
Attributed Graph Clustering:
an Attribute-aware Graph Embedding Approach

Esra Akbas Peixiang Zhao
Department of Computer Science

Florida State University, Tallahassee, Florida 32306-4530

akbas@cs.fsu.edu zhao@cs.fsu.edu

Abstract—Graph clustering is a fundamental problem in social
network analysis, the goal of which is to group vertices of a graph
into a series of densely knitted clusters with each cluster well
separated from all the others. Classical graph clustering methods
take advantage of the graph topology to model and quantify
vertex proximity. With the proliferation of rich graph contents,
such as user profiles in social networks, and gene annotations
in protein interaction networks, it is essential to consider both
the structure and content information of graphs for high-quality
graph clustering. In this paper, we propose a graph embedding
approach to clustering content-enriched graphs. The key idea
is to embed each vertex of a graph into a continuous vector
space where the localized structural and attributive information
of vertices can be encoded in a unified, latent representation.
Specifically, we quantify vertex-wise attribute proximity into edge
weights, and employ truncated, attribute-aware random walks
to learn the latent representations for vertices. We evaluate
our attribute-aware graph embedding method in real-world
attributed graphs, and the results demonstrate its effectiveness
in comparison with state-of-the-art algorithms.

I. INTRODUCTION

Graph clustering is a fundamental problem for networked

data. the objective of which is to partition a graph into a series

of densely connected subgraphs. In real-world applications,

besides interlinked graph topologies, a proliferation of graph

contents have been witnessed that exhibit crucial attributes and

graph properties. Consequently, the classical graph clustering

methods need to be revamped to support the so-called at-

tributed graph clustering [1], [8], which has found numerous

applications, and has the potential to yield more informative

and better-quality graph clusters.

However, attributed graph clustering is challenging because

topological structures and attributive graph contents are two

completely different types of information pertaining to graphs.

Clustering solely based on either type will lead to inaccurate,

or even contradicting, clusters [8]. In this paper, we introduce

a novel approach to incorporate both graph structure cohesive-

ness and attribute homogeneity for attributed graph clustering.

The main idea is to design a unified, latent representation for

each vertex u of a graph G such that both graph connectivity

and vertex attribute proximity in the localized region of u

can be jointly embedded into a continuous vector space. In

particular, pairwise vertex-attribute similarity between u and

its incident vertices is first quantified and embedded as edge

weights of G. A series of truncated, weight-biased random

walks originating from u are further generated to capture

localized, attribute-aware structure information surrounding

u. Inspired by the recent work of graph embedding [2],

[5], [4], these random walks are employed to learn a latent

representation, r(u) ∈ R
d, of u, which lies in a continuous,

d-dimensional vector space. As a consequence, attributed

graph clustering is cast to the traditional, d-dimensional data

clustering problem, which can be addressed by numerous

algorithms, e.g., k-Medoids. The main contributions of our

work is summarized as follows,

1) We propose a novel, attribute-aware graph embedding

framework for attributed graph clustering. It provides a

natural and principled approach to encoding the localized

structure and attribute information of vertices to a unified,

latent representation in a low-dimensional space, within

which graph structure cohesiveness and vertex attribute

homogeneity are well preserved (Section IV);

2) We design an efficient and cost-effective graph embed-

ding algorithm that transforms an attributed graph into

its vertex-based, latent representation, which can be fed

as input to any clustering method toward solving the

attributed graph clustering problem (Section V);

3) We perform experimental studies in a series of real-world

graphs in comparison with state-of-the-art attributed

graph clustering techniques. The results demonstrate the

effectiveness of our method in terms of both structure

cohesiveness and attribute homogeneity in the resultant

clusters (Section VI).

II. RELATED WORK

Attributed graph clustering. There has been a rich liter-

ature for attributed graph clustering [1]. The straightforward

idea is to define some vertex-wise distance/similarity metric

that takes into account both structure and attribute information

of vertices in a graph. SA-Cluster [8] transforms a graph

into another augmented graph with new, artificial attribute

vertices representing distinct vertex attribute values. A new

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

ASONAM’17, July 31 - August 03, 2017, Sydney, Australia

c© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-4993-2/17/07?/$15.00

http://dx.doi.org/10.1145/3110025.3110092

2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

305

attribute edge (u, u′) is further created to bridge an original

vertex u with an attribute vertex u′, if one of u’s attributes

takes on the value of u′. This way, vertices sharing the same

attribute values are connected via common attribute vertices.

A random walk-based distance measure is defined upon the

augmented graph to estimate vertex closeness in terms of both

structure cohesiveness and attribute proximity. SA-Cluster is

computationally expensive as the augmented graph can be

excessively large, and it involves costly matrix multiplication

in random-walk based computation and weight tuning.

Another main stream of related work build upon generative

probabilistic models, where graph structures and attributes

hinge on hidden variables for cluster membership. GBAGC [6]

is a Bayesian probabilistic model in which cluster labels of

vertices are explicitly represented as a hidden variable. A joint

probability distribution is further estimated over the space of

all possible clusterings, and a variational inference algorithm

is developed to find the posterior distribution with highest

probability. CESNA [7] assumes clusters will generate both

graph structures and vertex attributes based on an affiliation

network model and a separate logistic model. These proba-

bilistic clustering methods, however, have to undertake a time-

demanding optimization process for parameter estimation. In

addition, choosing appropriate a priori distributions turns out

to be non-trivial.

Graph Embedding. There have been numerous approaches

to learning low-dimensional representations for graphs. Deep-

Walk [4] takes advantage of local structure information of

vertices based on the Skip-Gram model and treats random

walks as the equivalent of sentences. When applied in multi-

label graph classification, DeepWalk can successfully encode

the global graph structure even in the presence of missing

information in graphs. Line [5] is a scalable graph embed-

ding method that uses edge sampling for model inference.

It naturally breaks the limitation of the classical stochastic

gradient decent method adopted for graph embedding with-

out compromising embedding efficiency. GraRep [2] refines

DeepWalk by introducing an explicit loss function of the

Skip-Gram model defined on the graph, and extends Line by

capturing k-step (k > 2) high-order information for learning

latent representations.

Our work differs from graph embedding solutions in that

(1) graph embedding is typically optimized for graph classifi-

cation, while our work target primarily on attributed graph

clustering; (2) graph embedding encodes the mere graph

structure into low-dimensional spaces, while our work takes

account of graph attribute information and extends the existing

frameworks toward attribute-aware graph embedding.

III. PROBLEM FORMULATION

We consider clustering graphs where vertices are affiliated

with multidimensional attributes. We refer to these complex

graphs as attributed graphs, formally defined as follows,

Definition 1 (Attributed Graph): An attributed graph is a

three tuple G = (V,E,A), where V is a set of vertices, E ⊆
V × V is a set of edges, and A = {A1, . . . , An} is a set of n

attributes associated with vertices of V . That is, for each u ∈
V , there is an attribute vector A(u) = (A1(u), . . . , An(u))
associated with u, where Al(u) is the attribute value of u on

the lth attribute Al (1 ≤ l ≤ n).

In this paper, we consider attributed graphs as undirected,

connected, simple graphs, and all the vertex attributes conform

to a unique multidimensional schema, A. We further assume

that each vertex attribute Ai has a finite set of discrete

values and the number of possible values (or cardinality)

of Ai is |Ai|. For attributes with continuous or infinitely

countable values, we can transform them into discrete values

by binning or histogram techniques. Given a vertex u in an

attributed graph G, we denote all its neighboring vertices as

N1(u) = {v|v ∈ V, (u, v) ∈ E}. Analogously, we denote

all the vertices that are l (l ≥ 1) hops away from u as

Nl(u) = {v|v ∈ V, d(u, v) = l}, where d(·) is the shortest

unit distance function defined upon G. If l is small, Nl(u)
consists of all vertices that are in the local vicinity of u. In

principle, if vertices in Nl(u) are densely connected and share

similar vertex attributes with u, they are likely to be in the

same cluster as u belongs to.

Definition 2 (Attributed Graph Clustering): Given an

attributed graph G, we partition G into k mutually exclusive,

collectively exhaustive subgraphs Gi = (Vi, Ei,A) with an

objective to obtain the following graph clustering properties:

1) structure closeness: Vertices within the same clusters are

closely connected while vertices in different clusters are

far apart;

2) attribute homogeneity: Vertices in the same clusters have

similar attribute values, while vertices in different clusters

differ significantly in attribute values.

We note that in the classical graph clustering problem,

only the first objective is examined, while for attributed graph

clustering, we consider both objectives for graph clustering.

IV. ATTRIBUTE-AWARE GRAPH EMBEDDING

In this section, we discuss our attribute-aware graph em-

bedding framework for attributed graph clustering. The goal

is to transform each vertex u into a latent, low-dimensional

feature vector f(u) ∈ R
d, where d is a small number for

latent dimensions. This way, both vertex attributes and local

graph structure information of u are encoded in f(u) such that

vertices of the same cluster will have similar feature vectors.

A. Vertex Attribute Embedding

Given an attributed graph G, our first step is to embed the

information of vertex attribute similarity into a transformed,

weighted graph G′ = (V,E;W), where W : E → R≥0.

Specifically, for each edge e = (u, v) ∈ E, we assign an edge

weight w(e) to quantify the vertex attribute similarity for u

and v. As a result, the vertex attribute information of G is

encoded into the weighted graph G′ as edge weights.

The straightforward way to quantify the multidimensional

attribute similarity of two adjacent vertices u and v is based

on a dimension-wise evaluation of attribute values for u and

2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

306

v, respectively. We define an indicator function 1Ai
(u, v) for

the attribute Ai of u and v as follows,

1Ai
(u, v) =

{

1 if Ai(u) = Ai(v)
0 otherwise

Then the vertex attribute similarity, s0(u, v), of vertices u and
v is computed as

s0(u, v) =

∑n

i=1 1Ai
(u, v)

n
(1)

In an attributed graph G, some adjacent vertices u and v

within the same cluster may share few, or even no, identical

vertex attribute values. In this case, their structure information

plays a primary role leading them to the same cluster. How-

ever, if we solely rely on structure information, it is likely

u and v will be assigned to different clusters by mistake.

We thus extend the computation of vertex attribute similarity

by taking into consideration neighboring vertices of u and v,

respectively. That is, if u and v share few or no common

vertex attribute values, the vertices in their vicinity may still

hold identical or similar vertex attribute values, if u and v

belong to the same cluster. Formally, we consider vertices in

Nl(u) which are l hops away from u. For each vertex attribute

Ai(1 ≤ i ≤ n), we maintain a histogram vector, HAi
(u), with

a total number of |Ai| entries, each of which corresponds to a

feasible value at ∈ Domain(Ai), and maintains the value as

HAi
(u)[t] =

|{v|v ∈ Nl(u), Ai(v) = at}|

|Nl(u)|
, 1 ≤ t ≤ |Ai| (2)

That is, the tth element of the vector HAi
(u) maintains the

percentage of vertices whose attribute value upon the attribute

Ai is equal to at (1 ≤ t ≤ |Ai|) w.r.t. all vertices that are l hops

away from u. As a result, HAi
(u) maintains the distribution

of vertex attribute values of Ai for the vertices close to u.

So the vertex attribute similarity of u and v in terms of their

l-hop neighbors can be formally defined as

sl(u, v) =

∑n

i=1 sim(HAi
(u), HAi

(v))

n
(3)

where sim(·, ·) is a similarity function for t-dimension vec-

tors. For adjacent vertices u and v, where (u, v) ∈ E, we

synthesize the overall vertex attribute similarity, s(u, v), by

considering both the vertex attribute similarity of u and v per

se (Equation 1), and those of the vertices within the localized

vicinity up to L hops away from u and v, dampened by the

neighborhood distance (Equation 3):

s(u, v) =

L∑

l=0

sl(u, v)

2l
. (4)

Finally, we assign s(u, v) as the edge weight of the edge

(u, v) in the transformed graph G′, where the information of

vertex attribute similarities is effectively embedded.

B. Structure Embedding

We consider a series of short-length random walks to

capture structure closeness in the local vicinity of vertices.

Specifically, for each vertex u ∈ V , we generate a group γ

of truncated random walks rooted at u, denoted as Wt

l
(u) =

(u, v1, . . . , vt), where 1 ≤ l ≤ γ, and t is the length (i.e.,

the number of edges) of random walks. Each random walk is

generated as follows: we start from the vertex v0 = u, and

at each step i (0 ≤ i ≤ t − 1), we choose the next vertex

vi+1 ∈ N1(vi) with the probability:

Pr(vi, vi+1) =
s(vi, vi+1)∑

vj∈N1(vi)

s(vi, vj)

where s(vi, vi+1) is the weight of the edge (vi, vi+1) in

G′, as defined in Equation 4. That is, the truncated random

walks Wt

l
(u) are generated in a biased fashion that edges

with larger weights will be chosen with higher probabilities.

Note that edge weights in G′ indicate the vertex-wise attribute

similarity, as discussed in Section IV-A. As a result, the

truncated random walks rooted from u are attribute-aware,

and encode both structure closeness and attribute homogeneity

in the local vicinity of u, if t is set small.

Inspired by recent advances in language modeling and deep

learning [3], we treat each attribute-aware random walk as

a short sentence or phrase, and each vertex of the graph as

a word in a special language. Our goal is to learn a latent

representation Φ : v ∈ V → R
d that maps each vertex into

a low-dimensional vector, Φ(u). Following the intuition of

DeepWalk [4], we relax the formulation of random walks as

follows: (1) a random walk passing through a vertex vi ∈ V

as the center of the walk is treated as a bi-directional random

walk rooted at vi; that is, we consider the transformed random

walk originated from vi and encompassing preceding and

subsequent vertices in a window of size 2w; (2) we ignore

the ordering of vertices in random walks. Such relaxations

are useful in particular for the latent representation learning

as the order independence assumption captures a sense of

“closeness” provided by random walks. Furthermore, they

simplify the learning process and save the training time. To this

end, deriving the latent representation of vertices is formulated

as an optimization problem:

min
Φ

(−log Pr({vi−w, . . . , vi−1, vi, vi+1, . . . , vi+w})) (5)

To tackle this problem, we take advantage of SkipGram [3]

to maximize the concurrence probability among words (ver-

tices) within a window w in a sentence (a truncated random

walk). we use Hierarchical Softmax and stochastic gradient

descent (SGD) to optimize the approximation of probability

distributions and parameter estimation.

V. ATTRIBUTED GRAPH CLUSTERING ALGORITHM

Based on the attributed-aware graph embedding framework

discussed in Section IV, it becomes straightforward to support

clustering for attributed graphs. Given an attributed graph G,

we first embed vertex attribute similarity information into a

weighted graph G′, where the parameter L regulates the scope

of vertex neighborhood for the quantification of vertex attribute

similarity. We then embed the structure information of G′

by mapping vertices into d-dimensional latent representations,

which encode both structure closeness and attribute homogene-

ity within the local vicinity of vertices, and thus are important

indicators of the cluster membership of vertices. Once the

2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

307

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

3 5 7

D
en

sit
y

The Number of Clusters (k)

AA-Cluster
SA-Cluster

BAGC
DeepWalk

(a) Density

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

3 5 7

En
tro

py

The Number of Clusters (k)

AA-Cluster
SA-Cluster

BAGC
DeepWalk

(b) Entropy

Fig. 1: Clustering Quality in Political Blog Datasets

original graph is transformed into its latent, d-dimensional

representations, we can use any traditional data clustering

method, such as kMedoids, to partition d-dimensional vectors

into the final k graph clusters.

VI. EXPERIMENTS

In this section, we present the experimental results for

the proposed method, AA-Cluster (attribute-aware graph

clustering). We compare AA-Cluster with three state-of-the art

methods: (1) SA-Cluster [8] combines vertex attributes and

graph structures in a unified distance measure for attributed

graph clustering; (2)BAGC [6] is a Bayesian probabilistic

approach for attributed graph clustering; (3) DeepWalk [4]

learns the graph structure information as latent features in

a low-dimensional space without consideration of vertex at-

tributes. All the experiments were carried out in a Linux

workstation running RedHat Enterprise Server 6.5 with 16
Intel Xeon 2.3GHz CPUs and 128GB of memory.

We consider two real-world attributed graphs in our exper-

imental studies: Political Blogs1 is a network of hyperlinks

between web blogs on US politics recorded in 2005 with

1, 490 vertices and 19, 090 edges. Each blog has an attribute

pertaining to its political leaning as either liberal or conser-

vative. DBLP2 is a co-authorship graph consisting of authors

in different research areas with 27, 199 authors as vertices and

66, 832 collaborations as edges. To compare the effectiveness

of different attributed graph cluttering methods, we adopt clus-

tering density and clustering entropy as evaluation metrics [1],

We first apply attributed graph clustering methods in the

Political Blog graph, and the clustering quality results are

illustrated in Figure 1. By varying the number k of graph

clusters, we recognize that the density of clusters generated

by AA-Cluster is very close to that by SA-Cluster, both

of which are consistently higher than the density results

of BAGC and DeepWalk (Figure 1(a)). Meanwhile, graph

clusters generated by AA-Cluster have significantly smaller

entropy than those generated by the other methods, meaning

that AA-Cluster leads to more homogeneous graph clusters

w.r.t. vertex attributes (Figure 1(b)). Therefore, AA-Cluster

results in both structurally dense, and attribute-wise homoge-

neous graph clusters.

We then perform experimental studied in the DBLP graph,

and the clustering quality results are presented in Figure 2.

By tuning the number k of resultant graph clusters, we

1http://www-personal.umich.edu/∼mejn/netdata
2http://dblp.uni-trier.de/xml

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

10 30 50

D
en

sit
y

The Number of Clusters (k)

AA-Cluster
SA-Cluster

BAGC
DeepWalk

(a) Density

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

10 30 50

En
tro

py

The Number of Clusters (k)

AA-Cluster
SA-Cluster

BAGC
DeepWalk

(b) Entropy

Fig. 2: Clustering Quality in DBLP Datasets

notice that in terms of both density (Figure 2(a)) and entropy

(Figure 2(b)), AA-Cluster outperforms SA-Cluster BAGC,

and DeepWalk in generating high-quality graph clusters. In

addition, the clustering quality of AA-Cluster is stable and

insensitive to the number k of graph clusters generated.

VII. CONCLUSION

Graph clustering has played a fundamental role in modeling,

structuring, and understanding large-scale networks. In many

real-world settings, we are concerned with not only intercon-

nected graph structures, but rich graph contents characterized

by vertex attributes during graph clustering. In this paper, we

devised a new attributed graph clustering method that com-

bines both vertex attributes and graph structure information

within a general, unified attributed-aware graph embedding

framework. We designed the graph embedding algorithm to

encode an attributed graph into a low-dimensional latent rep-

resentation. As a result, the attribute-aware cluster information

is well preserved during graph embedding. We evaluated our

method, AA-Cluster, in real-world graphs, and the results

validated the effectiveness of AA-Cluster, compared with

existing attributed graph clustering techniques.

ACKNOWLEDGMENT

This work was supported in part by the National Science

Foundation under Grant No.1743142. Any opinions, findings,

and conclusions in this paper are those of the author(s) and

do not necessarily reflect the funding agencies.

REFERENCES

[1] C. Bothorel, J. D. Cruz, M. Magnani, and B. Micenkova. Clustering
attributed graphs: Models, measures and methods. Network Science,
3:408–444, 2015.

[2] S. Cao, W. Lu, and Q. Xu. GraRep: Learning graph representations with
global structural information. In Proceedings of CIKM’15, pages 891–
900, 2015.

[3] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed
representations of words and phrases and their compositionality. In
Proceedings of NIPS’13, pages 3111–3119, 2013.

[4] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of
social representations. In Proceedings of KDD’14, pages 701–710, 2014.

[5] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. Line: Large-
scale information network embedding. In Proceedings of WWW’15, pages
1067–1077, 2015.

[6] Z. Xu, Y. Ke, Y. Wang, H. Cheng, and J. Cheng. GBAGC: A general
bayesian framework for attributed graph clustering. ACM Trans. Knowl.

Discov. Data, 9(1):5:1–5:43, 2014.
[7] J. Yang, J. J. McAuley, and J. Leskovec. Community detection in

networks with node attributes. In Proceedings of ICDM’13, pages 1151–
1156, 2013.

[8] Y. Zhou, H. Cheng, and J. X. Yu. Graph clustering based on structural/at-
tribute similarities. Proc. VLDB Endow., 2(1):718–729, 2009.

2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

308

	Introduction
	Related Work
	Problem Formulation
	Attribute-aware Graph Embedding
	Vertex Attribute Embedding
	Structure Embedding

	Attributed Graph Clustering Algorithm
	Experiments
	Conclusion
	References

