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ABSTRACT. A new family of geometric Borel measures on the unit sphere is introduced. Special
cases include the Lp surface area measures (which extend the classical surface area measure of Alek-
sandrov and Fenchel & Jessen) and Lp-integral curvature (which extends Alkesandrov’s integral cur-
vature) in the Lp Brunn-Minkowski theory. It also includes the dual curvature measures (which are
the duals of Federer’s curvature measures) in the dual Brunn-Minkowski theory. This partially unifies
the classical theory of mixed volumes and the newer theory of dual mixed volumes.

1. INTRODUCTION

Surface area measure and integral curvature are two important geometric measures of convex
bodies in the Euclidean n-space, Rn. Integral curvature measures the images of the Gauss map of a
convex body, while surface area measure measures the inverse images of the Gauss map of a convex
body. Both measures are fundamental concepts in the classical Brunn-Minkowski theory of convex
bodies. The Minkowski problem characterizing surface area measure and the Aleksandrov prob-
lem characterizing integral curvature are two well-known problems. In modern convex geometry,
the Lp Brunn-Minkowski theory and the dual Brunn-Minkowski theory generalize and dualize the
classical Brunn-Minkowski theory. The Lp surface area measures were introduced in [38], and Lp

integral curvatures were recently defined in [26]. Equally fundamental geometric measures in the
dual Brunn-Minkowski theory were only constructed very recently in [25]. They are called dual
curvature measures (and are dual to Federer’s curvature measures). Minkowski problems associated
with these geometric measures are major problems in convex geometric analysis, which are far from
being completely solved.

The purpose of this paper is to continue the study begun in [25] and to construct Lp dual curvature
measures. It turns out that the Lp surface area measure, Lp integral curvatures, and dual curvature
measures are all special cases of the now-to-be introduced Lp dual curvature measures. These lead
to a unified concept of mixed volume that includes Minkowski’s classical first mixed volume, Lp

mixed volumes, Lp entropy, as well as dual mixed volumes as special cases. We shall demonstrate
a surprising connection between the Lp Brunn-Minkowski theory and the dual Brunn-Minkowski
theory by establishing geometric inequalities and variational integral formulas for the unified mixed
volumes and for the new Lp dual curvature measures. We pose the Lp dual Minkowski problem
for Lp dual curvature measure which opens a new direction of study in convex geometric analysis.
Detailed explanations are provided below.

The Lp Brunn-Minkowski theory as a generalization of the classical Brunn-Minkowski theory has
attracted increasing interest in recent years partly due to its wide range of connections with other
subjects such as affine geometry, Banach space theory, harmonic analysis, and partial differential
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equations. The core concept in the Lp Brunn-Minkowski theory (introduced in [38]) is the notion of
the Lp surface area measure which is a Borel measure (defined on the unit sphere) for each convex
body in Rn that contains the origin in its interior. The Lp-cosine transform (a spherical variant of
the Fourier transform) of the Lp surface area measure turns out to yield a finite dimensional Banach
norm. The associated affine isoperimetric inequality for the volume of the unit ball of this Banach
norm is known as the Lp Petty projection inequality which was established in [39] and is a profound
strengthening of the classical isoperimetric inequality. The Radon-Nikodym derivative of the Lp

surface area measure with respect to the spherical Lebesgue measure is called the Lp curvature
function. The integral of the Lp curvature function (raised to an appropriate power) over the unit
sphere is Lp affine surface area which has been a focus of study in affine geometry and valuation
theory, see e.g. [20, 35, 42, 50, 53, 54]. Finding the necessary and sufficient conditions for a given
measure to guarantee that it is the Lp surface area measure is the existence problem called the Lp

Minkowski problem posed in [38]. Solving the Lp Minkowski problem requires solving a degenerate
and singular Monge-Ampère type equation on the unit sphere. The problem has been solved for
p ≥ 1, see [10, 27, 38], but critical cases for p < 1 remain open, see e.g. [7, 10, 51, 52, 63, 64]. The
solution of the Lp Minkowski problem and the Lp Petty projection inequality are key tools used for
establishing the Lp affine Sobolev inequality and its relatives, see [11, 23, 40, 41, 59].

Let Kn
o denote the class of convex bodies (compact convex subsets) in Euclidean n-space, Rn, that

contain the origin in their interiors. The support function, hQ : Sn−1 → (0,∞) of the convex body
Q ∈ Kn

o , determines Q uniquely and is defined, for v ∈ Sn−1, by hQ(v) = max{v · x : x ∈ Q},
where v · x is the standard inner product of v and x in Rn. The basic operation between convex
bodies is the Minkowski combination (vector sum). For K,L ∈ Kn

o and s, t ≥ 0, the Minkowski
combination sK + tL is defined by sK + tL = {sx+ ty : x ∈ K, y ∈ L}, or equivalently,

hsK+tL = shK + thL.

The fundamentally important surface area measure S(K, ·) of a convex body K can be defined by
the variational formula,

d

dt
V (K + tL)

⏐⏐⏐
t=0+

=

∫
Sn−1

hL(v) dS(K, v),

which holds for each L ∈ Kn
o . The integral above times 1

n
is Minkowski’s first mixed volume of K

and L,

V1(K,L) =
1

n

∫
Sn−1

hL(v) dS(K, v).

The mixed volume V1 is an extension of three functionals: volume, surface area and mean width. It
is the most studied mixed volume within the classical Brunn-Minkowski theory.

An extension of Minkowski combinations studied by Firey in the early 1960’s, defines the Lp

Minkowski combination (also known as the Minkowski-Firey combination), s ·K+p t ·L , for each
p ≥ 1, each pair K,L ∈ Kn

o , and s, t ≥ 0, by

hp
s·K+p t·L = shp

K + thp
L.

The concept of Lp mixed volume was defined in the 1990’s after introducing the fundamental con-
cept of Lp surface area measure (see [38]). The Lp surface area measure Sp(K, ·) of a convex body
K ∈ Kn

o can be defined by the variational formula,

d

dt
V (K+p t ·L)

⏐⏐⏐
t=0+

=
1

p

∫
Sn−1

hp
L(v) dSp(K, v), (1.1)
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which holds for each L ∈ Kn
o . The integral above (times p/n) is called the Lp mixed volume of K

and L:

Vp(K,L) =
1

n

∫
Sn−1

hp
L(v) dSp(K, v). (1.2)

It generalizes Minkowski’s first mixed volume V1(K,L) of K and L. The important Lp Minkowski
inequality for Lp mixed volume states that for p ≥ 1,

Vp(K,L)n ≥ V (K)n−pV (L)p,

with equality if and only if K,L are dilates when p > 1 and if and only if K,L are homothets in the
case where p = 1.

The dual Brunn-Minkowski theory was developed in the 1970s (in [36]) as the dual theory to the
classical Brunn-Minkowski theory based on a conceptual duality in convex geometry, see Schneider
[48], Chapter 9. The dual Brunn-Minkowski theory studies dual mixed volumes of star bodies,
see [17, 36, 37, 55, 56]. A star body Q ⊂ Rn is a compact star-shaped set about the origin whose
radial function ρQ : Sn−1 → (0,∞), defined for u ∈ Sn−1 by ρQ(u) = max{λ > 0 : λu ∈ Q},
is continuous. Denote the set of star bodies in Rn by Sn

o . Obviously, Kn
o ⊂ Sn

o . In the late 1980’s,
the important concept of intersection body in the dual Brunn-Minkowski theory was introduced
(in [37]). This brought remarkable applications of Radon transforms and Fourier transforms, tools
from harmonic analysis, to convex geometry, see e.g., [14, 16, 17, 29–31, 37, 57, 58].

The dual Brunn-Minkowski theory is a theory of dual mixed volumes of star bodies. For q ∈ R,
the q-th dual mixed volume of K,Q ∈ Sn

o , is defined by
∼
Vq(K,Q) =

1

n

∫
Sn−1

ρqK(u)ρ
n−q
Q (u) du, (1.3)

where the integration is with respect to spherical Lebesgue measure. The basic geometric invariants
associated with a star body are the dual quermassintegrals, also called dual volumes: For q ̸= 0,

the q-th dual volume
∼
Vq(K) of K ∈ Sn

o is defined by
∼
Vq(K) =

∼
Vq(K,B), where B is the origin-

centered unit ball in Rn. One of the reasons that the q-th dual volume is important in geometric
tomography is that for integer values q = 1, . . . , n− 1, and each K ∈ Sn

o ,
∼
Vq(K) = cn,q

∫
G(n,q)

volq(K ∩ ξ) dξ,

where volq denotes volume in Rq, and the integration is with respect to the rotation invariant proba-
bility measure on G(n, q), the Grassmannian of q dimensional subspaces of Rn. The constant cn,q is
trivially determined by taking K to be B.

Very recently, a new family of geometric measures were discovered in [25]. These measures
are the long-sought duals (in the dual Brunn-Minkowski theory) of Federer’s curvature measures
(which are fundamental in the classical Brunn-Minkowski theory). The new measures are called

dual curvature measures. For real q ̸= 0, the q-th dual curvature measure
∼
Cq(K, ·) of convex body

K ∈ Kn
o is a Borel measure on the unit sphere that may be defined via the variational formula,

d

dt

∼
Vq(K + tL)

⏐⏐⏐
t=0+

= q

∫
Sn−1

hL(v)hK(v)
−1d

∼
Cq(K, v), (1.4)

which holds for every L ∈ Kn
o . In the same way that Lp surface area measures play a critical role in

the Lp Brunn-Minkowski theory, dual curvature measures can be seen to be a central concept within
the dual Brunn-Minkowski theory.
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The Minkowski problem (including both existence and uniqueness) associated with the dual cur-
vature measures, is called the dual Minkowski problem, and is a major open problem in the dual
Brunn-Minkowski theory. It requires solving a degenerate and singular Monge-Ampère type equa-
tion on the unit sphere. Existence of solutions for the dual Minkowski problem for even data within
the class of origin-symmetric convex bodies was established in [25]. Very recently existence for the
critical cases of the even dual Minkowski problem were established in [62] and [5], and a complete
solution to the dual Minkowski problem with negative indices was given in [61].

Aleksandrov’s integral Gauss curvature, or simply integral curvature, generalizes total Gauss
curvature of a smooth convex body to become a geometric measure for all convex bodies (without
any smoothness restrictions). It measures the Gauss image of points on the boundary of a convex
body parameterized by the radial directions of the points. The Aleksandrov problem asks for nec-
essary and sufficient conditions so that a given measure on the unit sphere is the integral curvature
of a convex body. Aleksandrov solved his problem by using his topological mapping lemma and
polytope approximation. (See Oliker [45] for an alternate approach.) It was recently discovered
in [26] that the integral curvature and the Aleksandrov problem have natural extensions in the Lp

Brunn-Minkowski theory. The concept of Lp integral curvature was introduced in [26], and the
associated Lp Aleksandrov problem was posed (in [26]) as well. The paper [26] develops a radically
new approach to studying the Aleksandrov problem and its Lp extension.

The singular case q = 0 of dual volume leads to the notion of dual entropy of a star body. For

K ∈ Sn
o , the dual entropy

∼
E(K) may be defined by

∼
E(K) =

1

n

∫
Sn−1

log ρK(u) du.

The Lp integral curvature, Jp(K, ·), of a convex body K ∈ Kn
o , introduced in [26], may be defined

via the variational formula,
d

dt

∼
E(K+p t ·L)

⏐⏐⏐
t=0+

=
1

np

∫
Sn−1

hp
L(v) dJp(K

∗, v), (1.5)

which holds for all L ∈ Kn
o and where K∗ is the polar body of K, defined by

K∗ = {x ∈ Rn : x · y ≤ 1 for all y ∈ K}.
In view of the fact that volume is a special dual volume and dual entropy is the singular case

of dual volumes, it is a natural question to ask if the three families of geometric measures — the

Lp surface area measure Sp(K, ·), the q-th dual curvature measure
∼
Cq(K, ·), and the Lp integral

curvature Jp(K, ·) might all belong to one large family of geometric measures associated with a
convex body K ∈ Kn

o . It is the purpose of this paper to show that such a family of geometric
measures of convex bodies does exist. They will be called Lp dual curvature measures and they
unify Lp surface area measures, dual curvature measures, and Lp integral curvatures. The three
variational formulas (1.1), (1.4), and (1.5) are special cases of one general variational formula for Lp

dual curvature measures. Using the new Lp dual curvature measures, we introduce the notion of Lp

dual mixed volumes which unifies Lp mixed volumes of convex bodies in the Lp Brunn-Minkowski
theory and dual mixed volumes of star bodies in the dual Brunn-Minkowski theory. Thus, parts of
the Lp Brunn-Minkowski theory and the dual Brunn-Minkowski theory can finally be unified. The
Lp dual curvature measures are the core concept of this unification.

The Lp dual curvature measures,
∼
Cp,q, are a two-parameter family of Borel measures on the unit

sphere. Specifically, for p, q ∈ R, a convex body K ∈ Kn
o , and a star body Q ∈ Sn

o , we define the
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Borel measure
∼
Cp,q(K,Q, ·) on Sn−1 by∫

Sn−1

g(v) d
∼
Cp,q(K,Q, v) =

1

n

∫
Sn−1

g(αK(u))hK(αK(u))
−pρK(u)

qρQ(u)
n−q du, (1.6)

for each continuous g : Sn−1 → R, where αK is the radial Gauss map that associates to almost (with
respect to spherical Lebesgue measure) each u ∈ Sn−1 the unique outer unit normal at the point
ρK(u)u ∈ ∂K.

The Lp surface area measures, the dual curvature measures and the Lp integral curvatures are
special cases, of the Lp dual curvature measures in the sense that for p, q ∈ R, and K ∈ Kn

o ,

∼
Cp,n(K,B, ·) = 1

n
Sp(K, ·), (1.7)

∼
C0,q(K,B, ·) =

∼
Cq(K, ·), (1.8)

∼
Cp,0(K,B, ·) = 1

n
Jp(K

∗, ·), (1.9)

where B is the unit ball in Rn.
Using Lp dual curvature measures, we can define Lp dual mixed volumes. For p, q ∈ R, and

convex bodies K,L ∈ Kn
o , and a star body Q ∈ Sn

o , the Lp dual mixed volume
∼
Vp,q(K,L,Q) is

defined by
∼
Vp,q(K,L,Q) =

∫
Sn−1

hp
L(v) d

∼
Cp,q(K,Q, v). (1.10)

The Lp mixed volume and the dual mixed volume will be shown to be the special cases,

∼
Vp,q(K,L,K) = Vp(K,L), (1.11)
∼
Vp,q(K,K,Q) =

∼
Vq(K,Q). (1.12)

The Lp dual mixed volume has the following integral formula in terms of support functions, radial
functions, and the radial Gauss map,

∼
Vp,q(K,L,Q) =

1

n

∫
Sn−1

hL(αK(u))
phK(αK(u))

−pρK(u)
qρQ(u)

n−q du. (1.13)

The following inequality for Lp dual mixed volume is a generalization of the Lp Minkowski
inequality for Lp mixed volume. Suppose 1 ≤ q

n
≤ p. If K,L ∈ Kn

o and Q ∈ Sn
o , then

∼
Vp,q(K,L,Q)n ≥ V (K)q−pV (L)pV (Q)n−q, (1.14)

with equality, when q > n, if and only if K, L, and Q are dilates, while when q = n and p > 1, with
equality if and only if K and L are dilates, while when q = n and p = 1, with equality if and only
if K and L are homothets.

To simplify stating the general variational formula that defines the Lp dual curvature measures,
we introduce the normalized power function. For q ∈ R, and t ∈ (0,∞), define tq̄, by

tq̄ =

{
1
q
tq q ̸= 0,

log t q = 0.
(1.15)
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For q ∈ R and star bodies K,Q ∈ Sn
o , the normalized dual mixed volume

∼
V q̄(K,Q) is defined by

∼
V q̄(K,Q) =

1

n

∫
Sn−1

(ρK
ρQ

)q̄
(u)ρnQ(u) du. (1.16)

Note that for q ̸= 0, we have q
∼
V q̄(K,Q) =

∼
Vq(K,Q), while for q = 0 the normalized dual mixed

volume
∼
V q̄(K,Q) differs considerably from the standard definition of

∼
Vq(K,Q) — not just by a

multiplicative constant.
Recall that Lp Minkowski combinations have recently been extended so that they are defined for

all p ∈ R (see §2 for details). One of the goals of this work is to demonstrate that for p, q ∈ R, a
convex body K ∈ Kn

o and a star body Q ∈ Sn
o , there is a variational formula that can define the Lp

dual curvature measure
∼
Cp,q(K,Q, ·):
d

dt

∼
V q̄(K+p t ·L,Q)

⏐⏐⏐
t=0+

=

∫
Sn−1

hp̄
L(v) d

∼
Cp,q(K,Q, v), (1.17)

which holds for every L ∈ Kn
o . This unifies (1.1), (1.4), and (1.5). This is also the key fact needed

to make it possible to solve the Minkowski problems associated with Lp dual curvature measures by
using a variational method.

The obvious major problem of study regarding the new Lp dual curvature measures is the Lp

dual Minkowski problem — a general Minkowski problem that unifies the Lp Minkowski problem,
the dual Minkowski problem, and the Lp Aleksandrov problem. The Lp dual Minkowski problem
concerns both the existence and the uniqueness questions. The existence problem is to find neces-
sary and sufficient conditions so that a given measure on the unit sphere is the Lp dual curvature
measure of a convex body in Rn. The uniqueness question asks to what extent a convex body is
uniquely determined by its Lp dual curvature measure. Recall that the Lp Minkowski problem, the
dual Minkowski problem, and the Lp Aleksandrov problem are only partially solved. Important spe-
cial cases are largely open, for example, the centro-affine Minkowski problem and the logarithmic
Minkowski problem. Solving the new Lp dual Minkowski problem requires solving a degenerate and
singular Monge-Ampère equation on the unit sphere Sn−1 of the following type: For fixed p, q ∈ R,

h1−p∥∇̄h+ hι∥q−n det(∇̄2h+ hI) = f,

where ∥ · ∥ is a given n-dimensional Banach norm, f : Sn−1 → [0,∞) is the given “data” function,
h : Sn−1 → (0,∞) is the function to be found, and ι : Sn−1 → Sn−1 is the identity map. Here,
∇̄h and ∇̄2h denote the gradient vector and the Hessian matrix of h, respectively, with respect to an
orthonormal frame on Sn−1, and I is the identity matrix.

2. PRELIMINARIES

Schneider’s book [48] is our standard reference for the basics regarding convex bodies. The
books [13, 18] are also good references.

Throughout Rn denotes n-dimensional Euclidean space. For x ∈ Rn, let |x| =
√
x · x be the

Euclidean norm of x. For x ∈ Rn \{0}, we will use both x and ⟨x⟩ to abbreviate x/|x|, and for
E ⊂ Rn \ {0}, we write Ē for {x̄ : x ∈ E}. The origin-centered unit ball {x ∈ Rn : |x| ≤ 1} is
always denoted by B, and its boundary by Sn−1.

For the set of continuous functions defined on the unit sphere Sn−1 write C(Sn−1), and for f ∈
C(Sn−1) write ∥f∥∞ = maxv∈Sn−1 |f(v)|. We shall view C(Sn−1) as endowed with the topology
induced by this max-norm.
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If K ⊂ Rn is compact and convex, then h(K, ·) = hK : Rn → R, the support function of K, is
defined, for x ∈ Rn, by

hK(x) = max{x · y : y ∈ K}.
The support function is convex and homogeneous of degree 1. A compact convex subset of Rn is
uniquely determined by its support function. From the definition of the support function, we see
immediately that for ϕ ∈ SL(n), for the support function of ϕK, the image of K under ϕ, we have
for all x ∈ Rn,

h(ϕK, x) = h(K,ϕtx), (2.1)

where ϕt denotes the transpose of ϕ.
The gradient of hK in Rn is denoted by ∇hK . When hK is viewed as restricted to the unit sphere

Sn−1, the gradient of hK on Sn−1 with respect to the standard metric of Sn−1 is denoted by ∇̄hK .
Since hK : Rn → R is positively homogeneous of degree 1, at each point v ∈ Sn−1 where hK is
differentiable,

∇hK(v) = ∇̄hK(v) + hK(v)v. (2.2)

Denote by Kn the space of compact convex sets in Rn endowed with the Hausdorff metric; i.e.
the distance between K,L ∈ Kn is ∥hK − hL∥∞. By a convex body in Rn we will always mean
a compact convex set with nonempty interior. Denote by Kn

o the class of convex bodies in Rn that
contain the origin in their interiors.

Let K ⊂ Rn be compact and star-shaped with respect to the origin; i.e., the line segment joining
each point of K to the origin is completely contained in K. The radial function ρK : Rn \ {0} → R
is defined by

ρK(x) = max{λ : λx ∈ K},
for x ̸= 0. From the definition of the radial function, we see immediately that for ϕ ∈ SL(n), we
have

ρϕK(x) = ρK(ϕ
−1x), (2.3)

for all x ∈ Rn\{0}.
A compact star-shaped (about the origin) set is uniquely determined by its radial function on

Sn−1. Denote by Sn the set of compact star-shaped sets. A star body is a compact star-shaped set
with respect to the origin whose radial function is continuous and positive. If K is a star body, then
obviously

∂K = {ρK(u)u : u ∈ Sn−1} = {ρK(x)x : x ∈ Rn\{0}} = {x ∈ Rn : ρK(x) = 1}.

Denote by Sn
o the space of star bodies in Rn endowed with the radial metric; i.e., the distance

between K,L ∈ Sn
o , is ∥ρK − ρL∥∞. Note that Kn

o ⊂ Sn
o and that on the space Kn

o the Hausdorff
metric and radial metric are equivalent, and thus Kn

o is a subspace of Sn
o .

For a convex body K ∈ Kn
o , the polar body K∗ of K is the convex body in Rn defined by

K∗ = {x ∈ Rn : x · y ≤ 1, for all y ∈ K}.

From this definition, we easily see that on Rn\{0},

ρK = 1/hK∗ and hK = 1/ρK∗ . (2.4)

It follows that
K∗∗ = K, (2.5)

a fact we shall frequently make use of.
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Throughout, Ω ⊂ Sn−1 will denote a set that is both closed and that cannot be contained in any
closed hemisphere of Sn−1. The Wulff shape [[[h]]] ∈ Kn

o , of a continuous function h : Ω → (0,∞),
also known as the Aleksandrov body of h, is the convex body defined by

[[[h]]] =
⋂
v∈Ω

{x ∈ Rn : x · v ≤ h(v)}. (2.6)

Because of the restrictions placed on Ω, we see that [[[h]]] ∈ Kn
o . If K ∈ Kn

o , then it is easily seen that
[[[hK]]] = K.

Let ρ : Ω → (0,∞) be continuous. Since Ω ⊂ Sn−1 is assumed to be closed, and ρ is continuous,
{ρ(u)u : u ∈ Ω} is a compact set in Rn. Hence, the convex hull ⟨⟨⟨ρ⟩⟩⟩ generated by ρ,

⟨⟨⟨ρ⟩⟩⟩ = conv{ρ(u)u : u ∈ Ω},
is compact as well (see Schneider [48], Theorem 1.1.11). Since Ω is not contained in any closed
hemisphere of Sn−1, the compact convex set ⟨⟨⟨ρ⟩⟩⟩ contains the origin in its interior; i.e., ⟨⟨⟨ρ⟩⟩⟩ ∈ Kn

o .
Obviously, if K ∈ Kn

o ,
⟨⟨⟨ρK⟩⟩⟩ = K. (2.7)

We shall make frequent use of the easily-established fact that the support function of ⟨⟨⟨ρ⟩⟩⟩ is given
by:

h⟨⟨⟨ρ⟩⟩⟩(v) = maxu∈Ω(v · u)ρ(u), (2.8)
for all v ∈ Sn−1.

The Wulff shape [[[h]]] determined by h and the convex hull ⟨⟨⟨1/h⟩⟩⟩ generated by the function 1/h are
easily shown (see [25]) to be polar reciprocals of each other; i.e.,

[[[h]]]∗ = ⟨⟨⟨1/h⟩⟩⟩.

For K,L ⊂ Rn that are compact and convex, and real s, t ≥ 0, the Minkowski combination,
sK + tL ⊂ Rn, is the compact, convex set defined by

sK + tL = {sx+ ty : x ∈ K and y ∈ L},
and its support function is given by

hsK+tL = shK + thL. (2.9)

If K and L contain the origin, then for p ≥ 1, the Lp Minkowski combination, also known as
the Minkowski-Firey combination, s ·K +p t ·L ⊂ Rn, is the compact, convex set whose support
function is given by,

h(s ·K+p t ·L, · )p = sh(K, · )p + th(L, · )p. (2.10)
Note that “·” is used with the subscript p implied.

Using the concept of Wulff shape, the definition of an Lp Minkowski combination can be extended
so as to be defined for p < 1 and even negative s or t: Fix a real p ̸= 0. For K,L ∈ Kn

o , and s, t ∈ R
such that shp

K + thp
L is a strictly positive function Sn−1, define the Lp Minkowski combination,

s ·K+p t ·L ∈ Kn
o , by

s ·K+p t ·L = [[[(shp
K + thp

L)
1/p]]]. (2.11)

When p = 0, define s ·K+0 t ·L by

s ·K+0 t ·L = [[[hs
Kh

t
L
]]]. (2.12)

Since, hK , hL are strictly positive functions on Sn−1, it follows that s ·K+0 t ·L is defined for all
s, t ∈ R.
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For ϕ ∈ SL(n) and p ̸= 0,

s ·ϕK+p t ·ϕL = ϕ(s ·K+p t ·L). (2.13)

If also s+ t = 1, then (2.13) hold for p = 0 as well. That (2.13) holds follows from the observation
that since the support function is homogeneous of degree 1 we can re-write (2.11), by using (2.6),
as an intersection over Rn\{0}, rather than Sn−1,

s ·ϕK+p t ·ϕL =
⋂
y ̸=0

{x ∈ Rn : x · y ≤ (shϕK(y)
p + thϕL(y)

p)1/p}

and then use (2.1). If s + t = 1, then we can re-write (2.12), by using (2.6), as an intersection over
Rn\{0},

s ·ϕK+0 t ·ϕL =
⋂
y ̸=0

{x ∈ Rn : x · y ≤ hϕK(y)
shϕL(y)

t}

and then use (2.1).
For K,L ⊂ Rn that are compact and star-shaped (with respect to the origin), and real s, t ≥ 0,

the radial combination, sK
∼
+ tL ⊂ Rn, is the compact star-shaped set defined by

sK
∼
+ tL = {sx+ ty : x ∈ K and y ∈ L, whenever x · y = |x||y|}.

Obviously, x · y = |x||y| means that either y = αx or x = αy for some α ≥ 0. The radial function
of the radial combination of two star-shaped sets is the combination of their radial functions; i.e.,

ρ(sK
∼
+ tL, ·) = sρ(K, ·) + tρ(L, ·).

For fixed real q, the radial q-combination s ·K
∼
+q t ·L is defined by

ρ(s ·K
∼
+q t ·L, ·)q = sρ(K, ·)q + tρ(L, ·)q, q ̸= 0, (2.14)

ρ(s ·K
∼
+0 t ·L, ·) = ρ(K, ·)sρ(L, ·)t. (2.15)

Note that in order to have a natural definition of s ·K
∼
+0 t ·L whose radial function is homogeneous

of degree −1 it is necessary in (2.15) that s + t = 1. Of course, one could use (2.15) to define
s ·K

∼
+0 t ·L as above on Sn−1, exclusively, and then extend the function obtained to Rn \{0} by

declaring it to be homogeneous of degree −1.
For ϕ ∈ SL(n) and q ̸= 0,

s ·ϕK
∼
+q t ·ϕL = ϕ(s ·K

∼
+q t ·L). (2.16)

If also s+ t = 1, then (2.16) hold for q = 0 as well. All this follows from (2.3).

For q ∈ R\{0}, and star bodies K,L ∈ Sn
o , the q-th dual mixed volume

∼
Vq(K,L) is defined by

∼
Vq(K,L) =

1

n

∫
Sn−1

ρqK(u)ρ
n−q
L (u) du =

q

n
lim
t→0

[V (L
∼
+q t ·K)− V (L)]/t, (2.17)

where the second equality follows from (2.14) and the polar coordinate formula for volume. ¿From
(2.17) and (2.16) we get the well-known fact that for ϕ ∈ SL(n),

∼
Vq(ϕK, ϕL) =

∼
Vq(K,L). (2.18)



Lp DUAL CURVATURE MEASURES 10

The q-th dual volume
∼
Vq(K) of a star body K ∈ Sn

o is defined by
∼
Vq(K) =

∼
Vq(K,B),

where B is the unit ball.
The dual mixed entropy

∼
E(K,L) of star bodies K,L ∈ Sn

o is defined by
∼
E(K,L) =

1

n

∫
Sn−1

log
(ρK(u)
ρL(u)

)
ρnL(u) du. (2.19)

Note that
∼
E(K,L) =

∼
V 0̄(K,L). As was the case in (2.18), for the dual mixed entropy we have that

for ϕ ∈ SL(n),
∼
E(ϕK, ϕL) =

∼
E(K,L). (2.20)

To establish this, use the polar-coordinate formula for volume together with definition (2.15), and
then (2.19) to see that

lim
t→0

V ((1− t)·L
∼
+0 t·K)− V (L)

t
= n

∼
E(K,L).

This together with the fact that SL(n)-transformations leave volume V unaltered, definition (2.15),
and (2.16), give (2.20).

We shall make use of the fact that a function h ∈ C2(Sn−1) is the support function of a convex
body provided that the matrix ∇̄2h + hI is positive definite, where ∇̄2h is the Hessian matrix
of h on Sn−1, with respect to an orthonormal frame. This fact follows from Theorem 1.5.13 of
Schneider [48] if we switch from Euclidean derivatives to spherical derivatives.

The case p = 1 of the following lemma is well known (see Schneider [48]). For real p ̸= 0 it was
established by Kiderlen [28]. Thus, only the case p = 0 will require proof.

Lemma 2.1. For each p ∈ R, the set{
chp̄

K − chp̄
B : K ∈ Kn

o , c > 0
}

is dense in C(Sn−1).

Proof. It is sufficient to show that given a g ∈ C2(Sn−1) there exist K ∈ Kn
o and c > 0 so that

g = chp̄
K − chp̄

B,

for p = 0. This will be the case provided
h = etg

is the support function of a convex body in Kn
o for some sufficiently small t > 0.

The function h is obviously in C2(Sn−1). An easy calculation gives

∇̄2h = ht2∇̄g ⊗ ∇̄g + ht∇̄2g.

It follows that ∇̄2h+ hI → I uniformly as t → 0, and thus ∇̄2h+ hI is positive definite when t is
sufficiently small. □

We shall use Lemma 2.1 to show that two Borel measures are equal provided they agree when
integrated against the p̄-th powers of support functions of bodies in Kn

o .
We shall require the following definition.
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Definition 2.2. Suppose p ∈ R. If µ is a Borel measure on Sn−1 and ϕ ∈ SL(n) then, ϕ p⊣µ, the Lp

image of µ under ϕ, is a Borel measure such that,∫
Sn−1

f(u) dϕ p⊣µ(u) =

∫
Sn−1

|ϕ−1u|pf(⟨ϕ−1u⟩) dµ(u),

for each Borel f : Sn−1 → R.

3. THE RADIAL GAUSS MAP

Suppose K is a convex body in Rn. For each v ∈ Rn\{0}, the hyperplane

HK(v) = {x ∈ Rn : x · v = hK(v)}

is called the supporting hyperplane to K with outer normal v.
It will be convenient to call vector u ∈ Rn \ {0} a regular radial vector for K provided the

boundary point ρK(u)u is smooth; i.e., ρK(u)u ∈ HK(v1) ∩ HK(v2), for v1, v2 ∈ Sn−1 is only
possible when v1 = v2. We recall that a convex body is called smooth provided each boundary point
is smooth; i.e., provided each boundary point of the convex body has a unique supporting hyperplane
passing through it. A vector v ∈ Rn\{0} is called a regular normal vector for the body K provided
HK(v) ∩ ∂K consists of a single point.

The spherical image of σ ⊂ ∂K is defined by

νννK(σ) = {v ∈ Sn−1 : x ∈ HK(v) for some x ∈ σ} ⊂ Sn−1.

The reverse spherical image of η ⊂ Sn−1 is defined by

xxxK(η) = {x ∈ ∂K : x ∈ HK(v) for some v ∈ η} ⊂ ∂K.

Let σK ⊂ ∂K be the set consisting of all x ∈ ∂K, for which the set νννK({x}), which we frequently
abbreviate as νννK(x), contains more than a single element. It is well known that Hn−1(σK) = 0 (see
p. 84 of Schneider [48]). On precisely the set of regular radial vectors of ∂K is defined the function

νK : ∂K \ σK → Sn−1, (3.1)

by letting νK(x) be the unique element in νννK(x), for each x ∈ ∂K \ σK . The functions νK is called
the spherical image map of K and is known to be continuous (see Lemma 2.2.12 of Schneider [48]).
It will occasionally be convenient to abbreviate ∂K \ σK by ∂′K. Since Hn−1(σK) = 0, when the
integration is with respect to Hn−1, it will be immaterial if the domain is over subsets of ∂′K or ∂K.

The set ηK ⊂ Sn−1 consisting of all v ∈ Sn−1, for which the set xxxK(v) contains more than a
single element, is of Hn−1-measure 0 (see Theorem 2.2.11 of Schneider [48]). On precisely the set
of regular unit normal vectors for K is defined the function

xK : Sn−1 \ ηK → ∂K, (3.2)

by letting xK(v) be the unique element in xxxK(v), for each v ∈ Sn−1 \ ηK . The function xK is
called the reverse spherical image map and is well known to be continuous (see Lemma 2.2.12 of
Schneider [48]). Note that by extending xK to Rn\{0}, by making it a function homogeneous of
degree 0, we obtain a natural definition of xK on the set of regular normal vectors of K.

Lemma 3.1. Suppose K ∈ Kn
o . The vector u ∈ Rn\{0} is a regular radial vector for K if and only

if u is a regular normal vector for K∗.
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Proof. To see this note that u ̸= 0 is a regular radial vector for K if and only if for v1, v2 ∈ Sn−1,

ρK(u)u ∈ HK(v1) ∩HK(v2) =⇒ v1 = v2,

equivalently if and only if,

ρK(u)(u · v1) = hK(v1) and ρK(u)(u · v2) = hK(v2) =⇒ v1 = v2,

equivalently, using (2.4), if and only if,

ρK∗(v1)(v1 · u) = hK∗(u) and ρK∗(v2)(v2 · u) = hK∗(u) =⇒ v1 = v2,

equivalently, if and only if,

ρK∗(v1)v1 ∈ HK∗(u) and ρK∗(v2)v2 ∈ HK∗(u) =⇒ v1 = v2,

equivalently, if and only if u is a regular normal vector for K∗. □

It is well known (see Corollary 1.73 of Schneider [48]) that for K ∈ Kn
o the support function

hK : Rn\{0} → (0,∞) is differentiable precisely on the set of regular normal vectors for K, and

xK = ∇hK , (3.3)

on the set of regular normal vectors for K.
We will need to make use of the well-know fact that if K ∈ Kn

o ,

u is an outer normal at x ∈ ∂K =⇒ x is an outer normal at uρK∗(u) ∈ ∂K∗. (3.4)

To establish this we need show is that hK(u) = x · u implies hK∗(x) = ρK∗(u)(u · x), or by (2.4),
that hK(u) = ρK(x)(x · u). But this follows immediately from the observation that x ∈ ∂K means
ρK(x) = 1.

Lemma 3.2. If K ∈ Kn
o , then for x ∈ ∂K \ σK ,

νK(x) = − ∇ρK(x)

|∇ρK(x)|
= − ∇ρK(x̄)

|∇ρK(x̄)|
, (3.5)

and

νK(x) =
∇hK∗(x̄)

|∇hK∗(x̄)|
. (3.6)

Proof. First, observe that a point y ∈ ∂K will have a unique outer unit normal precisely if y is a
regular radial vector for K, by definition of a regular radial vector for K. By Lemma 3.1 this is the
case precisely when y is a regular normal vector of K∗, and from (3.3), we know that this will be
the case precisely when hK∗ = 1/ρK is differentiable at y and that in this case,

xK∗(y) = ∇hK∗(y) = ∇(1/ρK)(y) = −ρK(y)
−2∇ρK(y). (3.7)

Since xK∗(y) is a point of ∂K∗ with normal y, it follows from (3.4) and (2.5) that xK∗(y) is a normal
at yρK(y) = y ∈ ∂K, and from (3.7) we see that

νK(y) = − ∇ρK(y)

|∇ρK(y)|
=

∇hK∗(y)

|∇hK∗(y)|
=

∇hK∗(ȳ)

|∇hK∗(ȳ)|
,

for each regular vector y ∈ ∂K. Note that to obtain the results involving x̄ or ȳ (as opposed to x or
y) we are making use of the positive homogeneity of the support and radial functions. □



Lp DUAL CURVATURE MEASURES 13

For K ∈ Kn
o , define the radial map of K,

rK : Sn−1 → ∂K by rK(u) = ρK(u)u ∈ ∂K,

for u ∈ Sn−1. Note that r−1
K : ∂K → Sn−1 is just the restriction to ∂K of the map · : Rn \ {0} →

Sn−1.
For ω ⊂ Sn−1, define the radial Gauss image of ω by

αααK(ω) = νννK(rK(ω)) ⊂ Sn−1,

or equivalently,
αααK(ω) = {v ∈ Sn−1 : rK(u) ∈ HK(v) for some u ∈ ω}, (3.8)

and thus, for u ∈ Sn−1,
αααK(u) = {v ∈ Sn−1 : rK(u) ∈ HK(v)}. (3.9)

Define the radial Gauss map of the convex body K ∈ Kn
o

αK : Sn−1 \ ωK → Sn−1 by αK = νK ◦ rK ,

where ωK = σK = r−1
K (σK). Since r−1

K = · is a bi-Lipschitz map between the spaces ∂K and Sn−1

it follows that ωK has spherical Lebesgue measure 0. Observe that if u ∈ Sn−1 \ ωK , then αααK(u)
contains only the element αK(u). Since both νK and rK are continuous, αK is continuous. Note that
for x ∈ ∂′K,

αK(x̄) = νK(x), (3.10)
and hence, for x ∈ ∂′K,

hK(αK(x̄)) = hK(νK(x)) = x · νK(x). (3.11)
If u ∈ Sn−1 \ ωK , then from the definition of ωK , we see that x = uρK(u) ∈ ∂K \ σK , with

x̄ = u. Hence from (3.10) we have αK(u) = αK(x̄) = νK(x) and by appealing to (3.5) and (3.6),
we get:

αK(u) = − ∇ρK(u)

|∇ρK(u)|
=

∇hK∗(u)

|∇hK∗(u)|
, u ∈ Sn−1 \ ωK . (3.12)

For η ⊂ Sn−1, define the reverse radial Gauss image of η by

ααα∗
K(η) = r−1

K (xxxK(η)) = ⟨xxxK(η)⟩. (3.13)

Thus,
ααα∗

K(η) = {x : x ∈ ∂K where x ∈ HK(v) for some v ∈ η}.
In particular, if η contains only the single vector v ∈ Sn−1, we see that

ααα∗
K(v) = {x : x ∈ ∂K where x ∈ HK(v)} (3.14)

Define the reverse radial Gauss map of the convex body K ∈ Kn
o ,

α∗
K : Sn−1 \ ηK → Sn−1, by α∗

K = r−1
K

◦ xK . (3.15)

Note that since both r−1
K and xK are continuous, α∗

K is continuous.
Note for a subset η ⊂ Sn−1,

ααα∗
K(η) = {u ∈ Sn−1 : rK(u) ∈ HK(v) for some v ∈ η}, (3.16)

and hence for u ∈ Sn−1 and η ⊂ Sn−1, we see from (3.9) that

u ∈ ααα∗
K(η) ⇐⇒ αααK(u) ∩ η ̸= ∅. (3.17)

Thus, for η1, η2 ⊆ Sn−1,
η1 ⊆ η2 =⇒ ααα∗

K(η1) ⊆ ααα∗
K(η1).
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If η is the singleton containing only v ∈ Sn−1, then (3.17) reduces to

u ∈ ααα∗
K(v) ⇐⇒ v ∈ αααK(u). (3.18)

If u ̸∈ ωK , then αααK(u) = {αK(u)}, and (3.17) becomes

u ∈ ααα∗
K(η) ⇐⇒ αK(u) ∈ η, (3.19)

and hence (3.19) holds for almost all u ∈ Sn−1, with respect to spherical Lebesgue measure.
We shall need to make use of the fact that for u, v ∈ Sn−1,

u ∈ αααK∗(v) ⇐⇒ v ∈ αααK(u). (3.20)

To see this note that from (3.9), it follows that,

u ∈ αααK∗(v) ⇐⇒ HK∗(u) is a support hyperplane at ρK∗(v)v,

that is,
u ∈ αααK∗(v) ⇐⇒ hK∗(u) = (u · v) ρK∗(v),

and, by (2.4), this is the case if and only if

hK(v) = (v · u) ρK(u) = v · rK(u),
or equivalently, using (3.9) again, if and only if,

v ∈ αααK(u).

For u ∈ Sn−1, define (u,αααK(u)) by

(u,αααK(u)) = {(u, v) ∈ Sn−1 × Sn−1 : v ∈ αααK(u)}.
The following will be a basic fact needed.

Lemma 3.3. Suppose K ∈ Kn
o and that θ ⊂ Sn−1 × Sn−1 is a Borel set. Then the subset of Sn−1,

ω = {u ∈ Sn−1 : (u,αααK(u)) ∩ θ ̸= ∅},
is spherical Lebesgue measurable.

Proof. Let ι : Sn−1 → Sn−1 be the identity map, ι(u) = u, for u ∈ Sn−1. Since αK : Sn−1\ωK →
Sn−1 is continuous, the map (ι, αK) : S

n−1\ωK → Sn−1 × Sn−1 is continuous, where Sn−1\ωK

is viewed as the topological space with the relative topology inherited from Sn−1. Thus, since
θ ⊂ Sn−1 × Sn−1 is a Borel set, the set

ω0 = {u ∈ Sn−1\ωK : (u, αK(u)) ∈ θ} = ω ∩ (Sn−1\ωK)

is a Borel set in Sn−1\ωK . Note that ω\ω0 ⊆ ωK and hence ω\ω0 has Lebesgue measure 0.
Since the Borel structure of Sn−1 \ ωK coincides with the relative Borel structure inherited from

Sn−1, there is a Borel set ω1 in Sn−1 so that

ω0 = ω1 ∩ (Sn−1 \ ωK) = ω1 \ (ω1 ∩ ωK).

Since ω1 is Borel measurable and ω1 ∩ ωK has Lebesgue measure 0 on Sn−1, it follows that ω0 is
Lebesgue measurable on Sn−1. Since the set ω \ ω0 has Lebesgue measure 0 on Sn−1, we conclude
that the set ω is Lebesgue measurable on Sn−1. □

Suppose η ⊆ Sn−1. Note that (3.17) tells us that u ∈ ααα∗
K(η) if and only if αααK(u)∩ η ̸= ∅, which

can happen if and only if (u,αααK(u)) ∩ (Sn−1 × η) ̸= ∅. Thus,

ααα∗
K(η) = {u ∈ Sn−1 : (u,αααK(u)) ∩ (Sn−1 × η) ̸= ∅}. (3.21)

The following corollary of our Lemma 3.3 is Lemma 2.2.14 of Schneider [48].
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Corollary 3.4. If K ∈ Kn
o , and η ⊆ Sn−1 is a Borel set, thenααα∗

K(η) = ⟨xxxK(η)⟩ ⊂ Sn−1 is spherical
Lebesgue measurable.

If g : Sn−1 → R is a Borel function, then g ◦ αK is spherical Lebesgue measurable because it
is just the composition of a Borel function g and a continuous function αK in Sn−1 \ ωK with ωK

having Lebesgue measure 0. Moreover, if g is a bounded Borel function, then g ◦ αK is spherical
Lebesgue integrable. In particular, g ◦ αK is spherical Lebesgue integrable, for each continuous
function g : Sn−1 → R.

From [25] we need:

Lemma 3.5. Suppose Ki ∈ Kn
o with limi→∞Ki = K0 ∈ Kn

o . Let ω = ∪∞
i=0ωKi

be the set (of
Hn−1-measure 0) off of which all of the αKi

are defined. Then if ui ∈ Sn−1 \ ω are such that
limi→∞ ui = u0 ∈ Sn−1 \ ω, then limi→∞ αKi

(ui) = αK0(u0).

Recall that
(u,αααK(u)) = {(u, v) ∈ Sn−1 × Sn−1 : v ∈ αααK(u)},

and that ι : Sn−1 → Sn−1 is the identity map, ι(u) = u, for u ∈ Sn−1. For ω ⊂ Sn−1, define

(ι,αααK)(ω) = ∪u∈ω(u,αααK(u)) ⊆ Sn−1 × Sn−1.

For θ ⊆ Sn−1 × Sn−1, define

(ι,αααK)
∗(θ) = {u ∈ Sn−1 : (u,αααK(u)) ∩ θ ̸= ∅}. (3.22)

As a trivial observation, note that for ω ⊆ Sn−1,

(ι,αααK)
∗(ω × Sn−1) = ω. (3.23)

Obviously, for θ1, θ2 ⊆ Sn−1 × Sn−1,

θ1 ⊆ θ2 =⇒ (ι,αααK)
∗(θ1) ⊆ (ι,αααK)

∗(θ2). (3.24)

Lemma 3.6. Suppose K ∈ Kn
o . If {θj} is a sequence of subsets of Sn−1 × Sn−1, then

(ι,αααK)
∗ (∪jθj) = ∪j(ι,αααK)

∗(θj).

Proof. If v ∈ ∪jθj , then v ∈ θj1 for some j1, and (ι,αααK)
∗(v) ⊆ (ι,αααK)

∗(θj1) ⊆ ∪j(ι,αααK)
∗(θj).

Thus, (ι,αααK)
∗ (∪jθj) ⊆ ∪j(ι,αααK)

∗(θj). If u ∈ ∪j(ι,αααK)
∗(θj), then for some j2, we have u ∈

(ι,αααK)
∗(θj2) ⊆ (ι,αααK)

∗ (∪jθj), by (3.24). Thus, (ι,αααK)
∗ (∪jθj) ⊇ ∪j(ι,αααK)

∗(θj). □

Lemma 3.7. Suppose K ∈ Kn
o . If {θj} is a sequence of pairwise disjoint sets in Sn−1 × Sn−1, then

the sequence {(ι,αααK)
∗(θj) \ ωK} is pairwise disjoint as well.

Proof. Suppose there exists a u ∈ Sn−1 such that for j1 ̸= j2,

u ∈ (ι,αααK)
∗(θj1) \ ωK and u ∈ (ι,αααK)

∗(θj2) \ ωK .

Definition (3.22) tells us this means that

(u,αααK(u)) ∩ θj1 ̸= ∅ and (u,αααK(u)) ∩ θj2 ̸= ∅.

But since u /∈ ωK we know that αααK(u) is a singleton, which contradicts the assumption that θj1 ∩
θj2 ̸= ∅. □

Lemma 3.8. For K ∈ Kn
o , and Borel sets ω, η ⊆ Sn−1,

(ι,αααK)
∗(ω × η) = ω ∩αααK∗(η).
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Proof. Fix u ∈ Sn−1. From definition (3.22) and using (3.20), we have

u ∈ (ι,αααK)
∗(ω × η) ⇐⇒ (u,αααK(u)) ∩ (ω × η) ̸= ∅

⇐⇒ u ∈ ω,∃v ∈ η : v ∈ αααK(u)

⇐⇒ ∃v ∈ η : (u, v) ∈ ω × η and v ∈ αααK(u)

⇐⇒ ∃v ∈ η : (u, v) ∈ ω × η and u ∈ αααK∗(v)

⇐⇒ u ∈ ω ∩αααK∗(η).

□

The reverse radial Gauss image of a convex body and the radial Gauss image of its polar body are
related. Combine (3.21) and definition (3.22) to get

(ι,αααK)
∗(Sn−1 × η) = ααα∗

K(η), (3.25)

which when combined with Lemma 3.8, immediately yields:

Corollary 3.9. If K ∈ Kn
o , then

ααα∗
K(η) = αααK∗(η),

for each η ⊆ Sn−1.

Since ααα∗
K(v) = {α∗

K(v)}, for almost all v ∈ Sn−1, with respect to spherical Lebesgue measure,
and αααK∗(v) = {αK∗(v)}, for almost all v ∈ Sn−1, with respect to spherical Lebesgue measure,
Corollary 3.9 gives:

Lemma 3.10. If K ∈ Kn
o , then

α∗
K = αK∗ ,

almost everywhere with respect to spherical Lebesgue measure.

When Lemma 3.10 is combined with (3.12), we get

α∗
K(v) =

∇hK(v)

|∇hK(v)|
, (3.26)

for almost all v, with respect to spherical Lebesgue measure.
By using the spherical image and the reverse spherical image, one can define the integral curva-

ture, surface area measures, and their Lp extensions.
The surface area measure S(K, ·) can be defined, for Borel η ⊆ Sn−1, by

S(K, η) = Hn−1(xxxK(η)). (3.27)

If ∂K is smooth with positive Gauss curvature, the surface area measure of K is absolutely continu-
ous with respect to Lebesgue measure, S, on Sn−1, and the density is the reciprocal Gauss curvature,
when viewed as a function of the outer unit normals of ∂K. The density has an explicit description
in terms of the support function and its Hessian matrix on Sn−1,

dS(K, ·)
dS

= det(∇̄2hK + hKI), (3.28)

where ∇̄2hK denotes the Hessian matrix of hK and I is the identity matrix with respect to an or-
thonormal frame on Sn−1. For all this see Schneider [48].

For convex bodies K,L in Rn, the classical mixed volume, V1(K,L), has the integral representa-
tion:

V1(K,L) =
1

n

∫
Sn−1

hL(v) dS(K, v), (3.29)
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which holds for each convex body L. The celebrated Minkowski mixed-volume inequality states
that

V1(K,L)n ≥ V (K)n−1V (L), (3.30)

with equality if and only if K,L are homothets.
For p ∈ R, the Lp surface area measure Sp(K, ·) of K ∈ Kn

o , introduced in [38], may be defined
by,

dSp(K, ·) = h1−p
K dS(K, ·), (3.31)

or equivalently, by

Sp(K, η) =

∫
xxxK(η)

(x · ν(x))1−p dHn−1(x), (3.32)

for each Borel η ⊆ Sn−1.
For p ∈ R, and K,L ∈ Kn

o , the Lp mixed volume Vp(K,L) is defined by

Vp(K,L) =
1

n

∫
Sn−1

hp
L(v) dSp(K, v). (3.33)

For p ≥ 1, the Lp-Minkowski inequality for the Lp-mixed volume is

Vp(K,L)n ≥ V (K)n−pV (L)p, (3.34)

with equality if and only if either K,L are dilates when p > 1, or K,L are homothets when p = 1.

The p-th dual curvature measure
∼
Cp(K, ·), introduced in [25], is a Borel measure on Sn−1 defined

for each K ∈ Kn
o and each p ∈ R. As shown in [25], one convenient way of defining

∼
Cp(K, ·) is via

the integral representation∫
Sn−1

g(v) d
∼
Cp(K, v) =

1

n

∫
∂′K

x·νK(x) g(νK(x))|x|p−n dHn−1(x), (3.35)

which holds for each bounded Borel function g : Sn−1 → R.
The integral curvature measure J(K, ·) on Sn−1 can be defined, for Borel ω ⊆ Sn−1, by

J(K,ω) = Hn−1(αααK(ω)); (3.36)

that is, J(K,ω) is the spherical Lebesgue measure of αααK(ω). The integral curvature measure of K
was introduced by Aleskandrov.

For each p ∈ R, the Lp integral curvature measure Jp(K, ·) was introduced in [26] and is the
Borel measure on Sn−1 that may be defined by

dJp(K, ·) = ρpKdJ(K, ·), (3.37)

or, equivalently (as shown in [26]) by

Jp(K,ω) =

∫
ω

ρpK(u) dJ(K, u) =

∫
αααK(ω)

ρpK(α
∗
K(v)) dv, (3.38)

for each Borel ω ⊆ Sn−1.
The following integral identity was established in [25]: If q ∈ R, and K ∈ Kn

o , while f : Sn−1 →
R is bounded and Lebesgue integrable, then∫

Sn−1

f(u)ρK(u)
q du =

∫
∂K

f(x̄)|x|q−n(x · νK(x)) dHn−1(x). (3.39)
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Also established in [25] was the following integral identity: If K ∈ Kn
o is strictly convex, and

f : Sn−1 → R and F : ∂K → R are both continuous, then∫
Sn−1

f(v)F (∇hK(v))hK(v) dS(K, v) =

∫
∂K

(x · νK(x)) f(νK(x))F (x) dHn−1(x), (3.40)

where ∇hK is the gradient of hK in Rn. Recall that while νK is defined only on ∂K \ σK , the set
σK has Hn−1-measure 0. We shall require a slight extension of (3.40). Specifically, if p ∈ R, while
K ∈ Kn

o is strictly convex, and f : Sn−1 → R and F : ∂K → R are both continuous, then∫
Sn−1

f(v)F (∇hK(v)) dSp(K, v) =

∫
∂K

(x · νK(x))1−p f(νK(x))F (x) dHn−1(x). (3.41)

To derive (3.41) from (3.40) merely replace f by h−p
K f in (3.40), and observe that for Hn−1-almost

all x ∈ ∂K, specifically, for all x ∈ ∂K \ σK , from (3.11) we have hK(νK(x)) = x · νK(x), and
then use (3.31).

4. Lp DUAL CURVATURE MEASURES

For a star body Q ∈ Sn
o , define ∥ · ∥Q : Rn → [0,∞) by letting

∥x∥Q =

{
1/ρQ(x) x ̸= 0

0 x = 0.
(4.1)

Note that ∥ · ∥Q is a continuous, and a positively homogeneous function of degree 1. When Q is an
origin-symmetric convex body in Rn, then ∥ · ∥Q is an ordinary norm in Rn, and (Rn, ∥ · ∥Q) is the
n-dimensional Banach space whose unit ball is Q.

We first define the dual notions of the metric projection map pK and the distance function d(K, ·).
Suppose K ∈ Kn

o . Define the radial projection map ∼
pK : Rn \K → ∂K by

∼
pK(x) = ρK(x)x = rK(x̄), (4.2)

for x ∈ Rn \K.

For x ∈ Rn, the radial distance
∼
dQ(K, x) of x to K, is defined by

∼
dQ(K, x) =

{
∥x− ∼

pK(x)∥Q x /∈ K

0 x ∈ K.
(4.3)

Let
∼
uK(x) = x̄. (4.4)

Suppose Q ∈ Sn
o and K ∈ Kn

o . For t ≥ 0, a Borel θ ⊆ Sn−1 × Sn−1, a Lebesgue measurable
ω ⊆ Sn−1, and a Borel η ⊆ Sn−1, define the local dual parallel bodies

∼
At(K,Q, η) = {x ∈ Rn : 0 ≤

∼
dQ(K, x) ≤ t with ∼

pK(x) ∈ xxxK(η)}, (4.5)
∼
Bt(K,Q, ω) = {x ∈ Rn : 0 ≤

∼
dQ(K, x) ≤ t with ∼

uK(x) ∈ ω}, (4.6)
∼
Et(K,Q, θ) = {x ∈ Rn : 0 ≤

∼
dQ(K, x) ≤ t with (

∼
uK(x),αααK(

∼
uK(x))) ∩ θ ̸= ∅}. (4.7)

These local dual parallel bodies have Steiner type formulas as shown in the following theorem.
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Theorem 4.1. Suppose K ∈ Kn
o and Q ∈ Sn

o . For t ≥ 0, a Borel θ ⊆ Sn−1 × Sn−1, a Lebesgue
measurable ω ⊆ Sn−1, and a Borel η ⊆ Sn−1,

V (
∼
At(K,Q, η)) =

n∑
i=0

(
n

i

)
tn−i

∼
Ci(K,Q, η), (4.8)

V (
∼
Bt(K,Q, ω)) =

n∑
i=0

(
n

i

)
tn−i

∼
Si(K,Q, ω), (4.9)

V (
∼
Et(K,Q, θ)) =

n∑
i=0

(
n

i

)
tn−i

∼
Θi(K,Q, θ), (4.10)

where
∼
Ci(K,Q, ·) and

∼
Si(K,Q, ·) are Borel measures on Sn−1 given by

∼
Ci(K,Q, η) =

1

n

∫
ααα∗
K(η)

ρiK(u)ρ
n−i
Q (u) du, (4.11)

∼
Si(K,Q, ω) =

1

n

∫
ω

ρiK(u)ρ
n−i
Q (u) du, (4.12)

and
∼
Θi(K,Q, ·) is a Borel measure on Sn−1 × Sn−1 given by

∼
Θi(K,Q, θ) =

1

n

∫
(ι,αααK)∗(θ)

ρiK(u)ρ
n−i
Q (u) du, (4.13)

Proof. Using (4.1), (4.2), (4.3), and (4.4), we can re-write (4.6) as
∼
Bt(K,Q, ω) = {x ∈ Rn : 0 ≤ |x| ≤ ρK(x̄) + tρQ(x̄) with x̄ ∈ ω }. (4.14)

Write x = ρu, with ρ ≥ 0 and u ∈ Sn−1, and for the volume of
∼
Bt(K,Q, ω) we get:

V (
∼
Bt(K,Q, ω)) =

∫
u∈ω

(∫ ρK(u)+tρQ(u)

0

ρn−1 dρ

)
du

=
1

n

∫
u∈ω

(ρK(u) + tρQ(u))
n du

=
1

n

n∑
i=0

(
n

i

)
tn−i

∫
u∈ω

ρiK(u)ρ
n−i
Q (u) du,

where the integration is with respect to Lebesgue measure in Sn−1. This gives (4.9) and (4.12).
In (4.5), the condition that ∼

pK(x) ∈ xxxK(η), or equivalently by (4.2) that rK(x̄) ∈ xxxK(η), is by
(3.13), the same as x̄ ∈ r−1

K (xxxK(η)) = ⟨xxxK(η)⟩ = ααα∗
K(η). Thus, (4.5) can be written as

∼
At(K,Q, η) = {x ∈ Rn : 0 ≤ |x| ≤ ρK(x̄) + tρQ(x̄) with x̄ ∈ ααα∗

K(η) }. (4.15)

Since η ⊂ Sn−1 is a Borel set, we know from Corollary 3.4 that ααα∗
K(η) is a Lebesgue measurable

subset of Sn−1. A quick glance at (4.14) and (4.15) allows us to see that
∼
At(K,Q, η) =

∼
Bt(K,Q,ααα∗

K(η)).
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Now (4.9) yields,

V (
∼
At(K,Q, η)) = V (

∼
Bt(K,Q,ααα∗

K(η)))

=
n∑

i=0

(
n

i

)
tn−i

∼
Si(K,Q,ααα∗

K(η)),

and by defining
∼
Ci(K,Q, η) =

∼
Si(K,Q,ααα∗

K(η)). (4.16)

we get both (4.8) and (4.11).

From its integral representation (4.12), we see that
∼
Si(K,Q, ·) is a Borel measure that is obviously

absolutely continuous with respect to spherical Lebesgue measure. In particular,
∼
Si(K,Q, ·) will

assume the same value on sets that differ by sets of spherical Lebesgue measure 0.
Write (4.7) as

∼
Et(K,Q, θ) = {x ∈ Rn : 0 ≤ |x| ≤ ρK(x̄) + tρQ(x̄) with (x̄,αααK(x̄)) ∩ θ ̸= ∅ }. (4.17)

Write x = ρu, with ρ ≥ 0 and u ∈ Sn−1, and for the volume of
∼
Et(K,Q, θ), we get

V (
∼
Et(K,Q, θ)) =

∫
(u,αααK(u))∩θ ̸=∅

(∫ ρK(u)+tρQ(u)

0

ρn−1 dρ

)
du

=
1

n

∫
(u,αααK(u))∩θ ̸=∅

(ρK(u) + tρQ(u))
n du

=
1

n

n∑
i=0

(
n

i

)
tn−i

∫
(u,αααK(u))∩θ ̸=∅

ρiK(u)ρ
n−i
Q (u) du

=
1

n

n∑
i=0

(
n

i

)
tn−i

∫
(ι,αααK)∗(θ)

ρiK(u)ρ
n−i
Q (u) du,

where the last identity comes directly from definition (3.22). This gives (4.10) and (4.13), and the
critical fact that

∼
Θi(K,Q, θ) =

∼
Si(K,Q, (ι,αααK)

∗(θ)). (4.18)

We now show that
∼
Θi(K,Q, ·) is a Borel measure on Sn−1 × Sn−1. For the empty set ∅, we have

from (4.18) and definition (3.22) that,

∼
Θi(K,Q,∅) =

∼
Si(K,Q, (ι,αααK)

∗(∅)) =
∼
Si(K,Q,∅) = 0.

Let {θj} be a sequence of pairwise disjoint Borel sets in Sn−1 × Sn−1. From Lemma 3.3 and
definition (3.22), together with the fact that ωK has spherical Lebesgue measure 0, we know from
Lemma 3.7 that {(ι,αααK)

∗(θj) \ ωK} is a sequence of pairwise disjoint Lebesgue measurable sets.
From (4.18), Lemma 3.6, the fact that ωK has measure 0, and the fact from Lemma 3.7 that the

{(ι,αααK)
∗(θj)\ωK} are pairwise disjoint together with the fact that

∼
Si(K,Q, ·) is a measure, the fact
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that ωK has spherical Lebesgue measure 0, and (4.18) again, we have
∼
Θi(K,Q,

⋃
j θj) =

∼
Si(K,Q, (ι,αααK)

∗(
⋃

j θj))

=
∼
Si(K,Q,

⋃
j(ι,αααK)

∗(θj))

=
∼
Si(K,Q, (

⋃
j(ι,αααK)

∗(θj)) \ ωK)

=
∼
Si(K,Q,

⋃
j((ι,αααK)

∗(θj) \ ωK))

=
∑

j

∼
Si(K,Q, (ι,αααK)

∗(θj) \ ωK)

=
∑

j

∼
Si(K,Q, (ι,αααK)

∗(θj))

=
∑

j

∼
Θi(K,Q, θj).

This shows that
∼
Θi(K,Q, ·) is a Borel measure on Sn−1 × Sn−1. □

We call the measure
∼
Θi(K,Q, ·) the generalized i-th dual curvature measure of K relative to Q

or the i-th dual support measure of K relative to Q. Call the measure
∼
Si(K,Q, ·) the i-th dual

area measure of K relative to Q and the measure
∼
Ci(K,Q, ·) the i-th dual curvature measure of K

relative to Q. From (2.17), (4.11) together with definition (3.13), and (4.12), we see that the total
measures of the i-th dual area measure and the i-th dual curvature measure are the i-th dual mixed
volume

∼
V i(K,Q); i.e.,

∼
V i(K,Q) =

∼
Si(K,Q, Sn−1) =

∼
Ci(K,Q, Sn−1). (4.19)

The dual curvature measures and the dual area measures are the marginal measures of the dual
support measures; i.e., for Borel η, ω ⊆ Sn−1,

∼
Ci(K,Q, η) =

∼
Θi(K,Q, Sn−1 × η), (4.20)

∼
Si(K,Q, ω) =

∼
Θi(K,Q, ω × Sn−1). (4.21)

To see this, observe that (4.20) follows from (4.18), (3.25), and (4.16) while (4.21) follows from
(4.18) and (3.23).

The integral representations (4.11) and (4.12) show that the dual curvature and dual area measures
can be extended.

Definition 4.2. Suppose q ∈ R. For K ∈ Kn
o and Q ∈ Sn

o , define the q-th dual area measure
∼
Sq(K,Q, ·) by letting

∼
Sq(K,Q, ω) =

1

n

∫
ω

ρqK(u)ρ
n−q
Q (u) du, (4.22)

for each Lebesgue measurable ω ⊆ Sn−1, and the q-th dual curvature measure
∼
Cq(K,Q, ·) by letting

∼
Cq(K,Q, η) =

1

n

∫
ααα∗
K(η)

ρqK(u)ρ
n−q
Q (u) du, (4.23)
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for each Borel η ⊆ Sn−1. Moreover, for each p ∈ R, define the (p, q)-th dual curvature measure
∼
Cp,q(K,Q, ·) by

d
∼
Cp,q(K,Q, ·) = h−p

K d
∼
Cq(K,Q, ·). (4.24)

A trivial, but important observation is that

∼
C0,q(K,Q, ·) =

∼
Cq(K,Q, ·). (4.25)

Note that from definition (4.23) and the fact that (3.19) holds off of the set ωK of spherical
Lebesgue measure 0, we have for each Borel η ⊆ Sn−1,∫

Sn−1

1η(u) d
∼
Cq(K,Q, u) =

∼
Cq(K,Q, η)

=
1

n

∫
ααα∗
K(η)

ρqK(u)ρ
n−q
Q (u) du (4.26)

=
1

n

∫
Sn−1

1ααα∗
K(η)(u)ρ

q
K(u)ρ

n−q
Q (u) du

=
1

n

∫
Sn−1

1η(αK(u))ρ
q
K(u)ρ

n−q
Q (u) du.

Observe that
∼
Cq(K,Q, ·) is absolutely continuous with respect to spherical Lebesgue measure.

From (4.26) we will deduce that for each bounded Borel f : Sn−1 → R, we have∫
Sn−1

f(u) d
∼
Cq(K,Q, u) =

1

n

∫
Sn−1

f(αK(u))ρ
q
K(u)ρ

n−q
Q (u) du. (4.27)

Since (4.27) is shown to hold for indicator functions of Borel sets by (4.26), we know that (4.27)
holds for linear combinations of indicator functions of Borel sets; i.e. simple functions ϕ : Sn−1 →
R, given by

ϕ =
m∑
i=1

ci1ηi ,

with ci ∈ R and Borel ηi ⊂ Sn−1. Now choose a sequence of simple functions ϕk : Sn−1 → R
converging to the bounded Borel function f : Sn−1 → R. Note that since f is bounded the ϕk may
be chosen to be uniformly bounded. Then ϕk ◦αK converges pointwise to f ◦αK on Sn−1\ωK . Since
f : Sn−1 → R is a Borel function and the radial Gauss map αK : Sn−1 \ ωK → Sn−1 is continuous,
f ◦αK is a Borel function on Sn−1\ωK . Since f is bounded and ωK has spherical Lebesgue measure

0, we conclude that f is
∼
Cq(K,Q, ·)-integrable and f ◦αK is spherical Lebesgue integrable on Sn−1.

Since
∼
Cq(K,Q, ·) is a finite measure, by taking the limit k → ∞ we get (4.27).

Proposition 4.3. Suppose p, q ∈ R. If K ∈ Kn
o while Q ∈ Sn

o , then

∼
Cp,q(K,Q, η) =

1

n

∫
ααα∗
K(η)

hK(αK(u))
−pρqK(u)ρ

n−q
Q (u) du, (4.28)

for each Borel set η ⊆ Sn−1.
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Proof. To establish (4.28), note that from (4.24), (4.27), and (3.19), we have

∼
Cp,q(K,Q, η) =

∫
Sn−1

1η(u) d
∼
Cp,q(K,Q, u)

=

∫
Sn−1

1η(u)hK(u)
−pd

∼
Cq(K,Q, u)

=
1

n

∫
Sn−1

1η(αK(u))hK(αK(u))
−pρqK(u)ρ

n−q
Q (u) du

=
1

n

∫
Sn−1

1ααα∗
K(η)(u)hK(αK(u))

−pρqK(u)ρ
n−q
Q (u) du

=
1

n

∫
ααα∗
K(η)

hK(αK(u))
−pρqK(u)ρ

n−q
Q (u) du,

for each Borel η ⊆ Sn−1.

Verification that
∼
Cq(K,Q, ·) is a Borel measure for each q ∈ R, is the same as for the cases treated

above where q = 1, . . . , n.
Obviously, the total measures of the q-th dual curvature measure and the q-th dual area measure

are the q-th dual mixed volume; i.e.,

∼
Vq(K,Q) =

∼
Sq(K,Q, Sn−1) =

∼
Cq(K,Q, Sn−1). (4.29)

It follows immediately from glancing at definitions (4.22) and (4.23) that,

∼
Cq(K,Q, η) =

∼
Sq(K,Q,ααα∗

K(η)). (4.30)

□

5. PROPERTIES OF THE Lp DUAL CURVATURE MEASURES

Lemma 5.1. Suppose p, q ∈ R. If K ∈ Kn
o while Q ∈ Sn

o , then for each Borel set η ⊆ Sn−1, and
each bounded, Borel function g : Sn−1 → R,∫

Sn−1

g(v) d
∼
Cp,q(K,Q, v) =

1

n

∫
Sn−1

g(αK(u))h
−p
K (αK(u))ρ

q
K(u)ρ

n−q
Q (u) du, (5.1)

∫
Sn−1

g(v) d
∼
Cp,q(K,Q, v) =

1

n

∫
∂′K

g(νK(x))(x · νK(x))1−p ∥x∥q−n
Q dHn−1(x), (5.2)

∼
Cp,q(K,Q, η) =

1

n

∫
x∈xxxK(η)

(x · νK(x))1−p ∥x∥q−n
Q dHn−1(x). (5.3)

Proof. Since h−p
K : Sn−1 → R is a bounded Borel function, from (4.27) with f = gh−p

K , we have∫
Sn−1

g(v)h−p
K (v) d

∼
Cq(K,Q, v) =

1

n

∫
Sn−1

g(αK(u))h
−p
K (αK(u))ρ

q
K(u)ρ

n−q
Q (u) du,

which, in light of (4.24), is the desired result (5.1).
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By using (5.1) and letting f = (g ◦ αK)(h
−p
K

◦ αK)ρ
n−q
Q in (3.39), the homogeneity of ρQ, (3.10),

(3.11), and finally the fact that ∥ · ∥Q = 1/ρQ, we have∫
Sn−1

g(v) d
∼
Cp,q(K,Q, v) =

1

n

∫
Sn−1

g(αK(u))h
−p
K (αK(u))ρ

q
K(u)ρ

n−q
Q (u) du

=
1

n

∫
∂′K

g(αK(x̄))h
−p
K (αK(x̄))|x|q−nρn−q

Q (x̄)(x · νK(x)) dHn−1(x)

=
1

n

∫
∂′K

g(νK(x))(x · νK(x))1−p∥x∥q−n
Q dHn−1(x).

This establishes (5.2).
Take g = 1η in (5.2). Recall that νK(x) ∈ η ⇔ x ∈ xxxK(η), for almost all x with respect to

spherical Lebesgue measure. And we immediately obtain (5.3). □

Example 5.2 [Lp dual curvature measures of polytopes] Let P ∈ Kn
o be a polytope with outer unit

normals v1, . . . , vm. Let ∆i be the cone that consists of the set of all rays emanating from the origin
and passing through the facet of P whose outer normal is vi. Recalling that we abbreviate ααα∗

P ({vi})
by ααα∗

P (vi), from (3.14) we have

ααα∗
P (vi) = Sn−1 ∩∆i, and αP (u) = vi, for almost all u ∈ ∆i ∩ Sn−1. (5.4)

If η ⊂ Sn−1 is a Borel set such that {v1, . . . , vm} ∩ η = ∅, then ααα∗
P (η) has spherical Lebesgue

measure 0. Therefore, the (p, q)-dual curvature measure
∼
Cp,q(P,Q, ·) is discrete and is concentrated

on {v1, . . . , vm}. From Proposition 4.3, and (5.4), we see that

∼
Cp,q(P,Q, ·) =

m∑
i=1

ciδvi , (5.5)

where, δvi denotes the delta measure concentrated at vi, and

ci =
1

n
h−p
P (vi)

∫
Sn−1∩∆i

ρqP (u)ρ
n−q
Q (u) du. (5.6)

Example 5.3 [Lp dual curvature measures of strictly convex bodies] Suppose K ∈ Kn
o is strictly

convex. If g : Sn−1 → R is continuous, then (5.2), and (3.41) together with the fact that ∂K \∂′K
has measure 0, give∫

Sn−1

g(v) d
∼
Cp,q(K,Q, v) =

1

n

∫
∂′K

(x · νK(x))1−pg(νK(x))∥x∥q−n
Q dHn−1(x)

=
1

n

∫
Sn−1

g(v)∥∇hK(v)∥q−n
Q dSp(K, v).

Using (3.31), this shows that

d
∼
Cp,q(K,Q, ·) = 1

n
∥∇hK∥q−n

Q dSp(K, ·) = 1

n
h1−p
K ∥∇hK∥q−n

Q dS(K, ·). (5.7)

Example 5.4 [Lp dual curvature measures of smooth convex bodies] Suppose K ∈ Kn
o has a C2

boundary with everywhere positive Gauss curvature. Since in this case S(K, ·) is absolutely continu-

ous with respect to spherical Lebesgue measure, it follows that
∼
Cp,q(K,Q, ·) is absolutely continuous
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with respect to the spherical Lebesgue measure, and from (5.7), (3.28), and (2.2), we have

d
∼
Cp,q(K,Q, v)

dv
=

1

n
h1−p
K (v)∥∇̄hK(v) + hK(v)v∥q−n

Q det(∇̄2hK(v) + hK(v)I), (5.8)

where ∇̄hK(v) denotes the gradient of hK on Sn−1 at v and ∇̄2hK denotes the Hessian matrix of
hK with respect to an orthonormal frame on Sn−1.

The weak convergence of Lp dual curvature measures is an important property and is contained
in the following proposition.

Proposition 5.2. Suppose p, q ∈ R and Q ∈ Sn
o . If Ki ∈ Kn

o with Ki → K0 ∈ Kn
o , then

∼
Cp,q(Ki, Q, ·) →

∼
Cp,q(K0, Q, ·), weakly.

Proof. Suppose g : Sn−1 → R is continuous. From (5.1) we know that∫
Sn−1

g(v) d
∼
Cp,q(Ki, Q, v) =

1

n

∫
Sn−1

g(αKi
(u))h1−p

Ki
(αKi

(u))ρqKi
(u)ρn−q

Q (u) du,

for all i. Since Ki → K0, with respect to the Hausdorff metric, we know that both hKi
→ hK0 and

ρKi
→ ρK0 , uniformly on Sn−1, and using Lemma 3.5 that αKi

→ αK0 , almost everywhere on Sn−1.
Thus, ∫

Sn−1

g(αKi
(u))h1−p

Ki
(αKi

(u))ρqKi
(u)ρn−q

Q (u) du

−→
∫
Sn−1

g(αK0(u))h
1−p
K0

(αK0(u))ρ
q
K0
(u)ρn−q

Q (u) du.

It follows that
∼
Cp,q(Ki, Q, ·) →

∼
Cp,q(K0, Q, ·), weakly. □

The absolute continuity of the Lp dual curvature measure with respect to the surface area measure
is contained in the following proposition.

Proposition 5.3. Suppose p, q ∈ R. If K ∈ Kn
o and Q ∈ Sn

o , then the dual curvature measure
∼
Cp,q(K,Q, ·) is absolutely continuous with respect to the surface area measure S(K, ·).

Proof. Suppose η ⊂ Sn−1 is such that S(K, η) = 0, or equivalently by definition (3.27), Hn−1(xxxK(η)) =
0. Now (5.3) states that,

∼
Cp,q(K,Q, η) =

1

n

∫
xxxK(η)

∥x∥q−n
Q (x · νK(x))1−p dHn−1(x) = 0,

since the integration is over a set of measure 0. □

Cone-volume measure has become an increasing important concept; see e.g., [3,4,7,24,43,44,46,
63]. The following proposition tells us that the Lp surface area measure including the classical sur-
face area measure, the dual curvature measure including the cone-volume measure, the Lp integral
curvature including Aleksandrov’s integral curvature, are all special cases of the Lp dual curvature
measure.
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Proposition 5.4. If K ∈ Kn
o and p, q ∈ R, then

∼
Cp,q(K,K, ·) = 1

n
Sp(K, ·), (5.9)

∼
Cp,n(K,B, ·) = 1

n
Sp(K, ·), (5.10)

∼
C0,q(K,B, ·) =

∼
Cq(K, ·), (5.11)

∼
Cp,0(K,B, ·) = 1

n
Jp(K

∗, ·). (5.12)

Proof. Let η ⊂ Sn−1 be a Borel set. From (5.3), we have
∼
Cp,n(K,B, η) =

1

n

∫
xxxK(η)

(x · νK(x))1−p dHn−1(x) =
∼
Cp,q(K,K, η),

where the right equality follows from the simple observation that for all x ∈ ∂K we have ∥x∥K =
1/ρK(x) = 1, from the very definition of the radial function. But, (3.32) states that the integral
above is just 1

n
Sp(K, η), which establishes both (5.9) and (5.10) simultaneously.

Identity (5.11) follows from the definition of dual curvature measure (5.2) and the definition of
the the q-th dual curvature measure (3.35).

From the definition of (p, 0)-th dual curvature measure, Proposition 4.3, with q = 0 and Q = B,
(2.4), (2.5) together with Lemma 3.10, and finally (3.38), we have

∼
Cp,0(K, η) =

1

n

∫
ααα∗
K(η)

hK(αK(u))
−pdu

=
1

n

∫
αααK∗ (η)

ρK∗(α∗
K∗(u))pdu

=
1

n
Jp(K

∗, η),

which gives (5.12). □

Let M(Sn−1) denote the set of Borel measures on Sn−1. We shall now show that, for fixed
indices p, q ∈ R, and a fixed star body Q ∈ Sn

o , the functional Kn
o → M(Sn−1), defined by K ↦→

∼
Cp,q(K,Q, ·) is a valuation; i.e., if K,L ∈ Kn

o , are such that K ∪ L ∈ Kn
o then

∼
Cp,q(K,Q, ·) +

∼
Cp,q(L,Q, ·) =

∼
Cp,q(K ∩ L,Q, ·) +

∼
Cp,q(K ∪ L,Q, ·).

Towards that end, we shall employ Weil’s Approximation Lemma: If K,L ∈ Kn
o are such that

K ∪ L is convex, then K and L may be approximated by sequences of bodies Ki, Li ∈ Kn
o that are

both strictly convex and smooth and such that Ki ∪ Li ∈ Kn
o . The simple and elegant proof (below)

is due to Wolfgang Weil: Simply let

Ki = ((K + 1
i
B)∗ + 1

i
B)∗ and Li = ((L+ 1

i
B)∗ + 1

i
B)∗.

Other than the fact that polarity ∗ : Kn
o → Kn

o is both continuous and an involution, there are three
key observations required to establish Weil’s result: (1) If K ∪L ∈ Kn

o then K∗ ∪L∗ = (K ∩L)∗ ∈
Kn

o . See Schneider [48], Thm 1.6.3. (2) If K ∪ L ∈ Kn
o and ε > 0, then the smooth bodies K + εB

and L+ εB are such that

(K + εB) ∪ (L+ εB) = K ∪ L+ εB ∈ Kn
o .

(3) Polars of smooth bodies are strictly convex and visa versa, which is Lemma 3.1.
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We appeal to Proposition 5.2 together with Weils Approximation Lemma in order to complete our
proof.

Lemma 5.5. For p, q ∈ R and a fixed Q ∈ Sn
o , the functional

∼
Cp,q(·, Q, ·) : Kn

o −→ M(Sn−1),

defined by K ↦→
∼
Cp,q(K,Q, ·), is a valuation.

Proof. We shall make use of the fact that when K,L ∈ Kn
o , are such that K ∪ L ∈ Kn

o , then
hK∪L = max{hK , hL} and hK∩L = min{hK , hL}. We shall also make use of the fact that νK and
νL are defined Hn−1 almost everywhere on the boundaries of K and L respectively.

First, we assume that K and L are both strictly convex. For a fixed θ ⊂ Sn−1, write θ as the union
of three disjoint pieces θ = θ0 ∪ θK ∪ θL, where

θK = {u ∈ θ : hK(u) > hL(u)}, θL = {u ∈ θ : hK(u) < hL(u)}.

while

θ0 = {u ∈ θ : hK(u) = hL(u)}.

Now,∫
x∈xxxK∪L(θK)

(x · νK∪L(x))
1−p ∥x∥q−n

Q dHn−1(x) =

∫
x∈xxxK(θK)

(x · νK(x))1−p ∥x∥q−n
Q dHn−1(x),

while∫
x∈xxxK∩L(θK)

(x · νK∩L(x))
1−p ∥x∥q−n

Q dHn−1(x) =

∫
x∈xxxL(θK)

(x · νL(x))1−p ∥x∥q−n
Q dHn−1(x).

Alternatively, using (5.3), we can write this as

Cp,q(K ∪ L,Q, θK) = Cp,q(K,Q, θK) and Cp,q(K ∩ L,Q, θK) = Cp,q(L,Q, θK). (5.13)

Similarly

Cp,q(K ∪ L,Q, θL) = Cp,q(L,Q, θL) and Cp,q(K ∩ L,Q, θL) = Cp,q(K,Q, θL). (5.14)

It is also the case that,

Cp,q(K ∪ L,Q, θ0) = Cp,q(K,Q, θ0), and Cp,q(K ∩ L,Q, θ0) = Cp,q(L,Q, θ0). (5.15)

To see this last fact, observe that the strict convexity of K and L forces xxxK∪L(θ0) = xxxK∩L(θ0).
Now, using the fact that Cp,q( · , Q, ·) is a measure in the third argument on Sn−1, together with

the fact that the union θ = θ0 ∪ θK ∪ θL is disjoint, by adding (5.13), (5.14), and (5.15) we obtain
the desired result that

∼
Cp,q(K ∩ L,Q, θ) +

∼
Cp,q(K ∪ L,Q, θ) =

∼
Cp,q(K,Q, θ) +

∼
Cp,q(L,Q, θ),

which is the desired result.
For arbitrary K,L ∈ Kn

o , we appeal to Proposition 5.2 in order to use the weak continuity of
∼
Cp,q(·, Q, ·) in the first argument. □
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6. VARIATIONAL FORMULAS FOR DUAL MIXED VOLUMES AND DUAL MIXED ENTROPY

Let Ω be a closed subset of Sn−1 that is not contained in any closed hemisphere. Let f : Ω → R
be continuous, and δ > 0. Let ht : Ω → (0,∞) be a positive continuous function defined for each
t ∈ (−δ, δ) by

log ht(v) = log h0(v) + tf(v) + o(t, v), (6.1)
where o(t, ·) : Ω → R is continuous and limt→0 o(t, ·)/t = 0, uniformly on Ω. Denote by

[[[ht]]] = {x ∈ Rn : x · v ≤ ht(v) for all v ∈ Ω},
the Wulff shape determined by ht. We shall call [[[ht]]] a logarithmic family of Wulff shapes generated
by (h0, f). If h0 is the support function hK of a convex body K, we also write [[[ht]]] as [[[K, f, t]]].

Let g : Ω → R be continuous, and δ > 0. Let ρt : Ω → (0,∞) be a positive continuous function
defined for each t ∈ (−δ, δ) by

log ρt(u) = log ρ0(u) + tg(u) + o(t, u), (6.2)

where again o(t, ·) : Ω → R is continuous and limt→0 o(t, ·)/t = 0, uniformly on Ω. Denote by

⟨⟨⟨ρt⟩⟩⟩ = conv{ρt(u)u : u ∈ Sn−1}
the convex hull generated by ρt. We will call ⟨⟨⟨ρt⟩⟩⟩ a logarithmic family of convex hulls generated by
(ρ0, g). If ρ0 is the radial function ρK of a convex body K, we also write ⟨⟨⟨ρt⟩⟩⟩ as ⟨⟨⟨K, g, t⟩⟩⟩.

The following theorem gives the variational formulas for dual mixed volumes and dual mixed
entropy of a logarithmic family of convex hulls.

Theorem 6.1. Suppose Ω ⊂ Sn−1 is a closed set not contained in any closed hemisphere of Sn−1,
and ρ0 : Ω → (0,∞) and g : Ω → R are continuous. If ⟨⟨⟨ρt⟩⟩⟩ is a logarithmic family of convex hulls
generated by (ρ0, g), then for Q ∈ Sn

o and q ̸= 0,

lim
t→0

∼
Vq(⟨⟨⟨ρt⟩⟩⟩

∗, Q)−
∼
Vq(⟨⟨⟨ρ0⟩⟩⟩

∗, Q)

t
= −q

∫
Ω

g(u) d
∼
Cq(⟨⟨⟨ρ0⟩⟩⟩

∗, Q, u),

and

lim
t→0

∼
E(⟨⟨⟨ρt⟩⟩⟩

∗, Q)−
∼
E(⟨⟨⟨ρ0⟩⟩⟩

∗, Q)

t
= −

∫
Ω

g(u) d
∼
C0(⟨⟨⟨ρ0⟩⟩⟩

∗, Q, u).

For Q = B, the unit ball in Rn, Theorem 6.1 was proved in [25]. When Q is an arbitrary star
body in Sn

o , the proof of Theorem 6.1 is very similar and thus omitted.
The following theorem gives the variational formulas for dual mixed volumes and dual mixed

entropy of a logarithmic family of Wulff shapes.

Theorem 6.2. Suppose Ω ⊂ Sn−1 is a closed set not contained in any closed hemisphere of Sn−1.
If h0 : Ω → (0,∞) and f : Ω → R are continuous, and [[[ht]]] is a logarithmic family of Wulff shapes
generated by (h0, f), then, for Q ∈ Sn

o and q ̸= 0,

lim
t→0

∼
Vq([[[ht]]], Q)−

∼
Vq([[[h0]]], Q)

t
= q

∫
Ω

f(v) d
∼
Cq([[[h0]]], Q, v),

and

lim
t→0

∼
E([[[ht]]], Q)−

∼
E([[[h0]]], Q)

t
=

∫
Ω

f(v) d
∼
C0([[[h0]]], Q, v).
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Again, for Q = B, Theorem 6.2 was proved in [25]. When Q is a star body in Sn
o , the proof of

Theorem 6.2 is similar and thus will be omitted.
We state the special cases of Theorems 6.1 and 6.2 for logarithmic families of convex hulls and

Wulff shapes generated by convex bodies.

Theorem 6.3. Suppose K ∈ Kn
o and g : Sn−1 → R is continuous. Then, for Q ∈ Sn

o and q ̸= 0,

lim
t→0

∼
Vq(⟨⟨⟨K

∗, g, t⟩⟩⟩∗, Q)−
∼
Vq(K,Q)

t
= −q

∫
Sn−1

g(v) d
∼
Cq(K,Q, v),

and

lim
t→0

∼
E(⟨⟨⟨K∗, g, t⟩⟩⟩∗, Q)−

∼
E(K,Q)

t
= −

∫
Sn−1

g(v) d
∼
C0(K,Q, v).

Theorem 6.4. Suppose K ∈ Kn
o , and f : Sn−1 → R is continuous. Then, for Q ∈ Sn

o and q ̸= 0,

lim
t→0

∼
Vq([[[K, f, t]]], Q)−

∼
Vq(K,Q)

t
= q

∫
Sn−1

f(v) d
∼
Cq(K,Q, v),

and

lim
t→0

∼
E([[[K, f, t]]], Q)−

∼
E(K,Q)

t
=

∫
Sn−1

f(v) d
∼
C0(K,Q, v).

The following theorem gives the variational formulas of dual mixed volumes and dual mixed
entropy with respect to Lp Minkowski combinations.

Theorem 6.5. Suppose p ̸= 0 and q ̸= 0. If Q ∈ Sn
o and K,L ∈ Kn

o , then,

lim
t→0

∼
Vq(K+p t·L,Q)−

∼
Vq(K,Q)

t
=

q

p

∫
Sn−1

hp
L(v) d

∼
Cp,q(K,Q, v), (6.3)

lim
t→0

∼
Vq(K+0 t·L,Q)−

∼
Vq(K,Q)

t
= q

∫
Sn−1

log hL(v) d
∼
Cq(K,Q, v), (6.4)

lim
t→0

∼
E(K+p t·L,Q)−

∼
E(K,Q)

t
=

1

p

∫
Sn−1

hp
L(v) d

∼
Cp,0(K,Q, v), (6.5)

lim
t→0

∼
E(K+0 t·L,Q)−

∼
E(K,Q)

t
=

∫
Sn−1

log hL(v) d
∼
C0(K,Q, v). (6.6)

Proof. For small t, define ht by
hp
t = hp

K + thp
L, p ̸= 0,

ht = hKh
t
L, p = 0.

(6.7)

From (2.11) and (2.12), the Wulff shape [[[ht]]] = K+p t·L.
From (6.7), it follows immediately that, for sufficiently small t,

log ht = log hK +
t

p

hp
L

hp
K

+ o(t, ·), p ̸= 0,

log ht = log hK + t log hL, p = 0.

Let f = 1
p

hp
L

hp
K

when p ̸= 0, and let f = log hL when p = 0. The desired formulas now follow
directly from Theorem 6.4 and (4.24). □
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By using the normalized power function, we can write the formulas in Theorem 6.5 as one single
formula.

Theorem 6.6. Suppose p, q ∈ R. For Q ∈ Sn
o , and K,L ∈ Kn

o ,
d

dt

∼
V q̄(K+p t·L,Q)

⏐⏐⏐
t=0

=

∫
Sn−1

hp̄
L(v) d

∼
Cp,q(K,Q, v).

For 0-Minkowski-Firey linear combinations it will be helpful to have an affine version of Theorem
6.5. This is contained in:

Theorem 6.7. Suppose q ̸= 0. If Q ∈ Sn
o and K,L ∈ Kn

o , then,

lim
t→0

∼
Vq((1− t)·K+0 t·L,Q)−

∼
Vq(K,Q)

t
= q

∫
Sn−1

log
hL(v)

hK(v)
d
∼
Cq(K,Q, v), (6.8)

lim
t→0

∼
E((1− t)·K+0 t·L,Q)−

∼
E(K,Q)

t
=

∫
Sn−1

log
hL(v)

hK(v)
d
∼
C0(K,Q, v). (6.9)

Proof. Let
ht = h1−t

K ht
L.

From (2.12), the Wulff shape [[[ht]]] = (1 − t) ·K +0 t ·L. From the above definition of ht, it follows
immediately that, for sufficiently small t,

log ht = log hK + t log
hL

hK

.

Let f = log hL

hK
. The desired formulas now follow directly from Theorem 6.4. □

In stating our next theorem we recall Definition 2.2.

Theorem 6.8. Suppose p ̸= 0 and q ̸= 0. Then for all Q ∈ Sn
o and K,L ∈ Kn

o , and ϕ ∈ SL(n),
∼
Cp,q(ϕK, ϕQ, ·) = ϕt

p⊣
∼
Cp,q(K,Q, ·) (6.10)

∼
Cp,0(ϕK, ϕQ, ·) = ϕt

p⊣
∼
Cp,0(K,Q, ·) (6.11)

∼
Cq(ϕK, ϕQ, ·) = ϕt

0⊣
∼
Cq(K,Q, ·) (6.12)

∼
C0(ϕK, ϕQ, ·) = ϕt

0⊣
∼
C0(K,Q, ·) (6.13)

Observe that the case p ̸= 0 and q = 0 is handled by (6.11). The case p = 0 and q ̸= 0 is handled
by (6.12), while the case p = 0 and q = 0 is handled by (6.13).

Recall that Haberl & Parapatits [21] classified measure-valued operators on Kn
o that are SL(n)-

contravariant of degree p, which corresponds to the transformation behavior in Theorem 6.8, but our
measures depend on an additional star body.

Proof. From (2.16), (2.18), and (6.3), we see that for all K,L ∈ Kn
o and all Q ∈ Sn

o ,∫
Sn−1

hp
ϕL(v) d

∼
Cp,q(ϕK, ϕQ, v) =

∫
Sn−1

hp
L(v) d

∼
Cp,q(K,Q, v), for all ϕ ∈ SL(n),

or equivalently, that for all K,L ∈ Kn
o and all Q ∈ Sn

o ,∫
Sn−1

hp
L(v) d

∼
Cp,q(ϕK, ϕQ, v) =

∫
Sn−1

hp
ϕ−1L(v) d

∼
Cp,q(K,Q, v), for all ϕ ∈ SL(n). (6.14)
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From Definition 2.2, the fact that support functions are positively homogeneous of degree 1,
followed by (2.1), and (6.14), we have∫

Sn−1

hp
L(v) dϕ

t
p⊣

∼
Cp,q(K,Q, v) =

∫
Sn−1

hp
L(ϕ

−tv) d
∼
Cp,q(K,Q, v)

=

∫
Sn−1

hp
ϕ−1L(v) d

∼
Cp,q(K,Q, v)

=

∫
Sn−1

hp
L(v) d

∼
Cp,q(ϕK, ϕQ, v).

But this shows that the measures ϕt
p⊣

∼
Cp,q(K,Q, ·) and

∼
Cp,q(ϕK, ϕQ, ·) when integrated against the

p-th power of support functions of bodies in Kn
o are identical and thus Lemma 2.1 now shows that

indeed
∼
Cp,q(ϕK, ϕQ, ·) = ϕt

p⊣
∼
Cp,q(K,Q, ·),

which establishes (6.10).
The proof of (6.11) is identical to the proof of (6.10): As long as p ̸= 0, it will be the case that

(6.14) continues to hold even if q = 0 provided we appeal to (6.5) and (2.20) when previously we
had turned to (6.3) and (2.18).

From (2.16), (2.18), and (6.8), we see that for all K,L ∈ Kn
o and all Q ∈ Sn

o ,∫
Sn−1

log
hϕ−1L(v)

hK(v)
d
∼
Cq(K,Q, v) =

∫
Sn−1

log
hL(v)

hϕK(v)
d
∼
Cq(ϕK, ϕQ, v), (6.15)

for all ϕ ∈ SL(n).
In (6.15) choose L = B. Then by (2.1) we see that hϕ−1L(v) = hL(ϕ

−tv) = |ϕ−tv|, and (6.15)
becomes:∫

Sn−1

log hK(v) d
∼
Cq(K,Q, v) =

∫
Sn−1

log |ϕ−tv| d
∼
Cq(K,Q, v)+

∫
Sn−1

log hϕK(v) d
∼
Cq(ϕK, ϕQ, v),

(6.16)
which holds for all ϕ ∈ SL(n), all K ∈ Kn

o , and all Q ∈ Sn
o . Combining (6.15) and (6.16) gives∫

Sn−1

log
hϕ−1L(v)

|ϕ−tv|
d
∼
Cq(K,Q, v) =

∫
Sn−1

log hL(v) d
∼
Cq(ϕK, ϕQ, v),

or using (2.1),∫
Sn−1

log hL(⟨ϕ−tv⟩) d
∼
Cq(K,Q, v) =

∫
Sn−1

log hL(v) d
∼
Cq(ϕK, ϕQ, v), (6.17)

which holds for all ϕ ∈ SL(n), all K,L ∈ Kn
o , and all Q ∈ Sn

o . Equivalently,∫
Sn−1

log hL(v) dϕ
t
0⊣

∼
Cq(K,Q, v) =

∫
Sn−1

log hL(v) d
∼
Cq(ϕK, ϕQ, v), (6.18)

which holds for all ϕ ∈ SL(n), all K,L ∈ Kn
o , and all Q ∈ Sn

o . Using Lemma 2.1, we see that (6.18)
yields

∼
Cq(ϕK, ϕQ, ·) = ϕt

0⊣
∼
Cq(K,Q, ·),

for all ϕ ∈ SL(n), all K ∈ Kn
o , and all Q ∈ Sn

o . This establishes (6.12).
The proof of (6.13) is identical to the proof of (6.12) except that instead of appealing to (6.8) and

(2.18) we appeal to (6.9) and (2.20). □
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7. Lp DUAL MIXED VOLUMES

For convex bodies K,L ∈ Kn
o , recall that the Lp mixed volume, Vp(K,L), has the integral repre-

sentation,

Vp(K,L) =
1

n

∫
Sn−1

hL(v)
p dSp(K, v).

From (5.1), with q = n, Q = B, and g = hp
L, we see that∫

Sn−1

hp
L(v) d

∼
Cp,n(K,B, v) =

1

n

∫
Sn−1

hp
L(αK(u))h

−p
K (αK(u))ρ

n
K(u) du.

But (5.10), tells us that
∼
Cp,n(K,B, ·) = 1

n
Sp(K, ·). This shows that the Lp mixed volume, Vp(K,L),

has a dual integral formulation: If K,L ∈ Kn
o , then

Vp(K,L) =
1

n

∫
Sn−1

( hL

hK

)p
(αK(u))ρ

n
K(u) du. (7.1)

This leads us to define Lp dual mixed volumes, a unification which includes Lp mixed volumes and
dual mixed volumes.

Definition 7.1. Suppose p, q ∈ R. If K,L ∈ Kn
o , and Q ∈ Sn

o , define the Lp dual mixed volume, or

(p, q)-mixed volume,
∼
Vp,q(K,L,Q), by

∼
Vp,q(K,L,Q) =

∫
Sn−1

hp
L(v) d

∼
Cp,q(K,Q, v). (7.2)

By using (5.1) with g = hp
L, definition (7.2) can be written as a dual formula,

∼
Vp,q(K,L,Q) =

1

n

∫
Sn−1

( hL

hK

)p
(αK(u))

(ρK
ρQ

)q
(u)ρnQ(u) du. (7.3)

Proposition 7.2. Suppose p, q ∈ R. If K,L ∈ Kn
o , and Q ∈ Sn

o , then
∼
Vp,q(K,K,K) = V (K), (7.4)
∼
Vp,q(K,K,Q) =

∼
Vq(K,Q), (7.5)

∼
Vp,q(K,L,K) = Vp(K,L), (7.6)
∼
V0,q(K,L,Q) =

∼
Vq(K,Q), (7.7)

∼
Vp,n(K,L,Q) = Vp(K,L). (7.8)

Proof. Identity (7.4) follow from (7.3) and the polar coordinate formula for volume. Identity (7.5)
follow from (7.3) and the definition of dual mixed volumes (1.3). Identity (7.6) follow from (7.3)
and (7.1). Identity (7.7) follow from (7.3) and the definition of dual mixed volumes (1.3). Identity
(7.8) follow from (7.3) and (7.1). □

Proposition 7.3. The Lp dual mixed volume is SL(n)-invariant, in that for p, q ∈ R, and K,L ∈ Kn
o ,

with Q ∈ Sn
o ,

∼
Vp,q(ϕK, ϕL, ϕQ) =

∼
Vp,q(K,L,Q),

for each ϕ ∈ SL(n).
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Proof. For p = 0 the result follows from (7.7) and the SL(n)-invariance of dual mixed volumes
(2.18). We assume p ̸= 0. By definition (7.2), from (6.10) and (6.11), the fact that support functions
are positively homogeneous of degree 1, (2.1), and finally definition (7.2) again

∼
Vp,q(ϕK, ϕL, ϕQ) =

∫
Sn−1

hp
ϕL(v) d

∼
Cp,q(ϕK, ϕQ, v)

=

∫
Sn−1

hp
ϕL(v) dϕ

t
p⊣

∼
Cp,q(K,Q, v)

=

∫
Sn−1

hp
ϕL(ϕ

−tv) d
∼
Cp,q(K,Q, v)

=

∫
Sn−1

hp
L(v) d

∼
Cp,q(K,Q, v)

=
∼
Vp,q(K,L,Q)

□

The following inequality for Lp dual mixed volume is a generalization of the Lp Minkowski
inequality for mixed volume.

Theorem 7.4. Suppose p, q are such that 1 ≤ q
n
≤ p. If K,L ∈ Kn

o and Q ∈ Sn
o , then

∼
Vp,q(K,L,Q)n ≥ V (K)q−pV (L)pV (Q)n−q, (7.9)

with equality if and only if K,L,Q are dilates when 1 < q
n
< p, while only K and L need be dilates

when q = n and p > 1, and K and L are homothets when q = n and p = 1.

Proof. From (7.3), the Hölder inequality, (7.1), and the Lp Minkowski inequality (3.34), we have

∼
Vp,q(K,L,Q) =

1

n

∫
Sn−1

( hL

hK

)p
(αK(u))

(ρK
ρQ

)q
(u)ρnQ(u) du

=
1

n

∫
Sn−1

[( hL

hK

)np
q
(αK(u))ρ

n
K(u)

] q
n
[ρnQ(u)]

n−q
n du

≥
( 1
n

∫
Sn−1

( hL

hK

)np
q
(αK(u))ρ

n
K(u) du

) q
n
( 1
n

∫
Sn−1

ρnQ(u) du
)n−q

n

= Vnp
q
(K,L)

q
nV (Q)

n−q
n

≥ V (K)
q−p
n V (L)

p
nV (Q)

n−q
n .

The equality conditions follow from the equality conditions of the Hölder inequality and the Lp

Minkowski inequality (3.34) for Lp mixed volumes. □

Over the past two decades valuation theory has become an ever more important part of convex
geometric analysis. See e.g. [6], [19], [32], [33], [34], [35], [49], and [60]. The Lp dual mixed
volume is a valuation with respect to each entry.

Proposition 7.5. The Lp dual mixed volume
∼
Vp,q(K,L,Q) is a valuation over Kn

o with respect to
both K and L, and is a valuation over Sn

o with respect to Q.
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Proof. That the Lp dual mixed volume
∼
Vp,q(K,L,Q) is a valuation on Sn

o with respect to the third
argument can be seen easily by writing (7.3) as

∼
Vp,q(K,L,Q) =

1

n

∫
Sn−1

( hL

hK

)p
(αK(u))ρ

q
K(u)ρ

n−q
Q (u) du,

and observing that for Q1, Q2 ∈ Sn
o we have

ρn−q
Q1∪Q2

+ ρn−q
Q1∩Q2

= ρn−q
Q1

+ ρn−q
Q2

, on Sn−1.

That the Lp dual mixed volume
∼
Vp,q(K,L,Q) is a valuation on Kn

o with respect to the second
argument can be seen easily by looking at definition (7.2) and using the fact that if L1, L2 ∈ Kn

o , are
such that L1 ∪ L2 ∈ Kn

o , we have

hp
L1∪L2

+ hp
L1∩L2

= hp
L1

+ hp
L2

, on Sn−1,

since hL1∪L2 = max{hL1 , hL2} and hL1∩L2 = min{hL1 , hL2}. From (7.2) and Lemma 5.5, we see

that
∼
Vp,q(K,L,Q) is a valuation in the first argument. □

8. THE Lp DUAL MINKOWSKI PROBLEM

The existence and uniqueness problems for Lp dual curvature measures are the central problems
to be studied here. The Lp dual Minkowski existence problem for Lp dual curvature measure may
be stated as follows:

Problem 8.1. Suppose p, q ∈ R, and Q ∈ Sn
o are fixed. Given a Borel measure µ ∈ M(Sn−1), what

are necessary and sufficient conditions on µ so that there exists a convex body K ∈ Kn
o whose dual

curvature measure
∼
Cp,q(K,Q, ·) is the given measure µ?

The case where q = n is the Lp Minkowski problem. The case where p = 0 and Q = B is the
dual Minkowski problem. The case where q = 0 and Q = B is the Lp Aleksandrov problem.

When the given data measure µ has a density f , from (5.8) we see that, the Lp dual Minkowski
problem is equivalent to solving the following Monge-Ampère type equation on Sn−1:

h1−p∥∇h∥q−n
Q det(∇̄2h+ hI) = f, (8.1)

where h is the unknown function on Sn−1, and ∇h is the gradient in Rn of the extension of h to Rn

as a function that is positively homogeneous of degree 1, and where ∇̄2 is the Hessian matrix of h,
with respect to an orthonormal frame on Sn−1.

The uniqueness problem for Lp dual curvature measures is:

Problem 8.2. For fixed p, q ∈ R and Q ∈ Sn
o , if K,L ∈ Kn

o , are such that
∼
Cp,q(K,Q, ·) =

∼
Cp,q(L,Q, ·),

then how is K related to L?

We now establish uniqueness of the solution to the problem for the case of polytopes when q ≤ p.

Theorem 8.3. Let P, P ′ ∈ Kn
o be polytopes and let Q ∈ Sn

o . Suppose
∼
Cp,q(P,Q, ·) =

∼
Cp,q(P

′, Q, ·).
Then P = P ′ when q < p and P ′ is a dilate of P when q = p.
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Proof. From (5.5), we know that the curvature measures of polytopes are discrete, and that
∼
Cp,q(P,Q, ·) =

∼
Cp,q(P

′, Q, ·) means that P and P ′ must have the same outer unit normals; say v1, . . . , vm and that

∼
Cp,q(P,Q, ·) =

∼
Cp,q(P

′, Q, ·) =
m∑
i=1

ciδvi ,

where

ci =
1

n
hP (vi)

−p

∫
Sn−1∩∆i

ρqP (u)ρ
n−q
Q (u) du =

1

n
hP ′(vi)

−p

∫
Sn−1∩∆′

i

ρqP ′(u)ρ
n−q
Q (u) du (8.2)

and ∆i and ∆′
i are the cones formed by the origin and the facets of P and P ′ with normal vi,

respectively.
Suppose P ̸= P ′. Clearly P ⊊ P ′ is not possible. Let λ be the maximal number so that λP ⊆ P ′.

Then λ < 1. Since λP and P ′ have the same outer unit normals, there is a facet of λP that is
contained in a facet of P ′. Denote the outer unit normal of those facets by vi1 . We have

hλP (vi1) = hP ′(vi1),

∆i1 ⊆ ∆′
i1
,

ρλP (u) = ρP ′(u), for all u ∈ ∆i1 .

Therefore,

hλP (vi1)
−p

∫
Sn−1∩∆i1

ρqλP (u)ρ
n−q
Q (u) du ≤ hP ′(vi1)

−p

∫
Sn−1∩∆′

i1

ρqP ′(u)ρ
n−q
Q (u) du, (8.3)

with equality if and only if ∆i1 = ∆′
i1

. This and (8.2) give that

λq−p ≤ 1. (8.4)

But λ < 1 implies that λq−p > 1 if q < p; a contradiction.
If q = p, then (8.2) forces equality in (8.3). Thus, ∆i1 = ∆′

i1
, and the facets of λP and P ′ with

outer unit normal vi1 are the same. Let vi2 be the outer unit normal to a facet adjacent to the facet
whose outer unit normal is vi1 . Then the facet of λP with outer unit normal vi2 is contained in the
facet of P ′ with outer unit normal vi2 . The same argument yields that these two facets are also the
same. Continuing in this manner allows us to conclude that λP = P ′. □
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