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The structure of a forest canopy is the key determinant of light transmission, use and
understory availability. Airborne light detection and ranging (LiDAR) has been used
successfully to measure multiple canopy structural properties, thereby greatly reducing
the fieldwork required to map spatial variation in structure. However, lidar metrics to
date do not reflect the full extent of the three-dimensional information available from
the data. To this end, we developed a new metric, the polar grid fraction (GRID), based
on gridding lidar returns in polar coordinates, in order to more closely match measure-
ments provided by field instruments on leaf area index (LAI), gap fraction (GF) and
percentage photosynthetically active radiation transmittance (tPAR). The metric sum-
marizes the arrangement of lidar point returns for a single ground location rather than
to an area surrounding the location.

Compared with more traditional proportion-based and height percentile-based esti-
mators, the GRID estimator increased validation R> by 14.5% for GF and 6.0% for
tPAR over the next best estimator. LAI was still best estimated with the more traditional
statistic based on the proportion of ground returns in 14 m x 14 m moving kernels.
By applying the models to a 2 x 2 m grid across the lidar coverage area, extreme values
occurred in the estimations of all three response variables when using proportion-based
and height percentile-based estimators. However, no extreme values were estimated by
models using the GRID estimator, indicating that models based on GRID may be less
influenced by spurious data. These results suggest that the GRID estimator is a strong
candidate for any project requiring estimates of canopy metrics for large areas.

1. Introduction

Forest canopy structure imparts major functional controls over light use and transmission as
well as gas fluxes and exchanges with the atmosphere. Hence, the high variation in canopy
structure even across small spatial areas can drive variation in a wide range of ecological
processes, such as forest productivity, seedling regeneration, plant morphology, nutrient
cycling and plant succession patterns (Field 1988; Chen and Klinka 1997; Beaudet and
Messier 1998; Montgomery and Chazdon 2001; Théry 2001). Accordingly, a great effort
has been directed at quantifying spatial variation in canopy structure and the associated
light regimes in forest ecosystems.
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Leaf area index (LAI), the total leaf surface area per unit area on the ground, and gap
fraction (GF), the proportion of the sky view at a given point occluded by vegetation, are
related by way of leaf orientation in spherical space and degree of clumping (Campbell
and Norman 1989). Field instruments such as the LAI-2000 (LI-COR Biosciences Inc.,
Lincoln, Nebraska, NE, USA) can be used to indirectly estimate LAI by direct estimation
of GF using some assumptions made about spatial arrangement and leaf angle distribu-
tion. While GF and LAI measure physical traits of the canopy, the fraction of absorbed
photosynthetically active radiation (fPAR) directly measures the effect of the canopy on
stand lighting conditions. fPAR is strongly related to productivity, indicating the efficiency
at which a canopy uses the incoming radiation (Ter-Mikaelian et al. 1999). One can obtain
direct estimates of fPAR by pairing two matching sensors, such as the AccuPAR LP-80
(Decagon Devices Inc., Pullman, Washington, WA, USA), with one placed outside the
influence of the canopy. Summarizing multiple readings from these sensors, it is easy to get
stand-level estimates of these structural variables, but understanding the spatial variation
of such values requires an immense effort to gather the required amount of data (Asner,
Sourlook, and Hioke 2003).

An alternative approach is to use estimates of canopy structure derived from airborne
light detection and ranging (lidar). Popular lidar-derived metrics for estimating canopy
structure are built from the proportion of returns falling under different classifications,
such as ground, vegetation, first, last and single (Morsdorf et al. 2006; Solberg et al. 2009;
Richardson and Moskal 2011), or from sample statistics of the lidar return height distribu-
tion (Riafio et al. 2004; Peduzzi et al. 2012). However, such metrics derive from the vertical
distribution of points alone, and they do not take into account the horizontal distribution of
return points. In essence, they can provide estimates of canopy cover, an area metric, rather
than canopy closure — the mean of GF across all zenith angles — which is a point metric
(Korhonen et al. 2011).

Field instruments such as the LAI-2000 are designed to measure point metrics of
canopy structure by sampling across a wide range of zenith angles, rather than by sam-
pling vertical angles alone. Because canopy structure can vary over short distances, these
point estimates can also be highly variable over short distances on the ground (Bequet et al.
2012). This leads to the question of whether a lidar metric that incorporates the spatial
information from individual returns within this hemispherical sample space can improve
the precision of model estimates of canopy structure. To answer this question, we devel-
oped a new metric based on a binning of lidar returns into a grid defined by regular intervals
of polar coordinates. This polar grid fraction (GRID) was designed to more closely match
the angular sampling of these field instruments. Here, we present this new metric, and we
report on improvements in estimation against two more traditional metrics, when all are
tested across a naturally fragmented tropical montane forest landscape where canopy char-
acteristics are highly spatially variable. Additionally, we apply this new model estimator
over a wide range of input values to examine its stability for extrapolation purposes.

2. Methods
2.1. Study site

The study site is located on the northeast slope of the Mauna Loa volcano approximately
30 km west from the city of Hilo, Hawaii. The tropical montane forests of this area were
fragmented by two lava flows in 1855 and 1881, resulting in a mosaic of open lava and
remnant fragments of varying size (<0.1 to >200 ha) as well as some reshaped, but still
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Table 1. Descriptive statistics of the three response variables from individual instrument samples
measured along transects in the study area. Leaf area index (LAI), gap fraction (GF) and percent-
age transmitted photosynthetically active radiation (tPAR) are from the individual LAI-2000 and
AccuPAR LP-80 readings taken in the field. Canopy height (CH) is from the CH model grid cells
within which the geolocated field transect sample points fall. LAI and GF each have a sample size of
618, whereas tPAR has a sample size of 858.

Statistic LAI GF tPAR (%) CH (m)
Minimum 0.3 0.01 0.4 0.0
Ist quartile 2.4 0.07 5.2 7.9
Median 33 0.13 9.7 12.2
Mean 3.5 0.17 13.4 12.5
3rd quartile 4.5 0.23 17.6 17.2
Maximum 7.9 0.86 89.0 31.0
Std. Deviation 1.5 0.14 12.3 6.0
Coefficient of variation 0.4 0.83 0.9 0.5

contiguous forest. Elevation for the studied fragments, which are dominated by the canopy
tree Metrosideros polymorpha Gaud (ohia lehua), ranges from 1400 to 2000 m. Many of the
fragments also include scattered individuals of the canopy tree Acacia koa A. Gray (koa),
whereas the mid-story and understory of all fragments are made up of just a few species
of trees and shrubs (Flaspohler et al. 2010). All species are evergreen deciduous. Over
the many decades of isolation, edge effects have resulted in forest characteristics that vary
widely across and within the different fragments. The combination of a simple and uniform
flora, long-term nature of fragmentation, high degree of replication (> 150 fragments exam-
ined), widely ranging fragment size, relative isolation from human influence and current
protection in a State of Hawaii forest reserve has created a unique model ecological system
for understanding the effects of fragmentation on forest structure and function. Descriptive
statistics for LAI, GF, tPAR and canopy height (CH) from across the study area are listed
in Table 1.

2.2. Field data collection

The field survey was performed during the months of June through October 2011. We estab-
lished 29 transects that each bisected one of the forest fragments within the study area.
Transect length ranged from 40 m to 362 m, depending on the forest fragment size and
transect orientation. The transects were intentionally placed through regions of highly vari-
able CH, using a-priori visual inspection of CH maps derived from lidar data. Transect
endpoints were georeferenced using a GEO XT GPS unit (Trimble Navigation, Ltd.,
Sunnyvale, CA, USA) with post-processed accuracy of 1 m. Field crews recorded the
position along the transect tapes, while taking single measurements from the LAI-2000
to estimate GF and LAI. Spacing between samples was determined a priori and took one
of four values, 5, 10, 15 or 20 m, whichever most closely matched the lidar-derived local
CH. So spacing under a 16 m canopy would be 15 m. Additionally, single measurements
from the AccuPAR LP-80 instrument were done to estimate canopy percentage transmit-
tance of photosynthetic light, defined as 1 minus fPAR. Sample spacing with this instrument
was every 5 m along the same transects, regardless of CH. After collection and removal of
obvious errors, 618 valid LAI-2000 samples, each containing both LAI and GF estimates,
and 858 valid LP-80 samples containing tPAR remained.
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2.3. Lidar data collection

On 10 and 13 January 2008, the Carnegie Airborne Observatory (CAO) Beta system (Asner
et al. 2007) (http://cao.ciw.edu) was flown over the area at a height of 2500 m above ground
level at an average speed of about 75 knots (38.6 m/s). The CAO-Beta lidar was a custom-
built system with a laser beam divergence of 0.56 mrad and a laser wavelength of 1064 nm.
For this data collection, the lidar pulse frequency was set to 33 kHz, and scan frequency to
10 Hz. While the CAO typically has full-waveform functionality, for this mission, only up
to four discrete return pulses were utilized. These flight and instrument settings yielded a
data set of 1.17 returns/m?, on average, over the vegetated area.

2.4. Polar grid fraction metric

We developed a new method to estimate the three canopy structural variables. Our new
method closely matches the three-dimensional sampling approach of the LAI-2000 instru-
ment, which reads light intensity using a hemispherical light-sensor in five concentric bands
of width 15°. Specifically, we took advantage of the simple mapping of a Cartesian coor-
dinate direction vector — that from a single return to a given three-dimensional sample
location — into azimuth (6) and zenith (¢) polar angles. The angles for all returns sur-
rounding a given sample point can then be binned into a two-dimensional grid defined by
intervals of 6 (wedges) and ¢ (rings), rather than the traditionally used x (columns) and y
(rows). A visualization of such a grid is pictured in Figure 1. A given cell in this polar grid
can be marked as ‘hit’ if the (6,¢) angle pairs representing one or more lidar returns fall
within the angle intervals defining the cell. After evaluating all returns, the fraction of hit
cells should relate strongly to canopy closure. However, the two values will differ by stand
type, as different species have different leaf and branch properties that will affect how light
is scattered. Terrestrial laser scanners also record in polar coordinates, and such data have
been used to estimate GF and LAI (Danson et al. 2007; Vaccari et al. 2013).

The LAI-2000 reads GF values using five bands of approximately 15° each. In a similar
manner, we grouped multiple rings into bands of about 15° each. We used the first four
such bands, covering the range 0—60°. The range of the azimuth angle, 6, was divided into
16 equal wedges of 22.5° each. Unlike in traditional grids, polar grid cell size increases
with ¢ and with distance from origin. Larger cells have a larger probability of containing
returns. While we can’t account for distance, the effect of ¢ can be nullified by defining
ring intervals in the scale of cos ¢. In this study, they were intentionally placed through
regions of highly variable CH, and the range of this transformed zenith angle was broken
into rings of width 0.0175. Thus, in ¢ scale, the zenith angle interval for ring r is given by
arccos (1 — 0.0175 (r — 1)) < ¢ < arccos (1 — 0.0175r). Regular steps in cos ¢ scale do
not line up directly with the desired 15° wide bands, so the nearest available ring boundary
was used. As a result, band intervals were marginally narrower or wider than 15°.

Due to air turbulence during flight and multiple overlaps of flight lines, the density of
the lidar data set was variable in some regions. This was found to affect the GRID estima-
tor, as more points increase the chance that a polar grid cell will be occupied. To correct
for this, the lidar data set was systematically thinned such that there were no more than
four returns in any 2 x 2 m grid cell. If more than four returns existed, only four returns,
randomly selected from those available, were retained. Using the thinned lidar data set, we
then produced a 2 x 2 m raster data set, (RGRID), covering the entire study area and con-
taining one layer for each of the four bands of GRID values. GRID values were computed
at the centre point of each 2 x 2 m cell.
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Figure 1. A graphical representation of the polar grid used to estimate gap fraction from the lidar
data. As in this study, there are 16 azimuth angle wedges and 24 zenith angle rings. Cells are a
combination of ring and wedge, akin to row and column of x-y grids. Boundaries of the four 15° wide
bands are depicted with darker lines. All cells within each band were used to compute the polar grid
fraction for this band. Truncated volumes of space depicting the projection from the origin of two
individual grid cells are depicted. The end surface area of such volumes is equal at a given radius
from the origin (instrument sample point) for all cells because rings are defined by intervals in cos ¢
scale.

2.5. Other lidar-based metrics

We desired to compare our polar grid statistics against the more traditional techniques.
In most cases, this involves collecting all lidar returns falling within a given window sur-
rounding each sample location. Statistics are computed for a subset of these points and used
as independent variables in modelling the crown structure metric of interest. Metrics may
incorporate the return order along pulse information (e.g. first, last, only) or the ground-
vs.-canopy classification of each return. Morsdorf et al. (2006) provided one such metric —
the number of first returns divided by the number of first and second returns — that should
be linearly related to LAI assuming a spherical foliage distribution. Solberg et al. (2009)
provided two more examples designed to estimate LAI by way of its link to GF. The first,
given in Equation (1), is the ratio of the count of returns classified as ground, n,, to the
total count of all ground and canopy, 7., returns. This is essentially a measure of the mean
areal GF if considering only near-vertical zenith angles. A second version incorporates
the within-pulse order of each return as well. The extra information was unnecessary in
our case, and 7 was the best performer of all three proportion-based metrics considered.
Though originally designed for a model in which both GF and 7 are log-transformed, better
results were achieved without these transformations on our data set.
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T = ng/(ng + nc). (1

We computed 7 for each 2 x 2 m cell in a regular grid covering the study area, using
all returns collected within a 14 x 14 m window centred on each 2 x 2 m grid cell. The
proportion 7 is the proportion (PROP) estimator. As with the GRID values, this single
value was stored in a second raster data set (RPROP).

Other metrics can be based on the return height distribution, such as height percentiles.
These have been shown to be effective in determining structure and structural class of stand
development (Riafo et al. 2004; Jones et al. 2012; Peduzzi et al. 2012). For all returns
falling within the same 14 x 14 m window, a script collected and sorted these values to
compute percentile statistics for the distribution of return heights. We created a third esti-
mator set, PERC, by computing the 25th, 50th, 75th, 90th and 95th percentiles using all
the return heights within each window. A third raster data set (RPERC) with 2 x 2 m cell
resolution was created to store these values.

2.6. Crown structure modelling

We tested the capabilities of the three lidar-derived metrics — GRID, PROP and PERC
— as estimators when applied to model each of the three canopy metrics — LAI, GF and
tPAR — as responses. For each field sample point, we matched the measured value to the
RGRID, RPROP and RPERC values for the 2 x 2 m cell within which the sample point is
contained. Thus, we created nine new vectors of estimated responses, one for each of the
estimator—response combinations.

To ensure that we tested estimation performance rather than simply model fit per-
formance, we tested the efficacy of each estimator group using a k-fold cross-validation
procedure. In this procedure, the data set is divided into £ groups. The estimated values for
each group are then obtained by applying a model fit to the samples from all (k — 1) remain-
ing groups. In this way, no models are trained with and applied to the same datum. We used
five groups, such that about 20% of the data was randomly placed into each group. The
LAI-2000 samples were divided into four groups of 124 samples each, and one group of
122. The LP-80 samples were, likewise, divided into three groups of 172 samples, and two
groups of 171 samples.

For each such vector, the coefficient of determination, R?, was computed using Equation
(2). The validation root mean square error (RMSE) was also computed using Equation (3).
Both equations incorporate the combined estimations from all £ = 5 groups. Here, n is the
number of samples in group i, p is the number of terms in the model for a given estimator
set, y; is the measured response variable and x;; is the vector of measured estimator vari-
ables of record j in group i, y is the mean of the response variable over all records, and f;
is the least squares regression function fit to all records not in group .
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2.7.  Model sensitivity

Overly sensitive models may produce invalid estimates given input values slightly outside
the range in the training data. We were interested in the behaviour of the estimators in
regions with low representation in the training data. We applied the five different models
created during the cross-validation procedure for each of the nine combinations of estimator
and response variable to all grid cells in the appropriate raster data set. After combining the
results across all five cross-validation models, we computed the range and the first and third
quartiles for each of the nine estimator—response combinations. In doing so, any extreme
values estimated could be compared between estimators, and the sensitivity of the given
models at each extreme could be assessed.

3. Results

The validation R? increased and the RMSE values decreased significantly when using the
GRID estimator set for response variables GF and tPAR (Table 2). The proportion-based
estimator, PROP, performed best for LAI as a response variable. R? ranged from 0.211 to
0.245 for GF, 0.229 to 0.281 for LAI and 0.241 to 0.354 for tPAR. The improvement in R?
over the next best estimator, PERC, was 14.5% for estimating GF and 6.0% for estimating
tPAR. These coincide with reductions of 2.1% and 1.6% in RMSE, respectively. GRID
outperformed PROP in R? for GF and tPAR by 16.1% and 47.9%, respectively. On the other
hand, the PROP estimator outperformed GRID for estimating LAI by 14.7%. For estimating
tPAR, the PROP estimator did poorly by comparison, with the largest R? reaching 0.241.

Interquartile ranges of the values obtained by applying the three estimator sets to the
entire raster data sets (Table 3) were not far from those observed with the field instruments
(Table 1). Extremely large or small values, such as LAI of —6.4 or tPAR of —10.9 were most
common for the PERC estimator (Table 3). Use of the PROP estimator resulted in estimates
as low as —2.8 for LAIL. The GRID estimator set was the most stable, producing no extreme
values for any of the response variables.

4. Discussion

The use of the GRID estimator set yielded improved precision over the PROP and PERC
sets when estimating the GF and tPAR canopy structure variables. This is especially true

Table 2. Statistics from the & = 5 cross-validation runs on each response variable combined with
each estimator variable set. R is from Equation (2) and RMSE is from Equation (3).

Response Estimator set R? RMSE
GF GRID' 0.245 0.1224
GF PERCT 0214 0.1251
GF PROP' 0.211 0.1249
LAI GRID 0.245 1.324
LAI PERC 0.229 1.339
LAI PROP 0.281 1.289
tPAR GRID 0.354 9.935
tPAR PERC 0.334 10.094
tPAR PROP 0.241 10.747

Note: "Number of variables per estimator set: GRID, 4, PERC, 5 and PROP, 1.
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Table 3. The range, and first and third quartiles of estimations when applying each model during
the cross-validation procedure to all valid cells across the study area in the appropriate raster data
sets. This shows the stability of the estimators when applied to more extreme data than that found in
the training set.

Response Raster Minimum 1st quartile 3rd quartile Maximum
GF RGRID 0.050 0.107 0.249 0.340
GF RPERC —0.046 0.110 0.237 0.938
GF RPROP 0.017 0.131 0.247 0.665
LAI RGRID 1.73 2.61 4.17 4.87
LAI RPERC —6.44 2.72 4.16 6.31
LAI RPROP —-2.79 2.53 3.97 5.42
tPAR RGRID 3.4 7.5 21.7 34.1
tPAR RPERC —-10.9 7.4 20.5 40.3
tPAR RPROP —0.6 10.2 21.1 61.0

for the tPAR variable over the PROP set. The key difference of the GRID metric is that
the GRID values are specific to a given sample point, whereas proportions and distribution
percentile values apply to a fixed area. This difference suggests that the GRID estimator
set can explain more of the between-sample point variation in structure metric readings,
potentially producing a more accurate fine-scale map of canopy structure.

While using the GRID set did improve estimates over the PERC set, the PROP set per-
formed best for estimating LAI. Due to the negative log-transformation of GF required to
compute LAI from GF analysis, small changes in GF near zero result in large changes in
LAI values. The poor results in GF may indicate that values of the GRID may have been
too saturated near zero to differentiate these higher LAI values, and this would be most
prominent in the outside bands. The largest GRID-estimated LAI value is 4.87 (Table 3),
significantly lower than those for the other two estimators. If this is discovered to be an
underestimate, one possible correction may be to further reduce the polar grid cell dimen-
sions (by reducing 6 and ¢ angle steps). This would increase the number of cells to improve
the resolution for lower grid fraction values.

The R? values presented here are low compared with values presented in other publi-
cations using estimators similar to PROP or PERC. For example, Morsdorf et al. (2006)
modelled LAI using proportions with an adjusted R? of 0.69, whereas Solberg et al. (2009)
modelled LAI (via GF) using proportion ratios with an R> of up to 0.92. Using the 75th
height percentile, Riafio et al. (2004) found a correlation coefficient of up to 0.95 with
LAL There are several possible reasons for these lower R? values. First, and probably most
important, we are modelling single field instrument readings rather than averaged values
from several readings taken at each plot. The M. polymorpha canopy is non-uniform, and
instrument readings are highly variable within a small area. These single readings are also
more difficult to accurately locate with a GPS equipment. Second, previously reported
values of R? result from model fitting analysis and not from model validation analysis.
Estimations from a model nearly always have larger residuals when applied to new data,
and some of the R? difference seen here represents this effect of regression modelling.

Two other factors, site characteristics and lidar return density, may affect estimator
performance in models. For example, model performance in efforts to estimate canopy
structure metrics can vary widely across forest types (Riafio et al. 2004; Jensen et al. 2008;
Hopkinson and Chasmer 2009). In one case, model performance declined with increasing



Downloaded by [Nicholas Vaughn] at 12:25 16 August 2013

7472 N.R. Vaughn et al.

LAI (Jensen et al. 2008). The high elevation, tropical forest examined produces a large
range in LAI values. Also, the density of returns in our lidar data set is lower than normal
for missions flown in the year 2008. Thomas et al. (2006) found that a reduction in lidar
return density hampered stand-level crown closure estimations. Similar results should be
expected for other canopy structure metrics.

An important property of any estimator when applied to large landscapes is that it
should not produce extreme values when extrapolated. In this regard, the GRID estima-
tor excelled, producing no extremes for any response metric. In contrast, the PROP and
especially the PERC estimators behaved poorly on the outer limits of the ranges of all three
canopy structure metrics, indicating that these approaches may not be appropriate for all
data conditions.

The polar grid metric shows promise as a precise and accurate estimator of canopy
structure metrics. We showed that improvement in estimation precision was significant for
the GF and tPAR canopy metrics, and that the metric was insensitive to slight extrapolation.
It is possible that improvements could be even greater, and perhaps even hold for LAI, when
applied to lidar data of higher density and GPS positioning of higher accuracy. Ultimately,
these improvements could lead to improved modelling of large-scale forest canopy structure
and processes such as productivity. Further, modelling for an individual point rather than
for an area, fine-scale spatial analysis of canopy and stand characteristics is possible.
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