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ABSTRACT. A new family of geometric Borel measures on the unit sphere is introduced. Special
cases include the L,, surface area measures (which extend the classical surface area measure of Alek-
sandrov and Fenchel & Jessen) and L, -integral curvature (which extends Alkesandrov’s integral cur-
vature) in the L,, Brunn-Minkowski theory. It also includes the dual curvature measures (which are
the duals of Federer’s curvature measures) in the dual Brunn-Minkowski theory. This partially unifies
the classical theory of mixed volumes and the newer theory of dual mixed volumes.

1. INTRODUCTION

Surface area measure and integral curvature are two important geometric measures of convex
bodies in the Euclidean n-space, R". Integral curvature measures the images of the Gauss map of a
convex body, while surface area measure measures the inverse images of the Gauss map of a convex
body. Both measures are fundamental concepts in the classical Brunn-Minkowski theory of convex
bodies. The Minkowski problem characterizing surface area measure and the Aleksandrov prob-
lem characterizing integral curvature are two well-known problems. In modern convex geometry,
the L,, Brunn-Minkowski theory and the dual Brunn-Minkowski theory generalize and dualize the
classical Brunn-Minkowski theory. The L, surface area measures were introduced in [38], and L,
integral curvatures were recently defined in [26]]. Equally fundamental geometric measures in the
dual Brunn-Minkowski theory were only constructed very recently in [25]. They are called dual
curvature measures (and are dual to Federer’s curvature measures). Minkowski problems associated
with these geometric measures are major problems in convex geometric analysis, which are far from
being completely solved.

The purpose of this paper is to continue the study begun in [25]] and to construct L,, dual curvature
measures. It turns out that the L, surface area measure, L, integral curvatures, and dual curvature
measures are all special cases of the now-to-be introduced L, dual curvature measures. These lead
to a unified concept of mixed volume that includes Minkowski’s classical first mixed volume, L,
mixed volumes, L, entropy, as well as dual mixed volumes as special cases. We shall demonstrate
a surprising connection between the L, Brunn-Minkowski theory and the dual Brunn-Minkowski
theory by establishing geometric inequalities and variational integral formulas for the unified mixed
volumes and for the new L, dual curvature measures. We pose the L, dual Minkowski problem
for L,, dual curvature measure which opens a new direction of study in convex geometric analysis.
Detailed explanations are provided below.

The L, Brunn-Minkowski theory as a generalization of the classical Brunn-Minkowski theory has
attracted increasing interest in recent years partly due to its wide range of connections with other
subjects such as affine geometry, Banach space theory, harmonic analysis, and partial differential
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equations. The core concept in the L, Brunn-Minkowski theory (introduced in [38]]) is the notion of
the L, surface area measure which is a Borel measure (defined on the unit sphere) for each convex
body in R" that contains the origin in its interior. The L,-cosine transform (a spherical variant of
the Fourier transform) of the L,, surface area measure turns out to yield a finite dimensional Banach
norm. The associated affine isoperimetric inequality for the volume of the unit ball of this Banach
norm is known as the L,, Petty projection inequality which was established in [39] and is a profound
strengthening of the classical isoperimetric inequality. The Radon-Nikodym derivative of the L,
surface area measure with respect to the spherical Lebesgue measure is called the L, curvature
function. The integral of the L,, curvature function (raised to an appropriate power) over the unit
sphere is L, affine surface area which has been a focus of study in affine geometry and valuation
theory, see e.g. [20,35,142,50,53,54]. Finding the necessary and sufficient conditions for a given
measure to guarantee that it is the L, surface area measure is the existence problem called the L,
Minkowski problem posed in [38]]. Solving the L,, Minkowski problem requires solving a degenerate
and singular Monge-Ampere type equation on the unit sphere. The problem has been solved for
p > 1, see [10427,38], but critical cases for p < 1 remain open, see e.g. [7,/10,51,52,63,64]. The
solution of the L, Minkowski problem and the L,, Petty projection inequality are key tools used for
establishing the L,, affine Sobolev inequality and its relatives, see [[11,23],40.,/41,59].

Let K7 denote the class of convex bodies (compact convex subsets) in Euclidean n-space, R"”, that
contain the origin in their interiors. The support function, hg : S — (0, 00) of the convex body
Q € X7, determines @ uniquely and is defined, for v € S"1, by hg(v) = max{v -z : x € Q},
where v - x is the standard inner product of v and = in R"™. The basic operation between convex
bodies is the Minkowski combination (vector sum). For K, L € X! and s,t > 0, the Minkowski
combination sK + tL is defined by sK + tL = {sx +ty : € K,y € L}, or equivalently,

hsrir, = shg +thy.

The fundamentally important surface area measure S(K,-) of a convex body K can be defined by
the variational formula,

d
%V(K +tL)

t=0"*

_ / hi(v) dS(K, v),
Sn—l

which holds for each L € K. The integral above times < is Minkowski’s first mixed volume of K
and L,
1

Vi(k, L) = /S (o) dS(K ).

The mixed volume V] is an extension of three functionals: volume, surface area and mean width. It
is the most studied mixed volume within the classical Brunn-Minkowski theory.

An extension of Minkowski combinations studied by Firey in the early 1960’s, defines the L,
Minkowski combination (also known as the Minkowski-Firey combination), s- K+, t- L , for each
p > 1,each pair K, L € K7, and s,t > 0, by

th—ﬁ,t-L = shf, + thf.

The concept of L, mixed volume was defined in the 1990’s after introducing the fundamental con-
cept of L, surface area measure (see [38]]). The L, surface area measure S, ([, -) of a convex body
K € X7 can be defined by the variational formula,

- 1/ B (v) dS, (K, v), (1.1)
Sn—l

d
—V(K+1t-L)
t=0t p

dt
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which holds for each L € K. The integral above (times p/n) is called the L, mixed volume of K
and L:
1
V(K L) = = / B (0) dS, (K, v). (12)
Sn—1

n

It generalizes Minkowski’s first mixed volume V; (K, L) of K and L. The important L,, Minkowski
inequality for L, mixed volume states that for p > 1,

Vo(K, L)" = V(K)"PV(L),

with equality if and only if K, L are dilates when p > 1 and if and only if K, L are homothets in the
case where p = 1.

The dual Brunn-Minkowski theory was developed in the 1970s (in [36]) as the dual theory to the
classical Brunn-Minkowski theory based on a conceptual duality in convex geometry, see Schneider
[48], Chapter 9. The dual Brunn-Minkowski theory studies dual mixed volumes of star bodies,
see [17,36,37,55,56]. A star body () C R" is a compact star-shaped set about the origin whose
radial function pg : S"' — (0, 00), defined for u € S™! by pg(u) = max{\ > 0: \u € Q},
is continuous. Denote the set of star bodies in R" by 87. Obviously, K C 87. In the late 1980’s,
the important concept of intersection body in the dual Brunn-Minkowski theory was introduced
(in [37]). This brought remarkable applications of Radon transforms and Fourier transforms, tools
from harmonic analysis, to convex geometry, see e.g., [[14.|16, 17,2931, 37,57, 58]

The dual Brunn-Minkowski theory is a theory of dual mixed volumes of star bodies. For ¢ € R,
the g-th dual mixed volume of K, () € 87, is defined by

~ 1
V (K, Q)= — /Snl pg{(u)pg_q(u) du, (1.3)

n
where the integration is with respect to spherical Lebesgue measure. The basic geometric invariants
associated with a star body are the dual quermassintegrals, also called dual volumes: For ¢ # 0,

the ¢-th dual volume ‘N/q(K ) of K € 8 is defined by ‘N/q(K ) = XN/q(K , B), where B is the origin-
centered unit ball in R". One of the reasons that the g-th dual volume is important in geometric
tomography is that for integer values ¢ = 1,...,n — 1, and each K € 87,

~

Vq(K) = cmq/ vol, (K N§)dE,
G(n,q)

where vol, denotes volume in R?, and the integration is with respect to the rotation invariant proba-
bility measure on G(n, ¢), the Grassmannian of ¢ dimensional subspaces of R™. The constant ¢, , is
trivially determined by taking K to be B.

Very recently, a new family of geometric measures were discovered in [25]. These measures
are the long-sought duals (in the dual Brunn-Minkowski theory) of Federer’s curvature measures
(which are fundamental in the classical Brunn-Minkowski theory). The new measures are called

dual curvature measures. For real ¢ # 0, the g-th dual curvature measure éq(K ,-) of convex body
K € X} is a Borel measure on the unit sphere that may be defined via the variational formula,

iffq(KHL) = q/ hy (0)hi (v) " dC, (K, v), (1.4)
Sn—l

dt
which holds for every L € X7. In the same way that L, surface area measures play a critical role in
the L,, Brunn-Minkowski theory, dual curvature measures can be seen to be a central concept within
the dual Brunn-Minkowski theory.

’1&:0+
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The Minkowski problem (including both existence and uniqueness) associated with the dual cur-
vature measures, is called the dual Minkowski problem, and is a major open problem in the dual
Brunn-Minkowski theory. It requires solving a degenerate and singular Monge-Ampere type equa-
tion on the unit sphere. Existence of solutions for the dual Minkowski problem for even data within
the class of origin-symmetric convex bodies was established in [25]]. Very recently existence for the
critical cases of the even dual Minkowski problem were established in [62] and [5]], and a complete
solution to the dual Minkowski problem with negative indices was given in [61].

Aleksandrov’s integral Gauss curvature, or simply integral curvature, generalizes total Gauss
curvature of a smooth convex body to become a geometric measure for all convex bodies (without
any smoothness restrictions). It measures the Gauss image of points on the boundary of a convex
body parameterized by the radial directions of the points. The Aleksandrov problem asks for nec-
essary and sufficient conditions so that a given measure on the unit sphere is the integral curvature
of a convex body. Aleksandrov solved his problem by using his topological mapping lemma and
polytope approximation. (See Oliker [45] for an alternate approach.) It was recently discovered
in [26] that the integral curvature and the Aleksandrov problem have natural extensions in the L,
Brunn-Minkowski theory. The concept of L, integral curvature was introduced in [26], and the
associated L,, Aleksandrov problem was posed (in [26]]) as well. The paper [26] develops a radically
new approach to studying the Aleksandrov problem and its L, extension.

The singular case ¢ = 0 of dual volume leads to the notion of dual entropy of a star body. For

K € 87, the dual entropy E(K ) may be defined by

~ 1
E(K) = _/s B log px (u) du.

n
The L, integral curvature, J,(K,-), of a convex body K € X2, introduced in [26], may be defined
via the variational formula,

d ~ 1

—FE(K+t-L = — he (v)dJ,(K* 1.5

dt ( +p ) =0+ np gn-1 L(v) p( ,’U), ( )
which holds for all L € X7 and where K™ is the polar body of K, defined by

K'={zeR':z-y<lforally € K}.

In view of the fact that volume is a special dual volume and dual entropy is the singular case
of dual volumes, it is a natural question to ask if the three families of geometric measures — the

L, surface area measure S,(K,-), the ¢-th dual curvature measure C, (K, ), and the L, integral
curvature J,(/, -) might all belong to one large family of geometric measures associated with a
convex body K € X7. It is the purpose of this paper to show that such a family of geometric
measures of convex bodies does exist. They will be called L, dual curvature measures and they
unify L,, surface area measures, dual curvature measures, and L, integral curvatures. The three
variational formulas (I.1)), (1.4)), and are special cases of one general variational formula for L,
dual curvature measures. Using the new L, dual curvature measures, we introduce the notion of L,
dual mixed volumes which unifies L, mixed volumes of convex bodies in the L,, Brunn-Minkowski
theory and dual mixed volumes of star bodies in the dual Brunn-Minkowski theory. Thus, parts of
the L, Brunn-Minkowski theory and the dual Brunn-Minkowski theory can finally be unified. The
L,, dual curvature measures are the core concept of this unification.

The L, dual curvature measures, C, ., are a two-parameter family of Borel measures on the unit

sphere. Specifically, for p,q € R, a convex body K € K, and a star body () € 8, we define the
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Borel measure 5’p’q(K, Q,-) on S"" ! by

n

| 901G 5.0y = [ glar@hular() Toa)po() Tdu, (16
Sn—1 Sn—1

for each continuous g : S~ ! — R, where [ is the radial Gauss map that associates to almost (with
respect to spherical Lebesgue measure) each u € S™~! the unique outer unit normal at the point
pr(u)u € 0K.

The L, surface area measures, the dual curvature measures and the L, integral curvatures are
special cases, of the L, dual curvature measures in the sense that for p,¢ € R, and K € X7,

~ 1
Op,n(Ku B) ) = ESP(Kv ')7 (17)
6YO,q([(va) = 6q(K7')7 (18)
~ 1
Op,O(K7B7') = EJP(K*V)v (19)

where B is the unit ball in R".
Using L, dual curvature measures, we can define L, dual mixed volumes. For p,¢q € R, and

convex bodies K, L € X7, and a star body ) € 87, the L, dual mixed volume XN/M(K ,L,Q) is
defined by

Vyol K. L,Q) = /S_ W (v) dC, (K, Q,v). (1.10)

The L, mixed volume and the dual mixed volume will be shown to be the special cases,
V, (K, LK) =V,(K, L), (1.11)
V, (K, K,Q) = V,(K,Q). (1.12)

The L, dual mixed volume has the following integral formula in terms of support functions, radial
functions, and the radial Gauss map,

Vol K. 1.Q) =+ [ (o) Phicor (w) Pox(wfpo(u) " du. (113

n
The following inequality for L, dual mixed volume is a generalization of the L, Minkowski
inequality for L, mixed volume. Suppose 1 < £ < p. If K, L € X} and Q) € 8}, then

~

V(K L, Q)" > V(K)TPV(L)PV(Q)", (1.14)
with equality, when ¢ > n, if and only if K, L, and () are dilates, while when ¢ = n and p > 1, with
equality if and only if K and L are dilates, while when ¢ = n and p = 1, with equality if and only
if K and L are homothets.

To simplify stating the general variational formula that defines the L,, dual curvature measures,
we introduce the normalized power function. For ¢ € R, and t € (0, 00), define t7, by

g )dt’ 1#0 (1.15)
logt ¢ =0.
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For ¢ € R and star bodies K, ) € 8", the normalized dual mixed volume ‘N/q(K , Q) is defined by

~ 1 q
V@) =1 [ () (e (116)

Note that for ¢ # 0, we have qf}q(K ,Q) = \N/q(K , @), while for ¢ = 0 the normalized dual mixed

volume V(K Q) differs considerably from the standard definition of V (K, )) — not just by a
multiplicative constant.

Recall that L, Minkowski combinations have recently been extended so that they are defined for
all p € R (see §2 for details). One of the goals of this work is to demonstrate that for p,q € R, a
convex body K € X7 and a star body () € 8, there is a variational formula that can define the L,

dual curvature measure C, ,(K, Q, -):

d ~
— Vi (K4t L,Q)

: - / W () dC, (K, Q, ), (1.17)
¢ gr—1

which holds for every L € K. This unifies (I.1)), (1.4), and (1.5). This is also the key fact needed
to make it possible to solve the Minkowski problems associated with L, dual curvature measures by
using a variational method.

The obvious major problem of study regarding the new L, dual curvature measures is the L,
dual Minkowski problem — a general Minkowski problem that unifies the L,, Minkowski problem,
the dual Minkowski problem, and the L, Aleksandrov problem. The L, dual Minkowski problem
concerns both the existence and the uniqueness questions. The existence problem is to find neces-
sary and sufficient conditions so that a given measure on the unit sphere is the L, dual curvature
measure of a convex body in R". The uniqueness question asks to what extent a convex body is
uniquely determined by its L, dual curvature measure. Recall that the L, Minkowski problem, the
dual Minkowski problem, and the L,, Aleksandrov problem are only partially solved. Important spe-
cial cases are largely open, for example, the centro-affine Minkowski problem and the logarithmic
Minkowski problem. Solving the new L,, dual Minkowski problem requires solving a degenerate and
singular Monge-Ampere equation on the unit sphere S” ! of the following type: For fixed p, ¢ € R,

h'7P||Vh 4 he|| 7" det(V2h + RI) = f,
where || - || is a given n-dimensional Banach norm, f : S"~! — [0, c0) is the given “data” function,
h : S™' — (0,00) is the function to be found, and ¢ : S"' — S™~! is the identity map. Here,

Vh and V2h denote the gradient vector and the Hessian matrix of h, respectively, with respect to an
orthonormal frame on S™~!, and [ is the identity matrix.

t=0"*

2. PRELIMINARIES

Schneider’s book [48] is our standard reference for the basics regarding convex bodies. The
books [13}|18]] are also good references.

Throughout R™ denotes n-dimensional Euclidean space. For x € R", let |x| = /x - = be the
Euclidean norm of z. For x € R™\ {0}, we will use both Z and (z) to abbreviate x/|z|, and for
E C R™\ {0}, we write E for {Z : x € E}. The origin-centered unit ball {z € R" : |z| < 1} is
always denoted by B, and its boundary by S 1.

For the set of continuous functions defined on the unit sphere S"~! write C'(S"!), and for f €
C(S™ 1) write || f]loo = max,egn—1 |f(v)|. We shall view C(S"!) as endowed with the topology
induced by this max-norm.
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If K C R™ is compact and convex, then h(K,-) = hx : R" — R, the support function of K, is
defined, for x € R", by
hg(x) =max{z-y:y e K}.
The support function is convex and homogeneous of degree 1. A compact convex subset of R" is
uniquely determined by its support function. From the definition of the support function, we see
immediately that for ¢ € SL(n), for the support function of ¢/, the image of K under ¢, we have
for all z € R",
h(oK,z) = h(K,¢'z), (2.1)

where ¢! denotes the transpose of ¢.

The gradient of h in R" is denoted by V. When hg is viewed as restricted to the unit sphere
S™1. the gradient of hx on S™~! with respect to the standard metric of S"~! is denoted by V.
Since hx : R™ — R is positively homogeneous of degree 1, at each point v € S"~! where h is
differentiable,

VhK(U) = ?h}{(v) + hK(U)U. (22)

Denote by K" the space of compact convex sets in R™ endowed with the Hausdorff metric; i.e.
the distance between K, L € K" is |hx — hr||- By a convex body in R" we will always mean
a compact convex set with nonempty interior. Denote by K the class of convex bodies in R" that
contain the origin in their interiors.

Let K C R" be compact and star-shaped with respect to the origin; i.e., the line segment joining
each point of K to the origin is completely contained in /. The radial function pg : R™\ {0} — R
is defined by

pr(x) = max{\: Az € K},
for x # 0. From the definition of the radial function, we see immediately that for ¢ € SL(n), we
have

porc () = prc(67 '), (2.3)
for all x € R™\ {0}.

A compact star-shaped (about the origin) set is uniquely determined by its radial function on
S™=1. Denote by 8" the set of compact star-shaped sets. A star body is a compact star-shaped set
with respect to the origin whose radial function is continuous and positive. If K is a star body, then
obviously

OK = {px(u)u:u € S" '} = {pg(2)r : v € R"\{0}} = {x € R" : pg(x) = 1}.

Denote by 8! the space of star bodies in R" endowed with the radial metric; i.e., the distance
between K, L € 87, is ||px — pL||co. Note that K7 C 8" and that on the space X! the Hausdorff
metric and radial metric are equivalent, and thus K7’ is a subspace of S'.

For a convex body K € X7, the polar body K* of K is the convex body in R" defined by

K'={zeR":xz-y<1, forall y € K}.
From this definition, we easily see that on R™\ {0},
pg = 1/hg~ and hg =1/pg-. 2.4)

It follows that
K™ =K, (2.5

a fact we shall frequently make use of.
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Throughout, 2 C S™~! will denote a set that is both closed and that cannot be contained in any
closed hemisphere of S"~!. The Wulff shape hl € X", of a continuous function h : Q — (0, c0),
also known as the Aleksandrov body of h, is the convex body defined by

=z eR":z-v < h(v)}. (2.6)
vEQ
Because of the restrictions placed on (2, we see that [2] € X7 If K € X7, then it is easily seen that

lhil = K.

Let p: Q — (0, 00) be continuous. Since €2 C S7~1 is assumed to be closed, and p 1s continuous,
{p(u)u : u € Q} is a compact set in R". Hence, the convex hull (p) generated by p,

(0 = conv{p(u)u : u € Q},

is compact as well (see Schneider [48]], Theorem 1.1.11). Since €2 is not contained in any closed
hemisphere of S"~!, the compact convex set (p) contains the origin in its interior; i.e., (0} € X".
Obviously, if K € K7,
(pr) = K. (2.7)
We shall make frequent use of the easily-established fact that the support function of (p) is given
by:
hepy (V) = maxyea (v - u)p(u), (2.8)
forallv € S™1,
The Wulff shape [h] determined by h and the convex hull (1/h) generated by the function 1/h are
easily shown (see [25])) to be polar reciprocals of each other; i.e.,

(1" = (1/h).
For K, L C R" that are compact and convex, and real s,t > 0, the Minkowski combination,
sK +tL C R", is the compact, convex set defined by
sK+tL={sx+ty:x€ Kandy € L},
and its support function is given by
hsk i, = shx +thy. (2.9)

If K and L contain the origin, then for p > 1, the L, Minkowski combination, also known as
the Minkowski-Firey combination, s- K + t- L C R", is the compact, convex set whose support
function is given by,

h(s-K+t-L, )P =sh(K, - )P +th(L, -)*. (2.10)
Note that “-” is used with the subscript p implied.

Using the concept of Wulff shape, the definition of an L,, Minkowski combination can be extended
so as to be defined for p < 1 and even negative s or ¢: Fix areal p # 0. For K, L € X7, and s,t € R
such that shh- + thY is a strictly positive function S™~!, define the L, Minkowski combination,
s-K+t-L € X, by

s- K+ t-L =I[(shh +thh)'/n. (2.11)
When p = 0, define s- K+4;t- L by
s-K4t-L = [h3ht]. (2.12)

Since, hg, hy, are strictly positive functions on S™!, it follows that s- K+ ¢ - L is defined for all
s,t € R.
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For ¢ € SL(n) and p # 0,
s pK+ 1 oL = ¢(s- K+ 1-L). (2.13)

If also s + t = 1, then (2.13]) hold for p = 0 as well. That (2.13]) holds follows from the observation
that since the support function is homogeneous of degree 1 we can re-write (2.11]), by using (2.6)),
as an intersection over R™\ {0}, rather than S"~!,

s- oK+ t- oL = m{x ER": -y < (sher(y)P + ther(y)P) P}
y7#0
and then use (2.1)). If s + ¢ = 1, then we can re-write (2.12)), by using (2.6), as an intersection over
R™\{0},

s 0K+t oL = ({z € R : -y < hor (y)*hor(y)'}
y#0

and then use (2.1J).

For K, L. C R" that are compact and star-shaped (with respect to the origin), and real s,7 > 0,
the radial combination, sK + tL C R", is the compact star-shaped set defined by

sK ¥ 1L = {sx +ty:x € Kandy € L, whenever z -y = |z||y|}.

Obviously, z - y = |z||y| means that either y = awx or z = vy for some v > 0. The radial function
of the radial combination of two star-shaped sets is the combination of their radial functions; i.e.,

p(sK ¥ tL,") = sp(K,-) +tp(L,-).
For fixed real g, the radial q-combination s- K —T—q t- L is defined by
pls- K t- L) = sp(K, )" + tp(L, )", g #0, (2.14)
p(s- K 45 t-L,-) = p(K,-)°p(L,-)" (2.15)

Note that in order to have a natural definition of s- K +, ¢- L whose radial function is homogeneous
of degree —1 it is necessary in (2.15) that s +¢ = 1. Of course, one could use (2.15) to define

s- K+ t-L as above on S™!, exclusively, and then extend the function obtained to R™\ {0} by
declaring it to be homogeneous of degree —1.
For ¢ € SL(n) and ¢ # 0,
s K+ t-oL = ¢(s- K +,t-L). (2.16)
If also s + ¢ = 1, then (2.16) hold for ¢ = 0 as well. All this follows from (2.3).

For ¢ € R\ {0}, and star bodies K, L € 8", the g-th dual mixed volume XN/q(K , L) is defined by
n n t—0

VD) =1 [ ks de= L g e B) VDL @)

where the second equality follows from (2.14)) and the polar coordinate formula for volume. ;From
(2.17) and (2.16) we get the well-known fact that for ¢ € SL(n),

V, (6K, ¢L) = V,(K, L). (2.18)
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The g-th dual volume V,,(K) of a star body K € 8 is defined by

V,(K)=V,/(K,B),
where B is the unit ball.
The dual mixed entropy E (K, L) of star bodies K, . € 8" is defined by

B(K,L) = %/Sl log <f)i<<z>))p2(u) du. (2.19)

~

Note that £ (K,L) =V5(K, L). As was the case in (2.18)), for the dual mixed entropy we have that
for ¢ € SL(n),

E(¢K,¢L) = E(K, L). (2.20)

To establish this, use the polar-coordinate formula for volume together with definition (2.13)), and

then to see that

1—8)-L+ t-K)— V(L
PI%V(( t) +;t ) — V(L)

= nE(K,L).

This together with the fact that SL(n)-transformations leave volume V' unaltered, definition (2.15)),

and (2.16)), give (2.20).

We shall make use of the fact that a function i € C?(S™™1) is the support function of a convex
body provided that the matrix V2h + hl is positive definite, where V2h is the Hessian matrix
of h on S"~!, with respect to an orthonormal frame. This fact follows from Theorem 1.5.13 of
Schneider [48]] if we switch from Euclidean derivatives to spherical derivatives.

The case p = 1 of the following lemma is well known (see Schneider [48]). For real p # 0 it was
established by Kiderlen [28]. Thus, only the case p = 0 will require proof.

Lemma 2.1. For each p € R, the set
{chh —chly : K € K2, ¢ >0}
is dense in C(S™71).
Proof. Tt is sufficient to show that given a g € C?(S™™!) there exist K € X" and ¢ > 0 so that
g= chi — ch%,
for p = 0. This will be the case provided
h = e
is the support function of a convex body in K7 for some sufficiently small ¢ > 0.
The function % is obviously in C?(S™~!). An easy calculation gives
V2h = ht*Vg @ Vg + htV?g.

It follows that V2h + h1 — I uniformly as t — 0, and thus V2h + h[ is positive definite when ¢ is
sufficiently small. dJ

We shall use Lemma to show that two Borel measures are equal provided they agree when
integrated against the p-th powers of support functions of bodies in K.
We shall require the following definition.
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Definition 2.2. Suppose p € R. If 1 is a Borel measure on S™~" and ¢ € SL(n) then, ¢ -y, the L,
image of 1 under ¢, is a Borel measure such that,

(w) ds s (u) = / 67 P F((6 ")) dpa(u),

Sn—1 Sn—1

for each Borel f : S"1 — R.

3. THE RADIAL GAUSS MAP

Suppose K is a convex body in R™. For each v € R™\ {0}, the hyperplane
Hix(w)={x €eR":2-v=hg(v)}

is called the supporting hyperplane to K with outer normal v.

It will be convenient to call vector v € R™\ {0} a regular radial vector for K provided the
boundary point px (u)u is smooth; i.e., px(u)u € Hy(vy) N Hy(vy), for vy, v9 € S™ ! is only
possible when v; = v5. We recall that a convex body is called smooth provided each boundary point
is smooth; i.e., provided each boundary point of the convex body has a unique supporting hyperplane
passing through it. A vector v € R™\ {0} is called a regular normal vector for the body K provided
Hp(v) N OK consists of a single point.

The spherical image of o C 0K is defined by

vi(o) ={ve S" 'z € Hy(v) forsome x € o} C S 1.
The reverse spherical image of n C S™ ! is defined by
zr(n) ={x € 0K : x € Hg(v) for some v € n} C OK.

Let o C OK be the set consisting of all z € 0K, for which the set v, ({x}), which we frequently
abbreviate as v (), contains more than a single element. It is well known that H" ! (o) = 0 (see
p. 84 of Schneider [48]]). On precisely the set of regular radial vectors of K is defined the function

v : OK \ o — S"1, (3.1)

by letting v () be the unique element in vk (), for each x € OK \ ok. The functions v is called
the spherical image map of K and is known to be continuous (see Lemma 2.2.12 of Schneider [48]]).
It will occasionally be convenient to abbreviate 0K \ o by K. Since H" (o) = 0, when the
integration is with respect to "1, it will be immaterial if the domain is over subsets of 'K or K.

The set nxg C S™ ! consisting of all v € S™!, for which the set zx(v) contains more than a
single element, is of "~ !-measure 0 (see Theorem 2.2.11 of Schneider [48])). On precisely the set
of regular unit normal vectors for K is defined the function

ri 8"\ i — 0K, (3.2)

by letting 2k (v) be the unique element in zx (v), for each v € S" !\ nx. The function z is
called the reverse spherical image map and is well known to be continuous (see Lemma 2.2.12 of
Schneider [48]). Note that by extending xx to R™\ {0}, by making it a function homogeneous of
degree 0, we obtain a natural definition of z on the set of regular normal vectors of K.

Lemma 3.1. Suppose K € K. The vector u € R"\{0} is a regular radial vector for K if and only
if u is a regular normal vector for K*.
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Proof. To see this note that u # 0 is a regular radial vector for K if and only if for v;, v, € S771,
pr(w)u € Hi(vy) N Hg(ve) = v = vy,
equivalently if and only if,
pr(u)(u-vy) = hg(v)) and p(u)(u-vy) = hg(vy) = v = 09,
equivalently, using (2.4), if and only if,
prc+(01)(v1 - u) = hgs(u) and pes(v2)(vg - u) = hg«(u) = vy = vy,
equivalently, if and only if,
pr+(V1)v1 € Hie(u) and pg«(v2)ve € Hi«(u) = v = 09,
equivalently, if and only if u is a regular normal vector for K. U

It is well known (see Corollary 1.73 of Schneider [48]) that for K € K[ the support function
hi : R"\{0} — (0, 00) is differentiable precisely on the set of regular normal vectors for K, and

on the set of regular normal vectors for K.
We will need to make use of the well-know fact that if K € X7,

w is an outer normal at x € 0K = x is an outer normal at upg«(u) € 0K™. (3.4
P

To establish this we need show is that hx (u) = z - uw implies hg«(x) = pr+(u)(u - z), or by ([2.4),
that hy(u) = pr(z)(z - u). But this follows immediately from the observation that z € 0K means
pr(r) = 1.

Lemma 3.2. If K € X2, then for x € 0K \ ok,

Vi (x :_M:_ vpK(j)
() Vox(@)| — |[Vox(@)| (3.5)
and
B Vhgs(T)
vic(z) = N @] (3.6)

Proof. First, observe that a point y € JK will have a unique outer unit normal precisely if y is a
regular radial vector for K, by definition of a regular radial vector for K. By Lemma [3.1]this is the
case precisely when y is a regular normal vector of K*, and from (3.3), we know that this will be
the case precisely when hy- = 1/pk is differentiable at y and that in this case,

v+ (y) = Vhe-(y) = V(1/pr) (y) = —pc(y) Vi (y)- 3.7)

Since zx+ (y) is a point of 0K * with normal y, it follows from (3.4) and (2.5)) that z k- (y) is a normal
at ypi (y) = y € 0K, and from (3.7) we see that

~ Vok(y)  Vhi(y)  Vhi(5)
Vo) [Vhg-(y)]  [Vhe-(9)|

for each regular vector y € 0K . Note that to obtain the results involving Z or ¢ (as opposed to = or
y) we are making use of the positive homogeneity of the support and radial functions. U

vi(y) =
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For K € X7, define the radial map of K,
T S — 0K by rr(u) = pr(u)u € 0K,
for u € S"~L. Note that 7' : 9K — S™ ! is just the restriction to K of the map = : R"\ {0} —
St
For w C S™1, define the radial Gauss image of w by
ax(w) =vi(rr(w) C 5"

or equivalently,

ag(w)={ve S :rg(u) € Hyg(v) for some u € w}, (3.8)
and thus, for u € S 1,
ar(u)={ve S rg(u) € Hx(v)}. (3.9)
Define the radial Gauss map of the convex body K € X}
ag : S"\ wi — ST by Qg = Vg ° Tk,
where wyx = G = 5 (o). Since 7' = ~ is a bi-Lipschitz map between the spaces 0K and S~

it follows that wg has spherical Lebesgue measure 0. Observe that if u € S" 1\ wg, then a g (u)

contains only the element aix (u). Since both v and g are continuous, ak is continuous. Note that
for x € 0K,

akg(z) = vi(z), (3.10)
and hence, for z € IK,
hi(ag(Z)) = hx(vk(x)) = x - vi(x). (3.11)
If u € S" !\ wg, then from the definition of wg, we see that z = upg(u) € K \ ox, with
T = u. Hence from (3.10) we have ax(u) = akx(Z) = vk(z) and by appealing to (3.5) and (3.6),
we get:
_ Vpr(u)  Vhg(u)
IVox ()| [Vhg ()]’
For n C S !, define the reverse radial Gauss image of 1) by

o (n) = rt(@r(n) = (@K (1)) (3.13)

u € S"\ wk. (3.12)

ag(u) =

Thus,
ay(n) ={z: v € 0K where x € Hg(v) for some v € n}.

In particular, if 7 contains only the single vector v € S™~!, we see that

ay(v)={z: v € 0K where x € Hg(v)} (3.14)
Define the reverse radial Gauss map of the convex body K € X,
e ST\ e — S™T by O =15t o Tk (3.15)

Note that since both r;(l and x i are continuous, o 1S continuous.
Note for a subset  C S™71,

ai(n) ={ue S" ! rg(u) € Hg(v) for some v € n}, (3.16)
and hence for u € S" ! andn C S"!, we see from (3.9) that
ueag(n) <<= ag(unn+#a. (3.17)

Thus, for 1,7, € S™71,
mCmn = ax(mn)Cax(n).
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If 7 is the singleton containing only v € S™!, then (3.17) reduces to

u€ak(v) <= veag(u). (3.18)
If u € wg, then ak(u) = {ak(u)}, and (3.17) becomes
ueag(n) <= ag(u)en, (3.19)

and hence (3.19) holds for almost all € S, with respect to spherical Lebesgue measure.
We shall need to make use of the fact that for v, v € S" !,

u € ag:(v) <= veag(u). (3.20)
To see this note that from (3.9), it follows that,
u € ag«(v) <= Hg-(u) isasupport hyperplane at px«(v)v,
that 1s,
u€ag-(v) <<= hg-(u) = (u-v)pr-(v),
and, by (2.4), this is the case if and only if
hi(v) = (v-u) pg(u) = v-rg(u),
or equivalently, using again, if and only if,
v € ag(u).
For u € S"~1, define (u,ax(u)) by
(u,ax(u)) = {(u,v) € S" ' x S" v €ag(u)}.

The following will be a basic fact needed.

Lemma 3.3. Suppose K € X" and that 0 C S™' x S"~1 is a Borel set. Then the subset of S"!,
w={ue S (u,ax(u)) Nl #a},

is spherical Lebesgue measurable.
Proof. Let 1 : S"~' — S"~! be the identity map, ¢(u) = u, for u € S"7!. Since ax : S" N\wx —
S~ is continuous, the map (¢, ax) : S" M\wrg — S"! x S"71 is continuous, where S™" 1\ wx

is viewed as the topological space with the relative topology inherited from S™~!. Thus, since
0 c S 1 x S 1 isa Borel set, the set

wo = {u € S" N\wx : (u,ax(u)) €0} =wn (" N\wk)
is a Borel set in S" 7'\ wg. Note that w\wy C wg and hence w'\wy has Lebesgue measure 0.

Since the Borel structure of S"~! \ wy coincides with the relative Borel structure inherited from
S"~1 there is a Borel set w; in S™~! so that

Wop = Wq N (Sn_l \wK) = W1 \ (w1 N LL}K>.

Since w; is Borel measurable and w; N wx has Lebesgue measure 0 on S™~!, it follows that wy is
Lebesgue measurable on S™~!. Since the set w \ wy has Lebesgue measure 0 on S"~!, we conclude
that the set w is Lebesgue measurable on S 1. 0

Suppose n C S™~!. Note that (3.17)) tells us that u € a(n) if and only if ax (u) N7y # @, which
can happen if and only if (u,ax(u)) N (S"~! x n) # @. Thus,
ay(n) ={ueS" ' (uax(u)N (St xn) #a}. (3.21)
The following corollary of our Lemma 3.3]is Lemma 2.2.14 of Schneider [48].
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Corollary 3.4. If K € X", andn C S™ ' is a Borel set, then &’ () = (xx(n)) C S ! is spherical
Lebesgue measurable.

If g : S" ! — R is a Borel function, then g o ax is spherical Lebesgue measurable because it
is just the composition of a Borel function ¢ and a continuous function a in S"™1 \ wg with wx
having Lebesgue measure 0. Moreover, if g is a bounded Borel function, then g o o is spherical
Lebesgue integrable. In particular, g o aic is spherical Lebesgue integrable, for each continuous
function g : S"~! — R.

From [25]] we need:

Lemma 3.5. Suppose K; € K with lim; ,.. K; = Ky € K. Let w = U2 wg, be the set (of
H" L -measure 0) off of which all of the oy, are defined. Then if u; € S" '\ w are such that
im0 u; = ug € S™ 1\ w, then lim; o ag, (u;) = g, (Ug).

Recall that
(u,ax(u)) = {(u,v) € S" ' x "1 v € ak(u)},
and that ¢ : S"~1 — S"~1 is the identity map, ¢(u) = u, for u € S"~*. For w C S™!, define
(1,05 ) (W) = Uyew (v, ax(u)) € S™ 1 x §"7 1
For  C S™ ! x S™~! define

(t,ag)*(0) ={ue S" "' : (u,ax(u))No # o} (3.22)
As a trivial observation, note that for w C S™ 1,
(L) (wx S" = w. (3.23)
Obviously, for 6,0, C S"~1 x §n—1,
01 C0 = (1,ag)" (1) C (1,ak)"(62). (3.24)

Lemma 3.6. Suppose K € X7. If {0,} is a sequence of subsets of S™~* x S"~, then
()" (U;05) = Uj(e, i)™ (6;).

Proof. If v € U;6;, then v € 6;, for some j;, and (¢, ax)*(v) C (¢, ax)"(05,) € U1, ax)*(0;).
Thus, (1, ak)* (U;0;) C U;(L,ax)*(0;). If u € U;(t, ax)*(6;), then for some jo, we have u €
(e, ak)"(05,) € (1, ax)" (U;0;), by B.24). Thus, (1, ax)* (U;0;) 2 U; (e, k)" (0;). O

Lemma 3.7. Suppose K € X". If {0,} is a sequence of pairwise disjoint sets in S"~' x S"~1, then
the sequence {(1,ax)*(6;) \ wi } is pairwise disjoint as well.

Proof. Suppose there exists a u € S™~! such that for j; # jo,
u€ (rag) (0,) \wg and u € (1,ak) (8;,) \ wk.
Definition tells us this means that
(u,ax(u))Nb;, #2 and (u,akx(u))Nb;, # .

But since u ¢ wy we know that aux (1) is a singleton, which contradicts the assumption that 6;, N
0,, # 2. O
J2

Lemma 3.8. For K € X7, and Borel sets w,n C S",

(t,ax) (wxn)=wnNag(n).
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Proof. Fix u € S"~1. From definition (3.22)) and using (3.20), we have
u € (L,or) (wxn) <= (u,ax(u)N(wxn) # S
S ucw,JveEn:vEag(u)
< Jven: (u,v) €wxnandv € ax(u)
< Jven:(u,v) €wxnandu € ag-(v)
<= u € wNag-(n).
U

The reverse radial Gauss image of a convex body and the radial Gauss image of its polar body are
related. Combine (3.21]) and definition (3.22) to get

(1, 00x)" (5™ x 1) = @ (m), (3.25)
which when combined with Lemma [3.8] immediately yields:

Corollary 3.9. If K € X}, then

for eachn C S™L. 3

Since o (v) = {aj (v)}, for almost all v € S™~!, with respect to spherical Lebesgue measure,
and ax-(v) = {ag+(v)}, for almost all v € S™~', with respect to spherical Lebesgue measure,
Corollary [3.9 gives:

Lemma 3.10. If K € X7, then
o = e,

almost everywhere with respect to spherical Lebesgue measure.

When Lemma [3.10]is combined with (3.12)), we get

% Vh K (’U)
e (v) Vhe(o)] (3.26)
for almost all v, with respect to spherical Lebesgue measure.
By using the spherical image and the reverse spherical image, one can define the integral curva-
ture, surface area measures, and their L, extensions.

The surface area measure S(K, -) can be defined, for Borel n C S"~!, by
S(K,n) = H" Nz (n)). (3.27)

If 0K is smooth with positive Gauss curvature, the surface area measure of K is absolutely continu-
ous with respect to Lebesgue measure, S, on S n=1 and the density is the reciprocal Gauss curvature,
when viewed as a function of the outer unit normals of 0K . The density has an explicit description
in terms of the support function and its Hessian matrix on S™~1,

—5 det(V?hg + hgl), (3.28)

where V2h denotes the Hessian matrix of hy and I is the identity matrix with respect to an or-
thonormal frame on S™~!. For all this see Schneider [48].
For convex bodies K, L in R™, the classical mixed volume, V; (K, L), has the integral representa-

tion: .
Vi(K, L) =~ / b (v) dS(K, v), (3.29)
Sn—l

n
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which holds for each convex body L. The celebrated Minkowski mixed-volume inequality states
that

Vi(K,L)" > V(K)"'V(L), (3.30)

with equality if and only if K, L are homothets.
For p € R, the L, surface area measure S,( K, -) of K € K7, introduced in [38]], may be defined
by,
dS,(K,-) = hy P dS(K,-), (3.31)

or equivalently, by
Sp(K,n) = / (z - v(z)PdH" (), (3.32)
zx (1)
for each Borel  C S 1.
For p € R, and K, L € X2, the L, mixed volume V,, (K, L) is defined by
1
Vo(K,L) = —/ hY (v) dS,(K,v). (3.33)
n Sn—1
For p > 1, the L,-Minkowski inequality for the L,-mixed volume is
VoK, L) > V(K)" PV (L), (3.34)
with equality if and only if either K, L are dilates when p > 1, or K, L are homothets when p = 1.
The p-th dual curvature measure 5},([( , +), introduced in [25], is a Borel measure on S~1 defined

for each K € X and each p € R. As shown in [25]], one convenient way of defining 5P(K ,+) is via
the integral representation

~ 1
/ 9(v) dCy(K,v) = ~ / v () g(vie (@) I (x), (3.35)
Sn—1 n K
which holds for each bounded Borel function ¢ : S*~! — R.
The integral curvature measure J(K, -) on S"~! can be defined, for Borel w C S™~!, by

J(K,w) = H"ax(w)); (3.36)

that is, J(K,w) is the spherical Lebesgue measure of ax (w). The integral curvature measure of K
was introduced by Aleskandrov.

For each p € R, the L, integral curvature measure .J,(X, -) was introduced in [26] and is the
Borel measure on S™~! that may be defined by

or, equivalently (as shown in [26]) by
IKw) = [ A aitga) = [ dago)d, (3.38)
w ak(w)

for each Borel w C S™ 1.
The following integral identity was established in [25]: If ¢ € R, and K € X7, while f : S"~1 —
R is bounded and Lebesgue integrable, then

s f(u)pr (u)! du = - F@) |2 (2 - vie (2)) dF" (). (3.39)
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Also established in [25] was the following integral identity: If KX € X is strictly convex, and
f:S"! 5 Rand F : 9K — R are both continuous, then

. JW)F(Vhg(v))hg(v)dS(K,v) = /aK(;B (@) fvre () F(z) dH Y (z),  (3.40)

where Vi is the gradient of hx in R™. Recall that while vk is defined only on 0K \ o, the set
o has H" !-measure 0. We shall require a slight extension of (3.40). Specifically, if p € R, while
K € X7 is strictly convex, and f : S»~! 5 Rand F : 9K — R are both continuous, then

f(v)F(Vhg(v))dS,(K,v) = / (z - v ()P f(vg (2)) F(x) dH" (). (3.41)
gn—1 oK

To derive (3.41)) from (3.40) merely replace f by h, f in (3.40), and observe that for H{"!-almost
all x € 0K, specifically, for all z € 0K \ ok, from (3.11) we have hx(vk(z)) = x - vi(z), and

then use (3.31).

4. L, DUAL CURVATURE MEASURES

For a star body @) € 87, define || - ||g : R" — [0, 00) by letting

1/pg(z) x#0
T|g = 4.1
Izl {0 Y @)
Note that || - || is a continuous, and a positively homogeneous function of degree 1. When () is an
origin-symmetric convex body in R”, then || - || is an ordinary norm in R, and (R", || - ||g) is the

n-dimensional Banach space whose unit ball is ().
We first define the dual notions of the metric projection map p, and the distance function d(X, -).

Suppose K € X". Define the radial projection map py : R" \ K — 0K by

Pr (%) = pr(z)z = rg(T), (4.2)
forx € R™\ K.
For x € R", the radial distance dQ ,x) of x to K, is defined by
K
{ oo v ¢ (4.3)
x € K.
Let

Suppose () € 8” and K € KX}. Fort > 0, a Borel § C Sn=1 % §7=1 a Lebesgue measurable
w C S" !, and a Borel n C S™~!, define the local dual parallel bodies

Bi(K,Q.w) = {z € R": 0 < dg(K, ) < t with i (z) € w}, (4.6)
Fi(K,Q.0) = {z € R": 0 < do(K,z) < t with (ig(2),ax(ix(z) N0 £ 2} 47

These local dual parallel bodies have Steiner type formulas as shown in the following theorem.
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Theorem 4.1. Suppose K € X" and Q € 8". Fort > 0, a Borel § C S"™' x S""! a Lebesgue
measurable w C S"', and a Borel n C S" 1,

VK. =3 (”) 8K, Q). (4.8)
=0

VB(K.Q) =3 () B (K Q) @9)
1=0
1=0

where E’i(K, Q,-) and g'i(K, Q, ) are Borel measures on S"~! given by

~ 1 . .

CA(K, Q) = & / e (u)ly () ds, @11
n Jaz (n)

~ 1 . .

5..Qu) = - [ pictwty ) du, @.12)

and éi(K, Q, ") is a Borel measure on S™' x S"! given by

~ 1 . .
0,(K,Q,0) = —/ P (u)py ' (u) du, (4.13)
(Lax)* (6)

n
Proof. Using (.1)), .2), (¢.3), and (@.4)), we can re-write (4.6) as
By(K,Q,w) ={x € R": 0 < |z| < px(T) + tpo(Z) with z € w }. (4.14)

Write = pu, with p > 0 and v € S™!, and for the volume of ét(K, Q,w) we get:

- pi (u)+tpq (u) .
VB = [ [/ o dp | du
UEW 0

_1 / (prc(0) + tpg(w)" du

1 = LA, 7 n—i
= o (D) [ ity o,

where the integration is with respect to Lebesgue measure in S™~!. This gives and (4.12).
In (@.3), the condition that px(x) € xx(n), or equivalently by @.2) that rx(Z) € zx(n), is by
(B-13), the same as 7 € r' (xx(n)) = (T (1)) = aj(n). Thus, @3] can be written as

A(K,Q,n) = {z € R": 0 < |z| < px(T) + tpo(T) with T € a () }. (4.15)

Since n C S™! is a Borel set, we know from Corollary that o’ (n) is a Lebesgue measurable
subset of S"~1. A quick glance at (@.14)) and (4.13]) allows us to see that

A’Zt(K7 Qa 77) = §t<Ka anfx(n))
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Now (4.9) yields,
V(A(K,Q,n)) = V(B,(K,Q,ax(n)))

_ (?)tn—i§i<f<,@,a;<n>>,
0

and by defining
we get both (4.8)) and (4.11).

From its integral representation (4.12]), we see that S; (K, @, -) is a Borel measure that is obviously

absolutely continuous with respect to spherical Lebesgue measure. In particular, EZ(K ,Q, ) will
assume the same value on sets that differ by sets of spherical Lebesgue measure 0.

Write (4.7) as
Et(K, Q,0) ={x e R": 0 < |z] < px(ZT) + tpg(Z) with (Z,ax(Z)) N0 # @ }. (4.17)

Write z = pu, with p > 0 and u € S"~!, and for the volume of Et(K, Q,0), we get

~ px (w)+tpg(u) .
V(EK.Q.0) - | / o dp | du
(u,ai (w)NO#£D 0

1

== / (pxc(u) +tpg(u))" du
T J (w0 (u)N0£2

1 - v\ =i % n—i
=) i ()
nio \! (wr ()02

1 n (n) _A/ . iy
= — e Pr(w)pg ' (u) du,
”; i (v )* (6) 9

where the last identity comes directly from definition (3.22)). This gives (4.10) and (4.13)), and the
critical fact that

O:(K,Q,0) = Si(K,Q, (1,0x)"(0)). (4.18)

We now show that ©;(K, Q, -) is a Borel measure on S"~1 x S"~1. For the empty set &, we have

from (4.18) and definition (3.22)) that,
éi(K7Qa Q) = S’Z(K7Qv <L7QK>*(®)) = S’Z(KaQa @) = 0.

Let {0} be a sequence of pairwise disjoint Borel sets in S"~' x S""'. From Lemma and
definition (3.22)), together with the fact that wx has spherical Lebesgue measure 0, we know from
Lemma [3.7)that {(z,ax)*(0;) \ wi } is a sequence of pairwise disjoint Lebesgue measurable sets.
From (4.18), Lemma [3.6] the fact that wy has measure 0, and the fact from Lemma [3.7] that the

{(t,ax)*(0;) \wk } are pairwise disjoint together with the fact that gi(K, @, -) is a measure, the fact
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that wx has spherical Lebesgue measure 0, and (4.18) again, we have

0:(K,Q.U,0,) = Si(K,Q, (t.ax)*(U; 8))
:§<K@ U; (1 ax)*(65)
= Si(K, Q. (U;(1.ax)"(8)) \ wi)
= Si(K, Q, U, (1) (8) \ wro))

CQZ

I
MMMW

i(K, Q, (1, ak)"(0;) \ wi)
g’i(K’Q7<L7aK>*(0j))
@z(Kan(g])

This shows that éi(K, Q, ") is a Borel measure on S™~ 1 x S"~1, O

We call the measure (:)Z(K , @, ) the generalized i-th dual curvature measure of K relative to )
or the i-th dual support measure of K relative to (). Call the measure gz(K ,Q, ) the i-th dual

area measure of K relative to () and the measure C; (K, Q, -) the i-th dual curvature measure of K
relative to ). From (2.17), (.11) together with definition (3.13)), and (@.12)), we see that the total
measures of the i-th dual area measure and the ¢-th dual curvature measure are the i-th dual mixed

volume XN/i(K,Q); ie

Vi(K,Q) = Si(K,Q,5" ") = Ci(K,Q, 8™ ). (4.19)

The dual curvature measures and the dual area measures are the marginal measures of the dual
support measures; 1.e., for Borel n,w C St

a(Ka Q?ﬁ) = (:)Z<Ka Q:Snil X 77)7 (420)
Si(K,Q,w) = 6;(K,Q,w x 5"V, 4.21)

To see this, observe that (4.20) follows from @.18), (3.25)), and (@.16) while (.21)) follows from
@18)) and (3.23).

The integral representations (4.11]) and (4.12)) show that the dual curvature and dual area measures
can be extended.

Definition 4.2. Suppose ¢ € R. For K € KX and () € 8, define the q-th dual area measure
gq(K, Q, ) by letting

~ 1 .
Sy(K,Q,w) = - / Plc(w)pg *(u) du, (4.22)
for each Lebesgue measurable w C S™, and the g-th dual curvature measure 5'q(K ,Q, ) by letting

~ 1 -
C,(K,Q,n) = - / Pl (u)pg ! (u) du, (4.23)
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for each Borel n C S™'. Moreover; for each p € R, define the (p, q)-th dual curvature measure
Cp,q(K7 Qa ) by
dC, (K, Q, ") = hidCy (K, Q, ). (4.24)

A trivial, but important observation is that

Coo(K,Q,-) = Cy(K,Q, ). (4.25)

Note that from definition (4.23) and the fact that (3.19) holds off of the set wy of spherical
Lebesgue measure 0, we have for each Borel n C S™71,

[ ) (. Qu) = G (K. Q.

1 .
= _/ Pl (u)pgy *(u) du (4.26)
e (1)

n

1 o

o [ ey ) du
Sn—l

1

[ L)k (el ") du

Observe that (NJq(K , @, -) is absolutely continuous with respect to spherical Lebesgue measure.
From (#.26)) we will deduce that for each bounded Borel f : S"~! — R, we have

(w)dCy(K, Q) =~ [ Flo(w))ple(u)pls(us) .27)

Sn—1 n Sn—1

Since is shown to hold for indicator functions of Borel sets by (4.26), we know that
holds for linear combinations of indicator functions of Borel sets; i.e. simple functions ¢ : S"~! —
R, given by

¢ = Z Ciﬂma
=1

with ¢; € R and Borel n; C S™!. Now choose a sequence of simple functions ¢, : S" ' — R
converging to the bounded Borel function f : S"~! — R. Note that since f is bounded the ¢; may
be chosen to be uniformly bounded. Then ¢y o converges pointwise to foa on St \wp . Since
f:S™ 1 — Ris aBorel function and the radial Gauss map ax : S" !\ wx — S" ! is continuous,
foa is a Borel function on S™ ! \wgk. Since f is bounded and wy has spherical Lebesgue measure

0, we conclude that f is Q(K ,Q, -)-integrable and f o ax is spherical Lebesgue integrable on S™ 1.
Since CN)'q(K , @, -) is a finite measure, by taking the limit £ — oo we get (4.27).

Proposition 4.3. Suppose p,q € R. If K € K while () € 87, then

~ 1
Coall. @) = [ (o) ) ) @2
aj(n

n

for each Borel setn C S™ L.
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Proof. To establish (4.28), note that from (4.24), (4.27), and (3.19)), we have

Cp(K.Q.) = /S Ly(w) dC, (K, Q,u)

= [ bt PGy, Quu)

/Sn_1 ]ln(OéK(U))hK(OzK(u))—Ppg((u)pg—q(u) du

L, (o () (v ()Pl ()l ()

I
Sle 3= 3|
7
|

for each Borel n C S™1.

Verification that C, (K, @, -) is a Borel measure for each ¢ € R, is the same as for the cases treated

above where g =1, ..., n.
Obviously, the total measures of the g-th dual curvature measure and the ¢-th dual area measure

are the ¢-th dual mixed volume; i.e.,

V(K. Q) = S,(K,Q,5" ") = C,(K,Q,5" ). (4.29)
It follows immediately from glancing at definitions (#.22)) and (@.23) that,

Co(K.,Q.n) = S,(K, Q.a(n)). (4.30)

5. PROPERTIES OF THE Lp DUAL CURVATURE MEASURES

Lemma 5.1. Suppose p,q € R. If K € X" while Q € 8", then for each Borel setn) C 5", and
each bounded, Borel function g : S" ' — R,

[ a0)dG, K@) = [ glar@)hid @)y Wi, 5D
Sn71 Snfl
| 901G (K@) = [ gtole)a v ol 50w, (52)
Snfl 'K
Coalts@m = [ @) el 07, 53)
rETK (N

Proof. Since h; P : S"~' — R is a bounded Borel function, from @27) with f = gh,’, we have

/ g(0) i (v) dC, (K, Q. v) = ~ / v () g (cuge () e () 157 o)
Sn—l Sn—l

n

which, in light of (4.24)), is the desired result (5.1).
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By using (5.1) and letting f = (g o a)(hg” o ax)py * in (3.39), the homogeneity of pg, (3.10),
(3.11)), and finally the fact that || - || = 1/pg, we have

[ o018t @ = st )ty o d

Sn—1 .

— o | slan@)nar(@lel" "oy @) o vila)) a9 (@)
'K

) %/a/KWK(x))(fc v (@) |2l " 3 @),

This establishes (5.2).
Take g = 1, in (5.2). Recall that vi(z) € n < x € xk(n), for almost all = with respect to
spherical Lebesgue measure. And we immediately obtain (5.3). U

Example 5.2 [L,, dual curvature measures of polytopes] Let P € X[ be a polytope with outer unit
normals vy, . .., v,. Let AA; be the cone that consists of the set of all rays emanating from the origin
and passing through the facet of P whose outer normal is v;. Recalling that we abbreviate a}({v; })
by a(v;), from (3.14) we have

ap(v;) =S""1NA;, and ap(u)=v;, foralmostallu € A; N S" 1. (5.4)

If n € S"!is a Borel set such that {v,...,v,,} Ny = &, then a’(n) has spherical Lebesgue

measure 0. Therefore, the (p, ¢)-dual curvature measure C, ,(P, @, -) is discrete and is concentrated
on {v1,..., v, }. From Proposition 4.3 and (5.4), we see that

Cpo(P,Q,") Zcz (5.5)
where, ¢,, denotes the delta measure concentrated at v;, and
1 _ e
¢ = —th(vi)/ p%,(u)pQ (u) du. (5.6)
n S”*lﬁAi

Example 5.3 [L, dual curvature measures of strictly convex bodies] Suppose K € K is strictly
convex. If g : S"~1 — R is continuous, then (5.2)), and (3.41)) together with the fact that OK \ 'K
has measure 0, give

[ o0 (5.Q.0) = [ (v gt el e )
gn-t n Jok

[ @ IVhrlo)l " s, (5. v)

Using (3.37)), this shows that
- 1 . 1, _n
dC, (K, Q) = ~|[Vhic | " dS, (K, ) = —hic | Vhuel|g ™ dS (K ). (5.7)

Example 5.4 [L, dual curvature measures of smooth convex bodies] Suppose K € X7 has a C?
boundary with everywhere positive Gauss curvature. Since in this case S(K, ) is absolutely continu-

ous with respect to spherical Lebesgue measure, it follows that C, (K, @, ) is absolutely continuous
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with respect to the spherical Lebesgue measure, and from (5.7), (3.28), and (2.2)), we have

w = %h;{p(v)”@h[((v) + hc(v)o]|§ " det(V2hi (v) 4 hic (0)1), (5.8)

where Vh K (v) denotes the gradient of hy on S™=1 at v and V2hx denotes the Hessian matrix of
hx with respect to an orthonormal frame on S .

The weak convergence of L, dual curvature measures is an important property and is contained
in the following proposition.
Proposition 5.2. Suppose p,q € R and Q € 8). If K; € K with K; — K, € K, then
Cp,q(Ki7 Qa ) — C’10,q([(07 Q7 ')’ weakly.

Proof. Suppose g : S"~' — R is continuous. From (3.1)) we know that

/ 9(0) dC, (K, Quv) = ~ / e, ()L (cure, (1))l (o) P () s
gn—1 gn—1

n

for all 7. Since K; — K, with respect to the Hausdorff metric, we know that both hx, — hg, and
PK; — PK,.uniformly on S "1 and using Lemmathat g, — Qg,, almost everywhere on S n—l
Thus,

/Sn_lg(ozm (u))h}(—il’(a[{i (u))pg(i(u)pg—qm) du

= ). gl () he,” (v () P, (W) Py * (w) dus.
It follows that 5p7q(Ki, Q,) — 6’p,q(K0, Q,-), weakly. O

The absolute continuity of the L,, dual curvature measure with respect to the surface area measure
is contained in the following proposition.

Proposition 5.3. Suppose p,q € R. If K € X! and () € 8, then the dual curvature measure
am(K ,Q, ) is absolutely continuous with respect to the surface area measure S(K, -).

Proof. Supposen C S™!is such that S(K,n) = 0, or equivalently by definition 3.27), H" ! (zx(n)) =
0. Now (5.3) states that,

~ 1
Cpq(K,Q,n) = ﬁ/ ||x||qQ_”(:E v (2) P dH T (x) = 0,

zr(n)

since the integration is over a set of measure 0. U

Cone-volume measure has become an increasing important concept; see e.g., [3,4.,7,24,43,44,46|
63]]. The following proposition tells us that the L, surface area measure including the classical sur-
face area measure, the dual curvature measure including the cone-volume measure, the L,, integral
curvature including Aleksandrov’s integral curvature, are all special cases of the L, dual curvature
measure.
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Proposition 5.4. If K € X} and p,q € R, then

Cpy( K K, ) = %Sp(K, ), (5.9)
Cpul K, B, ) = %Sp(fﬂ ), (5.10)
Coq(K, B, ) = G(K.,), (5.11)
Co(K, B,-) = %JP(K*, ). (5.12)

Proof. Letn) C S™ ! be a Borel set. From (5.3, we have

~

Cpn(K,B,n) = l/ (z - vr(2) P dH" (2) = C, (K, K, 1),
n zk (1)

where the right equality follows from the simple observation that for all x € 9K we have ||z||x =
1/pk(x) = 1, from the very definition of the radial function. But, (3.32)) states that the integral
above is just + 5, (K, 1), which establishes both (53.9) and (5.10) simultaneously.

Identity (5.11)) follows from the definition of dual curvature measure (5.2)) and the definition of
the the ¢-th dual curvature measure (3.33).

From the definition of (p, 0)-th dual curvature measure, Proposition with ¢ = 0 and ) = B,

(2.4), (2.5) together with Lemma [3.10, and finally (3.38)), we have

1
Cro(K,n) = E/ ( )hK(OéK(U))_de
ag(n

1
— [ (e pdu
n axx(n)
1 *
= E JP(K 777)7
which gives (5.12)). O

Let M(S™™1) denote the set of Borel measures on S"~!. We shall now show that, for fixed
indices p, ¢ € R, and a fixed star body Q € 87, the functional X — M(S™!), defined by K +

5},,(1([(, @, -) is a valuation; i.e., if K, L € K7, are such that K U L € X7 then

61p7q(l(7 Q7 ) + 61p7q(L7 Q7 ) - 5p,q(K M La Q? ) + 5p,q(K U Lu Q7 )

Towards that end, we shall employ Weil’s Approximation Lemma: If K, L € X are such that
K U L is convex, then K and L may be approximated by sequences of bodies K;, L; € X that are
both strictly convex and smooth and such that K; U L; € K7. The simple and elegant proof (below)
is due to Wolfgang Weil: Simply let

K;=(K+1B)"+1B)" and L;=((L+1B)"+1B)".
Other than the fact that polarity * : X! — X7 is both continuous and an involution, there are three
key observations required to establish Weil’s result: (1) If K UL € KX? then K*U L* = (KN L)* €

K7 . See Schneider [48], Thm 1.6.3. (2) If K U L € X7 and € > 0, then the smooth bodies K + B
and L + B are such that

(K+eB)U(L+eB)=KUL+eBeX].

(3) Polars of smooth bodies are strictly convex and visa versa, which is Lemma|3.1
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We appeal to Proposition[5.2]together with Weils Approximation Lemma in order to complete our
proof.

Lemma 5.5. Forp,q € R and a fixed () € 8, the functional

Cpaq

('7 Q7 ) : jc;l — M(Sn_l)a

defined by K 6’p7q(K, Q, "), is a valuation.

Proof. We shall make use of the fact that when K, L € X, are such that K U L € X7, then
hxur = max{hg,hy} and hgnp = min{hg, hy}. We shall also make use of the fact that vx and
vy, are defined H" ! almost everywhere on the boundaries of K and L respectively.

First, we assume that K and L are both strictly convex. For a fixed § C S™~!, write § as the union
of three disjoint pieces # = 6y U 0 U 01, where

Ok ={ue€b:hg(u)>hr(u)}, 0p={uecb:hg(u)<hr(u)}.
while
90 = {U €0: hK(U) = hL(U,)}

Now,
[ ) el a0 @) = [ (o)) el a0 ),
LS TR r€xk (Ox)

while

L ) Tl e = [ @) el 00 @)
z€TRNL (VK

zexr (0k)

Alternatively, using (5.3]), we can write this as

Coo(KUL,Q,0k) =Chy(K,Q,0k) and C, (KNL,Q,0k)=Chy(L,Q,0k). (5.13)
Similarly

Coo(KUL,Q,0) =C,y(L,Q,0r) and C,(KNL,Q,0L) =C, (K, Q,0L). (5.14)
It is also the case that,

Cpe(KUL,Q,0)) =C,(K,Q,0), and C,,(KNL,Q,0)=C,,(L,Q,0). (5.15)

To see this last fact, observe that the strict convexity of K and L forces i1 (0y) = Txnr(0o).

Now, using the fact that C,, ,( -, Q, ) is a measure in the third argument on S"~!, together with
the fact that the union 6 = 6y, U 0 U 6, is disjoint, by adding (5.13)), (5.14), and (5.15) we obtain
the desired result that

Cp,q(K N La Q7 9) _I— C1;1),11([( U L> Qv 0) = Cp,q(Ka Qa 9) + Cp,q(Lv Qa 0)7
which is the desired result.

For arbitrary K, L € X7, we appeal to Proposition in order to use the weak continuity of

C (+,Q, ") in the first argument. O

p.q
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6. VARIATIONAL FORMULAS FOR DUAL MIXED VOLUMES AND DUAL MIXED ENTROPY

Let  be a closed subset of S™~! that is not contained in any closed hemisphere. Let f : Q@ — R
be continuous, and § > 0. Let h; : Q2 — (0, 00) be a positive continuous function defined for each

€ (—0,0) by
log ht(v) = log ho(v) + tf(v) + o(t,v), (6.1)
where o(t, -) : 2 — R is continuous and lim;_, o(¢, -) /t = 0, uniformly on 2. Denote by
hd ={z e R":z-v < h(v)forall v € Q},
the Wulff shape determined by h;. We shall call [h] a logarithmic family of Wulff shapes generated
by (ho, f). If hq is the support function hx of a convex body K, we also write [h] as [K, f, .

Let g : 2 — R be continuous, and § > 0. Let p; : 2 — (0, 00) be a positive continuous function
defined for each ¢t € (—6,0) by

log pi(u) = log po(u) + tg(u) + o(t,u), (6.2)
where again o(t, -) : 2 — R is continuous and lim;_, o(t, -) /t = 0, uniformly on €2. Denote by
(py) = conv{p,(u)u : u € S" 1}

the convex hull generated by p;. We will call (p;) a logarithmic family of convex hulls generated by
(po, g)- If po is the radial function pj of a convex body K, we also write (p;) as (K, g, t).

The following theorem gives the variational formulas for dual mixed volumes and dual mixed
entropy of a logarithmic family of convex hulls.

Theorem 6.1. Suppose Q C S" ! is a closed set not contained in any closed hemisphere of S™ !,
and poy : 2 — (0,00) and g : Q@ — R are continuous. If (p;) is a logarithmic family of convex hulls
generated by (po, g), then for Q) € 8" and q # 0,

Vq((pt)*a Q) - Vq((p())*a Q)

lny t =4 [ a0 i, Q.0
and
ﬁ Q

For () = B, the unit ball in R", Theorem was proved in [25]. When () is an arbitrary star
body in 87, the proof of Theorem |[6.1]is very similar and thus omitted.

The following theorem gives the variational formulas for dual mixed volumes and dual mixed
entropy of a logarithmic family of Wulff shapes.

Theorem 6.2. Suppose 2 C S™ ! is a closed set not contained in any closed hemisphere of S™*.
Ifho: Q — (0,00) and f : Q2 — R are continuous, and [hy is a logarithmic family of Wulff shapes
generated by (hy, f), then, for @ € 8" and q # 0,

hy (th
([]Q) [O]Q /f

t—>0 t

lim E(hd, Q) ~ E(th), Q) / F(v) dCo(lhel, Q,v).

[h()] Q U)

and

t—0 t
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Again, for () = B, Theorem was proved in [25]. When () is a star body in 87, the proof of
Theorem 6.2]1s similar and thus will be omitted.

We state the special cases of Theorems [6.1] and [6.2] for logarithmic families of convex hulls and
Wulff shapes generated by convex bodies.

Theorem 6.3. Suppose K € X" and g : S"~' — R is continuous. Then, for Q € 8" and q # 0,

V,((K*,g,%,Q) — V,(K -
po Vot 9,07,Q) — V(K. Q) _q/ g(v) dC, (K, Q,v),
t—0 t gn=t
and
E(K*. a.0)" ~E(K =
111’% (( ;9,1 a?) ( 7Q) _ _/ g(U) dCO(K7Q7U).
- Sn—l

Theorem 6.4. Suppose K € X", and f : S"~' — R is continuous. Then, for Q € 8" and q # 0,

g VS 0Q ZVo(KQ) ) 42 1.0,

t—0 t Sn—1

and

o EUE£.0.Q) ~ B(K,Q) _

t—0 t Sn—1

F()dCo(K, Q,v).

The following theorem gives the variational formulas of dual mixed volumes and dual mixed
entropy with respect to L,, Minkowski combinations.

Theorem 6.5. Suppose p # 0and q # 0. If Q € 8! and K, L € X7, then,

. V(K+tLQ) (KQ) q » >~
lim : -1 /5 B (0)dC (K, Q. v), 6.3)
V K+t L K, ~
lim (Bt 1, Q) ( @) q/ log hp(v) dC, (K, Q,v), (6.4)
t—0 t Sn—l
E(K—l—t L,Q)— (K Q) 1 » ~
lim : - /S B (0)dC,(K, Q,0), 6.5)
E K+t-L K, ~
i PUC01L.Q) — E(K.Q) log hp(v) dCy(K, Q, v). 6.6)
t—0 t gn—1
Proof. For small ¢, define h; by
hy = hh +thh, p#0,
4 (6.7)
he = hichl,  p=0.
From (2.T1)) and 2.12)), the Wulff shape (h;) = K+ t- L.
From (6.7)), it follows immediately that, for sufficiently small ¢,
t hY
log hy = loghK—l——h—p—f—o( ), p # 0,
log hy = log hx +tloghy, p=0.

Let [ = ng when p # 0, and let f = log hy when p = 0. The desired formulas now follow
directly from Theorem [6.4] and (4.24). O
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By using the normalized power function, we can write the formulas in Theorem [6.5|as one single
formula.

Theorem 6.6. Suppose p,q € R. For Q € 8”, and K, L € K,
d ~ _ ~
= [ MG, (K. Q.0

d—V (K+t-L,Q)
For 0-Minkowski-Firey linear combinations it will be helpful to have an affine version of Theorem
[6.5] This is contained in:

Theorem 6.7. Suppose q # 0. If Q € 8" and K, L € X, then,

t=0

V(=) K4t L,Q) = V,(K, Q) hp(v) =~

lim ; q/snl log e (0) dCy(K, Q,v), (6.8)
B - ) Ky +L,Q) - B(K,Q) hy)

11_1)1(1) ; /Sn 1log P () dCy(K,Q,v). (6.9)

Proof. Let

hy = h}(_thtL.
From (2.12)), the Wulff shape [h;] = (1 — t)- K + t- L. From the above definition of A, it follows
immediately that, for sufficiently small ¢,

log hy = log hx + tlog Z—L
K

Let f = log hL The desired formulas now follow directly from Theorem 0
In stating our next theorem we recall Definition [2.2]

Theorem 6.8. Suppose p # 0 and q # 0. Then for all Q € 8" and K, L € X2, and ¢ € SL(n),

Cp (0K, 6Q, ) = ¢4 Cy o (K, Q, ) (6.10)
Cpo(0K,6Q.-) = 81 C, o (K, Q, ) (6.11)
Co(0K, 6Q.) = 3 C,(K, Q. ) 6.12)
ColoK,6Q.) = ¢ Co(K, Q. ) (6.13)

Observe that the case p # 0 and ¢ = 0 is handled by (6.11)). The case p = 0 and ¢ # 0 is handled
by (6.12)), while the case p = 0 and ¢ = 0 is handled by (6.13).

Recall that Haberl & Parapatits [21] classified measure-valued operators on X! that are SL(n)-
contravariant of degree p, which corresponds to the transformation behavior in Theorem [6.8] but our
measures depend on an additional star body.

Proof. From (2.16), (2.18), and (6.3)), we see that for all K, L € X” and all ) € 8",

/S () dC (9, 60, v) = /S W) G, (K, Q.v), forall € SL(n),
or equivalently, that for all K, L € X7 and all ) € 87,

/ 1Y () dC, 4 (9K, 6Q, v) = / R (0)dC, (K, Q,v), forall ¢ € SL(n).  (6.14)
Sn—1 gn—1
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From Definition [2.2] the fact that support functions are positively homogeneous of degree 1,
followed by (2.1)), and (6.14)), we have

| @ a5 = [ Wom 0 a6 (K. Q)

Sn—1

N /Sn1 hZﬂL(”) dép,q(K7 Q,v)
_ /S W (0)dC,, (9K, 6Q. ).

But this shows that the measures ¢’ ép’q(K ,@, ) and (Nl’p’q(¢K , (@, -) when integrated against the
p-th power of support functions of bodies in K are identical and thus Lemma [2.1{now shows that
indeed

Cp,q(¢K7 ¢Q7 ) = ¢t5| Cp,q(K7 Qa ')7
which establishes (6.10).
The proof of (6.11)) is identical to the proof of (6.10): As long as p # 0, it will be the case that
(6.14) continues to hold even if ¢ = 0 provided we appeal to (6.3)) and (2.20) when previously we

had turned to (6.3) and (2.18).
From (2.16)), (2.18)), and (6.8)), we see that for all K, L € K" and all Q € 8",
hy-1p(v) > / hp(v)  ~
log 2L 4C (K, Q,v) = lo dC. (6K, 6Q,v), 6.15
ot a0 = |t Bl 0K 00,0, (615)

for all ¢ € SL(n).
In (6.15)) choose L = B. Then by @.1)) we see that hy-11,(v) = h(¢'v) = ¢ v
becomes:

» and (6.15)

/ log hic (v) dC,(K, Q,v) = / log |¢~"v| dC, (K, Q, v)+ / log hex (v) dC, (K, 6Q, v),
Sn—1 gn—1 gn—1

(6.16)
which holds for all ¢ € SL(n), all K € X, and all ) € 8”. Combining (6.15) and (6.16) gives

/S_llog h-1(v) d@q%@,v):/ log 1 (v) dC, (6K, 6Q, v),

[~ gn=1
or using (2.1)),
/S loghy((¢70)) dC,(K, Q. v) = /5  loghy(0)dC,(0K,6Q.v),  (6.17)
which holds for all ¢ € SL(n), all K, L € X2, and all ) € 8”. Equivalently,
[ oghu()asts Gy, = [ toghu()aC (oK. 6Q.0). (6.18)

which holds for all ¢ € SL(n), all K, L € X, and all € 8. Using Lemmal[2.1] we see that (6-18)
yields
Cq(¢K7 ¢Q7 ) = (b%‘ Cq(K7 QJ ')7
forall ¢ € SL(n), all K € X", and all @ € 8”. This establishes (6.12).
The proof of (6.13) is identical to the proof of (6.12)) except that instead of appealing to (6.8)) and

(2.18)) we appeal to (6.9) and (2.20). O
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7. L, DUAL MIXED VOLUMES

For convex bodies K, L € X7, recall that the L, mixed volume, Vp(K , L), has the integral repre-
sentation,

1
V,(K,L) = / hy(v)P dS,(K,v).
Sn— 1
From (5.1)), with ¢ = n, Q = B, and g = hY, we see that

| B a8 = < [ B )i ok ()il du

But (5.10), tells us that 6’ .(K,B,-) = 1S,(K,-). This shows that the L, mixed volume, V(K L),
has a dual integral formulatlon If K, L E Xz, then
1 hr \P
W) = [ (5) anlw) ) du a.n
Sn—1 hK

This leads us to define L,, dual mixed volumes, a unification which includes L, mixed volumes and
dual mixed volumes.

Definition 7.1. Suppose p,q € R. If K, L € X7, and ) € 8, define the L, dual mixed volume, or
(p, q)-mixed volume, ‘7p,q(K, L,Q), by

V(K. L,Q) = /S ()G, (K Q.0) (1.2)
By using (5.1)) with g = A%, definition (7.2) can be written as a dual formula,

1 h’L p pK q

V K, L Q / — ) (ax(u)) | —) (u)pp(u) du. (7.3)
M LQ) = [ () ) (75) (i (w)

Proposition 7.2. Suppose p,q e R If K, L € K2, and () € 8], then
VoK K, K) = V(K), (7.4)
Vp,q(K7 K,Q) = Vq( Q), (7.5)
pa (I Ly ) = Vo (K, L), (7.6)
Voo (K, L, Q) = V(K. Q). (17
V WK, L,Q)=V,(K,L). (7.8)

Proof. Identity (7.4) follow from (7.3) and the polar coordinate formula for volume. Identity ([7.5]
follow from (7.3) and the definition of dual mixed volumes (1.3)). Identity follow from ((7.3))
and (7.1)). Identity ((7.7)) follow from (7.3) and the definition of dual mixed volumes (1.3). Identity

(7.8)) follow from ([7.3]) and (7.1)). O
Proposition 7.3. The L, dual mixed volume is SL(n)-invariant, in that for p,q € R, and K, L € K7,
with () € 87,

V0K, 0L, ¢Q) =V, (K, L, Q),
foreach ¢ € SL(n).
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Proof. For p = 0 the result follows from (7.7) and the SL(n)-invariance of dual mixed volumes
(2.18). We assume p # 0. By definition (7.2), from (6.10) and (6.11]), the fact that support functions
are positively homogeneous of degree 1, (2.1), and finally definition (7.2)) again

V, (0K, 6L, 6Q) = C, (6K, 6Q, v)

Snl

/M Coal K, Q1)

Sn—1
Cp (K, Q,v)

0

n—1

0

ﬁpq(K L,Q)

U

The following inequality for L, dual mixed volume is a generalization of the L, Minkowski
inequality for mixed volume.

Theorem 7.4. Suppose p, q are suchthat 1 < 1 < p. If K,L € X} and () € 8}, then

Vo (K, L,Q)" > V(K)* PV (LPV(Q)" ™, (7.9)

with equality if and only if K, L, Q) are dilates when 1 < 1 < p, while only K and L need be dilates
when ¢ =n and p > 1, and K and L are homothets when ¢ = n and p = 1.

Proof. From ([7.3)), the Holder inequality, (7.1), and the L, Minkowski inequality (3.34), we have

V2@ = [ (F5) (ol (25"

— [ 16 @] ) au

> ([ () et (5 [ dy(wan) ©

q

=V (K, L)"V(Q)"%
> V(K)5 V(L) V(Q)+".

The equality conditions follow from the equality conditions of the Holder inequality and the L,
Minkowski inequality (3.34) for L, mixed volumes. O

—~

(u) () s

Over the past two decades valuation theory has become an ever more important part of convex
geometric analysis. See e.g. [6]], [19], [32], [33], [34], [35], [49], and [[60]. The L, dual mixed
volume is a valuation with respect to each entry.

Proposition 7.5. The L, dual mixed volume IN/M(K , L, Q) is a valuation over X' with respect to
both K and L, and is a valuation over S}, with respect to ().
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Proof. That the L, dual mixed volume ﬁp,q(K , L, Q) is a valuation on 8” with respect to the third
argument can be seen easily by writing (7.3)) as

> 1 hp \P n—
V. 2@ =5 [ () (@) (w)ply *(u) du,
n S'nfl hK
and observing that for @)1, Q)2 € 8! we have
Partas T Pauta, = Po," + P, on ST

That the L, dual mixed volume XN/M(K , L, Q) is a valuation on X with respect to the second
argument can be seen easily by looking at definition (/.2]) and using the fact thatif L,, L, € X7, are
such that L; U Ly € X7, we have

Py on, P L, = R, R on S,
since hp,ur, = max{hy,,hr,} and hy,nz, = min{h,, hy,}. From (7.2) and Lemma[5.5] we see
that XN/pyq(K , L, Q) is a valuation in the first argument. O

8. THE L, DUAL MINKOWSKI PROBLEM

The existence and uniqueness problems for L,, dual curvature measures are the central problems
to be studied here. The L, dual Minkowski existence problem for L, dual curvature measure may
be stated as follows:

Problem 8.1. Suppose p,q € R, and Q € 8" are fixed. Given a Borel measure i € M(S™ 1), what
are necessary and sufficient conditions on i so that there exists a convex body K € X whose dual

curvature measure C, (K, Q,-) is the given measure [1?

The case where ¢ = n is the L, Minkowski problem. The case where p = 0 and () = B is the
dual Minkowski problem. The case where ¢ = 0 and () = B is the L,, Aleksandrov problem.

When the given data measure p has a density f, from we see that, the L, dual Minkowski
problem is equivalent to solving the following Monge-Ampgre type equation on S™ 1

WP VARG ™ det(VPh 4+ hI) = f, (8.1)

where h is the unknown function on S"~!, and VA is the gradient in R of the extension of / to R"
as a function that is positively homogeneous of degree 1, and where V? is the Hessian matrix of h,
with respect to an orthonormal frame on S™~1.

The uniqueness problem for L,, dual curvature measures is:

Problem 8.2. For fixed p,q € Rand ) € 8}, if K, L € X7, are such that
Cp,q(Ka Qa ) = Cp,q(Lv Q7 ')a
then how is K related to L?
We now establish uniqueness of the solution to the problem for the case of polytopes when ¢ < p.
Theorem 8.3. Let P, P’ € K7 be polytopes and let () € 87. Suppose

Cp,q<P7 Q; ) - Cp’q<Pl, Q, )
Then P = P’ when q < p and P’ is a dilate of P when q = p.
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Proof. From (5.5]), we know that the curvature measures of polytopes are discrete, and that C,, (P, @, -

~

C,,(P',Q,-) means that P and P’ must have the same outer unit normals; say v1, ..., v,, and that

vaq(P7 Q’ ') = Cp,q(Pla Q? ') = Z Cié’l}iu
i=1
where
1 . 1 - .
¢; = —hp(vi)™" / pp(u)py *(u) du = —hp(v;)" / ph (w)ply “(u)du  (8.2)
n S”*lﬂAi n Sn—

and A; and A/ are the cones formed by the origin and the facets of P and P’ with normal v;,
respectively.

Suppose P # P’. Clearly P C P’ is not possible. Let A be the maximal number so that A\P C P’.
Then A < 1. Since AP and P’ have the same outer unit normals, there is a facet of AP that is
contained in a facet of P’. Denote the outer unit normal of those facets by v;,. We have

h/\P(vil) = hp (Uil)7

Ail g A;’l)
par(u) = ppr(u), forallu € A,,.
Therefore,
h,\p(wl)_p/ pp(w)pgy (u) du < hpr (vl-l)_”/ phi(u)pgy *(u) du, (8.3)
Sn=lnAy, S"—lmAgl

with equality if and only if A; = Aj . This and (8.2) give that
NP <, (8.4)

But A < 1 implies that A?"? > 1 if ¢ < p; a contradiction.

If ¢ = p, then (8.2) forces equality in (8.3). Thus, A; = A] , and the facets of AP and P’ with
outer unit normal v;, are the same. Let v;, be the outer unit normal to a facet adjacent to the facet
whose outer unit normal is v;,. Then the facet of AP with outer unit normal v;, is contained in the
facet of P’ with outer unit normal v;,. The same argument yields that these two facets are also the
same. Continuing in this manner allows us to conclude that AP = P’. U
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