2
µ+ θµ >

β

τ1
(41a)

3αν

4
> 4cL2

h +
β(1− θ)

2τ2
(41b)

1

γ
> cρ2

(

κ+ 2(1− θ)(1 +
1

δ
)

)

+ 2c(β − ρ)2. (41c)

Then

ψ(zk+1, z∗;P,Q, β, ρ, c, τ2) ≤
1

η
ψ(zk, z∗;P,Q, β, ρ, c, τ2), (42)

where

η = min

{

1− α

1− θ
, 1 +

α
2µ+ θµ− β

τ1

ηx + µ(1− θ)
, 1 +

3αν
4 − 4cL2

h −
β(1−θ)
2τ2

ηy
2 + β(1−θ)

2τ2

,

1 +

2
γ
− 2cρ2

(

κ+ 2(1− θ)(1 + 1
δ
)
)

− 4c(β − ρ)2

β(1− θ)
, 1 + cρσmin(BB

>)

}

> 1.

We finish this section by making a few remarks.

Remark 4.1 We can always rescale A,B and b without essentially altering the linear constraints.

Hence, the assumption max{‖A‖2, ‖B‖2} ≤ 1 can be made without losing generality. From (42), it

is easy to see that when P � 0 and Q � 0, (xk, yk) converges to (x∗, y∗) R-linearly in expectation.

In addition, note that

‖λk+1 − λ∗‖2 − (1− θ)‖λk − λ∗‖2 +
1

θ
‖λk+1 − λk‖2

= θ‖λk+1 − λ∗‖2 + 2(1− θ)〈λk+1 − λ∗, λk+1 − λk〉+ (
1

θ
− 1 + θ)‖λk+1 − λk‖2

≥

(

θ −
(1− θ)2

1
θ
− 1 + θ

)

‖λk+1 − λ∗‖2

=
θ

1
θ
− 1 + θ

‖λk+1 − λ∗‖2.

Hence, (42) also implies an R-linear convergence of λk to λ∗ in expectation.

15

Remark 4.2 We give examples of parameters that satisfy the conditions required in Theorem 4.3.

First consider the case of θ = 1, i.e., all blocks are updated at each iteration. In this case, we

can choose δ = 0, κ = 1
2 to satisfy (38) and ηx = β‖A‖22 + Lf to satisfy (39a) and let α = 1

2 and

τ1 = β
µ

to ensure that (41a) holds. Finally, choose ηy >
(

β + β2

µ

)

‖B‖22 and c sufficiently small,

and all other conditions in Theorem 4.3 are satisfied. Next consider the case of θ < 1. We can

choose δ = θ
4(1−θ) and κ = 3

θ
+ 3θ

4 − 2 to satisfy (38), and let α = θ
2 , τ1 = β

θµ
, τ2 = 2β(1−θ)

ν
,

ηx = β(1 + (1− θ)τ2)‖A‖
2
2 + Lm, and ηy > β(1 + τ1)‖B‖

2
2. With such choices, all other conditions

required in Theorem 4.3 hold when c is sufficiently small.

Remark 4.3 If there is only one x-block and there is no f function, then Algorithm 3 reduces

to the so-called linearized ADMM. To show the linear convergence of the linearized ADMM, one

scenario in [13, Theorem 3.1] assumes2 the strong convexity of g and h, the smoothness of h, and

the full row-rankness of B. In Theorem 4.3, we make the same assumptions, and so our result can

be considered as a generalization.

5 Numerical experiments

The aim of this section is to test the practical performance of the proposed algorithms. We test

Algorithm 2 on quadratic programming

min
x
F (x) =

1

2
x>Qx+ c>x, s.t. Ax = b, x ≥ 0, (43)

and Algorithm 3 on the log-barrier approximation of linear programming

min
x,y

c>x− e> log x− e> log y, s.t. Ax+ y = b, xi ≤ ui, ∀i. (44)

Quadratic programming. Two types of randomized implementations are considered: one with

fixed parameters and the newly introduced one with adaptive parameters, which shall be called

nonadaptive RPDC and adaptive RPDC respectively. Note that the former reduces to the method

proposed in [15] when applied to (43). The purpose of the experiment is to test the effect of

acceleration for the latter approach.

The data was generated randomly as follows. We let Q = HDH> ∈ R
n×n, where H is Gaussian

randomly generated orthogonal matrix and D is a diagonal matrix with dii = 1 + (i − 1)L−1
n−1 , i =

1, . . . , n. Hence, the smallest and largest singular values of Q are 1 and L respectively, and the

objective of (43) is strongly convex with modulus 1. The components of c follow standard Gaussian

distribution, and those of b follow uniform distribution on [0, 1]. We let A = [B, I] ∈ R
p×n to

2Besides the scenario that g and h are strongly convex, h is smooth, and B is of full row-rank, [13, Theorem 3.1]

also shows linear convergence of the linearized ADMM under three other different scenarios.

16

β = 1 β = 10 β = 100 β = 1000

0 200 400 600 800 1000

number of epochs

10
-10

10
-5

10
0

10
5

d
is

ta
n

c
e

 o
f

o
b

je
c
ti
v
e

 t
o

 o
p

ti
m

a
l
v
a

lu
e

nonadaptive RPDC

adaptive RPDC

0 200 400 600 800 1000

number of epochs

10
-10

10
-5

10
0

10
5

d
is

ta
n

c
e

 o
f

o
b

je
c
ti
v
e

 t
o

 o
p

ti
m

a
l
v
a

lu
e

nonadaptive RPDC

adaptive RPDC

0 200 400 600 800 1000

number of epochs

10
-10

10
-5

10
0

10
5

d
is

ta
n

c
e

 o
f

o
b

je
c
ti
v
e

 t
o

 o
p

ti
m

a
l
v
a

lu
e

nonadaptive RPDC

adaptive RPDC

0 200 400 600 800 1000

number of epochs

10
-10

10
-5

10
0

10
5

d
is

ta
n

c
e

 o
f

o
b

je
c
ti
v
e

 t
o

 o
p

ti
m

a
l
v
a

lu
e

nonadaptive RPDC

adaptive RPDC

0 200 400 600 800 1000

number of epochs

10
-15

10
-10

10
-5

10
0

10
5

v
io

la
ti
o

n
 o

f
fe

a
s
ib

ili
ty

nonadaptive RPDC

adaptive RPDC

0 200 400 600 800 1000

number of epochs

10
-15

10
-10

10
-5

10
0

10
5

v
io

la
ti
o

n
 o

f
fe

a
s
ib

ili
ty

nonadaptive RPDC

adaptive RPDC

0 200 400 600 800 1000

number of epochs

10
-15

10
-10

10
-5

10
0

10
5

v
io

la
ti
o

n
 o

f
fe

a
s
ib

ili
ty

nonadaptive RPDC

adaptive RPDC

0 200 400 600 800 1000

number of epochs

10
-15

10
-10

10
-5

10
0

10
5

v
io

la
ti
o

n
 o

f
fe

a
s
ib

ili
ty

nonadaptive RPDC

adaptive RPDC

Figure 1: Results by Algorithm 2 with adaptive parameters and nonadaptive parameters for solving

(43) with problem size n = 2000, p = 200 and condition number 10. The latter uses different penalty

parameter β. Top row: difference of objective value to the optimal value |F (xk)− F (x∗)|; bottom

row: violation of feasibility ‖Axk − b‖.

guarantee the existence of feasible solutions, where B was generated according to standard Gaussian

distribution. In addition, we normalized A so that it has a unit spectral norm.

In the test, we fixed n = 2000, p = 200 and varied L among {10, 100, 1000}. For both nonadaptive

and adaptive RPDC, we evenly partitioned x into 40 blocks, i.e., each block consists of 50 coordi-

nates, and we set m = 40, i.e., all blocks are updated at each iteration. For the adaptive RPDC, we

set the values of its parameters according to (23) with ρ = 1, and those for the nonadaptive RPDC

were set based on Theorem 3.2 with ρ = β, η = 100+β, ∀k where β varied among {1, 10, 100, 1000}.

Figures 1 through 3 plot the objective values and feasibility violations by Algorithm 2 under these

two different settings. From these results, we see that adaptive RPDC performed well for all three

datasets with a single set of parameters while the performance of the nonadaptive one was severely

affected by the penalty parameter.

Linear programming. In this test, we apply Algorithm 3 to the problem (44), where we let f(x) =

c>x, g(x) = −e> log x and h(y) = −e> log y. The purpose of this experiment is to demonstrate the

linear convergence of Algorithm 3.

We generated A ∈ R
200×2000 and c according to the standard Gaussian distribution and b by the

uniform distribution on [12 ,
3
2]. The upper bound was set to ui = 10, ∀i. We treated x as a single

block and set the algorithm parameters to β = 0.1, ηx = β‖A‖22, and ηy = β
(

1 + 2.001β
3µ

)

. This

setting satisfies the conditions required in Theorem 4.3 if α is sufficiently close to 1. Note that

g and h do not have uniform strong convexity constants but they are both strongly convex on a

bounded set. Figure 4 shows the convergence behavior of Algorithm 3. From the figure, we can

clearly see that the algorithm linearly converges to an optimal solution.

17

β = 1 β = 10 β = 100 β = 1000

0 200 400 600 800 1000

number of epochs

10
-15

10
-10

10
-5

10
0

10
5

d
is

ta
n

c
e

 o
f

o
b

je
c
ti
v
e

 t
o

 o
p

ti
m

a
l
v
a

lu
e

nonadaptive RPDC

adaptive RPDC

0 200 400 600 800 1000

number of epochs

10
-15

10
-10

10
-5

10
0

10
5

d
is

ta
n

c
e

 o
f

o
b

je
c
ti
v
e

 t
o

 o
p

ti
m

a
l
v
a

lu
e

nonadaptive RPDC

adaptive RPDC

0 200 400 600 800 1000

number of epochs

10
-15

10
-10

10
-5

10
0

10
5

d
is

ta
n

c
e

 o
f

o
b

je
c
ti
v
e

 t
o

 o
p

ti
m

a
l
v
a

lu
e

nonadaptive RPDC

adaptive RPDC

0 200 400 600 800 1000

number of epochs

10
-15

10
-10

10
-5

10
0

10
5

d
is

ta
n

c
e

 o
f

o
b

je
c
ti
v
e

 t
o

 o
p

ti
m

a
l
v
a

lu
e

nonadaptive RPDC

adaptive RPDC

0 200 400 600 800 1000

number of epochs

10
-20

10
-15

10
-10

10
-5

10
0

10
5

v
io

la
ti
o

n
 o

f
fe

a
s
ib

ili
ty

nonadaptive RPDC

adaptive RPDC

0 200 400 600 800 1000

number of epochs

10
-20

10
-15

10
-10

10
-5

10
0

10
5

v
io

la
ti
o

n
 o

f
fe

a
s
ib

ili
ty

nonadaptive RPDC

adaptive RPDC

0 200 400 600 800 1000

number of epochs

10
-20

10
-15

10
-10

10
-5

10
0

10
5

v
io

la
ti
o

n
 o

f
fe

a
s
ib

ili
ty

nonadaptive RPDC

adaptive RPDC

0 200 400 600 800 1000

number of epochs

10
-20

10
-15

10
-10

10
-5

10
0

10
5

v
io

la
ti
o

n
 o

f
fe

a
s
ib

ili
ty

nonadaptive RPDC

adaptive RPDC

Figure 2: Results by Algorithm 2 with adaptive parameters and nonadaptive parameters for solving

(43) with problem size n = 2000, p = 200 and condition number 100. The latter uses different

penalty parameter β. Top row: difference of objective value to the optimal value |F (xk)− F (x∗)|;

bottom row: violation of feasibility ‖Axk − b‖.

β = 1 β = 10 β = 100 β = 1000

0 200 400 600 800 1000

number of epochs

10
-15

10
-10

10
-5

10
0

10
5

10
10

d
is

ta
n

c
e

 o
f

o
b

je
c
ti
v
e

 t
o

 o
p

ti
m

a
l
v
a

lu
e

nonadaptive RPDC

adaptive RPDC

0 200 400 600 800 1000

number of epochs

10
-15

10
-10

10
-5

10
0

10
5

10
10

d
is

ta
n

c
e

 o
f

o
b

je
c
ti
v
e

 t
o

 o
p

ti
m

a
l
v
a

lu
e

nonadaptive RPDC

adaptive RPDC

0 200 400 600 800 1000

number of epochs

10
-15

10
-10

10
-5

10
0

10
5

10
10

d
is

ta
n

c
e

 o
f

o
b

je
c
ti
v
e

 t
o

 o
p

ti
m

a
l
v
a

lu
e

nonadaptive RPDC

adaptive RPDC

0 200 400 600 800 1000

number of epochs

10
-15

10
-10

10
-5

10
0

10
5

10
10

d
is

ta
n

c
e

 o
f

o
b

je
c
ti
v
e

 t
o

 o
p

ti
m

a
l
v
a

lu
e

nonadaptive RPDC

adaptive RPDC

0 200 400 600 800 1000

number of epochs

10
-15

10
-10

10
-5

10
0

10
5

v
io

la
ti
o

n
 o

f
fe

a
s
ib

ili
ty

nonadaptive RPDC

adaptive RPDC

0 200 400 600 800 1000

number of epochs

10
-15

10
-10

10
-5

10
0

10
5

v
io

la
ti
o

n
 o

f
fe

a
s
ib

ili
ty

nonadaptive RPDC

adaptive RPDC

0 200 400 600 800 1000

number of epochs

10
-15

10
-10

10
-5

10
0

10
5

v
io

la
ti
o

n
 o

f
fe

a
s
ib

ili
ty

nonadaptive RPDC

adaptive RPDC

0 200 400 600 800 1000

number of epochs

10
-15

10
-10

10
-5

10
0

10
5

v
io

la
ti
o

n
 o

f
fe

a
s
ib

ili
ty

nonadaptive RPDC

adaptive RPDC

Figure 3: Results by Algorithm 2 with adaptive parameters and nonadaptive parameters for solving

(43) with problem size n = 2000, p = 200 and condition number 1000. The latter uses different

penalty parameter β. Top row: difference of objective value to the optimal value |F (xk)− F (x∗)|;

bottom row: violation of feasibility ‖Axk − b‖.

18

0 200 400 600 800 1000

number of epochs

10
-10

10
-5

10
0

10
5

d
is

ta
n
c
e
 o

f
o
b
je

c
ti
v
e
 t
o
 o

p
ti
m

a
l
v
a
lu

e

0 200 400 600 800 1000

number of epochs

10
-15

10
-10

10
-5

10
0

10
5

v
io

la
ti
o
n
 o

f
fe

a
s
ib

ili
ty

Figure 4: Results by Algorithm 3 on the problem (44) with A ∈ R
200×2000. Left: difference of

objective value to the optimal value |F (xk) + h(yk)−F (x∗)− h(y∗)|; Right: violation of feasibility

‖Axk +Byk − b‖

6 Conclusions

In this paper we propose an accelerated proximal Jacobian ADMM method and generalize it to an

accelerated randomized primal-dual coordinate updating method for solving linearly constrained

multi-block structured convex programs. We show that if the objective is strongly convex then the

methods achieve O(1/t2) convergence rate where t is the total number of iterations. In addition, if

one block variable is independent of others in the objective and its part of the objective function

is smooth, we have modified the primal-dual coordinate updating method to achieve linear conver-

gence. Numerical experiments on quadratic programming and log-barrier approximation of linear

programming have shown the efficacy of the newly proposed methods.

References

[1] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse

problems. SIAM journal on imaging sciences, 2(1):183–202, 2009. 3

[2] D. Boley. Local linear convergence of the alternating direction method of multipliers on

quadratic or linear programs. SIAM Journal on Optimization, 23(4):2183–2207, 2013. 3

[3] K. Bredies and H. Sun. Accelerated douglas-rachford methods for the solution of convex-

concave saddle-point problems. arXiv preprint arXiv:1604.06282, 2016. 3

[4] X. Cai, D. Han, and X. Yuan. The direct extension of admm for three-block separable convex

minimization models is convergent when one function is strongly convex. Optimization Online,

2014. 3

[5] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems with

applications to imaging. Journal of Mathematical Imaging and Vision, 40(1):120–145, 2011. 3

19

[6] C. Chen, B. He, Y. Ye, and X. Yuan. The direct extension of admm for multi-block convex

minimization problems is not necessarily convergent. Mathematical Programming, 155(1-2):57–

79, 2016. 3

[7] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. SIAM

review, 43(1):129–159, 2001. 2

[8] Y. Chen, G. Lan, and Y. Ouyang. Optimal primal-dual methods for a class of saddle point

problems. SIAM Journal on Optimization, 24(4):1779–1814, 2014. 3

[9] P. L. Combettes and J.-C. Pesquet. Stochastic quasi-fejér block-coordinate fixed point itera-

tions with random sweeping. SIAM Journal on Optimization, 25(2):1221–1248, 2015. 3

[10] C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273–297, 1995. 2

[11] C. Dang and G. Lan. Randomized methods for saddle point computation. arXiv preprint

arXiv:1409.8625, 2014. 3

[12] W. Deng, M.-J. Lai, Z. Peng, and W. Yin. Parallel multi-block admm with o(1/k) convergence.

Journal of Scientific Computing, pages 1–25, 2016. 3, 4, 6

[13] W. Deng and W. Yin. On the global and linear convergence of the generalized alternating

direction method of multipliers. Journal of Scientific Computing, 66(3):889–916, 2015. 3, 16

[14] D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear variational problems

via finite element approximation. Computers & Mathematics with Applications, 2(1):17–40,

1976. 3

[15] X. Gao, Y. Xu, and S. Zhang. Randomized primal-dual proximal block coordinate updates.

arXiv preprint arXiv:1605.05969, 2016. 3, 4, 5, 8, 9, 16

[16] X. Gao and S.-Z. Zhang. First-order algorithms for convex optimization with nonseparable

objective and coupled constraints. Journal of the Operations Research Society of China, pages

1–29, 2015. 3

[17] R. Glowinski and A. Marrocco. Sur l’approximation, par eléments finis d’ordre un, et

la résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet non linéaires.

ESAIM: Mathematical Modelling and Numerical Analysis, 9(R2):41–76, 1975. 3

[18] T. Goldstein, B. O’Donoghue, S. Setzer, and R. Baraniuk. Fast alternating direction optimiza-

tion methods. SIAM Journal on Imaging Sciences, 7(3):1588–1623, 2014. 3

[19] B. He, L. Hou, and X. Yuan. On full Jacobian decomposition of the augmented Lagrangian

method for separable convex programming. SIAM Journal on Optimization, 25(4):2274–2312,

2015. 3

20

[20] B. He, M. Tao, and X. Yuan. Alternating direction method with gaussian back substitution

for separable convex programming. SIAM Journal on Optimization, 22(2):313–340, 2012. 3

[21] B. He and X. Yuan. On the acceleration of augmented lagrangian method for linearly con-

strained optimization. Optimization online, 2010. 3

[22] B. He and X. Yuan. On the O(1/n) convergence rate of the Douglas-Rachford alternating

direction method. SIAM Journal on Numerical Analysis, 50(2):700–709, 2012. 3

[23] G. M. James, C. Paulson, and P. Rusmevichientong. Penalized and constrained regression.

Technical report, 2013. 2

[24] H. Li and Z. Lin. Optimal nonergodic o(1/k) convergence rate: When linearized adm meets

nesterov’s extrapolation. arXiv preprint arXiv:1608.06366, 2016. 6

[25] M. Li, D. Sun, and K.-C. Toh. A convergent 3-block semi-proximal ADMM for convex min-

imization problems with one strongly convex block. Asia-Pacific Journal of Operational Re-

search, 32(04):1550024, 2015. 3

[26] T. Lin, S. Ma, and S. Zhang. On the global linear convergence of the admm with multiblock

variables. SIAM Journal on Optimization, 25(3):1478–1497, 2015. 3

[27] Z. Lu and L. Xiao. On the complexity analysis of randomized block-coordinate descent meth-

ods. Mathematical Programming, 152(1-2):615–642, aug 2015. 2

[28] H. Markowitz. Portfolio selection. The journal of finance, 7(1):77–91, 1952. 2

[29] R. D. Monteiro and B. F. Svaiter. Iteration-complexity of block-decomposition algorithms and

the alternating direction method of multipliers. SIAM Journal on Optimization, 23(1):475–507,

2013. 3

[30] Y. Nesterov. A method of solving a convex programming problem with convergence rate

O(1/k2). Soviet Mathematics Doklady, 27(2):372–376, 1983. 3

[31] Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems.

SIAM Journal on Optimization, 22(2):341–362, 2012. 2, 11

[32] Y. Nesterov. Gradient methods for minimizing composite functions. Mathematical Program-

ming, 140(1):125–161, 2013. 3

[33] Y. Ouyang, Y. Chen, G. Lan, and E. Pasiliao Jr. An accelerated linearized alternating direction

method of multipliers. SIAM Journal on Imaging Sciences, 8(1):644–681, 2015. 3

[34] Z. Peng, T. Wu, Y. Xu, M. Yan, and W. Yin. Coordinate friendly structures, algorithms and

applications. Annals of Mathematical Sciences and Applications, 1(1):57–119, 2016. 3

21

[35] Z. Peng, Y. Xu, M. Yan, and W. Yin. Arock: an algorithmic framework for asynchronous

parallel coordinate updates. SIAM Journal on Scientific Computing, 38(5):A2851–A2879,

2016. 3

[36] J.-C. Pesquet and A. Repetti. A class of randomized primal-dual algorithms for distributed

optimization. arXiv preprint arXiv:1406.6404, 2014. 3

[37] P. Richtárik and M. Takáč. Parallel coordinate descent methods for big data optimization.

Mathematical Programming, pages 1–52, 2012. 2

[38] P. Richtárik and M. Takáč. Iteration complexity of randomized block-coordinate descent

methods for minimizing a composite function. Mathematical Programming, 144(1-2):1–38,

2014. 2

[39] Y. Xu. Hybrid jacobian and gauss-seidel proximal block coordinate update methods for linearly

constrained convex programming. arXiv preprint arXiv:1608.03928, 2016. 3

[40] Y. Xu. Accelerated first-order primal-dual proximal methods for linearly constrained composite

convex programming. SIAM Journal on Optimization, 27(3):1459–1484, 2017. 3

[41] Y. Xu. Asynchronous parallel primal-dual block update methods. arXiv preprint

arXiv:1705.06391, 2017. 3

A Technical proofs: Section 2

In this section, we give the detailed proofs of the lemmas and theorems in section 2. The following

lemma will be used a few times. Note that when S = [M], the result is deterministic.

Lemma A.1 Let S be a uniformly selected subset of [M] with cardinality m and xo be a vector

independent of S. Suppose x+ is a random vector dependent on S and its coordinates out of S are

the same as xo. Let β ∈ R, λo and ro be vectors independent of S, and W a positive semidefinite

M ×M block diagonal matrix. If

∇Sf(x
o) + ∇̃gS(x

+
S)−A

>
S (λ

o − βro) +WS(x
+
S − x

o
S) = 0,

then for any x, it holds that

ES

[

F (x+)− F (x) +
µ

2
‖x+ − x‖2 −

〈

A(x+ − x), λo − βro
〉

]

≤ (1− θ)
[

F (xo)− F (x) +
µ

2
‖xo − x‖2 −

〈

A(xo − x), λo − βro
〉

]

−
1

2
ES

[

‖x+ − x‖2W − ‖x
o − x‖2W + ‖x+ − xo‖2W−LmI

]

,

(45)

where θ = m
M
, Lm is given in Assumption 4, and the expectation is taken on S.

22

Proof. For any x, we have

〈

x+S − xS ,∇Sf(x
o) + ∇̃gS(x

+
S)−A

>
S (λ

o − βro) +WS(x
+
S − x

o
S)
〉

= 0.

We split the left hand side of the above equation into four terms and bound each of them as below.

First, we have

ES

〈

x+S − xS ,∇Sf(x
o)
〉

= ES

〈

x+ − xo,∇f(xo)
〉

+ ES 〈x
o
S − xS ,∇Sf(x

o)〉

≥ ES

[

f(x+)− f(xo)−
Lm

2
‖x+ − xo‖2

]

+ θ[f(xo)− f(x)]

= ES

[

f(x+)− f(x)−
Lm

2
‖x+ − xo‖2

]

− (1− θ)[f(xo)− f(x)], (46)

where the first equality uses the fact x+i = xoi , ∀i 6∈ S, and the inequality follows from the uniform

distribution of S, the convexity of f , and also the inequality (18).

Secondly, it follows from the strong convexity of g that

〈

x+S − xS , ∇̃gS(x
+
S)
〉

≥ gS(x
+
S)− gS(xS) +

∑

i∈S

µ

2
‖x+i − xi‖

2. (47)

Since gS(x
+
S)−gS(xS) = g(x+)−g(xo)+gS(x

o
S)−gS(xS) and ES [gS(x

o
S)−gS(xS)] = θ[g(xo)−g(x)],

we have

ES [gS(x
+
S)− gS(xS)] = ES [g(x

+)− g(xo)] + θ[g(xo)− g(x)]

= ES [g(x
+)− g(x)]− (1− θ)[g(xo)− g(x)]. (48)

Similarly, it holds ES

∑

i∈S
µ
2‖x

+
i − xi‖

2 = µ
2

(

ES‖x
+ − x‖2 − (1− θ)‖xo − x‖2

)

. Hence, taking

expectation on both sides of (47) yields

ES

〈

x+S − xS , ∇̃gS(x
+
S)
〉

≥ ES

[

g(x+)− g(x) +
µ

2
‖x+ − x‖2

]

− (1− θ)
[

g(xo)− g(x) +
µ

2
‖xo − x‖2

]

. (49)

Thirdly, by essentially the same arguments on showing (48), we have

ES

〈

x+S − xS ,−A
>
S (λ

o − βro)
〉

= −ES

〈

A(x+ − x), λo − βro
〉

+ (1− θ)
〈

A(xo− x), λo− βro
〉

. (50)

Fourth, note
〈

x+S − xS ,WS(x
+
S − x

o
S)
〉

= 〈x+ − x,W (x+ − xo)〉, and thus by (6),

ES

〈

x+S − xS ,WS(x
+
S − x

o
S)
〉

=
1

2
ES

[

‖x+ − x‖2W − ‖x
o − x‖2W + ‖x+ − xo‖2W

]

. (51)

The desired result is obtained by adding (46), (49), (50), and (51), and recalling F = f + g. �

23

A.1 Proof of Lemma 2.1

From (7a), we have the optimality condition

∇f(xk)−A>(λk − βkr
k) + ∇̃g(xk+1) + P k(xk+1 − xk) = 0.

Hence, for any x such that Ax = b, it follows from the definition of Φ in (3) and Lemma A.1 with

S = [M], xo = xk, λo = λk, β = βk, x
+ = xk+1, and W = P k that

Φ(xk+1, x, λ) ≤
〈

Axk+1 − b, λk − βkr
k
〉

−
〈

Axk+1 − b, λ
〉

−
1

2
ES

[

‖xk+1 − x‖2Pk+µI − ‖x
k − x‖2Pk + ‖x

k+1 − xk‖2Pk−Lf I

]

. (52)

Using the fact λk+1 = λk − ρk(Ax
k+1 − b), we have

〈

Axk+1 − b, λk − λ
〉

=
1

ρk

〈

λk − λk+1, λk − λ
〉

(6)
=

1

2ρk

[

‖λ− λk‖2 − ‖λ− λk+1‖2 + ‖λk − λk+1‖2
]

. (53)

In addition, we write rk = rk − rk+1 + rk+1 = rk+1 −A(xk+1 − xk) and have

〈

Axk+1 − b,−βkr
k
〉

= − βk‖r
k+1‖2 + βk

〈

A(xk+1 − x), A(xk+1 − xk)
〉

(6)
= − βk‖r

k+1‖2 +
βk
2

[

‖A(xk+1 − x)‖2 − ‖A(xk − x)‖2 + ‖A(xk+1 − xk)‖2
]

(54)

Substituting (53) and (54) into (52) gives the inequality in (8).

A.2 Proof of Theorem 2.2

First, we have

t
∑

k=1

k + k0 + 1

2ρk

[

‖λ− λk‖2 − ‖λ− λk+1‖2
]

=
k0 + 2

2ρ1
‖λ− λ1‖2 −

t+ k0 + 1

2ρt
‖λ− λt+1‖2 +

t
∑

k=2

(

k + k0 + 1

2ρk
−
k + k0
2ρk−1

)

‖λ− λk‖2

(10)

≤
k0 + 2

2ρ1
‖λ− λ1‖2. (55)

24

In addition,

−

t
∑

k=1

k + k0 + 1

2

(

‖xk+1 − x‖2Pk−βkA>A+µI − ‖x
k − x‖2Pk−βkA>A

)

=
k0 + 2

2
‖x1 − x‖2P 1−β1A>A −

t+ k0 + 1

2
‖xt+1 − x‖2P t−βtA>A+µI

+
1

2

t
∑

k=2

(

(k + k0 + 1)‖xk − x‖2Pk−βkA>A − (k + k0)‖x
k − x‖2Pk−1−βk−1A>A+µI

)

(11)

≤
k0 + 2

2
‖x1 − x‖2P 1−β1A>A −

t+ k0 + 1

2
‖xt+1 − x‖2P t−βtA>A+µI . (56)

Now multiplying k+ k0 + 1 to both sides of (8) and adding it over k, we obtain (12) by using (55)

and (56), and noting ‖λk − λk+1‖2 = ρ2k‖r
k+1‖2 and ‖xk+1 − xk‖2

Pk−βkA>A−Lf I
≥ 0.

A.3 Proof of Theorem 2.3

From the choice of k0 and the condition P − βA>A � µ
2 I, it is not difficult to verify

(k + k0 + 1)
[

kP − kβA>A+ LfI
]

� (k + k0)
[

(k − 1)P − (k − 1)βA>A+ (Lf + µ)I
]

, ∀k ≥ 1.

Hence, the condition in (11) holds. In addition, it is easy to see that all conditions in (9) and (10)

also hold. Therefore, we have (12), which, by taking parameters in (14) and x = x∗, reduces to

t
∑

k=1

(k + k0 + 1)Φ(xk+1, x∗, λ) +

t
∑

k=1

k(k + k0 + 1)

2
β‖rk+1‖2

+
t+ k0 + 1

2
‖xt+1 − x∗‖2t(P−βA>A)+(Lf+µ)I ≤ φ1(x

∗, λ), (57)

where we have used the fact λ1 = 0.

Letting λ = λ∗, we have from (5) and (57) that (by dropping nonnegative Φ(xk+1, x∗, λ∗)’s):

t(t+ k0 + 1)

2
β‖rt+1‖2 +

t+ k0 + 1

2
‖xt+1 − x∗‖2t(P−βA>A)+(Lf+µ)I ≤ φ1(x

∗, λ∗),

which indicates (15). In addition, from the convexity of F and (57), we have that for any λ, it

holds t(t+2k0+3)
2 Φ(x̄t+1, x∗, λ) ≤ φ1(x

∗, λ), which together with Lemmas 1.2 and 1.3 implies (16).

B Technical proofs: Section 3

In this section, we give the proofs of the lemmas and theorems in section 3.

25

B.1 Proof of Lemma 3.1

From the update in (17a), we have the optimality condition:

∇Sk
f(xk)−A>

Sk
(λk − βkr

k) + ∇̃gSk
(xk+1

Sk
) + ηk(x

k+1
Sk
− xkSk

) = 0. (58)

It follows from the update rule of λ that

−〈Axk+1 − b, λk〉 = −〈Axk+1 − b, λk+1〉 − ρk‖r
k+1‖2.

Plugging (54) and the above equation into (45) with S = Sk, λ
o = λk, β = βk, x

o = xk, x+ = xk+1,

W = ηkI, and x satisfying Ax = b, we have the desired result by taking expectation and recalling

the definition of ∆ in (2) and Φ in (3).

B.2 Proof of Theorem 3.2

Let βk = β, ρk = ρ and ηk = η in (19), and also note µ = 0 and η ≥ Lm + β‖A‖2. We have

E

[

Φ(xk+1, x, λk+1) + (β − ρ)‖rk+1‖2
]

≤ (1− θ)E
[

Φ(xk, x, λk) + β‖rk‖2
]

−
1

2
E

[

‖xk+1 − x‖2ηI−βA>A − ‖x
k − x‖2ηI−βA>A

]

.

Summing the above inequality over k = 1 through t and noting ρ ≤ θβ give

E
[

Φ(xt+1, x, λt+1) + (β − ρ)‖rt+1‖2
]

+ θ
t−1
∑

k=1

EΦ(xk+1, x, λk+1) (59)

≤ (1− θ)E
[

Φ(x1, x, λ1) + β‖r1‖2
]

+
1

2
‖x1 − x‖2ηI−βA>A.

By the update of λ, it follows that

θ

t−1
∑

k=1

Φ(xk+1, x, λk+1) = θ

t−1
∑

k=1

[

Φ(xk+1, x, λ) +
1

ρ
〈λk+1 − λ, λk+1 − λk〉

]

= θ
t−1
∑

k=1

Φ(xk+1, x, λ) +
θ

2ρ

t−1
∑

k=1

[

‖λk+1 − λ‖2 − ‖λk − λ‖2 + ‖λk+1 − λk‖2
]

= θ
t−1
∑

k=1

Φ(xk+1, x, λ) +
θ

2ρ

[

‖λt − λ‖2 − λ1 − λ‖2 +
t−1
∑

k=1

‖λk+1 − λk‖2

]

(60)

and

Φ(xt+1, x, λt+1) = Φ(xt+1, x, λ)− 〈λt − λ− ρrt+1, rt+1〉

= Φ(xt+1, x, λ)− 〈λt − λ, rt+1〉+ ρ‖rt+1‖2. (61)

26

Since ρ ≤ θβ, by Young’s inequality, it holds

β‖rt+1‖2 − 〈λt − λ, rt+1〉+
θ

2ρ
‖λt − λ‖2 ≥ 0.

Then plugging (60) and (61) into (59), we have

EΦ(xt+1, x, λ) + θ
t−1
∑

k=1

EΦ(xk+1, x, λ)

≤ (1− θ)E
[

Φ(x1, x, λ1) + β‖r1‖2
]

+
1

2
‖x1 − x‖2ηI−βA>A +

θ

2ρ
E‖λ1 − λ‖2

≤ Eφ2(x, λ), (62)

where in the last inequality we have used λ1 = 0, θ > 0 and ‖r1‖2 = ‖x1 − x‖2
βA>A

.

Therefore, from the convexity of F , it follows that EΦ(x̄t, x∗, λ) ≤ 1
1+θ(t−1)Eφ2(x

∗, λ), ∀λ, and we

obtain the desired result from Lemmas 1.2 and 1.3.

B.3 Proof of Theorem 3.3

We first establish a few inequalities below.

Proposition B.1 If (21e), (21f) and (21g) hold, then

−

t
∑

k=1

(k + k0 + 1)E

[

∆ηkI−βkA>A(x
k+1, xk, x)−

Lm

2
‖xk+1 − xk‖2

]

−
µ(t+ k0 + 1)

2
E‖xt+1 − x‖2 −

t
∑

k=2

µ
(

θ(k + k0 + 1)− 1
)

2
E‖xk − x‖2

≤
η1(k0 + 2)

2
E‖x1 − x‖2 −

(t+ k0 + 1)

2
E‖xt+1 − x‖2(µ+ηt)I−βtA>A. (63)

Proof. This inequality can be easily shown by noting that for any 1 ≤ k ≤ t, the weight matrix of
1
2‖x

k+1 − xk‖2 is βk(k + k0 + 1)A>A− (k + k0 + 1)(ηk −Lm)I, which is negative semidefinite, and

for any 2 ≤ k ≤ t, the weight matrix of 1
2‖x

k − x‖2 is

[

βk−1(k + k0)− βk(k + k0 + 1)
]

A>A+
[

(k + k0 + 1)ηk − (k + k0)ηk−1 − µ
(

θ(k + k0 + 1)− 1
)]

I,

which is also negative semidefinite. �

Proposition B.2 If (21a), (21c) and (21d) hold, then

−
t+ k0 + 1

ρt
E∆(λt+1, λt, λ)−

t
∑

k=2

θ(k + k0 + 1)− 1

ρk−1
E∆(λk, λk−1, λ)

≤
θ(k0 + 3)− 1

2ρ1
E‖λ1 − λ‖2. (64)

27

Proof. On the left hand side of (64), the coefficient of each 1
2‖λ

k+1 − λk‖2 is negative. For

2 ≤ k ≤ t− 1, the coefficient of 1
2‖λ

k − λ‖2 is θ(k+k0+2)−1
ρk

− θ(k+k0+1)−1
ρk−1

, which is nonpositive; the

coefficient of 1
2‖λ

t−λ‖2 is t+k0+1
ρt
− θ(t+k0+1)−1

ρt−1
, which is nonpositive; the coefficient of 1

2‖λ
t+1−λ‖2

is also nonpositive. Hence, dropping these nonpositive terms, we have the desired result. �

Now we are ready to prove Theorem 3.3.

Proof. [of Theorem 3.3]

Multiplying k+ k0 + 1 to both sides of (19), summing it up from k = 1 through t, and moving the

terms about Φ(xk, x, λk) + µ
2‖x

k − x‖2 and ‖rk‖2 to the left hand side for 2 ≤ k ≤ t give

(t+ k0 + 1)E
[

Φ(xt+1, x, λt+1) + (βt − ρt)‖r
t+1‖2 +

µ

2
‖xt+1 − x‖2

]

+

t
∑

k=2

(

θ(k + k0 + 1)− 1
)

E

[

Φ(xk, x, λk) +
µ

2
‖xk − x‖2

]

+

t
∑

k=2

(

(βk−1 − ρk−1)(k + k0)− (1− θ)(k + k0 + 1)βk
)

E‖rk‖2

≤ (1− θ)(k0 + 2)E
[

Φ(x1, x, λ1) + β1‖r
1‖2 +

µ

2
‖x1 − x‖2

]

(65)

−
t
∑

k=1

(k + k0 + 1)E

[

∆ηkI−βkA>A(x
k+1, xk, x)−

Lm

2
‖xk+1 − xk‖2

]

.

Hence, from (21b) and (63), it follows that

(t+ k0 + 1)EΦ(xt+1, x, λt+1) +
t
∑

k=2

(

θ(k + k0 + 1)− 1
)

EΦ(xk, x, λk)

≤ (1− θ)(k0 + 2)E
[

Φ(x1, x, λ1) + β1‖r
1‖2 +

µ

2
‖x1 − x‖2

]

+
η1(k0 + 2)

2
E‖x1 − x‖2 −

t+ k0 + 1

2
E‖xt+1 − x‖2(µ+ηt)I−βtA>A.

(66)

In addition, from the update of λ in (17c), we have

〈λk+1 − λ,Axk+1 − b〉 = −
1

ρk
〈λk+1 − λ, λk+1 − λk〉 = −

1

ρk
∆(λk+1, λk, λ), (67)

and thus

(t+ k0 + 1)E〈λt+1 − λ,Axt+1 − b〉+
t
∑

k=2

(

θ(k + k0 + 1)− 1
)

E〈λk − λ,Axk − b〉

= −
t+ k0 + 1

ρt
E∆(λt+1, λt, λ)−

t
∑

k=2

θ(k + k0 + 1)− 1

ρk−1
E∆(λk, λk−1, λ)

(64)

≤
θ(k0 + 3)− 1

2ρ1
E‖λ1 − λ‖2.

28

Since Φ(xk, x, λ) = Φ(xk, x, λk) + 〈λk − λ,Axk − b〉, we obtain the desired result by adding the

above inequality to (66). �

B.4 Proof of Proposition 3.4

Note that (24) implies k0 ≥
4
θ
, and thus (21a) must hold. Also, it is easy to see that (21d) holds

with equality from the second equation of (23b). Since I � A>A
‖A‖22

, we can easily have (21f) by

plugging in βk and ηk defined in (23a) and (23c) respectively.

To verify (21c), we plug in ρk defined in the first equation of (23b), and it is equivalent to requiring

that for any 2 ≤ k ≤ t− 1

θ(k + k0 + 1)− 1

θ(k − 1) + 2 + θ
≥
θ(k + k0 + 2)− 1

θk + 2 + θ
⇐⇒ 1 +

θ(k0 + 1)− 3

θk + 2
≥ 1 +

θ(k0 + 1)− 3

θk + 2 + θ
.

The inequality on the right hand side obviously holds, and thus we have (21c).

Plugging in the formula of βk, (21e) is equivalent to

(θk + 2 + θ)(k + k0 + 1) ≥ (θk + 2)(k + k0),

which holds trivially, and thus (21e) follows.

With the given βk and ρk, (21b) becomes 6
6−5θ (θk+2)(k+k0) ≥ (k+k0+1)(θk+2+θ), ∀2 ≤ k ≤ t,

which is equivalent to 6
6−5θ ≥

(k0+3)(3θ+2)
(k0+2)(2θ+2) . Note that k0+3

k0+2 is decreasing with respect to k0 ≥ 0 and

also 6
6−5θ ≥

(3
θ
+3)(3θ+2)

(3
θ
+2)(2θ+2)

. Hence, (21b) is satisfied from the fact k0 ≥
4
θ
.

Finally, we show (21g). Plugging in ηk, we have that (21g) becomes

(k + k0)
(µ

2
(θk + 2) + Lm

)

+ µ
(

θ(k + k0 + 1)− 1
)

≥ (k + k0 + 1)
(µ

2
(θk + 2 + θ) + Lm

)

, ∀k ≥ 2,

which is equivalent to k0 + 1 ≥ 4
θ
+ 2Lm

θµ
. Hence, for k0 given in (24), (21g) must hold. Therefore,

we have verified all conditions in (21).

B.5 Proof of Theorem 3.5

From Proposition 3.4, we have the inequality in (22) that, as λ1 = 0, reduces to

(t+ k0 + 1)EΦ(xt+1, x, λ) +

t
∑

k=2

(

θ(k + k0 + 1)− 1
)

EΦ(xk, x, λ)

≤ φ3(x, λ)−
t+ k0 + 1

2
E‖xt+1 − x‖2(µ+ηt)I−βtA>A. (68)

29

For ρ ≥ 1, we have

(µ+ ηt)I − βtA
>A �

(

(ρ− 1)µ

2ρ
(θt+ θ + 2) + µ+ Lm

)

I. (69)

Letting x = x∗ and using the convexity of F , we have from (68) and the above inequality that

E
[

F (x̄t+1)− F (x∗)−
〈

λ,Ax̄t+1 − b
〉]

≤
1

T
Eφ3(x

∗, λ), ∀λ, (70)

which together with Lemmas 1.2 and 1.3 with γ = max(2‖λ∗‖, 1 + ‖λ∗‖) indicates (25).

In addition, note

Φ(xt+1, x∗, λ∗) ≥
µ

2
‖xt+1 − x∗‖2.

Hence, letting (x, λ) = (x∗, λ∗) in (68) and using (5), we have from (69) that

t+ k0 + 1

2

(

(ρ− 1)µ

2ρ
(θt+ θ + 2) + 2µ+ Lm

)

E‖xt+1 − x∗‖2 ≤ φ3(x
∗, λ∗), (71)

and the proof is completed.

C Technical proofs: Section 4

In this section, we provide the proofs of the lemmas and theorems in section 4.

C.1 Proof of Lemma 4.1

Note rk+1 − rk = A(xk+1 − xk) +B(yk+1 − yk). Hence by (6), we have

〈

A(xk+1 − x),−βrk
〉

= − β
〈

A(xk+1 − x), rk+1
〉

+ β
〈

A(xk+1 − x), B(yk+1 − yk)
〉

+
β

2

[

‖A(xk+1 − x)‖2 − ‖A(xk − x)‖2 + ‖A(xk+1 − xk)‖2
]

.
(72)

In addition, 〈A(xk+1−x), λk〉 = 〈A(xk+1−x), λk+1+ ρrk+1〉. Plugging this equation and (72) into

(45) with xo = xk, λo = λk, x+ = xk+1,W = ηxI and taking expectation yield

E

[

F (xk+1)− F (x) +
µ

2
‖xk+1 − x‖2 −

〈

A(xk+1 − x), λk+1
〉

+ (β − ρ)
〈

A(xk+1 − x), rk+1
〉

]

+
1

2
E

[

‖xk+1 − x‖2P − ‖x
k − x‖2P + ‖xk+1 − xk‖2P−LmI

]

≤ (1− θ)E
[

F (xk)− F (x) +
µ

2
‖xk − x‖2 −

〈

A(xk − x), λk − βrk
〉

]

(73)

+ βE
〈

A(xk+1 − x), B(yk+1 − yk)
〉

,

where P = ηxI − βA
>A.

30

From (30), the optimality condition for ỹk+1 is

∇h(ỹk+1)−B>λk + βB>rk+
1
2 + ηy(ỹ

k+1 − yk) = 0. (74)

Since Prob(yk+1 = ỹk+1) = θ, Prob(yk+1 = yk) = 1− θ, we have

E

〈

yk+1 − y,∇h(yk+1)−B>λk + βB>rk+
1
2 + ηy(y

k+1 − yk)
〉

= (1− θ)E
〈

yk − y,∇h(yk)−B>λk + βB>rk+
1
2

〉

,

or equivalently,

E

〈

yk+1 − y,∇h(yk+1)−B>λk+1 + (β − ρ)B>rk+1 − βB>B(yk+1 − yk) + ηy(y
k+1 − yk)

〉

= (1− θ)E
〈

yk − y,∇h(yk)−B>λk + βB>rk
〉

+ β(1− θ)E
〈

B(yk − y), A(xk+1 − xk)
〉

. (75)

Recall Q = ηyI − βB
>B. We have

〈

yk+1 − y,−βB>B(yk+1 − yk) + ηy(y
k+1 − yk)

〉

=
1

2

[

‖yk+1 − y‖2Q − ‖y
k − y‖2Q + ‖yk+1 − yk‖2Q

]

.

Therefore adding (75) to (73), noting Ax + By = b, and plugging (67) with ρk = ρ, we have the

desired result.

C.2 Proof of Theorem 4.2

Before proving Theorem 4.2, we establish a few inequalities. First, using Young’s inequality, we

have the following results.

Lemma C.1 For any τ1, τ2 > 0, it holds that

〈A(xk+1 − x∗), B(yk+1 − yk)〉 ≤
1

2τ1
‖A(xk+1 − x∗)‖2 +

τ1
2
‖B(yk+1 − yk)‖2, (76)

〈B(yk − y∗), A(xk+1 − xk)〉 ≤
1

2τ2
‖B(yk − y∗)‖2 +

τ2
2
‖A(xk+1 − xk)‖2. (77)

In addition, we are able to bound the λ-term by y-term and the residual r. The proofs are given

in Appendix C.4 and C.5.

Lemma C.2 For any δ > 0, we have

E‖B>(λk+1 − λ∗)‖2 − (1− θ)(1 + δ)E‖B>(λk − λ∗)‖2

≤ 4E
[

L2
h‖y

k+1 − y∗‖2 + ‖Q(yk+1 − yk)‖2
]

+ 2(β − ρ)2E‖B>rk+1‖2 (78)

+2ρ2(1− θ)(1 +
1

δ
)E
[

‖B>rk+1‖2 + ‖B>B(yk+1 − yk)‖2
]

.

31

Lemma C.3 Assume (38). Then

σmin(BB
>)

2

[

‖λk+1 − λ∗‖2 − (1− θ)‖λk − λ∗‖2 +
1

θ
‖λk+1 − λk‖2

]

≤ ‖B>(λk+1 − λ∗)‖2 − (1− θ)(1 + δ)‖B>(λk − λ∗)‖2 + κ‖B>(λk+1 − λk)‖2, (79)

where σmin(BB
>) denotes the smallest singular value of BB>.

Lemma C.4 Let c, δ, τ1, τ2 and κ be constants satisfying the conditions in Theorem 4.2. Then

βE
〈

A(xk+1 − x∗), B(yk+1 − yk)
〉

+ β(1− θ)E
〈

B(yk − y∗), A(xk+1 − xk)
〉

+
c

2
σmin(BB

>)E
[

‖λk+1 − λ∗‖2 − (1− θ)‖λk − λ∗‖2 +
1

θ
‖λk+1 − λk‖2

]

≤
1

2
E‖xk+1 − xk‖2P−LmI +

β

2τ1
E‖A(xk+1 − x∗)‖2 (80)

+
1

2
E‖yk+1 − yk‖2Q +

β(1− θ)

2τ2
E‖B(yk − y∗)‖2 + 4cL2

hE‖y
k+1 − y∗‖2

+

[

cρ2
(

κ+ 2(1− θ)
(

1 +
1

δ

)

)

+ 2c(β − ρ)2
]

E‖B>rk+1‖2.

Now we are ready to show Theorem 4.2.

Proof. [of Theorem 4.2]

Letting (x, y, λ) = (x∗, y∗, λ∗) in (34), plugging (32) into it, and noting Ax∗ +By∗ = b, we have

EΨ(zk+1, z∗) + (β − ρ)E‖rk+1‖2 + E

[

∆P (x
k+1, xk, x∗)−

Lm

2
‖xk+1 − xk‖2

]

+E∆Q(y
k+1, yk, y∗) +

µ

2
E‖xk+1 − x∗‖2 +

1

ρ
E∆(λk+1, λk, λ∗)

≤ (1− θ)EΨ(zk, z∗) + β(1− θ)E‖rk‖2 +
1− θ

ρ
E∆(λk, λk−1, λ∗) +

µ(1− θ)

2
E‖xk − x∗‖2

+βE
〈

A(xk+1 − x∗), B(yk+1 − yk)
〉

+ β(1− θ)E
〈

B(yk − y∗), A(xk+1 − xk)
〉

, (81)

where Ψ is defined in (36). Note

1

ρ
∆(λk+1, λk, λ∗)

=
1

2ρ

[

‖λk+1 − λ∗‖2 − (1− θ)‖λk − λ∗‖2 +
1

θ
‖λk+1 − λk‖2

]

−
ρ

2
(
1

θ
− 1)‖rk+1‖2 −

θ

2ρ
‖λk − λ∗‖2,

and

1− θ

ρ
∆(λk, λk−1, λ∗)

=
1

2ρ

[

‖λk − λ∗‖2 − (1− θ)‖λk−1 − λ∗‖2 +
1

θ
‖λk − λk−1‖2

]

−
ρ

2
(
1

θ
− (1− θ))‖rk‖2 −

θ

2ρ
‖λk − λ∗‖2.

32

Adding (80) to (81) and plugging the above two equations yield

EΨ(zk+1, z∗) + (β − ρ)E‖rk+1‖2 + E

[

∆P (x
k+1, xk, x∗)−

Lm

2
‖xk+1 − xk‖2

]

+E∆Q(y
k+1, yk, y∗) +

µ

2
E‖xk+1 − x∗‖2 −

ρ

2
(
1

θ
− 1)E‖rk+1‖2 −

θ

2ρ
E‖λk − λ∗‖2

+

(

1

2ρ
+
c

2
σmin(BB

>)

)

E
[

‖λk+1 − λ∗‖2 − (1− θ)‖λk − λ∗‖2 +
1

θ
‖λk+1 − λk‖2

]

≤ (1− θ)EΨ(zk, z∗) + β(1− θ)E‖rk‖2 −
ρ

2
(
1

θ
− (1− θ))E‖rk‖2 −

θ

2ρ
E‖λk − λ∗‖2

+
1

2ρ
E
[

‖λk − λ∗‖2 − (1− θ)‖λk−1 − λ∗‖2 +
1

θ
‖λk − λk−1‖2

]

+
µ(1− θ)

2
E‖xk − x∗‖2 +

1

2
E‖xk+1 − xk‖2P−LmI +

β

2τ1
E‖A(xk+1 − x∗)‖2

+
1

2
E‖yk+1 − yk‖2Q +

β(1− θ)

2τ2
E‖B(yk − y∗)‖2 + 4cL2

hE‖y
k+1 − y∗‖2

+

[

cρ2
(

κ+ 2(1− θ)
(

1 +
1

δ

)

)

+ 2c(β − ρ)2
]

E‖B>rk+1‖2.

Using the definition in (2) to expand ∆P (x
k+1, xk, x∗) and ∆Q(y

k+1, yk, y∗) in the above inequality,

and then rearranging terms, we have

EΨ(zk+1, z∗) +

(

(β − ρ)−
ρ

2
(
1

θ
− 1)

)

E‖rk+1‖2

−

[

cρ2
(

κ+ 2(1− θ)
(

1 +
1

δ

)

)

+ 2c(β − ρ)2
]

E‖B>rk+1‖2

+E

[

1

2
‖xk+1 − x∗‖2P +

µ

2
‖xk+1 − x∗‖2 −

β

2τ1
‖A(xk+1 − x∗)‖2

]

+E

[

1

2
‖yk+1 − y∗‖2Q − 4cL2

h‖y
k+1 − y∗‖2

]

+

(

1

2ρ
+
c

2
σmin(BB

>)

)

E
[

‖λk+1 − λ∗‖2 − (1− θ)‖λk − λ∗‖2 +
1

θ
‖λk+1 − λk‖2

]

≤ (1− θ)EΨ(zk, z∗) + β(1− θ)E‖rk‖2 −
ρ

2
(
1

θ
− (1− θ))E‖rk‖2 +

1

2
E‖xk − x∗‖2P

+
µ(1− θ)

2
E‖xk − x∗‖2 +

1

2
E‖yk − y∗‖2Q +

β(1− θ)

2τ2
E‖B(yk − y∗)‖2

+
1

2ρ
E
[

‖λk − λ∗‖2 − (1− θ)‖λk−1 − λ∗‖2 +
1

θ
‖λk − λk−1‖2

]

. (82)

Since ρ = θβ, it holds

(β − ρ)−
ρ

2
(
1

θ
− 1) =

β − ρ

2
, β(1− θ)−

ρ

2
(
1

θ
− (1− θ)) ≤

β(1− θ)

2
,

and thus the inequality (82) implies

EΨ(zk+1, z∗) +
β − ρ

2
E‖rk+1‖2 −

[

cρ2
(

κ+ 2(1− θ)
(

1 +
1

δ

)

)

+ 2c(β − ρ)2
]

E‖B>rk+1‖2

33

+E

[

1

2
‖xk+1 − x∗‖2P +

µ

2
‖xk+1 − x∗‖2 −

β

2τ1
‖A(xk+1 − x∗)‖2

]

+E

[

1

2
‖yk+1 − y∗‖2Q − 4cL2

h‖y
k+1 − y∗‖2

]

+

(

1

2ρ
+
c

2
σmin(BB

>)

)

E
[

‖λk+1 − λ∗‖2 − (1− θ)‖λk − λ∗‖2 +
1

θ
‖λk+1 − λk‖2

]

≤ ψ(zk, z∗;P,Q, β, ρ, c, τ2), (83)

where ψ is defined in (37).

From (33), it follows that

(1− α)Ψ(zk+1, z∗) +
αµ

2
‖xk+1 − x∗‖2 + αν‖yk+1 − y∗‖2 ≤ Ψ(zk+1, z∗). (84)

In addition, note that

‖rk+1‖2 = ‖Axk+1 +Byk+1 − (Ax∗ +By∗)‖2

≤ 2‖A‖22‖x
k+1 − x∗‖2 + 2‖B‖22‖y

k+1 − y∗‖2

≤ γ
(αµ

4
‖xk+1 − x∗‖2 +

αν

4
‖yk+1 − y∗‖2

)

,

and thus
1

γ
‖rk+1‖2 ≤

αµ

4
‖xk+1 − x∗‖2 +

αν

4
‖yk+1 − y∗‖2. (85)

Adding (84) and (85) to (83) gives the desired result. �

C.3 Proof of Theorem 4.3

From 0 < α < θ, the full row-rankness of B, and the conditions in (41), it is easy to see that η > 1.

Next we find lower bounds of the terms on the left hand of (40). Since η ≤ 1−α
1−θ

, we have

η(1− θ)Ψ(zk+1, z∗) ≤ (1− α)Ψ(zk+1, z∗). (86)

Note ‖A‖2 ≤ 1 and

(

αµ

2
+ µ−

β

τ1

)

I �

αµ
2 + θµ− β

τ1

ηx + µ(1− θ)
(ηxI − βA

>A) +

αµ
2 + θµ− β

τ1

ηx + µ(1− θ)
µ(1− θ)I + µ(1− θ)I.

Hence, from η ≤ 1 +
αµ
2
+θµ− β

τ1
ηx+µ(1−θ) and P = ηxI − βA

>A, it follows that

η‖xk+1 − x∗‖2P+µ(1−θ)I ≤ ‖x
k+1 − x∗‖2

P+(αµ
2
+µ)I− β

τ1
A>A

. (87)

Similarly, since

(

3αν

2
− 8cL2

h

)

I �
3αν
2 − 8cL2

h −
β(1−θ)

τ2

ηy +
β(1−θ)

τ2

(ηyI−βB
>B)+

3αν
2 − 8cL2

h −
β(1−θ)

τ2

ηy +
β(1−θ)

τ2

β(1− θ)

τ2
I+

β(1− θ)

τ2
I,

34

Q = ηyI − βB
>B, and B>B � I, we have

η‖yk+1 − y∗‖2
Q+

β(1−θ)
τ2

B>B
≤ ‖yk+1 − y∗‖2

Q+(3αν
2

−8cL2
h
)I
. (88)

For the r-term, we note from the definition of η that

η
β(1− θ)

2
≤
(β(1− θ)

2
+

1

γ

)

−

(

cρ2
(

κ+ 2(1− θ)(1 +
1

δ
)
)

+ 2c(β − ρ)2
)

.

In addition, since ‖B‖2 ≤ 1, it holds ‖B>rk+1‖ ≤ ‖rk+1‖, and thus

η
β(1− θ)

2
‖rk+1‖2 ≤

(β(1− θ)

2
+
1

γ

)

‖rk+1‖2−

(

cρ2
(

κ+ 2(1− θ)(1 +
1

δ
)
)

+ 2c(β − ρ)2
)

‖B>rk+1‖2.

(89)

Finally, it is obvious to have

η

2ρ

[

‖λk+1 − λ∗‖2 − (1− θ)‖λk − λ∗‖2 +
1

θ
‖λk+1 − λk‖2

]

≤

(

1

2ρ
+
c

2
σmin(BB

>)

)[

‖λk+1 − λ∗‖2 − (1− θ)‖λk − λ∗‖2 +
1

θ
‖λk+1 − λk‖2

]

.

(90)

Therefore, we obtain (42) by the definition of ψ and adding (86) through (90).

C.4 Proof of Lemma C.2

Let λ̃k+1 = λk − ρ(Axk+1 +Bỹk+1 − b). Then from the update of y, we have

E‖B>(λk+1 − λ∗)‖2

= θE‖B>(λ̃k+1 − λ∗)‖2 + (1− θ)E‖B>(λk − λ∗ − ρ(Axk+1 +Byk − b))‖2.
(91)

Below we bound the two terms on the right hand side of (91). First, the definition of λ̃k+1 together

with (74) implies

B>λ̃k+1 = ∇h(ỹk+1) +Q(ỹk+1 − yk) + (β − ρ)B>(Axk+1 +Bỹk+1 − b). (92)

Hence, by the Young’s inequality and the condition in (32b), we have

θE‖B>(λ̃k+1 − λ∗)‖2

≤ 2θE‖∇h(ỹk+1)−∇h(y∗) +Q(ỹk+1 − yk)‖2 + 2θ(β − ρ)2E‖B>(Axk+1 +Bỹk+1 − b)‖2.
(93)

Since Prob(yk+1 = ỹk+1) = θ and Prob(yk+1 = yk) = 1− θ, it follows that

E‖∇h(yk+1)−∇h(y∗) +Q(yk+1 − yk)‖2

= θE‖∇h(ỹk+1)−∇h(y∗) +Q(ỹk+1 − yk)‖2 + (1− θ)E‖∇h(yk)−∇h(y∗)‖2,

35

and thus

θE‖∇h(ỹk+1)−∇h(y∗) +Q(ỹk+1 − yk)‖2 ≤ E‖∇h(yk+1)−∇h(y∗) +Q(yk+1 − yk)‖2.

Similarly,

θ(β − ρ)2E‖B>(Axk+1 +Bỹk+1 − b)‖2 ≤ (β − ρ)2E‖B>(Axk+1 +Byk+1 − b)‖2.

Plugging the above two equations into (93) and applying the Young’s inequality and also the

Lipschitz continuity of ∇h give

θE‖B>(λ̃k+1 − λ∗)‖2 ≤ 4E
[

L2
h‖y

k+1 − y∗‖2 + ‖Q(yk+1 − yk)‖2
]

+ 2(β − ρ)2E‖B>rk+1‖2. (94)

In addition, from the Young’s inequality, it follows for any δ > 0 that

‖B>(λk−λ∗−ρ(Axk+1+Byk−b))‖2 ≤ (1+δ)‖B>(λk−λ∗)‖2+ρ2(1+
1

δ
)‖B>(Axk+1+Byk−b)‖2.

Note ‖B>(Axk+1 + Byk − b)‖2 ≤ 2‖B>rk+1‖2 + 2‖B>B(yk+1 − yk)‖2. Therefore, plugging (94)

and the above two inequalites into (91), we complete the proof.

C.5 Proof of Lemma C.3

It is straightforward to verify

‖B>(λk+1 − λ∗)‖2 − (1− θ)(1 + δ)‖B>(λk − λ∗)‖2 + κ‖B>(λk+1 − λk)‖2

=

[

λk+1 − λ∗

λk+1 − λk

]> [

(1− (1− θ)(1 + δ)) (1− θ)(1 + δ)

(1− θ)(1 + δ) (κ− (1− θ)(1 + δ))

]

⊗BB>

[

(λk+1 − λ∗)

(λk+1 − λk)

]

,

and

[

λk+1 − λ∗

λk+1 − λk

]> [

θ (1− θ)

(1− θ) (1
θ
− (1− θ))

]

⊗ I

[

λk+1 − λ∗

λk+1 − λk

]

=

[

‖λk+1 − λ∗‖2 − (1− θ)‖λk − λ∗‖2 +
1

θ
‖λk+1 − λk‖2

]

.

Hence, we have the desired result from (38) and the inequality U ⊗V � σmin(V)U ⊗ I for any PSD

matrices U and V .

C.6 Proof of Lemma C.4

From (39a) and (39b), we have

β(1− θ)
τ2
2
‖A(xk+1 − xk)‖2 ≤

1

2
‖xk+1 − xk‖2P−LmI ,

36

and

4c‖Q(yk+1 − yk)‖2 + 2cρ2(1− θ)(1 +
1

δ
)‖B>B(yk+1 − yk)‖2 +

βτ1
2
‖B(yk+1 − yk)‖2

≤
1

2
‖yk+1 − yk‖2Q.

The desired result is then obtained by adding the above two inequalities together with β times of

(76), β(1− θ) times of (77), c times of both (78) and (79), and also noting λk+1 − λk = −ρrk+1.

37

	Introduction
	Related methods
	Contributions of this paper
	Nomenclature and basic facts

	Accelerated proximal Jacobian ADMM
	Technical assumptions
	Convergence results

	Accelerating randomized primal-dual block coordinate updates
	The algorithm
	Convergence results

	Linearly convergent primal-dual method
	Technical assumptions
	Convergence analysis

	Numerical experiments
	Conclusions
	Technical proofs: Section 2
	Proof of Lemma 2.1
	Proof of Theorem 2.2
	Proof of Theorem 2.3

	Technical proofs: Section 3
	Proof of Lemma 3.1
	Proof of Theorem 3.2
	Proof of Theorem 3.3
	Proof of Proposition 3.4
	Proof of Theorem 3.5

	Technical proofs: Section 4
	Proof of Lemma 4.1
	Proof of Theorem 4.2
	Proof of Theorem 4.3
	Proof of Lemma C.2
	Proof of Lemma C.3
	Proof of Lemma C.4

