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Abstract—Graph clustering is a fundamental problem in social
network analysis, the goal of which is to group vertices of a graph
into a series of densely knitted clusters with each cluster well
separated from all the others. Classical graph clustering methods
take advantage of the graph topology to model and quantify
vertex proximity. With the proliferation of rich graph contents,
such as user profiles in social networks, and gene annotations
in protein interaction networks, it is essential to consider both
the structure and content information of graphs for high-quality
graph clustering. In this paper, we propose a graph embedding
approach to clustering content-enriched graphs. The key idea
is to embed each vertex of a graph into a continuous vector
space where the localized structural and attributive information
of vertices can be encoded in a unified, latent representation.
Specifically, we quantify vertex-wise attribute proximity into edge
weights, and employ truncated, attribute-aware random walks
to learn the latent representations for vertices. We evaluate
our attribute-aware graph embedding method in real-world
attributed graphs, and the results demonstrate its effectiveness
in comparison with state-of-the-art algorithms.

I. INTRODUCTION

Graph clustering is a fundamental problem for networked
data. the objective of which is to partition a graph into a series
of densely connected subgraphs. In real-world applications,
besides interlinked graph topologies, a proliferation of graph
contents have been witnessed that exhibit crucial attributes and
graph properties. Consequently, the classical graph clustering
methods need to be revamped to support the so-called at-
tributed graph clustering [1], [8], which has found numerous
applications, and has the potential to yield more informative
and better-quality graph clusters.

However, attributed graph clustering is challenging because
topological structures and attributive graph contents are two
completely different types of information pertaining to graphs.
Clustering solely based on either type will lead to inaccurate,
or even contradicting, clusters [8]. In this paper, we introduce
a novel approach to incorporate both graph structure cohesive-
ness and attribute homogeneity for attributed graph clustering.
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The main idea is to design a unified, latent representation for
each vertex v of a graph G such that both graph connectivity
and vertex attribute proximity in the localized region of w
can be jointly embedded into a continuous vector space. In
particular, pairwise vertex-attribute similarity between u and
its incident vertices is first quantified and embedded as edge
weights of G. A series of truncated, weight-biased random
walks originating from u are further generated to capture
localized, attribute-aware structure information surrounding
u. Inspired by the recent work of graph embedding [2],
[5], [4], these random walks are employed to learn a latent
representation, r(u) € R%, of u, which lies in a continuous,
d-dimensional vector space. As a consequence, attributed
graph clustering is cast to the traditional, d-dimensional data
clustering problem, which can be addressed by numerous
algorithms, e.g., k-Medoids. The main contributions of our
work is summarized as follows,

1) We propose a novel, attribute-aware graph embedding
framework for attributed graph clustering. It provides a
natural and principled approach to encoding the localized
structure and attribute information of vertices to a unified,
latent representation in a low-dimensional space, within
which graph structure cohesiveness and vertex attribute
homogeneity are well preserved (Section IV);

2) We design an efficient and cost-effective graph embed-
ding algorithm that transforms an attributed graph into
its vertex-based, latent representation, which can be fed
as input to any clustering method toward solving the
attributed graph clustering problem (Section V);

3) We perform experimental studies in a series of real-world
graphs in comparison with state-of-the-art attributed
graph clustering techniques. The results demonstrate the
effectiveness of our method in terms of both structure
cohesiveness and attribute homogeneity in the resultant
clusters (Section VI).

II. RELATED WORK

Attributed graph clustering. There has been a rich liter-
ature for attributed graph clustering [1]. The straightforward
idea is to define some vertex-wise distance/similarity metric
that takes into account both structure and attribute information
of vertices in a graph. SA-Cluster [8] transforms a graph
into another augmented graph with new, artificial attribute
vertices representing distinct vertex attribute values. A new
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attribute edge (u,u’) is further created to bridge an original
vertex © with an attribute vertex u’, if one of w’s attributes
takes on the value of u’. This way, vertices sharing the same
attribute values are connected via common attribute vertices.
A random walk-based distance measure is defined upon the
augmented graph to estimate vertex closeness in terms of both
structure cohesiveness and attribute proximity. SA-Cluster is
computationally expensive as the augmented graph can be
excessively large, and it involves costly matrix multiplication
in random-walk based computation and weight tuning.

Another main stream of related work build upon generative
probabilistic models, where graph structures and attributes
hinge on hidden variables for cluster membership. GBAGC [6]
is a Bayesian probabilistic model in which cluster labels of
vertices are explicitly represented as a hidden variable. A joint
probability distribution is further estimated over the space of
all possible clusterings, and a variational inference algorithm
is developed to find the posterior distribution with highest
probability. CESNA [7] assumes clusters will generate both
graph structures and vertex attributes based on an affiliation
network model and a separate logistic model. These proba-
bilistic clustering methods, however, have to undertake a time-
demanding optimization process for parameter estimation. In
addition, choosing appropriate a priori distributions turns out
to be non-trivial.

Graph Embedding. There have been numerous approaches
to learning low-dimensional representations for graphs. Deep-
Walk [4] takes advantage of local structure information of
vertices based on the Skip-Gram model and treats random
walks as the equivalent of sentences. When applied in multi-
label graph classification, DeepWalk can successfully encode
the global graph structure even in the presence of missing
information in graphs. Line [5] is a scalable graph embed-
ding method that uses edge sampling for model inference.
It naturally breaks the limitation of the classical stochastic
gradient decent method adopted for graph embedding with-
out compromising embedding efficiency. GraRep [2] refines
DeepWalk by introducing an explicit loss function of the
Skip-Gram model defined on the graph, and extends Line by
capturing k-step (k > 2) high-order information for learning
latent representations.

Our work differs from graph embedding solutions in that
(1) graph embedding is typically optimized for graph classifi-
cation, while our work target primarily on attributed graph
clustering; (2) graph embedding encodes the mere graph
structure into low-dimensional spaces, while our work takes
account of graph attribute information and extends the existing
frameworks toward attribute-aware graph embedding.

III. PROBLEM FORMULATION

We consider clustering graphs where vertices are affiliated
with multidimensional attributes. We refer to these complex
graphs as attributed graphs, formally defined as follows,

Definition / (Attributed Graph): An attributed graph is a
three tuple G = (V, E, A), where V is a set of vertices, E C
V x V is a set of edges, and A = {A;,...,A,} isasetof n

attributes associated with vertices of V. That is, for each u €
V, there is an attribute vector A(u) = (Ai(u),..., Ap(u))
associated with u, where A;(u) is the attribute value of w on
the Ith attribute 4; (1 <1 < n).

In this paper, we consider attributed graphs as undirected,
connected, simple graphs, and all the vertex attributes conform
to a unique multidimensional schema, .A. We further assume
that each vertex attribute A; has a finite set of discrete
values and the number of possible values (or cardinality)
of A; is |A;|. For attributes with continuous or infinitely
countable values, we can transform them into discrete values
by binning or histogram techniques. Given a vertex u in an
attributed graph G, we denote all its neighboring vertices as
Ni(u) = {vlv € V,(u,v) € E}. Analogously, we denote
all the vertices that are [ (I > 1) hops away from u as
Ni(u) = {v|v € V,d(u,v) = I}, where d(-) is the shortest
unit distance function defined upon G. If [ is small, N;(u)
consists of all vertices that are in the local vicinity of . In
principle, if vertices in N;(u) are densely connected and share
similar vertex attributes with w, they are likely to be in the
same cluster as u belongs to.

Definition 2 (Attributed Graph Clustering): Given an
attributed graph G, we partition G into k£ mutually exclusive,
collectively exhaustive subgraphs G; = (V;, E;, A) with an
objective to obtain the following graph clustering properties:
1) structure closeness: Vertices within the same clusters are

closely connected while vertices in different clusters are

far apart;

2) attribute homogeneity: Vertices in the same clusters have
similar attribute values, while vertices in different clusters
differ significantly in attribute values.

We note that in the classical graph clustering problem,
only the first objective is examined, while for attributed graph
clustering, we consider both objectives for graph clustering.

IV. ATTRIBUTE-AWARE GRAPH EMBEDDING

In this section, we discuss our attribute-aware graph em-
bedding framework for attributed graph clustering. The goal
is to transform each vertex u into a latent, low-dimensional
feature vector f(u) € R?, where d is a small number for
latent dimensions. This way, both vertex attributes and local
graph structure information of u are encoded in f(u) such that
vertices of the same cluster will have similar feature vectors.

A. Vertex Attribute Embedding

Given an attributed graph G, our first step is to embed the
information of vertex attribute similarity into a transformed,
weighted graph G' = (V,E;W), where W : E — Rx.
Specifically, for each edge e = (u,v) € E, we assign an edge
weight w(e) to quantify the vertex attribute similarity for u
and v. As a result, the vertex attribute information of G is
encoded into the weighted graph G’ as edge weights.

The straightforward way to quantify the multidimensional
attribute similarity of two adjacent vertices u and v is based
on a dimension-wise evaluation of attribute values for v and
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v, respectively. We define an indicator function 1 4, (u,v) for
the attribute A; of u and v as follows,
La, (um) :{ 0 othergvige v
Then the vertex attribute similarity, so(u, v), of vertices u and
v is computed as
Z;Lzl ]lAi (u, U)

n

()]

so(u,v) =

In an attributed graph GG, some adjacent vertices v and v
within the same cluster may share few, or even no, identical
vertex attribute values. In this case, their structure information
plays a primary role leading them to the same cluster. How-
ever, if we solely rely on structure information, it is likely
u and v will be assigned to different clusters by mistake.
We thus extend the computation of vertex attribute similarity
by taking into consideration neighboring vertices of u and v,
respectively. That is, if v and v share few or no common
vertex attribute values, the vertices in their vicinity may still
hold identical or similar vertex attribute values, if v and v
belong to the same cluster. Formally, we consider vertices in
N;(u) which are [ hops away from u. For each vertex attribute
A;(1 <i < n), we maintain a histogram vector, H 4, (u), with
a total number of | 4;| entries, each of which corresponds to a
feasible value a; € Domain(4;), and maintains the value as

_ {v|v € Ni(u), Ai(v)

el cycial e
N Ersl @

Ha, (u) [t]

That is, the ¢th element of the vector H 4, (u) maintains the
percentage of vertices whose attribute value upon the attribute
A; isequal to a; (1 <t < |A;|) w.rt. all vertices that are [ hops
away from u. As a result, H4,(u) maintains the distribution
of vertex attribute values of A; for the vertices close to wu.
So the vertex attribute similarity of v and v in terms of their
I-hop neighbors can be formally defined as
> iy sim(Ha, (u), Ha, (v))

n

3)

si(u,v) =

where sim(-,-) is a similarity function for ¢-dimension vec-

tors. For adjacent vertices u and v, where (u,v) € E, we
synthesize the overall vertex attribute similarity, s(u,v), by
considering both the vertex attribute similarity of « and v per
se (Equation 1), and those of the vertices within the localized
vicinity up to L hops away from v and v, dampened by the
neighborhood distance (Equation 3):

sty = 3 20, @

2l
=0

Finally, we assign s(u,v) as the edge weight of the edge
(u,v) in the transformed graph G’, where the information of
vertex attribute similarities is effectively embedded.

B. Structure Embedding

We consider a series of short-length random walks to
capture structure closeness in the local vicinity of vertices.
Specifically, for each vertex v € V, we generate a group -y
of truncated random walks rooted at u, denoted as W} (u) =
(u,v1,...,v¢), where 1 < | < ~, and ¢ is the length (i.e.,

the number of edges) of random walks. Each random walk is
generated as follows: we start from the vertex vy = u, and
at each step i (0 < i < ¢t — 1), we choose the next vertex
vi+1 € Ni(v;) with the probability:

S(’Ui, 'U7;+1)

> s(viyvy)

vj €N (vy)

Pr(vi,vi41) =

where s(v;,v;11) is the weight of the edge (v;,v;y1) in
G’, as defined in Equation 4. That is, the truncated random
walks W} (u) are generated in a biased fashion that edges
with larger weights will be chosen with higher probabilities.
Note that edge weights in G’ indicate the vertex-wise attribute
similarity, as discussed in Section IV-A. As a result, the
truncated random walks rooted from w are attribute-aware,
and encode both structure closeness and attribute homogeneity
in the local vicinity of w, if ¢ is set small.

Inspired by recent advances in language modeling and deep
learning [3], we treat each attribute-aware random walk as
a short sentence or phrase, and each vertex of the graph as
a word in a special language. Our goal is to learn a latent
representation ® : v € V — R? that maps each vertex into
a low-dimensional vector, ®(u). Following the intuition of
DeepWalk [4], we relax the formulation of random walks as
follows: (1) a random walk passing through a vertex v; € V
as the center of the walk is treated as a bi-directional random
walk rooted at v;; that is, we consider the transformed random
walk originated from v; and encompassing preceding and
subsequent vertices in a window of size 2w; (2) we ignore
the ordering of vertices in random walks. Such relaxations
are useful in particular for the latent representation learning
as the order independence assumption captures a sense of
“closeness” provided by random walks. Furthermore, they
simplify the learning process and save the training time. To this
end, deriving the latent representation of vertices is formulated
as an optimization problem:

.. 7vi+w})) (5)

m(gn(flog Pr({vi—w, ..., vi—1, Vi, Vit1, -

To tackle this problem, we take advantage of SkipGram [3]

to maximize the concurrence probability among words (ver-
tices) within a window w in a sentence (a truncated random
walk). we use Hierarchical Softmax and stochastic gradient
descent (SGD) to optimize the approximation of probability
distributions and parameter estimation.

V. ATTRIBUTED GRAPH CLUSTERING ALGORITHM

Based on the attributed-aware graph embedding framework
discussed in Section IV, it becomes straightforward to support
clustering for attributed graphs. Given an attributed graph G,
we first embed vertex attribute similarity information into a
weighted graph G’, where the parameter L regulates the scope
of vertex neighborhood for the quantification of vertex attribute
similarity. We then embed the structure information of G’
by mapping vertices into d-dimensional latent representations,
which encode both structure closeness and attribute homogene-
ity within the local vicinity of vertices, and thus are important
indicators of the cluster membership of vertices. Once the
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Fig. 1: Clustering Quality in Political Blog Datasets

original graph is transformed into its latent, d-dimensional
representations, we can use any traditional data clustering
method, such as kMedoids, to partition d-dimensional vectors
into the final k graph clusters.

VI. EXPERIMENTS

In this section, we present the experimental results for
the proposed method, AA-Cluster (attribute-aware graph
clustering). We compare AA-Cluster with three state-of-the art
methods: (1) SA-Cluster [8] combines vertex attributes and
graph structures in a unified distance measure for attributed
graph clustering; (2)BAGC [6] is a Bayesian probabilistic
approach for attributed graph clustering; (3) DeepWalk [4]
learns the graph structure information as latent features in
a low-dimensional space without consideration of vertex at-
tributes. All the experiments were carried out in a Linux
workstation running RedHat Enterprise Server 6.5 with 16
Intel Xeon 2.3GHz CPUs and 128GB of memory.

We consider two real-world attributed graphs in our exper-
imental studies: Political Blogs' is a network of hyperlinks
between web blogs on US politics recorded in 2005 with
1,490 vertices and 19,090 edges. Each blog has an attribute
pertaining to its political leaning as either liberal or conser-
vative. DBLP? is a co-authorship graph consisting of authors
in different research areas with 27,199 authors as vertices and
66, 832 collaborations as edges. To compare the effectiveness
of different attributed graph cluttering methods, we adopt clus-
tering density and clustering entropy as evaluation metrics [1],

We first apply attributed graph clustering methods in the
Political Blog graph, and the clustering quality results are
illustrated in Figure 1. By varying the number k of graph
clusters, we recognize that the density of clusters generated
by AA-Cluster is very close to that by SA-Cluster, both
of which are consistently higher than the density results
of BAGC and DeepWalk (Figure 1(a)). Meanwhile, graph
clusters generated by AA-Cluster have significantly smaller
entropy than those generated by the other methods, meaning
that AA-Cluster leads to more homogeneous graph clusters
w.rt. vertex attributes (Figure 1(b)). Therefore, AA-Cluster
results in both structurally dense, and attribute-wise homoge-
neous graph clusters.

We then perform experimental studied in the DBLP graph,
and the clustering quality results are presented in Figure 2.
By tuning the number k of resultant graph clusters, we

Uhttp://www-personal.umich.edu/~mejn/netdata
Zhttp://dblp.uni-trier.de/xml
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notice that in terms of both density (Figure 2(a)) and entropy
(Figure 2(b)), AA-Cluster outperforms SA-Cluster BAGC,
and DeepWalk in generating high-quality graph clusters. In
addition, the clustering quality of AA-Cluster is stable and
insensitive to the number k of graph clusters generated.

VII. CONCLUSION

Graph clustering has played a fundamental role in modeling,
structuring, and understanding large-scale networks. In many
real-world settings, we are concerned with not only intercon-
nected graph structures, but rich graph contents characterized
by vertex attributes during graph clustering. In this paper, we
devised a new attributed graph clustering method that com-
bines both vertex attributes and graph structure information
within a general, unified attributed-aware graph embedding
framework. We designed the graph embedding algorithm to
encode an attributed graph into a low-dimensional latent rep-
resentation. As a result, the attribute-aware cluster information
is well preserved during graph embedding. We evaluated our
method, AA-Cluster, in real-world graphs, and the results
validated the effectiveness of AA-Cluster, compared with
existing attributed graph clustering techniques.
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