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Abstract— High-dimensional data contain not only redundancy
but also noises produced by the sensors. These noises are usually
non-Gaussian distributed. The metrics based on Euclidean dis-
tance are not suitable for these situations in general. In order to
select the useful features and combat the adverse effects of the
noises simultaneously, a robust sparse subspace learning method
in unsupervised scenario is proposed in this paper based on the
maximum correntropy criterion that shows strong robustness
against outliers. Furthermore, an iterative strategy based on
half quadratic and an accelerated block coordinate update is
proposed. The convergence analysis of the proposed method is
also carried out to ensure the convergence to a reliable solution.
Extensive experiments are conducted on real-world data sets
to show that the new method can filter out the outliers and
outperform several state-of-the-art unsupervised feature selection
methods.

Index Terms— Machine learning, feature selection, maximum
correntropy criterion (MCC), sparse subspace learning.

I. INTRODUCTION

IN PATTERN recognition and computer vision, the dimen-
sionality of the training data increases continuously.

Although high dimensional data contain more useful infor-
mation [1], they not only increase computation and memory
requirements but also cause the performance degradation due
to much redundancy and noises. Therefore, dimensionality
reduction becomes a fundamental and important approach to
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preprocess data before performing certain learning tasks such
as clustering and classification.

Generally speaking, dimensionality reduction approaches
can be divided into two categories: feature selection and
subspace learning. Feature selection aims to select a subset
of relevant features and meanwhile to remove irrelevant and
redundant ones out of data (e.g. [2]–[4]), while subspace
learning aims to learn a transformation matrix to map the
original high-dimensional data into a lower-dimensional rep-
resentation (e.g. [5]–[7]). Although the two approaches are
quite different, some efforts are directed to combine them into
a unified framework, especially in unsupervised feature selec-
tion (e.g. [8]–[12]). The basic idea is to use a transformation
matrix of linear subspace learning to guide the feature selec-
tion process. Cai et al. [8] regarded the unsupervised feature
selection as a spectral sparse subspace learning problem and
proposed the Multi-Cluster Feature Selection (MCFS) method.
The MCFS method utilizes the �1-norm to constrain the
transformation matrix, which may lead to poor interpretability
of the model in selecting features. Gu et al. [9] utilize the �21-
norm to replace the �1-norm to improve the interpretability of
MCFS method. Because the �21-norm can enforce the row-
sparsity of transformation matrix, the irrelevant features are
corresponding to the zero-rows of the transformation matrix.
Wang et al. [10] applied a global regression subspace learning
with orthogonality constraint to deal with unsupervised fea-
ture selection and proposed the Matrix Factorization Feature
Selection (MFFS) method. However, as mentioned in [13],
the orthogonality constraint may limit its practicality, since in
practice, feature weight vectors are not necessarily orthogonal
to each other. For this reason, Zhou et al. [11] improved the
MFFS method by replacing the orthogonality constraint with
a row sparsity constraint and introducing a local structure
in the model, and proposed the Global and Local Structure
Preserving Sparse Subspace Learning (GLoSS) method for
unsupervised feature selection . In both MFFS and GLoSS
methods, the Frobenius norm is used to measure the distance
between the original data and reconstructed ones, which is
sensitive to heavy-tailed non-Gaussian noises or outliers.

Information Theoretic Learning (ITL) provides an elegant
and unified way to improve the robustness of machine learning
with respect to outliers [14], [15]. Due to its stability and
robustness to outliers [16], [17], the Maximum Correntropy
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Criterion (MCC) in ITL has recently been successfully
applied to a wide range of applications, such as adaptive
filtering [18]–[20], Kalman filtering [21] nonnegative matrix
factorization [22], face recognition [23] and supervised feature
selection [24]. However, to the best of our knowledge, there
has been no study yet on MCC based unsupervised feature
selection. In this paper, we will propose a MCC based robust
unsupervised feature selection method called the Global and
Local preserved Robust Sparse Subspace Learning (GLoRSS).

The main contributions of the present work are summarized
as follows:

1) A novel robust sparse subspace learning model is pro-
posed for unsupervised feature selection, in which the
MCC is used for robust data fitting while preserving the
local structure of the data.

2) A half-quadratic accelerated block coordinate
update (HQ-BCU) method is proposed to solve
this model which is shown to be very efficient with low
computational complexity.

3) Convergence analysis has been carried out to ensure
that the subsequence convergence can be obtained by
our method. With nondegeneracy assumption, a stronger
whole iterate sequence convergence can also be
obtained.

4) Extensive experimental studies are presented in this
paper. The effectiveness of the GLoRSS is verified by
outlier detection and face reconstruction on the dataset
contaminated by noises and outliers. In the unsupervised
feature selection experiments, six real-world datasets
from different domains are used, and the proposed
GLoRSS is compared to eight state-of-the-art unsuper-
vised feature selection algorithms. The sensitivity of the
parameters in the GLoRSS is also studied. It is shown
that the new method can perform well in a stable way
within a large range of parameters.

The rest of the paper is organized as follows. Section II
gives a brief review of subspace learning methods and robust
methods for unsupervised feature selection. Section III revisits
the Maximum Correntropy Criterion (MCC) and proposes a
robust sparse subspace learning model based on MCC called
GLoRSS. Section IV develops an iterative learning algorithm
GLoRSS to search the solution of the model and analyzes
its convergence. Section V presents the experimental studies.
Finally, Section VI gives the conclusion.

To facilitate the presentation of the paper, the notations are
listed in Table I

II. RELATED WORKS

Consider n data samples {pi }ni=1 located in the d-
dimensional space. X = [p1,p2, . . . ,pn]� ∈ R

n×d is the
data set of samples. Based on reconstruction information of
the data, the unsupervised feature selection problem can be
formulated as follows [10], [11]:

min
W,H

1

2
‖X − XW H‖2F

s.t. W ∈ {0, 1}d×K , W�1d×1 = 1K×1,

‖W1K×1‖0 = K , (1)

TABLE I

NOTATION

where the matrix W is the feature selection matrix with the
entries “1” or “0” stating whether the feature is selected or not.
For example, if the number of features is 5 and the indices
of the selected features are (2, 3, 5), then W comes in the
following form:

W =

⎛
⎜⎜⎜⎜⎝

0 0 0
1 0 0
0 1 0
0 0 0
0 0 1

⎞
⎟⎟⎟⎟⎠

(2)

The model (1) is of combinatorial nature which is extremely
hard to solve. For this reason, Wang et al. [10] relaxed
it to continuous version by orthogonality and nonnegativity
constraints. However, this model only considers the global
reconstruction information for subspace learning. In addition,
the orthogonality constraint may limit its practicality. As men-
tioned in [13], feature weight vectors are not necessarily
orthogonal to each other. Therefore, Zhou et al. [11] introduce
the manifold embedding to preserve the local structure of
the data. It is noted that all these methods use the matrix
Frobenius norm to measure the distance between the original
data space and the subspace, thus they are sensitive to outliers.
Some methods are proposed for robust unsupervised feature
selection. Qian and Zhai [13] used the �21-norm as the metric
to measure the distance and proposed Robust Unsupervised
Feature Selection (RUFS) methods. However, the �21 norm
induced lost function is hard to solve with extensively high
computational complexity O(d3), thus it is not suitable for
high dimensional data. Considering the global regression infor-
mation, Zhu et al. [25] utilized the �21-norm to model the self-
representation lost function with �21-norm constraint for robust
unsupervised feature selection. All these robust unsupervised
feature selection methods only use the �21-norm to improve the
robustness of the model. Due to desirable properties of corren-
tropy [14], in this paper, we utilize the Maximum Correntropy
Criterion (MCC) to deal with robust unsupervised feature
selection. Compared with the �21-norm approach, the MCC
is much easier to solve with lower computational complexity.

III. ROBUST SSL BASED ON MCC

In this section, a robust sparse subspace learning model
based on MCC is proposed. First, a brief review about the
MCC is provided. Then, the original model (1) is extended
to its robust version by introducing MCC measure. This



406 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 29, NO. 2, FEBRUARY 2019

model is a combinatorial nature, thus it is not easy to find
a reliable solution to the problem. Finally, in order to find a
reliable solution, the combinatorial model is relaxed, in which
sparsity and nonnegativity constraints are utilized to replace
the original constraints in (1).

A. Maximum Correntropy Criterion

Correntropy is proposed in ITL to handle non-Gaussian
noises and large outliers [14], and has been widely used in
signal processing [16], [17] and machine learning [22]–[24].
It is directly related to Renyi’s quadratic entropy and the
probability of how similar two random variables are in a
local range controlled by the kernel bandwidth. Adjusting
the kernel bandwidth provides an effective way to eliminate
the detrimental effect of outliers. The MCC can extract more
information from the data for adaptation, and may yield, there-
fore, solutions that are more accurate than traditional MSE
solution particularly in non-Gaussian signal processing [14].
In addition [14], correntropy induces a new metric which is
equivalent to the �2 norm distance if points are close, behaves
like the �1 norm distance as points get further apart and
eventually approaches the �0 norm as points are far apart.
This can explain why MCC is more robust to outliers than
conventional �1-norm. Correntropy is defined as a similarity
measure between two arbitrary random variables X and Y

Vσ (X,Y ) = E[kσ (X − Y )], (3)

where kσ (·) is the shift invariant mercer kernel with kernel
bandwidth σ > 0 [26] which presents the correlation in kernel
space and E[·] denotes the mathematical expectation.

In practice, the joint probability density function is often
unknown, and only a finite number of data {(xi , yi )}ni=1 are
available, which lead to the sample estimator of correntropy
as follows:

V̂σ (X,Y ) = 1

n

n∑
i=1

kσ (xi − yi ). (4)

The maximum of correntropy of error in (4) is called the
maximum correntropy criterion (MCC). In this work, without
mentioned otherwise, the kernel function is the Gaussian ker-
nel kσ (X) = g(X, σ ) � exp(−X2/2σ 2), thus the correntropy
can be rewritten as follows:

V̂σ (X,Y ) = 1

n

n∑
i=1

g(xi − yi , σ ), (5)

which has a close relationship with M-estimation [27]. The
term in (5) can be seen as the robust formulation of Welsch
M-estimator, if we define ρ(x) � 1 − g(x, σ ). A main merit
of MCC is that the kernel size decides the main properties of
correntropy. Therefore, correntropy establishes a close relation
between the M-estimation and ITL [14].

B. Sparse Subspace Learning Based on Maximum
Correntropy Criterion

To introduce the correntropy measure into the model (1),
we extend the MCC from vector space R

d to matrix space

R
n×d by replacing |xi − yi | with ‖p�i − p�i W H‖2, the �2

norm distance between the sample p�i and its reconstruction
p�i W H . Using the correntropy measure instead of the Euclid-
ean distance, we obtain a robust version of the model (1) as
follows:

max
W,H

1

2

n∑
i=1

exp

(
−‖p�i − p�i W H‖22

2σ 2

)

s.t. W ∈ {0, 1}d×K , W�1d×1 = 1K×1,

‖W1K×1‖0 = K . (6)

Compared to �2,1-norm that extends �1-norm and can also
improve model’s robustness to outliers, MCC is a local mea-
sure whose value mainly depends on the probability along
x = y. It can truncate the effects by large error and thus better
eliminate the negative affects of outliers than �2,1-norm [14].
In addition, (6) is different from conventional kernel methods.
The latters aim at building a nonlinear model using the kernel
trick, while MCC employs a new cost function for training a
model (not necessarily a kernel model). Their connection lies
in that the MCC cost can be expressed as a distance in the
kernel space.

To obtain a reliable solution, we follow [11] and relax
the 0-1 variables in (6) to continuous ones by replacing
the constraints in (6) with the sparsity and nonnegativity
constraints. The local geometrical structure is a valuable
discriminative information and plays important role in spectral
clustering [28], [29]. In order to extract more information of
the data, we add a local geometrical structure preserving term
and obtain the following regularized model with continuous
variables:

max
W,H

1

2

n∑
i=1

exp

(
−‖p�i − p�i W H‖22

2σ 2

)

−μ
2

T r(W�X�L XW )

s.t. W ∈ R
d×K+ , r(W ) ≤ κ. (7)

Here L is the graph Laplacian matrix, which is used to
describe the local geometrical structure of the data and can
be formulated by many ways [30], r(W ) measures the row-
sparsity of W , R

d×K+ denotes the d × K nonnegative matrix.
To alleviate the difficulty for solving the model (7), it is
transformed to its equivalent formulation by penalizing the
sparsity constraint into the objective as follows:

max
W,H

1

2

n∑
i=1

exp

(
−‖p�i − p�i W H‖22

2σ 2

)

−μ
2

T r(W�X�L XW ) − βr(W )

s.t. W ∈ R
d×K+ , (8)

where β is the parameter corresponding to κ .

IV. SOLVING THE ROBUST SPARSE SUBSPACE LEARNING

In this section, we derive an iterative method to find a solu-
tion of (8). We first reformulate (8) by the half-quadratic (HQ)
technique [31] and then apply the accelerated block coordinate
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update (BCU) [32] to the reformulated problem. Although (8)
involves fewer variables than the reformulated model, it lacks
block-concave structure, and that can cause difficulty for a
numerical approach to efficiently and stably find a solution
to (8). On the contrary, the reformulated model has the
nice block-concave structure, which enables acceleration of
a numerical method. We choose BCU instead of the tradi-
tional gradient ascent due to the nice block structure of the
reformulated problem that is amenable to BCU method as
discussed in [33] and [34]. While the objective in (8) is highly
nonconcave1, the reformulated problem becomes concave with
respect to each block variable. As shown in [32], for solving
multi-block concave problems, BCU has desirable conver-
gence behavior and also very nice practical performance.

A. Reformulation via Half Quadratic Technique

Let ϕ(z) = z − z ln(−z). It holds that

exp(−x) = sup
z

{
zx − ϕ(z)} (9)

by setting ∂
∂z (zx − ϕ(z)) = x + ln(−z) = 0, and one can find

that the maximum value of (9) is reached at z = − exp(−x).
Using this fact, we have

exp

(
−‖p�i − p�i W H‖22

2σ 2

)

= sup
yi

{
yi
‖p�i − p�i W H‖22

2σ 2 − ϕ(yi )

}
, i = 1, . . . , n. (10)

Let

O MCC (W, H, y) = 1

2

n∑
i=1

(
yi
‖p�i − p�i W H‖22

2σ 2 − ϕ(yi )

)
,

f (W, H, y) = O MCC(W, H, y)− μ
2

T r(W�X�L XW ).

Then according to (10), the problem (8) is equivalent to

max
W,H,y

f (W, H, y)− rβ(W ), s.t. W ∈ R
d×K+ , (11)

where y = (y1, . . . , yn), and

rβ(W ) = β
d∑

i=1

‖Wi.‖2.

B. Iterative Method by the Accelerated BCU

Our algorithm is derived by applying the accelerated BCU
method in [32] to (11). At each iteration, it updates the
variables W, H and y sequentially, one at a time with the
other two fixed to their most recent values, by maximizing

1The work [32] is about block convex problems. But note that if a function
f (x) is convex, then − f (x) would be concave.

the objective or a surrogate of its lower bound. Specifically,
it iteratively performs the following updates:

W k+1 = argmax
W∈RK×d+

〈∇W f (Ŵ k, H k, yk),W − Ŵ k〉

− Lk
w

2
‖W − Ŵ k‖2F − rβ(W ), (12a)

H k+1 = argmax
H

O MCC (W k+1, H, yk), (12b)

yk+1 = argmax
y

O MCC (W k+1, H k+1, y), (12c)

where Lk
w is the Lipschitz constant of ∇W f (W, H k, yk) with

respect to W , and

Ŵ k = W k + ωk(W
k −W k−1) (13)

is an extrapolated point with weight ωk ∈ [0, 1). It is demon-
strated in [35] and [36] that appropriate ωk can significantly
accelerate the BCU method for solving certain multi-block
concave optimization problems.

Notice that we treat W and H, y in two different ways. The
variable W is updated by a block proximal gradient method
while the other two are updated by simple block maximization,
because directly maximizing the objective of (11) with respect
to W can be very difficult. In the way as done in (12),
one can achieve a closed-form solution to each of the three
subproblems. In the following, we discuss how to solve them
explicitly.

1) Solution to W-Subproblem: Note that (12a) can be
rewritten as

min
W∈RK×d+

1

2
‖W − A‖2F + λ‖W‖2,1, (14)

where A = Ŵ k + 1
Lk
w
∇W f (Ŵ k , H k, yk) and λ = β

Lk
ω

.
The problem (14) can be further decomposed into d smaller
independent problems, each one involving one row of W and
A and in the form of

min
w≥0

1

2
‖w − a‖22 + λ‖w‖2. (15)

As shown in [11], the problem (15) has a closed-form solution
and thus (12a) can be solved explicitly. For readers’ conve-
nience, we give in Algorithm 1, the steps toward a solution
to (14).

Algorithm 1 Proximal Operator for Nonnegative Group Lasso:
W = Prox-NGL(A, λ)

for i = 1, . . . , d do
Let a be the i th row of A and I the index set of positive
components of a
Set w to a zero vector
if ‖aI‖2 > λ then

Let wI = (‖aI‖2 − λ) aI‖aI‖2
end if
Set the i th row of W to w

end for
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2) Solution to H -Subproblem: Let

Xk=Diag

⎛
⎝

√
− yk

2σ 2

⎞
⎠ X=Diag

⎛
⎝

√
− yk

2σ 2

⎞
⎠ [p1, . . . ,pn]�.

(16)

Then it is easy to see that (12b) is equivalent to

H k+1 = arg min
H

1

2
‖Xk − Xk W k+1 H‖2F ,

which can be solved by setting its first-order optimality con-
dition (Xk W k+1)�(Xk W k+1 H − Xk) = 0. Hence, the update
in (12b) can be explicitly written as

H k+1 =
[
(Xk W k+1)�Xk W k+1

]†
(Xk W k+1)�Xk, (17)

where “A†” denotes the Moore-Penrose pseudo-inverse of a
matrix A.

3) Solution to y-Subproblem: As discussed at the beginning
of section IV-A, the maximum value of (9) is reached at
z = − exp(−x). Hence, the solution to (12c) can be explicitly
written as

yk+1 = T (W k+1, H k+1), (18)

where the mapping y = T (W, H ) is defined as

yi = − exp

(
−‖p�i − p�i W H‖22

2σ 2

)
, i = 1, . . . , n. (19)

4) Parameter Settings: From (17) and (18), we see that
the updates to H and y are parameter-free. However, to fully
determine the W -update in (12a) requires the values of Lk

w
and ωk . In our algorithm, we set Lk

w to

Lk
w = ‖(Xk)�Xk‖2‖H k(H k)�‖2 + μ‖X�L X‖2, (20)

which is a Lipschitz constant of ∇W f (W, H k, yk) with respect
to W according to (28) in the appendix. Note that we can
replace the matrix 2-norm in (20) to Frobenius norm. For
large-size matrix, the latter one can be much cheaper but
is usually larger. In our experiments, we have either small
n or d , and since ‖(Xk)�Xk‖2 = ‖Xk(Xk)�‖2, we can choose
to evaluate the small-sized one. For the extrapolation weight,
we follow [36] and set it to

ωk = min

⎛
⎝ω̂k , δω

√
Lk−1
ω

Lk
ω

⎞
⎠ , (21)

where δω < 1 is predetermined and ω̂k = (tk−1 − 1)/tk with

t0 = 1, tk = 1

2

(
1+

√
1+ 4t2

k−1

)
. (22)

Putting all discussions in this subsection together, we reach
a complete iterative method toward finding a solution to (8),
and its pseudo-code is shown in Algorithm 2, dubbed as
GLoRSS.

Algorithm 2 Global and Local Structure Preserving Robust
Sparse Subspace Learning (GLoRSS)

1: Input: Data matrix X ∈ R
n×d , the number of selected

features κ and parameter β,μ.
2: Output: Index set of selected features I ⊆ {1, . . . , d} with
|I| = κ

3: Initialize W 0 ∈ R
d×K+ , H 0 ∈ R

K×d , set y0 by (18), choose
a positive number δω < 1, and set k = 0.

4: while Not convergent do
5: Compute Xk according to (16).
6: Compute Lk

w and ωk according to (20) and (21) respec-
tively.

7: Let Ŵ k = W k + ωk(W k −W k−1).
8: Update W k+1 ← by Algorithm 1.
9: if f (W k+1, H k, yk) − rβ(W k+1) ≤ f (W k , H k, yk) −

rβ(W k) then
10: Set Ŵ k = W k and back to Step 8.
11: end if
12: Update H k+1 ← (17).
13: Update yk+1 ← (18).
14: Let k ← k + 1.
15: end while
16: Normalize each column of W = W k+1.
17: Sort ‖Wi.‖2, i = 1, . . . , d and select features correspond-

ing to the κ largest ones.

C. Computational Complexity
Now, we evaluate the computational complexity per iter-

ation of Algorithm 2. The analysis is for general case and
no special structure is assumed to the data matrix X . If X
has certain structure, e.g., sparsity, the computational com-
plexity can be lower. We assume the dimension of subspace
K < min(d, n). With Xk computed at the cost of O(nd),
the cost of updating W and H takes O(nd K + nK 2 + d K 2)
flops according to the complexity analysis of GLoSS in [11].
The update of y by (18) costs O(nd K ), and the evaluation
of the objective value in line 9 also costs O(nd K ). The
other computation in Algorithm 2 is much cheaper. Therefore,
the per-iteration cost of the algorithm is O(nd K+nK 2+d K 2),
which indicates scalability to the data size if K = O(1).

D. Convergence Analysis
Next, we analyze the convergence of Algorithm 2. The

algorithm enforces the monotonicity of the objective in line 9,
and thus we can simply get the objective sequence convergence
because the objective function in (11) is upper bounded by n

2 .
However, the objective convergence does not guarantee any
optimality property of the iterate sequence. We next establish
iterate subsequence convergence without any assumption on
the algorithm and also whole iterate sequence convergence by
assuming a nondegeneracy condition.

Let

F(W, H ) = 1
2

∑n
i=1 exp

(
−‖p�i −p�i W H‖22

2σ 2

)

−μ2 Tr(W�X�L XW ),

�(W, H ) = F(W, H )− rβ(W )− ι
R

d×K+
,
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where ιX denotes the indicator function on a set X . Then
the problem (8) is equivalent to minW,H �(W, H ), and its
first-order optimality condition is 0 ∈ ∂�(W, H ). Any point
(W, H ) satisfying the condition is called a critical point of (8).
The following two theorems summarize our iterate sequence
convergence results.

Theorem 1 (Iterate Subsequence Convergence): Let {(W k ,
H k, yk)} be the sequence generated from Algorithm 2. Then
any finite limit point (W̄ , H̄) of {(W k , H k)} is a critical point
of (8), namely, satisfying the first-order optimality condition
0 ∈ ∂�(W̄ , H̄ ).
The proof of the theorem is given in the Appendix. Here,
we provide some insights to it. First, all the three updates
in (12) result in sufficient increase of the objective value
of (11). While the objective function is upper bounded by n

2 ,
the total increase must be finite, and thus the difference of two
consecutive iterates will eventually diminish. Hence, one can
show the criticality of (W̄ , H̄ , ȳ) to (11) where ȳ = T (W̄ , H̄).
Finally, we notice

∇(W,H) f (W̄ , H̄ , ȳ) = ∇F(W̄ , H̄ ) (23)

to obtain the criticality of (W̄ , H̄ ) to (8).
Assuming a nondegeneracy condition on W̄ , we show that

there can be only one limit point, and thus the whole sequence
{(W k, H k)} converges. Without the condition, the whole
sequence convergence cannot hold because in that case,
the solution to (12b) is not uniquely determined in the limit.
The nondegeneracy assumption is similar to that used in [37]
for establishing the convergence of the higher-order orthog-
onality iteration, which is shown to possibly diverge even
starting from a degenerate critical point.

Theorem 2 (Whole Iterate Sequence Convergence): Let
{(W k, H k, yk)} be the sequence generated from Algorithm 2.
If there is a finite limit point (W̄ , H̄) of {(W k, H k)} such
that X̄ W̄ is full-rank, then the whole sequence {(W k , H k)}
converges to (W̄ , H̄), where X̄ = Diag(

√
− ȳ

2σ 2 )X and

ȳ = T (W̄ , H̄ ).
The proof of this theorem is also provided in the Appendix.

V. EXPERIMENTAL STUDIES

Experimental results are illustrated in this section to show
the performance of the proposed GLoRSS method. In partic-
ular to demonstrate the robust performance, the outlier image
detection and noisy face image reconstruction experiments are
conducted on Yale64 dataset. Then, the unsupervised feature
selection performance of the new method is tested on six
benchmark datasets and compared to eight state-of-the-art
methods. Following the method in [22], the bandwidth of the
Gaussian kernel is updated by

σ k =
√
θ

2n
‖X − XW k H k‖2F , (24)

where θ is a constant.

A. Datasets

In the experiments, six benchmark datasets coming from
different domains are used, whose characteristics are shown

TABLE II

THE DATASETS DETAIL

Fig. 1. Reconstruction error with artificial rectangle noises: (a) Two examples
of noisy images. (b) Reconstruction errors obtained by GLoSS method.
(c) Reconstruction errors obtained by GLoRSS method.

in Table II. Yale64, WarpPIE, Orl64 and Orlraws are face
images, and each instance of the datasets presents a single face
image. USPS is a handwritten digit dataset, and each instance
of the dataset presents a handwrite digit image. Isolet is a
speech signal dataset containing 30 speakers’ speech signal of
alphabet twice.

B. Outlier Detection

In outlier detection experiments, in order to show the
robustness property of GLoRSS, we compare it to GLoSS [11]
that uses the matrix Frobenius norm as the distance measure.
Yale64 dataset is used in this problem. Two types of outlier are
simulated. For the first type, 15 image are randomly selected,
and each of them is occluded by rectangular area, each pixel
in which is randomly set to 0 (black) or 255 (white). The
size of the rectangular is set as 1/4 size of the original image,
and the location is randomly determined. Two examples of the
occluded faces is shown in (a) of Fig. 1. For the second type
of outliers, we add 15 dummy images (outlier) with the same
size to the Yale64 dataset. The final 15 samples are outliers,
and two of them are shown in (a) of Fig. 2. The reconstruction
errors with both types of outliers have been presented in Fig. 1
and Fig. 2, where the red sticks are the positions of outliers.
From the figures, we see that the GLoRSS method that is based
on MCC measure can better detect the outliers and alleviated
the impact of outliers.

C. Face Reconstruction

In this section, the robustness of GLoRSS is verified by face
reconstruction on contaminated Yale64 dataset. The recon-
structions by both GLoSS and GLoRSS methods are shown
in three contaminated situations of noises and outliers that are
described as follows:

1) The dataset has 15 outliers, which is the same as Fig. 2.
The outliers are added to the dataset as last samples.
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Fig. 2. Reconstruction error with outliers: (a) Two examples of outlier
images. (b) Reconstruction errors obtained by GLoSS method. (c) Recon-
struction errors obtained by GLoRSS method.

Fig. 3. Face reconstruction when dataset is contaminated by outliers: The first
column shows the original images, the second column shows the reconstructed
images by GLoSS method, the third column shows the reconstruction by
GLoRSS method.

Fig. 4. Face reconstruction with rectangular noises. (a) Reconstruction for
noisy images: The first column shows the original images. The second column
shows the images with the noises. The third column shows the reconstruction
by GLoSS method. The forth column shows the reconstruction by GLoRSS
method. (b) Reconstruction for clean images: The first column shows the
original images. The second column shows the reconstruction by GLoSS
method. The third column shows the reconstruction by GLoRSS method.

2) 15 face images of the dataset are randomly chosen to
add the rectangular noises which is the same as (a) of
Fig. 1.

3) 15 face images of the datasets are randomly chosen to
add the 5% pepper & salt noises.

Figs. 3-5 show the reconstructions when the dataset is conta-
minated by the three kinds of noise.

Fig. 3 shows that outliers affect the reconstructions by both
methods, and the GLoRSS method can recover more details
of the face than the GLoSS method. From Fig. 4, we see that
the GLoSS method almost always fails to reconstruct the face
that is contaminated by the rectangular noises, but GLoRSS
can fix the face and preserve some of the facial characteristics
outside and even inside the rectangular noise area. For clean
faces, the reconstruction by GLoRSS looks much better than
that by GLoSS. The results by the latter apparently contain lots

Fig. 5. Face reconstruction with pepper and salt noises. (a) Reconstruction for
noisy images: The first column shows the original images. The second column
shows the images with the noises. The third column shows the reconstruction
by GLoSS method. The forth column shows the reconstruction by GLoRSS
method. (b) Reconstruction for clean images: The first column shows the
original images. The second column shows the reconstruction by GLoSS
method. The third column shows the reconstruction by GLoRSS method.

of noise. Fig. 5 shows the results for the pepper and salt noise
case. We notice that for noisy face reconstruction, the GLoSS
method can hardly remove noises while the proposed GLoRSS
method can filter out lots of noises on the face. For the clean
images, the reconstruction by GLoRSS keeps key features
better than that by GLoSS.

D. Unsupervised Feature Selection

In this section, the unsupervised feature selection perfor-
mance of the proposed GLoRSS method is studied on six
real-world benchmark datasets and compared to eight state-of-
the-art unsupervised feature selection methods, listed below:

1) LS: Laplacian score (LS) method [38] selects the fea-
tures individually that retain the samples’ local similarity
specified by a similarity matrix.

2) MCFS: Multi-cluster feature selection (MCFS) [8]
selects the features by spectral sparse subspace learning
method with �1-norm constraint.

3) UDFS: Unsupervised discriminative feature selec-
tion (UDFS) method [39] selects the features by their
local discriminative property with the �2,1-norm con-
straint.

4) RSR: Regularized self-representation (RSR) feature
selection method [25] is a robust unsupervised feature
selection method which uses the �2,1-norm as the fitting
measure and �2,1-norm to promote row sparsity.

5) NDFS: Nonnegative Discriminative Feature Selec-
tion (NDFS) method [40] selects the features by
nonnegative spectral sparse clustering with �2,1-norm
regularization term.

6) GLSPFS: Global and local structure preservation for
feature selection (GLSPFS) method [30] uses both
global and local similarity structure to model the feature
selection problem.

7) MFFS: Matrix factorization feature selection (MFFS)
method [10] selects the features by global regression
subspace learning with orthogonal constraint.

8) GLoSS: Global and local structure preserving sparse
subspace learning method [11] performs the sparse sub-
space learning by global data regression and locality
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TABLE III

CLUSTERING RESULTS (ACC% ± STD%) OF DIFFERENT FEATURE SELECTION ALGORITHMS ON DIFFERENT DATASETS. THE BEST RESULTS ARE
HIGHLIGHTED IN BOLD AND THE SECOND BEST RESULTS ARE UNDERLINED. (HIGHER ACC IS BETTER)

Fig. 6. Clustering accuracy (ACC) of using all features and selected features by different feature selection algorithms.

preserving with �21-norm constraint. In subspace learn-
ing process, the Frobenius norm is used to measure the
distance between the data and reconstruction.

1) Experimental Setting: Thereare some parameters
we need to set in advance. The dimension of subspace
is fixed to K = 100 for both GLoSS and GLoRSS,
and the number of selected features κ is taken from
{20, 30, 40, 50, 60, 70, 80, 90, 100} for all datasets. The
Linear Preserve Projection (LPP) method is used to construct
the Laplacian graph to preserve the local structure in
GLSPFS, NDFS, GLoSS, MCFS, LS and GLoRSS because
MCFS, NDFS and LS use the LPP method to construct
Laplacian graph, and GLSPFS can obtain better performance
with the LPP method. The number of nearest neighbors
is set to m = 5 for LS, MCFS, UDFS, GLSPFS, NDFS,
GLoSS and GLoRSS, because parameter m is required for
UDFS to build the local total scatter and between-class

scatter matrices and the other methods to build the similarity
matrix.

For simplicity, the trade-off parameter of local struc-
ture preserving term μ is fixed to μ = 1 in GLSPFS,
GLoSS and GLoRSS for all tests. The sparsity control-
ling parameter β and the bandwidth control parameter θ
are both tuned by the “grid-search” strategy with β from
{0.001, 0.01, 0.1, 1, 10, 40, 70, 100} and θ from {0.1, 1, 2,
3, 4, 5, 6, 7, 8, 9}. After completing the feature selection
process, the selected features are used to cluster by K -means
algorithm. Because the performance of K -means depends
on the initial point, the algorithm is run 20 times with
different random starting points, and the average results are
reported.

The performance of the algorithms is evaluated based on
their clustering results. For each dataset, the clustering number
is set as its class number which is given by dataset. The cluster-
ing performance is measured by two criterions: the clustering
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TABLE IV

CLUSTERING RESULTS (NMI% ± STD%) OF DIFFERENT FEATURE SELECTION ALGORITHMS ON DIFFERENT DATASETS. THE BEST RESULTS ARE
HIGHLIGHTED IN BOLD AND THE SECOND BEST RESULTS ARE UNDERLINED. (HIGHER NMI IS BETTER)

Fig. 7. Normalized mutual information (NMI) of using all features and selected features by different feature selection algorithms.

accuracy (ACC) and normalized mutual information (NMI),
which are defined below. The ACC is computed as follows:

ACC =
∑n

i=1 δ(qi ,map(pi))

n
, (25)

where pi and qi are the predicted and true labels of the i th
sample, and δ(· , ·) is the indicator function where δ(a, b) = 1
if a = b and δ(a, b) = 0 otherwise, and map(·) is a
permutation mapping, which are realized by Kuhn-munkres
algorithm [41]. The higher the value of ACC is, the better the
clustering result is. The normalized mutual information (NMI)
is another metric to measure the similarity of two clustering
results. For two label vectors P and Q, it is defined as

N M I (P, Q) = I (P, Q)√
H (P)H (Q)

, (26)

where I (P, Q) is the mutual information of P and Q, and

H (P) and H (Q) are the entropies of P and Q [42]. In our
experiments, P is obtained by the clustering labels using
the selected features and Q is the true data labels given
by the dataset. Higher value of NMI means better clustering
result.

2) Performance Comparison: Tables III and IV present the
ACC and NMI values produced by different methods. For
each method, the number of selected features is varied among
{20, 30, 40, . . . , 100} and the best result is reported. From
the tables, we see that the proposed GLoRSS method performs
the best among all the compared methods. It addition, note
that the GLoRSS method outperforms GLoSS method for
all datasets, and this is possiblly due to that the correntropy
induced metric term is more robust than traditional Euclidean
distance, thus it can alleviate the effects of noise existing in
the data.
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Fig. 8. The clustering accuracy (ACC) produced by GLoRSS with different
κ and θ .

Fig. 9. The normalized mutual information (NMI) produced by GLoRSS
with different κ and θ

To verify the effect of our proposed feature selection
method, the results are compared between using all features
and selected features given by different methods. Fig. 6 plots
the ACC value and Fig. 7 the NMI value with respect to
the number of selected features. The baseline corresponds
to the results using all features for clustering. From the figures,
we see that the proposed GLoRSS method exhibits the best in
most cases, and it can produce comparable and even better
clustering results than those using all features. Therefore,
the high dimensional data do contain redundancy, and feature
selection can eliminate the redundancy. Furthermore, it is
noted that using fewer features can save the clustering time for
the clustering problem, and thus feature selection can improve
both clustering accuracy and efficiency.

3) Sensitivity of Parameters: To further study the proposed
GLoRSS method, the sensitivity with regard to κ and θ in (24)
is studied. The parameter β is fixed as their best value in
GLoSS method. Figs. 8 and 9 plot the ACC and NMI values
given by GLoRSS for different κ and θ ’s. From the figures,
we see that except for Isolet and USPS, GLoRSS performs
stably well for different combinations of κ and θ , and thus
the users can choose the parameters within a large interval to
have satisfactory feature selection performance.

VI. CONCLUSION

We have proposed a novel robust unsupervised feature
selection model that is based on the MCC and sparse sub-

space learning. This model is derived from a combinatorial
model by replacing the Euclidean distance measure with the
correntropy measure and also relaxing the 0-1 variables to
continuous ones. A half-quadratic accelerated block coordinate
update iterative algorithm has been derived to solve the pro-
posed model, and the convergence property has been proved.
Experimental studies on noisy face images reconstruction
have confirmed the robustness of the proposed model with
respect to noises and outliers. In unsupervised feature selection
experiments, the proposed method outperforms several state-
of-the-art methods on six real-world data.

APPENDIX A
LIPSCHITZ CONSTANT DERIVATION

In this section, we derive the Lipschitz constant of
∇W f (W, H k, yk) with respect to W . By matrix calculus, it is
not difficult to obtain that

∇W f (W, H, yk)=−(Xk)�(Xk W H − Xk)H�−μX�L XW,

(27)

where Xk is defined in (16). In addition, for any W̃ and Ŵ ,
we have

‖∇W f (W̃ , H, yk)−∇W f (Ŵ , H, yk)‖F

= ‖(Xk)�Xk Ŵ H H� + μX�L XŴ − (Xk)�Xk W̃ H H�

−μX�L XW̃‖F

≤ ‖(Xk)�Xk Ŵ H H� − (Xk)�Xk W̃ H H�‖F

+μ‖X�L XŴ − X�L XW̃‖F

= ‖(Xk)�Xk(Ŵ − W̃ )H H�‖F + μ‖X�L X (Ŵ − W̃ )‖F

≤ ‖(Xk)�Xk‖2‖Ŵ − W̃‖F‖H H�‖2
+μ‖X�L X‖2‖Ŵ − W̃‖F

=
(
‖(Xk)�Xk‖2‖H H�‖2 + μ‖X�L X‖2

)
‖Ŵ − W̃‖F ,

where ‖A‖2 denotes the spectral norm and equals the largest
singular value of A, the first inequality follows from the
triangle inequality, and the last inequality uses the fact that
‖AB‖F ≤ ‖A‖2‖B‖F for any matrices A and B of appropri-
ate sizes. Hence, by definition, ‖(Xk)�Xk‖2‖(H k H k)�‖2 +
μ‖X�L X‖2 is a Lipschitz constant of ∇W f (W, H k, yk) with
respect to W .

APPENDIX B
CONVERGENCE ANALYSIS

In the following, we prove Theorems 1 and 2. For simplicity,
we assume ωk = 0, i.e., no extrapolation. The general case for
positive ωk can be shown similarly. Throughout this section,
we define

ψ(W, H, y) = f (W, H, y)− rβ(W )− ι
R

d×K+
. (28)

A. Proof of Theorem 1

It is well-known that (c.f. [32, Lemma 2.1])

ψ(W k+1, H k, yk)− ψ(W k , H k, yk)

≥ Lk
w

2
‖W k+1−W k‖2F ≥

Lw
2
‖W k+1 − W k‖2F , (29)
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where Lw = μ‖X�L X‖2 is a lower bound of Lk
w . From [43,

Lemma 3.1], we have

1

2
‖Xk − Xk W k+1 H k‖2F −

1

2
‖Xk − Xk W k+1 H k+1‖2F

= 1

2
‖Xk W k+1 H k − Xk W k+1 H k+1‖2F , (30)

and

Xk W k+1 H k − Xk W k+1 H k+1

= Uk+1(Uk+1)�
(

Xk W k+1 H k − Xk
)
, (31)

where Uk+1 contains the left leading singular vectors of
Xk W k+1 corresponding to its nonzero singular values. In addi-
tion, note that yk

i ≥ −1, ∀i,∀k, and f (W, H, y) is strongly
concave with modulus 1

2 with respect to y restricted on the
set [−1, 0)n . Hence,

ψ(W k+1, H k+1, yk+1)−ψ(W k+1, H k+1, yk)≥ 1

4
‖yk+1−yk‖22.

(32)

Summing up (29), (30), and (32) gives

ψ(W k+1, H k+1, yk+1)− ψ(W k , H k, yk)

≥ Lw
2
‖W k+1 −W k‖2F +

1

2
‖Xk W k+1 H k−Xk W k+1 H k+1‖2F

+1

4
‖yk+1 − yk‖22,

which together with the upper boundedness of ψ implies that

lim
k→∞W k+1 −W k = 0, (33a)

lim
k→∞ Xk W k+1 H k − Xk W k+1 H k+1 = 0, (33b)

lim
k→∞ yk+1 − yk = 0. (33c)

We have from the definition of Xk in (16) and (33c)
that Xk+1 − Xk → 0 as k → ∞. Hence, together from
(31) and (33b), it follows that

lim
k→∞Uk(Uk)�

(
Xk W k H k − Xk

)
= 0.

Since rβ(W ) is coercive, {W k} and thus {Xk W k} must be
bounded. From (Xk W k)� = (Xk W k)�Uk(Uk)�, left multi-
plying (Xk W k)� in the above equation gives

lim
k→∞(X

k W k)�(Xk W k H k − Xk) = 0. (34)

Assume (W̄ , H̄) is a finite limit point of {(W k, H k)}k≥1.
Due to the continuity of the mapping T defined in (19), there
is a subsequence {(W k , H k, yk)}k∈K convergent to (W̄ , H̄ , ȳ).
Letting K � k →∞ in (34) yields

∇H f (W̄ , H̄ , ȳ) = (X̄ W̄ )�(X̄ W̄ H̄ − X̄) = 0.

If necessary, taking another subsequence, we can assume that
Lk
w converges to some number L̄w as K � k → ∞. Hence,

letting K � k →∞ in (12a), we have

W̄ = argmax
W∈Rd×K

〈∇W f (W̄ , H̄ , ȳ),W − W̄ 〉

− L̄w
2
‖W − W̄‖2F − rβ(W ),

and thus 0 ∈ ∂ψ(W̄ , H̄ , ȳ). From (23), we conclude that
(W̄ , H̄) is a critical point of � , and thus complete the proof
of Theorem 1.

B. Proof of Theorem 2

Denote Z = (W, H ). Let σ̄min = σmin(X̄ W̄ ) > 0 be
the smallest singular value of X̄ W̄ . By the continuity of the
singular value function and spectral norm of a matrix, there is
δ1 > 0 such that

σmin(XW ) ≥ σmin(X̄ W̄ )

2
, and

‖XW‖2 ≤ 2‖X̄ W̄‖2, ∀ (X,W ) ∈ Bδ1(X̄ , W̄ ), (35)
‖H H�‖2 ≤ 2‖H̄ H̄�‖2, ∀H ∈ Bδ1(H̄), (36)
‖X�X‖2 ≤ 2‖X̄� X̄‖2, ∀X ∈ Bδ1(X̄), (37)

where Bδ(Z̄) := {Z : ‖Z − Z̄‖F ≤ δ} denotes the δ-ball
centered at Z̄ . By the continuity of T , there is δ2 > 0 such
that

Diag

(√−T (Z)
2σ 2

)
∈ B δ1

4
(X̄), ∀Z ∈ Bδ2(Z̄). (38)

Note that the function 1
2

∑n
i=1 exp

(
−‖p�i −p�i W H‖22

2σ 2

)
is real

analytic, and the other terms in �(Z) are all semi-algebraic
and continuous. Hence, according to [32], �(Z) satisfies
the so-called Kurdyka-Łojasiewicz property (c.f. [44]): in a
neighborhood Bρ(Z̄), there exists a function φ(s) = c · s1−θ
for some c > 0 and 0 ≤ θ < 1 such that

φ′(|�(Z)−�(Z̄)|)dist(0, ∂�(Z)) ≥ 1, for any

Z ∈ Bρ(Z̄) ∩ dom(�) and �(Z) �= �(Z̄), (39)

where dist(0, ∂�(Z)) = minY {‖Y‖F : Y ∈ ∂�(Z)}. In the
remaining analysis, we take

ρ < min

(
δ1

4
, δ2

)
.

Denote �k = �(Z̄)−�(Zk) and φk = φ(�k). Then �k is
nonnegative and nonincreasing with respect to k. In addition,
let LG be the uniform Lipschitz constant of T and ∇F within
B δ1

4
(Z̄) and also that of ∇ f (Z , y) within B δ1

4
(Z̄)× [−1, 0)n .

Note that LG must be finite since F , f and T are second-order
differentiable.

From (35), we have that if (Xk ,W k+1) ∈ Bδ1(X̄ , W̄ ), then

ψ(W k+1, H k+1, yk)− ψ(W k+1, H k, yk)

≥ σ 2
min(X

k W k+1)

2
‖H k+1 − H k‖2F

≥ σ̄ 2
min

8
‖H k+1 − H k‖2F , (40)

which together with (29) and the fact �(Zk+1) =
ψ(Zk+1, yk+1) implies

�k −�k+1 = �(Zk+1)− �(Zk)

≥ Lw
2
‖W k+1 −W k‖2F +

σ̄ 2
min

8
‖H k+1 − H k‖2F

≥ min

(
Lw
2
,
σ̄ 2

min

8

)
‖Zk+1 − Zk‖2F . (41)
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Since Z̄ is a limit point of {Zk}k≥1, there must exist k0
such that Zk0 is sufficiently close to Z̄ . In addition, note that
{Zk}k≥1 converges if and only if {Zk}k≥k0 converges. Hence,
without loss of generality, we can assume Z0 is sufficiently
close to Z̄ such that

2

√
�0

C2
+ ‖Z0 − Z̄‖F + C1

2C2
φ0 < ρ, (42a)

√
�0

C2
<
δ1

4
− ρ. (42b)

where C1 = LG + L2
G + 4‖X̄� X̄‖2‖H̄ H̄�‖2 + μ‖X�L X‖2

and C2 = min

(
Lw
2 ,

σ̄ 2
min
8

)
.

From (29), we have ‖W 1 − W 0‖F ≤
√

2
Lw
�0, and thus

‖W 1 − W̄‖F ≤ ‖W 1 −W 0‖F + ‖W 0 − W̄‖F

(42a)≤
√

2

Lw
�0 + ρ

(42b)≤ δ1

4
.

In addition, since ‖Z0 − Z̄‖F ≤ ρ < δ2, we have from (38)
that X0 ∈ B δ1

4
(X̄). Hence, (X0,W 1) ∈ Bδ1(X̄ , W̄ ), and (40)

holds for k = 0. From (41) and noting �k ≥ 0, we have

‖Z1 − Z0‖F ≤
√
�0
C2

and thus

‖Z1 − Z̄‖F ≤ ‖Z1 − Z0‖F + ‖Z0 − Z̄‖F ≤ ρ,
which implies Z1 ∈ Bρ(Z̄).

Assume Zk ∈ Bρ(Z̄). By the same arguments as above,
we have (Xk,W k+1) ∈ Bδ1(X̄ , W̄ ), and thus (40) holds.

Hence, ‖Zk+1 − Zk‖F ≤
√
�0
C2

, and

‖Zk+1 − Z̄‖F ≤ ‖Zk+1 − Zk‖F + ‖Zk − Z̄‖F

≤
√
�0

C2
+ ρ < δ1

4
. (43)

From the updates in (12a) and (12b), it follows that

0 ∈ ∇W f (W k , H k, yk)− Lk
w(W

k+1 −W k)

−∂
(

rβ(W
k+1)+ ι

R
d×K+

(W k+1)
)
,

0 = ∇H f (W k+1, H k+1, yk),

which indicates that

∇W F(Zk+1)− ∇W f (W k , H k, yk)+ Lk
w(W

k+1 −W k)

∈ ∇W F(Zk+1)− ∂
(

rβ(W
k+1)+ ι

R
d×K+

(W k+1)
)
,

∇H F(Zk+1)− ∇H f (W k+1, H k+1, yk) = ∇H F(Zk+1).

Hence,

dist(0, ∂�(Zk+1))
≤ ‖∇W F(Zk+1)−∇W f (W k , H k, yk)+ Lk

w(W
k+1 − W k)‖F

+‖∇H F(Zk+1)−∇H f (W k+1, H k+1, yk)‖F

= ‖∇W F(Zk+1)− ∇W F(Zk)+ Lk
w(W

k+1 −W k)‖F

+‖∇H f (W k+1, H k+1, yk+1)− ∇H f (W k+1, H k+1, yk)‖F

≤ LG‖Zk+1 − Zk‖F +
(
4‖X̄� X̄‖2‖H̄ H̄�‖2 + μ‖X�L X‖2

)

∗‖W k+1 −W k‖F + LG‖yk+1 − yk‖2
≤ C1‖Zk+1 − Zk‖F , (44)

where we have used (23) to have the equality, and in the sec-
ond inequality, we note that 4‖X̄� X̄‖2‖H̄ H̄�‖2+μ‖X�L X‖2
is an upper bound of Lk

w from (36) and (37).
In addition, we have

φk − φk+1 ≥ φ′(�k)(�k − �k+1)
(39)≥ �k−�k+1

dist(0,∂�(Zk))
(44)≥ �k−�k+1

C1‖Zk−Zk−1‖
(41)≥ C2‖Zk+1−Zk‖2F

C1‖Zk−Zk−1‖F
(45)

where the first inequality is from the concavity of φ. From
(45), it follows that

C2‖Zk+1 − Zk‖2F ≤ C1‖Zk − Zk−1‖F (φk − φk+1)

⇒
√

C2‖Zk+1 − Zk‖F ≤
√

C1‖Zk − Zk−1‖F (φk − φk+1)

⇒ √
C2‖Zk+1 − Zk‖F ≤

√
C2

2
‖Zk − Zk−1‖F

+ C1

2
√

C2
(φk − φk+1).

Summing the above inequality over k and arranging terms give

K∑
k=1

‖Zk+1 − Zk‖F ≤ ‖Z1 − Z0‖F + C1

2C2
(φ1 − φK+1).

(46)

Hence,

‖Z K+1 − Z̄‖F ≤
K∑

k=1

‖Zk+1 − Zk‖F + ‖Z1 − Z̄‖F

≤ ‖Z1 − Z̄‖F + ‖Z1 − Z0‖F + C1

2C2
φ0

≤ 2‖Z1 − Z0‖F + ‖Z0 − Z̄‖F + C1

2C2
φ0

≤ 2

√
�0

C2
+ ‖Z0 − Z̄‖F + C1

2C2
φ0

(42a)≤ ρ,

which indicates Z K+1 ∈ B(Z̄, ρ). By induction, we have Zk ∈
B(Z̄, ρ), ∀k, and thus (46) holds for all K . Therefore, {Zk}∞k=1
is a Cauchy sequence and converges. Since Z̄ is a limit point,
it must hold that limk→∞ Zk = Z̄ . This completes the proof.
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