INTERMITTENCY FOR BRANCHING WALKS
WITH HEAVY TAILS.
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Abstract

Branching random walks on multidimensional lattice with heavy tails and a
constant branching rate are considered. It is shown that under these conditions
(heavy tails and constant rate), the front propagates exponentially fast, but the
particles inside of the front are distributed very non-uniformly. The particles exhibit
intermittent behavior in a large part of the region behind the front (i.e., the particles
are concentrated only in very sparse spots there). The zone of non-intermittency
(were particles are distributed relatively uniformly) extends with a power rate. This
rate is found.
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1 Introduction

The mathematical study of branching processes goes back to the work of Galton and
Watson [21] who were interested in the probabilities of long-term survival of family names.
Later similar mathematical models were used to describe the evolution of a variety of
biological populations, in genetics [10, 11, 12, 13], and in the study of certain chemical and
nuclear reactions [19, 14]. The branching processes (in particular, branching diffusions)
play important role in the study of the evolution of various populations such as bacteria,
cancer cells, carriers of a particular gene, etc., where each member of the population may
die or produce offspring independently of the rest.
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In this paper, we describe the long-time behavior of a population in different regions
of space when, in addition to branching, the members of the population move in space
(random migration). In fact, we will consider discrete problems on random walks on the
lattice Z%, not processes in R?, but our results can be extended to the latter case (with
some changes).

The two main characteristics of the problem under consideration concern the rate of
the branching and the probabilities of large jumps in Z¢. There is an extensive literature
on the branching random walks with compactly supported or fast decaying branching
rates, see [20, 4, 7, 2, 3, 6, 8, 9, 17, 16, 22, 18]. We assume that the branching rate v
is constant (the total population grows exponentially with probability one in this case).
Problems of this type (with constant rate v of splitting and zero mortality) originated
from the KPP model, see the famous paper by Kolmogorov, Petrovski and Piskunov
[15]. The spreading of a new advanced gene (in RY) was studied in [15]. We consider
the problem on the lattice (not in RY), but there is a much more essential difference.
We allow the random walk to have long jumps. To be more exact, we consider random
walks with heavy tails. This combination of heavy tails with the constant branching rate
creates the following effect: the front of the population propagates exponentially fast, but
the number of particles inside of the front is distributed very non-uniformly. The latter
property is referred to as the intermittency for the number of particles, and is the main
object of our study.

Let us formulate the problem more precisely. Branching walks on the lattice Z¢ are
considered. We assume that a particle located at y € Z? at a given time ¢ remains at
the same point for a random exponentially distributed time (with parameter 1), and then
jumps to a new position y + z with probability a(z). In addition, each particle located
at y € Z¢ splits with the rate vdt into two particles located at the same point 3. All the
particles behave independently of each other and according to the same law.

Obviously,

a(z) >0, Y a(z)=1 (1)

2€Z4

We also assume that the distribution of the jumps is symmetric, i.e., a(z) = a(—z), which
implies that £, = L, where operator £, is defined in (4) below. We assume that a has
the following behavior at infinity

_ap(?) .z
a(z) __|z|d+a(1 +_0<1))7 |Z|__> o0, Z __|Z|7 (2)
where
ap(2) >8>0, 0<a<2. (3)

In fact, later we will specify the asymptotics of a(z) in more detail (see (11)).

Many essential characteristics of the random walk (or process in R?) depend on the
rate of decay of the distribution at infinity. Conditions (2), (3) correspond to a walk with
a heavy tail. The second moments do not exist in this case. The decay (2) with a@ > 2



defines walks with a moderate tail. A process has a light tail if the distribution decays at
infinity so fast that its Fourier transform @(k) is analytic in k£ when |Imk| < 0 with some
0 > 0. The second moments are well defined in the latter two cases. Thus the walk under
consideration admits very long jumps whose probabilities are not very small.

Let n(t,z,y) be the number of particles at a point z € Z? at the moment ¢ > 0 under
condition that the process starts at initial moment ¢ = 0 with a single particle located at
a point y € Z4, i.e., n(0,x,y) = d(x — y).

Without duplication, the initial particle would perform the symmetric random walk
X (t) with the generator

(Lo ) ) = Y [fly+2) = fy)]al=), (4)

2€74

which acts on the space I(Z%).
If v > 0 and my; = my(t,x,y) is the expected value (the first moment) of the random
variable n(t, x,y), then m; satisfies the relations:

87n1

ot

(t,z,y) = Ly (t,z,y) +v mi(t,z,y), t>0. (5)

my(0,z,y) = d6(x —y).

In order to derive (5), we evaluate my(t + At,z,y) by splitting the time interval
(0,t 4+ At) into two successive intervals of lengths At and ¢. Then

my(t + At,x,y) ~ Z a(z)Atmy(t,x,y + z) + 2vAtm4 (¢, x, y) (6)

2€74
+ (1 = At —vA)my (t, z,y).

The first term on the right side of (6) is the sum of the probabilities to jump from y
to y + z during the time At (these probabilities are a(z)At) multiplied by the expectation
my(t,z,y + z) for the number of particles at = when the walk starts at a single point
y+ z € Z¢. The second term describes the probability #At of branching during the time
At multiplied by the expected number of particles at x that are descendants of both the
original and the new particles at y, which is 2m; (¢, x, y). The last term is the contribution
to the expectation of the number of particles at y from the event that the particle stays
at x without branching and jumping during the time interval At.

We subtract m; (¢, x,y) from both sides of equation (6) above, divide by At, and pass
to the limit At — 0. This implies (5).

Let us derive the equation for the second moment, msy(t,z,y) = E(n*(t,z,y)). We
again consider the time interval (0, ¢+ At) and split it in two successive intervals of lengths
At and t. Then

mo(t + At, x,y) ~ Z a(2)At my(t,m,y + 2) + v At E(ny + ny)?

z2€74



+ (1 — At — v At) ma(t, x,y). (7)
Here the terms on the right of (7) are similar to the terms in (6), n1(¢, z, y) is the number
of particles in z that are descendants of the original particle, and ny(t, z,y) is the number
of particles in x that are descendants of the newly born particle. We use the fact that
E(ny +n9)? = E(ny)? + E(ny)? + 2E(n1)E(ng) = 2ma(t, z,y) + 2mi(t,z,y). Then we
subtract ma(t, x,y) from both sides of (7 ), divide by At and pass to the limit as At — 0.
This implies:

0
St y) = (L, + v)ma(t 2, y) + 20 mi(t2,y). ®)
ma(0,2,) = 3z — y).

Denote by my (t,z), ma(t, x) the first and second moments for the number of particles
at the point x when the process starts at a single particle at the origin:

ml(twr) = ml(thao)a mZ(tam) = m2<tax70)

Obviously, functions my (t, z,y), ma(t, z,y) depend on x — y, not on x and y separately,
ie.,
ml(tvxa y) = m1<t7 r—1y, 0>7 mg(t7$, y) = m2<t7 r—y, 0)7

and therefore, my(t,x,y), ma(t, x,y) are known as soon as m;(t,x), ms(t,x) are found.
Note also that the symmetry of a(z) implies that £, f(x —y) = Lf(z — y), where

Lf=Lof =) [fx+2) = f(x)alz)

2€7Z4

Hence my (t, x), ma(t,x) satisfy the relations

%(t,x) = (L+v)mi(t,z), t>0; m(0,2)=d(z). (9)
%(m) = (L +v)ma(t,z) +2v mi(t,z), t=0; mp(0,2) =6(z).  (10)

The region in Z<¢ that separates the large and small values of m, (¢, ) is called the
front. To be more exact, we define the front F' = F(t) as the boundary of the set
{z : my(t,z) > 1}. The boundary consists of points = that have neighbors x+e, |ex| =1
or eg =0, such that m;(t,z +ey) > 1, my(t,x +e_) < L.

The notion of intermittency (or intermittent random fields) is popular in natural sci-
ences (astrophysics, biology, etc). From the qualitative point of view, intermittent random
fields are distinguished by the formation of sparse spatial structures such as high peaks,
clumps, patches, etc., giving the main contribution to the process in the medium. For
instance, the magnetic field of the Sun is highly intermittent as almost all its energy is
concentrated in the black spots, which cover only a very small part of the surface of the
Sun. Many bio-populations also exhibit strong clumping (clustering).

4



Intermittency is a well developed non-uniformity. For physicists, the magnetic field of
the Sun is intermittent since, say, 99% of its magnetic energy is concentrated on less than
1% of the surface. For mathematicians, 0.1,0.01 or 107% are not necessarily small numbers,
and a limiting process must be considered instead. The definition of intermittency based
on the progressive growth of the statistical moments was proposed in the review [23], a
more formal presentation can be found in [5]. In the the simplest form, a field n(¢, x), x €
74, is intermittent as ¢ — oo on a non-decreasing family of sets D(t) if

. En?(t,x)
lim ———= =
t=o0 (En(l, x))?
uniformly in z € D(t).

Let us illustrate this definition with the following example. Let n(t,z), z € Z%, be
independent identically distributed r. v. and

Pin(t.r) =0} =1- 22, Pln(t) =t} =2, t>p.

Then En(t,x) = po, i.e., the density of the population is constant in time, and

2 ey M )

Po = LILOO QL) (the law of the large numbers).
However,
En?(t,z) '
—_—_— — m
(Bn(ta)e — 70
and similarly for %, m > 2. Thus, the family of the fields n(t,z) is intermittent

as t — o0o. It is clear that the population n(t,z) is supported for large ¢ on a subset of Z¢
with relative volume py/t — 0 as t — oo. The independence of n(t,z) is not important
here and can be replaced by some kind of weak dependence (ergodicity), see [5].

The main two results of the present paper concern the propagation of the front of the
branching random walk that starts at the origin, and the intermittency of the distribution
of the particles on and behind the front. These results are proved under the following
assumption that is a little more restrictive than (2). Namely, we assume that:

d+e
1
Z |Z|d+a+3 O pararmse)s [Hl 700 2 €(0.2), (11)
where 2 = z/|z|, '
a; € Cd+17y+e<5d71)’ CLO<2) >0 >0,
and e = 1 if @ = 1, € = 0 otherwise.

Theorem 1.1. Let (11) hold. Then the following asymptotics holds for the points x € F(t)
on the front F(t):

|| = [ag(i)t]T=emal (1 + O(t™Y), ¢ — oo. (12)



This theorem is an immediate consequence of the global limit theorem proved in [1]
(see Theorem 2.1 below and the remark after it). While the front propagates exponentially
fast, the particles are distributed very non-uniformly on the front and at any exponential
in time distance from the original particle. In fact, we will find the exact boundary for
non-intermittency, and this boundary propagates with a power rate. Let

20+ d
Tt )

The following statement will be proved in the next section.

Theorem 1.2. Let (11) hold. Then

1) The ratio Z%gg is uniformly bounded in each ball |x| < Bt" when t — oo, i.e., the
1"

random variable n is non-intermaittent there.

2) For each domain Q.(t) = {x : |z| > "}, € > 0, we have % — 00 uniformly
1\

inx € Q(t) ast — oo, i.e., n is intermittent in Q. (t).

2 Proof of the main results.

The function m; (¢, x) with v = 0 will be denoted by p = p(t, z). Then

%(t,x)zﬁp(t,x), £>0: p(0,2)=d(x), (14)

and
my(t,x) = e’'p(t, x). (15)

Consider the homogeneous (of order —d — «) distribution in R? that is equal to
ao(@)|z|~47* when x # 0 (compare with the first term of asymptotics (2)). It was shown in
[1] that the Fourier transform of this distribution is the homogeneous function —by(¢)|o|*

in R?, where o is the dual variable to z, & = |‘f7|, and
. QT . .o
Io(6) = ~T(~a) cos & / ao(2)|(#, )| des > 0. (16)
gd—1

Here I is the gamma-function and w is the Lebesgue measure on the sphere S9! = {i}.
The following global limit theorem for random walks with heavy tails obtained in [1]
is a key point in the proof of the results stated in the introduction.

Theorem 2.1. Let (2) hold. Then
(i) the following asymptotis holds for p

1
ot z) = WS(%)Q +o(l)) when z€Z% |x|+t— oo, (17)



were S(y) = (271r)d [ €0 T0@dg >0 s the stable density S = Saa.(y), which

depends on o € (0,2) and ag, and by is defined in (16).
(ii) If AL/L — 00, |x| > 1, then the previous statement can be specified as follows:

ao(i) tl/a &0($)t

pt @) =~ (W)‘“a(l +o(1)) = |g;|d+a(1 +o(1)). (18)

Remarks. 1. There is a misprint in the statement of this theorem in [1]: S (AL/L) there

must be replaced by S(77), as it appears in formula (17) above.

2. This theorem and (15) imply Theorem 1.1. The remaining part of the section will
be devoted to the proof of Theorem 1.2. R

For a given function f = f(z), # € Z4, denote by f(o) the periodic in o function that
is the Fourier series with coefficients f(z),z € Z%, i.e.,

flo) =3 f)e @), f(a) = 1 : /[_ }d Fl0)e @) do,

z€Z4
In particular, from (14) it follows that

1 , 1 . A
e Z(U,x)d — [a(o’)—l]t—‘rz(o‘,m)d ) 19
B a0 G [ 0

The following properties of @(o) follow immediately from properties of a(x):

p(t,$)==

a(—o)=ad(o); —1<ialo)<l, 0£ceT™ (20)

The second part in (20) follows from (1) provided that for each o € T%, o # 0, there is a
point z € Z? where e=**%) #£ 1 and a(z) # 0. Such points z exist due to (11).
We will need the following lemma.

Lemma 2.2. Function p(t, ) is strictly positive for all v € Z2, t > 0.

Proof. Denote by a,(z) the convolution of n copies of a(x):
an(x) == a(x) * a(x) x ... x a(z), (21)

where a(z) * b(x) = ), za a(x — 2) * b(2).

We multiply both sides of (21) by e(=%®) and take the sum in 2 € Z? This implies
an(o) = [a(o)]™. From here, (1), and (20) it follows that |a,(c)| < 1. This allows us to
write p(t, x) as follows:

—t 00

1 (o) —1)t-+i e [@(@)]" .y
b)) — [a(0)At+i(o) gy / ) 1 oo g
p(t, v) (2n)? /[—w,n]d e o @y 1+ Z " e o

n=1

Thus



_ —t S a’"('r) n

p(t, ) = e'[8(x) + Zl ot (22)
Since a(x) > 0, all the convolutions a,(z) are non-negative. Hence (22) will imply the

statement of the lemma if we show that as(z) is strictly positive for all z € Z2.

We have:
as(x) = Z a(z — z)a(z). (23)
2€74
Here a > 0, and from (11) it follows that the terms in (23) are positive for each fixed
x if z is large enough. Thus as(x) > 0, and the proof of the lemma is complete.
O
Let us formulate a simplified version of Theorem 2.1 that will be combined with (15)
and will be easer to use than Theorem 2.1.
Definition. Functions a and b will be called equivalent, and it will be denoted by a =< b,
if there exist two constants ¢; and ¢y such that, ¢1b < a < ¢ob.

Lemma 2.3. Let (2) hold. Then for arbitrary ay > a; > 0, the following relations hold

t
(@) |ma(t, @) =< We”t when |z| > ayte, (24)
€T o
(i) |mi(t,z)| <t ae” when |z| < asts, t>e>0, (25)
(zii)  |mqy(t,x)] <1 when =0, t <1. (26)

Remarks. 1) One can use any of the estimates (24), (25) in the intermediate zone
alté < lz| < agti, t > ¢ > 0. The right-hand sides of these estimates are equivalent in
this intermediate zone.

2) From the last two relations it follows that the following estimate holds for all ¢ > 0:

|ma(t,x)| < (t + 1)_ge”t when |z| < asto. (27)

Proof. Due to (15), it is enough to prove the lemma when v = 0 and m; is replaced by
D.

The last statement of the lemma follows immediately from (19). In order to prove the
first two statements, we split the region = € Z¢,t > 0, into three subregions, U;, Us, and
Us, where Uj is the region defined by the inequality |z| > Ata with A so large that the
remainder term in (18) is less than 1/2. Note that |z| > Ate implies that = # 0. Thus
|z| > 1 in U; since z is a point on the lattice. Hence (18) implies (24) with a; = A. Let
U, be defined by the inequalities |z| < Ats, |z|+t > B, where B is chosen so large that
the remainder term in (17) is less than 1/2 when |z|+¢ > B. Since % < A is bounded in

t
U, and function S(y) is positive and continuous, it follows that S (t%) in (17) has upper
and lower positive bounds in Uy. Thus (17) implies that p(t, z) =< t~& in Us.
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Now consider the region
Us = {Ja] < At=, |z +¢ < BN\{(t,2): =0, t <1}.

Region Uj is bounded, and ¢ > 6 > 0 there. Since p is continuous, from Lemma 2.2 it
follows that p has positive lower and upper bounds on Us. Similar bounds are valid for
the function ¢~&. Thus p(t,x) < t~& on Uy |JUs, and the second statement of Lemma
2.3 is proved with ay = A. Estimates (24), (25) were proved with a; = ay = A. Their
validity with arbitrary a;, as follows from the equivalency relation stated in the remark
above.

O
Proof of Theorem 1.2. Since m; is the Green function for the operator £ + v, the
Duhamel principle implies that the solution my of (10) has the form

ma(t, x) = my(t,x) + 2V/0 Z my(t — 8,0 — 2)m3(s, z)ds. (28)

z2€74

We will start the proof of the theorem with the second statement (about the intermit-
tency). Since mq, mg > 0, we have

t

ma(t,z) > 2uv Z my(t — s,z — 2)m2(s, 2)ds, (29)

1
2€Z%: |2|<Stw

where x € Q.(t), t — 0o. We apply estimate (24) to the first factor under the summation
sign and the estimate (25) to the second factor. Taking into account that ¢ —s < 1 and
|z — z| < |z| in (29), we obtain that

t t d
Z 1 —2d opt te —2d opt
m2(t7$)20/tl WS aeyd820/1WS aeds.
_ L _

t
2€Z4: |z|<Ita

Hence

C€2Vt
mo(t,x) > ———, x € Q(t), t— 0.
ta|x|d+a

On the other hand, from (24) it follows that

Ct2 2vt

m?(t,x) < ‘x|2(—d+a)e , T E Qg(t)’ t — 0.

Hence, if z € Q.(t), t — oo, then

(d+a) t(yFe)(d+a)
> C’|x| = Ot s g as t — 0.

m%(t,x) — t2+d/a - t2aa+d




The second statement of the theorem is proved.

Let us prove the first statement. Note that the ball |z| < Bt is located behind the
front, and Lemma 2.3 implies that m; — oo in this ball as t — co. Hence (28) implies
that the first statement of the theorem will be proved (and the proof of the theorem will
be complete) as soon as we show that

I:: /Zmlt—sx 2)mi(s,2) ds < C, |z| < Bt", t—o0. (30)

z2€74

In order to estimate the left hand-side of (30), we split Z? in (30) into four sets
separated by the two spheres: |z| = sa and |z — 2| = (t — s)a. Let P, = Pyi(s), P =
Py(z,t — s) be (bounded) sets of points z € Z? located inside or at the boundary of the
first (respectively, second) sphere defined above, i.e.,

Plz{ZEZd:|z|§sé}, sz{ZEZd:|x—z|§(t—s)i}

Denote by D;; = D; ;(s,t,x) the following sets of points z € Z¢ with 0 < s < ¢, x € Z%

Dy is the the set of points z € Z¢ located inside or at the boundary of both spheres,
i.e., D11 = P1 ﬂPz

D,y is the the set of points z € Z? located outside of both spheres, i.c., Dy =
74\ (P P).

Dis is the set of points z € Z? located outside of the first sphere, but inside of the
second one or on its boundary, i.e., Do = (Z4\ P)J Ps.

Do, is the the set of points z € Z¢ located inside of the first sphere or on its boundary,
but outside of the second one, i.e., Dy = (Zd \ P)U P

Respectively, I can be written as I = 37 =1 Lij, where I;; is defined by (30) with the
summation extended oved D;; instead of Z?. We are going to estimate each of the terms
I;; when |z| < BtY, t — oo.

1) Estimate on I . We will obtain this estimate separately for 2t < |z| < Bt and
for |z| < 2t=. Note that the two balls P, and P, are separated in the first case (when
0 < s <t) and they may intersect each other in the second case. Consider the first case
of |z| > 2t«. Then |m2(t, z)| < m;é—;a)e%” (due to (24)) and relations (27), (24) hold for
the first and second factors under the summation sign in (30), respectively. Thus

Clx 2(d+a) V(t-l—s)d
A Z 2w < |z| < B, t o0 (31)
t262t1/ t _ S |Z|2 d+a)
2€D12
Since |r — z| < (t — ) < te in Do, inequality |z| > 2t« implies that |z — 2| < 3|zl
and therefore |2| > 1|z|in (31). Hence we can replace z by x there. After that, summation
in (31) is applied to z-independent terms. Hence, the summation sign can be replaced

10



by a factor k that estimates the number of terms in the sum from aloove. Obviously,
k < C(A%+ 1), where A is the radius of the ball P, i.e., k < C[(t — s)= + 1], and

t _ 2 2 v(t+s) t
Iy < QC; t/ [(t 3) + 1]3 ed ds < ZCYlt/ 8261/st < 02 < 00 (32)
t=es” (t—s+1)a t“e” Jo
when 2ta < |z < BtY, t — oco.
Now let |z| < 2ta. Then |m2(t, z)| = —re2” for t > 1 (due to (25)), and (31) must be

t
replaced by

Ct& V(t—i-s)ds 1
I, < o2 / Z . x| <20, t— o0 (33)

EDQ |Z|2 (d+a)

We split the right-hand side above into two parts I’ + I” by writing the interval (0, t)
as the union of (0,¢/2) and (¢/2,t). Since D;5 does not contain points of the first ball Py,
z # 0 there. We have |z| > 1 for all other points of the lattice. Thus we can replace |z|
in I’ by 1 and replace summation by factor . This leads to the estimate

2 /2 200(t45) 4 24 at/2
< Ct / [(t — ) +1]s ds < Ct / 2 ds.
0 0

=~ 621/15 (t—S—‘—]_)E - el/t

where the right hand side decays exponentially as t — co. Thus I’ < C < oc.
1
Now consider I”. In this case, t/2 < s < t implies that |z| > s& > (£/2)=, and we

can replace |z| by (t/ 2)é in (33). Then we replace the summation in z by the factor s as
before. This leads to the following estimate:

"' < i/t 2"t s < O < 00, t — 00
— e2vty2(dta)/a +/2 — ? ’

Together with the boundedness of I” and (31), this proves that
s <C < oo, |z|<Bt", t— oc.

2) Estimate on I;;. The two balls P;, P, do not intersect each other when |z| >
2ta (and 0 < s < t). Hence we may assume that |z| < 2ta. Then (25) implies that
Im2(t,z)] =t~ e*, t — o0o. We apply (27) to the factors under the summation sign in
(30) and obtain that

Cts e(+9)ds
I < 21/t/ Z st 00.

ZGDH —s+1) (3+1)

11



We replace here the summation sign by the factor s introduced above and use the
estimate

d
t—8)a +1
%SC[(S—WSOL
(t—s+1)a (t—s+1)a
This leads to o
Cta [P esd
I, < t/ € S2d<C’<oo, t — o0. (34)
e o (st 1)F

3) Estimate on Is. Estimate (25) can be applied to the factors under the summation
sign in (30). Thus

(t — s)s?
I Ve ds.
2 S —3 (t,7) / z — Z|d+a|zl2(d+a € s (35)
1 z€D22

Consider first the case when |z| < 1¢'/%. Then the inequalities
]z\>sé, |:Jc—z|>(7f—s)é 0<s<t, zz2€R (36)

imply that |z| > > 0 if ¢ = 1. Using the homogeneity arguments, one can easily obtain
that inequalities (36) with an arbitrary ¢ > 0 imply that

|2 > g/,

i.e., the latter estimate holds in Dy. Now we can replace |z| in (35) by At/ and use
relation (25) for m;. This leads to

C2dle t— 5)s2er(t9) ds I
[22 = e2vt2( d+a / Z Z’d+a ) |5L'| < 5'[;1/ , T — o0.

z€D22

Note that |z — z| > 1 when 2z € Dyy and that ), W < D sezi\ (o) W The
latter series converges and does not depend on x. Hence

Ct?
122 S 621/t

t
1
/ (t —s)s?e"H9ds < C < 00, 2| < 5151/0‘, t — oo. (37)
0

Now let us estimate I5» when %tl/ @ < |z| < Bt". We split the region D,y into two,
namely, DS = Dy, N {2z : |2 > |x|} and DS = Doy N {z: |2 < |m|} Then Ipy < I) + I,
where I; and I are the right-hand side in (35) with Dy, replaced by D22 , D22) respectively.

In order to evaluate I;, we replace |z| in (35) by |x|/2, use convergence of the series
Y 2D W, and estimate (24) for my. This leads to

C 2(d+a) tt — t
;< Clal /w 5)uw%&4%%m/Qm_@wwgc<m
0

- 122t ‘LL’|2 d+a)
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when ¥/ < |z| < Bt?, t — oco.
Let us estimate Io. The inequality |z| < 5! implies that |z — 2| > % We use this in
(35) together with estimate (24) for m;. Then we have

\rl

C1|l‘|(d+a) ! 2 _vs 1 1 1/a y
]2SWA(t S)S@ (Z |Z|2(—d+a))ds7 ét S|I’|§Bt, t — o0.

zeDéQQ)
Note that |z| > sa in Dy and |z| > 1if z # 0. Hence the sum in the formula above does

not exceed C/(1+s)~ " 20 o/ (due to |z| < Bt7).
Hence

. We also can use there that

Ct/e o 1
I < — / (1+ S)_2 o (t — s)s*e* ds, Etl/o‘ < |z| < Bt?, t— 0.
e Jo

One can easily check that the right-hand side above is bounded. This together with the
boundedness of I; and (37) implies that

I <C < o0, |z|<Bt, t— oc.

4) Estimate on I5;. From Lemma 2.3 it follows that

C ! t—
el 5
mi(t,x) Jo |x—z|d+°‘(s—|—1)?

z€D2q

First, let us estimate I5; when |z| < 2t=. Then m; can be estimated using (25). There
is also z-independent constant C' < oo such that ) < C (see details in the

2€D21 |z— z\‘“&
subsection on Iy). Thus

Ctx [t (t— Cts [t (t—
I < —— / ( S)Qd e’ts)ds = - / ( 8)2 e”’ds < C < o0
e Jo (s+1)a e Jo (s+ 1)«

when |z| < 2ta, t — oo.
Consider now the case of 2ta < |z| < Bt". Then estimate (24) can be applied to my,

and therefore o) (the)
C (6% l/ S
Ini < |3“;| - / S j ~ds. (38)
te 2cDa 1T — Z|d+a s+1)a

Since |z| < sa < ta in Dy and we assume that |z| > 2=, we have |z—z| > |z|/2 in the
integrand above. Thus we can replace |z — z| by |z|/2 in (38). After that, the summation
sign can be replaced by the number x; of terms in the sum. Obviously, x; < C(A{ + 1),
where A; is the radius of the first ball Py, i.e., k; < C’[sg + 1], and

d+a t . vs d/a t - vs
I, < Clz| / (t —s)e s < Ct / (t—s)e s < O < oo
0

t2€l/t 0 (S‘i‘l)% — el/t (S‘i‘l)%
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when 2ta < |z| < Bt", t — oo. Thus I3 is bounded when |z| < Bt?, t — oco. Together
with the boundedness of all other [;;, this completes the proof of the theorem.

]
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