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Abstract

Branching random walks on multidimensional lattice with heavy tails and a
constant branching rate are considered. It is shown that under these conditions
(heavy tails and constant rate), the front propagates exponentially fast, but the
particles inside of the front are distributed very non-uniformly. The particles exhibit
intermittent behavior in a large part of the region behind the front (i.e., the particles
are concentrated only in very sparse spots there). The zone of non-intermittency
(were particles are distributed relatively uniformly) extends with a power rate. This
rate is found.
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1 Introduction

The mathematical study of branching processes goes back to the work of Galton and
Watson [21] who were interested in the probabilities of long-term survival of family names.
Later similar mathematical models were used to describe the evolution of a variety of
biological populations, in genetics [10, 11, 12, 13], and in the study of certain chemical and
nuclear reactions [19, 14]. The branching processes (in particular, branching diffusions)
play important role in the study of the evolution of various populations such as bacteria,
cancer cells, carriers of a particular gene, etc., where each member of the population may
die or produce offspring independently of the rest.
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In this paper, we describe the long-time behavior of a population in different regions
of space when, in addition to branching, the members of the population move in space
(random migration). In fact, we will consider discrete problems on random walks on the
lattice Zd, not processes in Rd, but our results can be extended to the latter case (with
some changes).

The two main characteristics of the problem under consideration concern the rate of
the branching and the probabilities of large jumps in Zd. There is an extensive literature
on the branching random walks with compactly supported or fast decaying branching
rates, see [20, 4, 7, 2, 3, 6, 8, 9, 17, 16, 22, 18]. We assume that the branching rate ν
is constant (the total population grows exponentially with probability one in this case).
Problems of this type (with constant rate ν of splitting and zero mortality) originated
from the KPP model, see the famous paper by Kolmogorov, Petrovski and Piskunov
[15]. The spreading of a new advanced gene (in Rd) was studied in [15]. We consider
the problem on the lattice (not in Rd), but there is a much more essential difference.
We allow the random walk to have long jumps. To be more exact, we consider random
walks with heavy tails. This combination of heavy tails with the constant branching rate
creates the following effect: the front of the population propagates exponentially fast, but
the number of particles inside of the front is distributed very non-uniformly. The latter
property is referred to as the intermittency for the number of particles, and is the main
object of our study.

Let us formulate the problem more precisely. Branching walks on the lattice Zd are
considered. We assume that a particle located at y ∈ Zd at a given time t remains at
the same point for a random exponentially distributed time (with parameter 1), and then
jumps to a new position y + z with probability a(z). In addition, each particle located
at y ∈ Zd splits with the rate νdt into two particles located at the same point y. All the
particles behave independently of each other and according to the same law.

Obviously,

a(z) ≥ 0,
∑
z∈Zd

a(z) = 1. (1)

We also assume that the distribution of the jumps is symmetric, i.e., a(z) = a(−z), which
implies that Ly = L∗

y where operator Ly is defined in (4) below. We assume that a has
the following behavior at infinity

a(z) =
a0(ż)

|z|d+α
(1 + o(1)), |z| → ∞, ż =

z

|z|
, (2)

where
a0(ż) > δ > 0, 0 < α < 2. (3)

In fact, later we will specify the asymptotics of a(z) in more detail (see (11)).
Many essential characteristics of the random walk (or process in Rd) depend on the

rate of decay of the distribution at infinity. Conditions (2), (3) correspond to a walk with
a heavy tail. The second moments do not exist in this case. The decay (2) with α > 2
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defines walks with a moderate tail. A process has a light tail if the distribution decays at
infinity so fast that its Fourier transform â(k) is analytic in k when |Imk| < δ with some
δ > 0. The second moments are well defined in the latter two cases. Thus the walk under
consideration admits very long jumps whose probabilities are not very small.

Let n(t, x, y) be the number of particles at a point x ∈ Zd at the moment t ≥ 0 under
condition that the process starts at initial moment t = 0 with a single particle located at
a point y ∈ Zd, i.e., n(0, x, y) = δ(x− y).

Without duplication, the initial particle would perform the symmetric random walk
X(t) with the generator

(Lyf)(y) =
∑
z∈Zd

[f(y + z)− f(y)]a(z), (4)

which acts on the space l2(Zd).
If ν > 0 and m1 = m1(t, x, y) is the expected value (the first moment) of the random

variable n(t, x, y), then m1 satisfies the relations:

∂m1

∂t
(t, x, y) = Lym1(t, x, y) + ν m1(t, x, y), t ≥ 0. (5)

m1(0, x, y) = δ(x− y).

In order to derive (5), we evaluate m1(t + ∆t, x, y) by splitting the time interval
(0, t+∆t) into two successive intervals of lengths ∆t and t. Then

m1(t+∆t, x, y) ∼
∑
z∈Zd

a(z)∆tm1(t, x, y + z) + 2ν∆tm1(t, x, y) (6)

+ (1−∆t− ν∆t)m1(t, x, y).

The first term on the right side of (6) is the sum of the probabilities to jump from y
to y+z during the time ∆t (these probabilities are a(z)∆t) multiplied by the expectation
m1(t, x, y + z) for the number of particles at x when the walk starts at a single point
y + z ∈ Zd. The second term describes the probability ν∆t of branching during the time
∆t multiplied by the expected number of particles at x that are descendants of both the
original and the new particles at y, which is 2m1(t, x, y). The last term is the contribution
to the expectation of the number of particles at y from the event that the particle stays
at x without branching and jumping during the time interval ∆t.

We subtract m1(t, x, y) from both sides of equation (6) above, divide by ∆t, and pass
to the limit ∆t → 0. This implies (5).

Let us derive the equation for the second moment, m2(t, x, y) = E(n2(t, x, y)). We
again consider the time interval (0, t+∆t) and split it in two successive intervals of lengths
∆t and t. Then

m2(t+∆t, x, y) ∼
∑
z∈Zd

a(z)∆t m2(t, x, y + z) + ν ∆t E(n1 + n2)
2

3



+ (1−∆t− ν ∆t) m2(t, x, y). (7)

Here the terms on the right of (7) are similar to the terms in (6), n1(t, x, y) is the number
of particles in x that are descendants of the original particle, and n2(t, x, y) is the number
of particles in x that are descendants of the newly born particle. We use the fact that
E(n1 + n2)

2 = E(n1)
2 + E(n2)

2 + 2E(n1)E(n2) = 2m2(t, x, y) + 2m2
1(t, x, y). Then we

subtract m2(t, x, y) from both sides of (7 ), divide by ∆t and pass to the limit as ∆t → 0.
This implies:

∂m2

∂t
(t, x, y) = (Ly + ν)m2(t, x, y) + 2ν m2

1(t, x, y), (8)

m2(0, x, y) = δ(x− y).

Denote by m1(t, x), m2(t, x) the first and second moments for the number of particles
at the point x when the process starts at a single particle at the origin:

m1(t, x) := m1(t, x, 0), m2(t, x) := m2(t, x, 0)

Obviously, functions m1(t, x, y),m2(t, x, y) depend on x − y, not on x and y separately,
i.e.,

m1(t, x, y) = m1(t, x− y, 0), m2(t, x, y) = m2(t, x− y, 0),

and therefore, m1(t, x, y),m2(t, x, y) are known as soon as m1(t, x),m2(t, x) are found.
Note also that the symmetry of a(z) implies that Lyf(x− y) = Lf(x− y), where

Lf = Lxf =
∑
z∈Zd

[f(x+ z)− f(x)]a(z)

Hence m1(t, x), m2(t, x) satisfy the relations

∂m1

∂t
(t, x) = (L+ ν)m1(t, x), t ≥ 0; m1(0, x) = δ(x). (9)

∂m2

∂t
(t, x) = (L+ ν)m2(t, x) + 2ν m2

1(t, x), t ≥ 0; m2(0, x) = δ(x). (10)

The region in Zd that separates the large and small values of m1(t, x) is called the
front. To be more exact, we define the front F = F (t) as the boundary of the set
{x : m1(t, x) ≥ 1}. The boundary consists of points x that have neighbors x+e±, |e±| = 1
or e± = 0, such that m1(t, x+ e+) ≥ 1, m1(t, x+ e−) < 1.

The notion of intermittency (or intermittent random fields) is popular in natural sci-
ences (astrophysics, biology, etc). From the qualitative point of view, intermittent random
fields are distinguished by the formation of sparse spatial structures such as high peaks,
clumps, patches, etc., giving the main contribution to the process in the medium. For
instance, the magnetic field of the Sun is highly intermittent as almost all its energy is
concentrated in the black spots, which cover only a very small part of the surface of the
Sun. Many bio-populations also exhibit strong clumping (clustering).
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Intermittency is a well developed non-uniformity. For physicists, the magnetic field of
the Sun is intermittent since, say, 99% of its magnetic energy is concentrated on less than
1% of the surface. For mathematicians, 0.1, 0.01 or 10−6 are not necessarily small numbers,
and a limiting process must be considered instead. The definition of intermittency based
on the progressive growth of the statistical moments was proposed in the review [23], a
more formal presentation can be found in [5]. In the the simplest form, a field n(t, x), x ∈
Zd, is intermittent as t → ∞ on a non-decreasing family of sets D(t) if

lim
t→∞

En2(t, x)

(En(t, x))2
= ∞

uniformly in x ∈ D(t).
Let us illustrate this definition with the following example. Let n(t, x), x ∈ Zd, be

independent identically distributed r. v. and

P{n(t, x) = 0} = 1− p0
t
, P{n(t, x) = t} =

p0
t
, t ≥ p0.

Then En(t, x) = p0, i.e., the density of the population is constant in time, and

p0 = lim
L→∞

∑
|x|≤L n(t, x)

(2L)d
(the law of the large numbers).

However,
En2(t, x)

(En(t, x))2
= p0t → ∞,

and similarly for Enm(t,x)
(En(t,x))m

, m ≥ 2. Thus, the family of the fields n(t, x) is intermittent

as t → ∞. It is clear that the population n(t, x) is supported for large t on a subset of Zd

with relative volume p0/t → 0 as t → ∞. The independence of n(t, x) is not important
here and can be replaced by some kind of weak dependence (ergodicity), see [5].

The main two results of the present paper concern the propagation of the front of the
branching random walk that starts at the origin, and the intermittency of the distribution
of the particles on and behind the front. These results are proved under the following
assumption that is a little more restrictive than (2). Namely, we assume that:

a(z) =
d+ϵ∑
j=0

aj(ż)

|z|d+α+j
+O(

1

|z|2d+α+1+ϵ
), |z| → ∞, α ∈ (0, 2), (11)

where ż = z/|z|,
aj ∈ Cd+1−j+ϵ(Sd−1), a0(ż) > δ > 0,

and ϵ = 1 if α = 1, ϵ = 0 otherwise.

Theorem 1.1. Let (11) hold. Then the following asymptotics holds for the points x ∈ F (t)
on the front F (t):

|x| = [a0(ẋ)t]
1

d+α e
ν

d+α
t(1 +O(t−1)), t → ∞. (12)
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This theorem is an immediate consequence of the global limit theorem proved in [1]
(see Theorem 2.1 below and the remark after it). While the front propagates exponentially
fast, the particles are distributed very non-uniformly on the front and at any exponential
in time distance from the original particle. In fact, we will find the exact boundary for
non-intermittency, and this boundary propagates with a power rate. Let

γ =
2α + d

α(α + d)
. (13)

The following statement will be proved in the next section.

Theorem 1.2. Let (11) hold. Then

1) The ratio m2(t,x)

m2
1(t,x)

is uniformly bounded in each ball |x| < Btγ when t → ∞, i.e., the

random variable n is non-intermittent there.
2) For each domain Ωε(t) = {x : |x| > tγ+ε}, ε > 0, we have m2(t,x)

m2
1(t,x)

→ ∞ uniformly

in x ∈ Ωε(t) as t → ∞, i.e., n is intermittent in Ωε(t).

2 Proof of the main results.

The function m1(t, x) with ν = 0 will be denoted by p = p(t, x). Then

∂p

∂t
(t, x) = Lp(t, x) , t ≥ 0 ; p(0, x) = δ(x), (14)

and
m1(t, x) = eνtp(t, x). (15)

Consider the homogeneous (of order −d − α) distribution in Rd that is equal to
a0(ẋ)|x|−d−α when x ̸= 0 (compare with the first term of asymptotics (2)). It was shown in
[1] that the Fourier transform of this distribution is the homogeneous function −b0(σ̇)|σ|α
in Rd, where σ is the dual variable to x, σ̇ = σ

|σ| , and

b0(σ̇) = −Γ(−α) cos
απ

2

∫
Sd−1

a0(ẋ)|(ẋ, σ̇)|αdω > 0. (16)

Here Γ is the gamma-function and ω is the Lebesgue measure on the sphere Sd−1 = {ẋ}.
The following global limit theorem for random walks with heavy tails obtained in [1]

is a key point in the proof of the results stated in the introduction.

Theorem 2.1. Let (2) hold. Then
(i) the following asymptotis holds for p

p(t, x) =
1

td/α
S(

x

t1/α
)(1 + o(1)) when x ∈ Zd, |x|+ t → ∞, (17)
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were S(y) = 1
(2π)d

∫
Rd e

i(σ,y)−b0(σ̇)|σ|αdσ > 0 is the stable density S = Sα,a0(y), which

depends on α ∈ (0, 2) and a0, and b0 is defined in (16).

(ii) If |x|
t1/α

→ ∞, |x| ≥ 1, then the previous statement can be specified as follows:

p(t, x) =
a0(ẋ)

td/α
(
t1/α

|x|
)d+α(1 + o(1)) =

a0(ẋ)t

|x|d+α
(1 + o(1)). (18)

Remarks. 1. There is a misprint in the statement of this theorem in [1]: S( |x|
t1/α

) there
must be replaced by S( x

t1/α
), as it appears in formula (17) above.

2. This theorem and (15) imply Theorem 1.1. The remaining part of the section will
be devoted to the proof of Theorem 1.2.

For a given function f = f(x), x ∈ Zd, denote by f̂(σ) the periodic in σ function that
is the Fourier series with coefficients f(x), x ∈ Zd, i.e.,

f̂(σ) =
∑
x∈Zd

f(x)e−i(x,σ), f(x) =
1

(2π)d

∫
[−π,π]d

f̂(σ)ei(x,σ)dσ.

In particular, from (14) it follows that

p(t, x) =
1

(2π)d

∫
[−π,π]d

p̂(t, σ)ei(σ,x)dσ =
1

(2π)d

∫
[−π,π]d

e[â(σ)−1]t+i(σ,x)dσ. (19)

The following properties of â(σ) follow immediately from properties of a(x):

â(−σ) = â(σ); − 1 < â(σ) < 1, 0 ̸= σ ∈ T d. (20)

The second part in (20) follows from (1) provided that for each σ ∈ T d, σ ̸= 0, there is a
point z ∈ Zd where e−i(z,σ) ̸= 1 and a(z) ̸= 0. Such points z exist due to (11).

We will need the following lemma.

Lemma 2.2. Function p(t, x) is strictly positive for all x ∈ Zd, t > 0.

Proof. Denote by an(x) the convolution of n copies of a(x):

an(x) := a(x) ∗ a(x) ∗ ... ∗ a(x), (21)

where a(x) ∗ b(x) =
∑

z∈Zd a(x− z) ∗ b(z).
We multiply both sides of (21) by e(−iσx) and take the sum in x ∈ Zd. This implies

ân(σ) = [â(σ)]n. From here, (1), and (20) it follows that |ân(σ)| ≤ 1. This allows us to
write p(t, x) as follows:

p(t, x) =
1

(2π)d

∫
[−π,π]d

e[â(σ)−1]t+i(σ,x)dσ =
e−t

(2π)d

∫
[−π,π]d

[1 +
∞∑
n=1

[â(σ)]n

n!
tn] ei(σ,x)dσ.

Thus
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p(t, x) = e−t[δ(x) +
∞∑
n=1

an(x)

n!
tn]. (22)

Since a(x) ≥ 0, all the convolutions an(x) are non-negative. Hence (22) will imply the
statement of the lemma if we show that a2(x) is strictly positive for all x ∈ Zd.

We have:
a2(x) =

∑
z∈Zd

a(x− z)a(z). (23)

Here a ≥ 0, and from (11) it follows that the terms in (23) are positive for each fixed
x if z is large enough. Thus a2(x) > 0, and the proof of the lemma is complete.

Let us formulate a simplified version of Theorem 2.1 that will be combined with (15)
and will be easer to use than Theorem 2.1.
Definition. Functions a and b will be called equivalent, and it will be denoted by a ≍ b,
if there exist two constants c1 and c2 such that, c1b < a < c2b.

Lemma 2.3. Let (2) hold. Then for arbitrary a2 ≥ a1 > 0, the following relations hold

(i) |m1(t, x)| ≍
t

|x|d+α
eνt when |x| > a1t

1
α , (24)

(ii) |m1(t, x)| ≍ t−
d
α eνt when |x| ≤ a2t

1
α , t > ε > 0, (25)

(iii) |m1(t, x)| ≍ 1 when x = 0, t < 1. (26)

Remarks. 1) One can use any of the estimates (24), (25) in the intermediate zone

a1t
1
α < |x| ≤ a2t

1
α , t > ε > 0. The right-hand sides of these estimates are equivalent in

this intermediate zone.
2) From the last two relations it follows that the following estimate holds for all t > 0:

|m1(t, x)| ≍ (t+ 1)−
d
α eνt when |x| ≤ a2t

1
α . (27)

Proof. Due to (15), it is enough to prove the lemma when ν = 0 and m1 is replaced by
p.

The last statement of the lemma follows immediately from (19). In order to prove the
first two statements, we split the region x ∈ Zd, t ≥ 0, into three subregions, U1, U2, and
U3, where U1 is the region defined by the inequality |x| > At

1
α with A so large that the

remainder term in (18) is less than 1/2. Note that |x| > At
1
α implies that x ̸= 0. Thus

|x| ≥ 1 in U1 since x is a point on the lattice. Hence (18) implies (24) with a1 = A. Let

U2 be defined by the inequalities |x| ≤ At
1
α , |x|+ t ≥ B, where B is chosen so large that

the remainder term in (17) is less than 1/2 when |x|+ t > B. Since |x|
t
1
α
≤ A is bounded in

U2 and function S(y) is positive and continuous, it follows that S( x

t
1
α
) in (17) has upper

and lower positive bounds in U2. Thus (17) implies that p(t, x) ≍ t−
d
α in U2.
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Now consider the region

U3 = {|x| ≤ At
1
α , |x|+ t ≤ B}\{(t, x) : x = 0, t < 1}.

Region U3 is bounded, and t ≥ δ > 0 there. Since p is continuous, from Lemma 2.2 it
follows that p has positive lower and upper bounds on U3. Similar bounds are valid for
the function t−

d
α . Thus p(t, x) ≍ t−

d
α on U2

∪
U3, and the second statement of Lemma

2.3 is proved with a2 = A. Estimates (24), (25) were proved with a1 = a2 = A. Their
validity with arbitrary a1, a2 follows from the equivalency relation stated in the remark
above.

Proof of Theorem 1.2. Since m1 is the Green function for the operator L + ν, the
Duhamel principle implies that the solution m2 of (10) has the form

m2(t, x) = m1(t, x) + 2ν

∫ t

0

∑
z∈Zd

m1(t− s, x− z)m2
1(s, z)ds. (28)

We will start the proof of the theorem with the second statement (about the intermit-
tency). Since m1,m2 ≥ 0, we have

m2(t, x) ≥ 2ν

∫ t

t−1

∑
z∈Zd: |z|≤ 1

2
t
1
α

m1(t− s, x− z)m2
1(s, z)ds, (29)

where x ∈ Ωε(t), t → ∞. We apply estimate (24) to the first factor under the summation
sign and the estimate (25) to the second factor. Taking into account that t − s ≤ 1 and
|x− z| ≍ |x| in (29), we obtain that

m2(t, x) ≥ C

∫ t

t−1

∑
z∈Zd: |z|≤ 1

2
t
1
α

1

|x|d+α
s−

2d
α e2νtds ≥ C

∫ t

t−1

t
d
α

|x|d+α
s−

2d
α e2νtds.

Hence

m2(t, x) ≥
Ce2νt

t
d
α |x|d+α

, x ∈ Ωε(t), t → ∞.

On the other hand, from (24) it follows that

m2
1(t, x) ≤

Ct2

|x|2(d+α)
e2νt, x ∈ Ωε(t), t → ∞.

Hence, if x ∈ Ωε(t), t → ∞, then

m2(t, x)

m2
1(t, x)

≥ C
|x|(d+α)

t2+d/α
≥ C

t(γ+ε)(d+α)

t
2α+d

α

= Ctε(d+α) → ∞ as t → ∞.
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The second statement of the theorem is proved.
Let us prove the first statement. Note that the ball |x| ≤ Btγ is located behind the

front, and Lemma 2.3 implies that m1 → ∞ in this ball as t → ∞. Hence (28) implies
that the first statement of the theorem will be proved (and the proof of the theorem will
be complete) as soon as we show that

I :=
1

m2
1(t, x)

∫ t

0

∑
z∈Zd

m1(t− s, x− z)m2
1(s, z) ds < C, |x| ≤ Btγ, t → ∞. (30)

In order to estimate the left hand-side of (30), we split Zd in (30) into four sets

separated by the two spheres: |z| = s
1
α and |x − z| = (t − s)

1
α . Let P1 = P1(s), P2 =

P2(x, t − s) be (bounded) sets of points z ∈ Zd located inside or at the boundary of the
first (respectively, second) sphere defined above, i.e.,

P1 = {z ∈ Zd : |z| ≤ s
1
α}, P2 = {z ∈ Zd : |x− z| ≤ (t− s)

1
α}

Denote by Di,j = Di,j(s, t, x) the following sets of points z ∈ Zd with 0 ≤ s ≤ t, x ∈ Zd:
D11 is the the set of points z ∈ Zd located inside or at the boundary of both spheres,

i.e., D11 = P1

∩
P2.

D22 is the the set of points z ∈ Zd located outside of both spheres, i.e., D22 =
Zd \ (P1

∪
P2).

D12 is the set of points z ∈ Zd located outside of the first sphere, but inside of the
second one or on its boundary, i.e., D12 = (Zd \ P1)

∪
P2.

D21 is the the set of points z ∈ Zd located inside of the first sphere or on its boundary,
but outside of the second one, i.e., D21 = (Zd \ P2)

∪
P1.

Respectively, I can be written as I =
∑2

i,j=1 Iij, where Iij is defined by (30) with the

summation extended oved Dij instead of Zd. We are going to estimate each of the terms
Iij when |x| ≤ Btγ, t → ∞.

1) Estimate on I12. We will obtain this estimate separately for 2t
1
α < |x| ≤ Btγ and

for |x| ≤ 2t
1
α . Note that the two balls P1 and P2 are separated in the first case (when

0 ≤ s ≤ t) and they may intersect each other in the second case. Consider the first case

of |x| > 2t
1
α . Then |m2

1(t, x)| ≍ t2

|x|2(d+α) e
2tν (due to (24)) and relations (27), (24) hold for

the first and second factors under the summation sign in (30), respectively. Thus

I12 ≤
C|x|2(d+α)

t2e2tν

∫ t

0

∑
z∈D12

s2eν(t+s)ds

[(t− s) + 1]
d
α |z|2(d+α)

, 2t
1
α < |x| ≤ Btγ, t → ∞. (31)

Since |x− z| ≤ (t− s)
1
α ≤ t

1
α in D12, inequality |x| > 2t

1
α implies that |x− z| ≤ 1

2
|x|,

and therefore |z| ≥ 1
2
|x| in (31). Hence we can replace z by x there. After that, summation

in (31) is applied to z-independent terms. Hence, the summation sign can be replaced

10



by a factor κ that estimates the number of terms in the sum from above. Obviously,
κ ≤ C(Ad + 1), where A is the radius of the ball P2, i.e., κ ≤ C[(t− s)

d
α + 1], and

I12 ≤
C

t2e2νt

∫ t

0

[(t− s)
d
α + 1]s2eν(t+s)ds

(t− s+ 1)
d
α

≤ C1

t2eνt

∫ t

0

s2eνsds ≤ C2 < ∞ (32)

when 2t
1
α < |x| ≤ Btγ, t → ∞.

Now let |x| ≤ 2t
1
α . Then |m2

1(t, x)| ≍ 1

t
2d
α
e2tν for t ≥ 1 (due to (25)), and (31) must be

replaced by

I12 ≤
Ct

2d
α

e2νt

∫ t

0

∑
z∈D12

s2eν(t+s)ds

(t− s+ 1)
d
α |z|2(d+α)

, |x| ≤ 2t
1
α , t → ∞. (33)

.
We split the right-hand side above into two parts I ′ + I ′′ by writing the interval (0, t)

as the union of (0, t/2) and (t/2, t). Since D12 does not contain points of the first ball P1,
z ̸= 0 there. We have |z| ≥ 1 for all other points of the lattice. Thus we can replace |z|
in I ′ by 1 and replace summation by factor κ. This leads to the estimate

I ′ ≤ Ct
2d
α

e2νt

∫ t/2

0

[(t− s)
d
α + 1]s2eν(t+s)ds

(t− s+ 1)
d
α

≤ Ct
2d
α

eνt

∫ t/2

0

s2eνsds,

where the right hand side decays exponentially as t → ∞. Thus I ′ ≤ C < ∞.

Now consider I ′′. In this case, t/2 < s < t implies that |z| ≥ s
1
α ≥ (t/2)

1
α , and we

can replace |z| by (t/2)
1
α in (33). Then we replace the summation in z by the factor κ as

before. This leads to the following estimate:

I ′′ ≤ Ct
2d
α

e2νtt2(d+α)/α

∫ t

t/2

s2eν(t+s)ds ≤ C < ∞, t → ∞.

Together with the boundedness of I ′ and (31), this proves that

I12 < C < ∞, |x| ≤ Btγ, t → ∞.

2) Estimate on I11. The two balls P1, P2 do not intersect each other when |x| >

2t
1
α (and 0 ≤ s ≤ t). Hence we may assume that |x| < 2t

1
α . Then (25) implies that

|m2
1(t, x)| ≍ t−

2d
α e2tν , t → ∞. We apply (27) to the factors under the summation sign in

(30) and obtain that

I11 ≤
Ct

2d
α

e2νt

∫ t

0

∑
z∈D11

eν(t+s)ds

(t− s+ 1)
d
α (s+ 1)

2d
α

, t → ∞.

.
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We replace here the summation sign by the factor κ introduced above and use the
estimate

κ

(t− s+ 1)
d
α

≤ C
[(t− s)

d
α + 1]

(t− s+ 1)
d
α

≤ C1.

This leads to

I11 ≤
Ct

2d
α

eνt

∫ t

0

eνsds

(s+ 1)
2d
α

< C < ∞, t → ∞. (34)

.
3) Estimate on I22. Estimate (25) can be applied to the factors under the summation

sign in (30). Thus

I22 ≤
C

m2
1(t, x)

∫ t

0

∑
z∈D22

(t− s)s2

|x− z|d+α|z|2(d+α)
eν(t+s) ds. (35)

Consider first the case when |x| < 1
2
t1/α. Then the inequalities

|z| > s
1
α , |x− z| > (t− s)

1
α , 0 < s < t, x, z ∈ Rd, (36)

imply that |z| ≥ β > 0 if t = 1. Using the homogeneity arguments, one can easily obtain
that inequalities (36) with an arbitrary t > 0 imply that

|z| ≥ βt1/α,

i.e., the latter estimate holds in D22. Now we can replace |z| in (35) by βt1/α and use
relation (25) for m1. This leads to

I22 ≤
Ct2d/α

e2νtt2(d+α)/α

∫ t

0

∑
z∈D22

(t− s)s2eν(t+s)ds

|x− z|d+α
, |x| < 1

2
t1/α, t → ∞.

Note that |x − z| ≥ 1 when z ∈ D22 and that
∑

z∈D22

1
|x−z|d+α <

∑
z∈Zd\{x}

1
|x−z|d+α . The

latter series converges and does not depend on x. Hence

I22 ≤
Ct2

e2νt

∫ t

0

(t− s)s2eν(t+s)ds ≤ C < ∞, |x| < 1

2
t1/α, t → ∞. (37)

Now let us estimate I22 when 1
2
t1/α ≤ |x| ≤ Btγ. We split the region D22 into two,

namely, D
(1)
22 = D22 ∩ {z : |z| > |x|

2
} and D

(2)
22 = D22 ∩ {z : |z| ≤ |x|

2
}. Then I22 ≤ I1 + I2,

where I1 and I2 are the right-hand side in (35) with D22 replaced byD
(1)
22 , D

(2)
22 respectively.

In order to evaluate I1, we replace |z| in (35) by |x|/2, use convergence of the series∑
z∈D22

1
|x−z|d+α , and estimate (24) for m1. This leads to

I1 ≤
C|x|2(d+α)

t2e2tν

∫ t

0

(t− s)s2

|x|2(d+α)
eν(t+s)ds = Ct−2e−νt

∫ t

0

s2(t− s)eνsds ≤ C < ∞

12



when 1
2
t1/α ≤ |x| ≤ Btγ, t → ∞.

Let us estimate I2. The inequality |z| ≤ |x|
2

implies that |x− z| ≥ |x|
2
. We use this in

(35) together with estimate (24) for m1. Then we have

I2 ≤
C|x|(d+α)

t2eνt

∫ t

0

(t− s)s2eνs(
∑

z∈D(2)
22

1

|z|2(d+α)
)ds,

1

2
t1/α ≤ |x| ≤ Btγ, t → ∞.

Note that |z| > s
1
α in D22 and |z| ≥ 1 if z ̸= 0. Hence the sum in the formula above does

not exceed C(1+ s)−
2α+d

α . We also can use there that |x|(d+α)

t2
< C1t

d/α (due to |x| ≤ Btγ).
Hence

I2 ≤
Ctd/α

etν

∫ t

0

(1 + s)−
2α+d

α (t− s)s2eνs ds,
1

2
t1/α ≤ |x| ≤ Btγ, t → ∞.

One can easily check that the right-hand side above is bounded. This together with the
boundedness of I1 and (37) implies that

I22 ≤ C < ∞, |x| ≤ Btγ, t → ∞.

4) Estimate on I21. From Lemma 2.3 it follows that

I21 ≤
C

m2
1(t, x)

∫ t

0

∑
z∈D21

(t− s)

|x− z|d+α(s+ 1)
2d
α

eν(t+s)ds.

First, let us estimate I21 when |x| ≤ 2t
1
α . Then m1 can be estimated using (25). There

is also x-independent constant C < ∞ such that
∑

z∈D21

1
|x−z|d+α < C (see details in the

subsection on I22). Thus

I21 ≤
Ct

2d
α

e2vt

∫ t

0

(t− s)

(s+ 1)
2d
α

eν(t+s)ds =
Ct

2d
α

evt

∫ t

0

(t− s)

(s+ 1)
2d
α

eνsds ≤ C < ∞

when |x| ≤ 2t
1
α , t → ∞.

Consider now the case of 2t
1
α < |x| ≤ Btγ. Then estimate (24) can be applied to m1,

and therefore

I21 ≤
C|x|2(d+α)

t2e2νt

∫ t

0

∑
z∈D21

(t− s)eν(t+s)

|x− z|d+α(s+ 1)
2d
α

ds. (38)

.
Since |z| ≤ s

1
α ≤ t

1
α inD21 and we assume that |x| > 2t

1
α , we have |x−z| ≥ |x|/2 in the

integrand above. Thus we can replace |x− z| by |x|/2 in (38). After that, the summation
sign can be replaced by the number κ1 of terms in the sum. Obviously, κ1 ≤ C(Ad

1 + 1),

where A1 is the radius of the first ball P1, i.e., κ1 ≤ C[s
d
α + 1], and

I21 ≤
C|x|d+α

t2eνt

∫ t

0

(t− s)eνs

(s+ 1)
d+1
α

ds ≤ Ctd/α

eνt

∫ t

0

(t− s)eνs

(s+ 1)
d+1
α

ds ≤ C < ∞

13



when 2t
1
α < |x| ≤ Btγ, t → ∞. Thus I21 is bounded when |x| ≤ Btγ, t → ∞. Together

with the boundedness of all other Iij, this completes the proof of the theorem.
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