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ABSTRACT

A new generation of interferometric instruments is emerging, which aims to use intensity
mapping of redshifted 21 cm radiation to measure the large-scale structure of the Universe at
z ~ 1-2 over wide areas of the sky. While these instruments typically have limited angular
resolution, they cover huge volumes and thus can be used to provide large samples of rare
objects. In this paper we study how well such instruments could find spatially extended large-
scale structures, such as cosmic voids, using a matched filter formalism. Such a formalism
allows us to work in Fourier space, the natural space for interferometers, and to study the
impact of finite u — v coverage, noise and foregrounds on our ability to recover voids. We
find that in the absence of foregrounds, such instruments would provide enormous catalogs of
voids, with high completeness, but that control of foregrounds is key to realizing this goal.

Key words: gravitation — galaxies: haloes — galaxies: statistics —cosmological parameters —

large-scale structure of Universe.

1 INTRODUCTION

Intensity mapping with radio interferometers has emerged as a po-
tentially powerful means of efficiently mapping large volumes of
the Universe, albeit at low spatial resolution. Several groups are
fielding 21 cm intensity mapping experiments using a variety of
technical designs (Ansari et al. 2012; Chen 2012; Pober et al. 2013;
Ali & Bharadwaj 2014; Vanderlinde & Chime Collaboration 2014;
Newburgh et al. 2016). Even though such instruments do not have
the angular resolution to see individual galaxies, or even large clus-
ters, they are capable of mapping the larger elements of the cosmic
web (e.g. protoclusters and cosmic voids). Protoclusters are the
progenitors of the most massive systems in the Universe today
(Overzier 2016). Cosmic voids make up most of the Universe, by
volume (Rood 1988; van de Weygaert & Platen 2011). As we shall
show, in each case the system size is sufficiently large that they can
be reliably found with upcoming intensity mapping experiments if
foregrounds can be controlled sufficiently well.

Cosmic voids, regions almost devoid of galaxies, are intrinsically
interesting as the major constituent of the cosmic web by volume,
and as an extreme environment for galaxy evolution (Rood 1988;
van de Weygaert & Platen 2011). They may be an excellent labo-
ratory for studying material that clusters weakly like dark energy
(Lee & Park 2009; Lavaux & Wandelt 2012) or neutrinos (Banerjee
& Dalal 2016)) or for testing modified gravity (Clampitt, Cai &
Li 2013; Hamaus, Sutter & Wandelt 2014; Cai, Padilla & Li 2015;
Hamaus et al. 2015; Cai et al. 2016; Falck et al. 2017; Hamaus
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et al. 2017). In this paper we show that 21 cm instruments aimed
at measuring the large-scale power spectrum, either proposed or
under construction, should enable a search of enormous cosmic
volumes at high redshift for these rare objects, which are large
enough to be detected at high significance (see also Battye, Davies
& Weller 2004).

Voids and protoclusters are inherently ‘configuration space ob-
jects’, in the sense of being highly coherent under- or overdensities
in the matter field in configuration space. However, most future
21 cm experiments are interferometers that naturally work in Fourier
space. We will use a matched filter formalism to allow us to work in
the interferometer’s natural space, where the noise and sampling are
easy to understand. This formalism also provides a natural way to
combine data sets that live in different domains, e.g. optical imaging
data with 21 cm interferometry.

We will illustrate our ideas by focusing on cosmic voids, though
much of what we say could be applied to protoclusters as well.
Our goal in this paper will thus be the detection of voids, and the
challenges associated with this. We assume that these candidate
voids will be appropriately analysed or followed up for different
science applications. It is worth keeping in mind that for certain
applications, the intermediate step of constructing an explicit void
catalog and characterizing its purity and completeness may not
be necessary. One might be able to construct estimators of the
quantities of interest directly from the visibilities. We shall not
consider such approaches in this paper.

The outline of the paper is as follows. In Section 2 we estab-
lish our notation and provide some background on interferometry,
foregrounds for 21 cm experiments and matched filters. Section 3
describes the numerical simulations that we use to test our matched
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Table 1. Useful quantities and conversion factors as a function of redshift,
z, assuming a flat ACDM model with €2, = 0.3. These are (a) the observing
frequency, v, in MHz for 21 cm radiation emitted at z, (b) the comoving
distance to z, x, in A~! Mpc, (c) the foreground wedge angle [equation 6]
(d) the kK mode that which a 10 m baseline maps to at redshift z and (e) the
differential conversion from frequency (in MHz) to comoving distance (in
h~! Mpc).

z v X Iz k/D1o |dx /dv]
[MHz] [~ Mpc] [hMpc='1  [h~! Mpc MHz™!]
0.50 947 1322 0359 0.1509 3.630
075 811 1854 0473 0.0922 4.256
100 710 2313 0562 0.0647 4.796
125 631 2709 0.632  0.0491 5.267
150 568 3055 0.687  0.0392 5.685
175 516 3358 0732 0.0324 6.061
200 473 3626 0767  0.0275 6.405
225 437 3865 0.796  0.0238 6.724
250 406 4079 0.820  0.0210 7.023

filter and the profiles of voids in those simulations. Our main results
are given in Section 4, and we present our conclusions in Section 5.
We relegate a number of technical details to a series of appendices.
In particular Appendix A discusses instrument noise for an inter-
ferometer in the cosmological context, Appendix B describes the
formalism of transiting telescopes (including cylinder telescopes)
and the flat-sky limit and Appendix C discusses the manner in
which neutral hydrogen might be expected to trace the matter field
at intermediate redshift.

2 BACKGROUND AND REVIEW

In this section we provide some background information, to set
notation and provide an easy reference for our later derivations.

2.1 Visibilities
In an interferometer the fundamental datum is the correlation be-

tween two feeds (or antennas), known as a visibility. For an intensity
measurement the visibility is (Thompson, Moran & Swenson 2017)

Vi o« / d’n A* ()T (R) ™7, M

where T (71) is the brightness temperature in the sky direction 71, A(#1)
is the primary beam (assumed the same for all feeds) and u;; is the
difference in position vectors of the i and j feeds in units of the
observing wavelength. It is common to normalize the visibilities so
that they return brightness temperature. We convert from brightness
temperature to cosmological overdensity throughout, so we omit the
exact normalization here. We will work in visibility space, since this
is the natural space for the interferometer and has the simplest noise
properties. Some useful conversions between common quantities
are given in Table 1.

Visibilities are measured over a range of frequencies, and we
shall follow the common procedure in 21 cm studies of Fourier
transforming in the frequency direction to obtain a data cube in 3D
Fourier space, k. The conversion from frequency to distance (and
hence Fourier mode) is

dl o (1+2z)?
dv| H@ w
with vy = 1420 MHz.

@
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Figure 1. The circularly averaged baseline distribution for an HIRAX-like
experiment. The lower axis shows the length baseline separation in units of
the wavelength for A = 42cm (i.e. z = 1) while the upper axis converts to
k1 in hMpc~!. The distribution is normalized to integrate to the number of
antenna pairs.

For small sky areas, the visibility thus measures the Fourier
transform of the sky signal, apodized by the primary beam.
Approximating the sky as flat and assuming the signal of interest,
7, is azimuthally symmetric (see Appendix B)

(k) = 27'(/ @ da Jy(k @) t(®), 3)
where & is an angular, radial coordinate and

Vij o< [T * B] (27tu;;) 4)

with the » representing a convolution and t and B being the Fourier
transforms of 7(#) and A”(#), respectively. The surveys of interest
to us here will cover large sky areas. The (very correlated) visi-
bilities from the different pointings can be combined to produce
higher resolution in the # — v plane (a process known as mosaick-
ing), entirely analogously to the manner in which the many slits in
a diffraction grating sharpen the transmitted lines (e.g. Thompson
et al. 2017, or see the discussion in White et al. 1999 for the cos-
mological context). In such a case, the effective B is determined by
the survey area rather than the primary beam (analogous to a survey
window in a galaxy survey) and will be very small. Combined with
the fact that our signals will be very smooth in u — v, this allows
us to neglect B to simplify our presentation. Reinstating it does not
change any of our conclusions.

2.2 21 cm interferometers

We shall start by considering an interferometer consisting of an
array of dishes (the interesting case of transiting, cylinder tele-
scopes presents only technical modifications and is described in
Appendix B). As a concrete example, we use the HIRAX experiment
(Newburgh et al. 2016). HIRAX will use 1024 6 m parabolic dishes
in a compact grid covering the frequency range 400 < v < 800 MHz
(i.e. 0.8 <z <2.5for 21 cmradiation). HIRAX is a transit telescope:
all dishes will be pointed at the meridian with a given declination,
and the sky will rotate overhead in a constant drift-scan. Each dec-
lination pointing will give access to a 6° wide stripe of the sky and
the complete survey will cover 15 000 square degrees.

Fig. 1 plots the circularly averaged distribution of baselines at
z =1, given our assumptions for HIRAX. The x-axis is the baseline
separation in units of the wavelength, |u|, while the y-axis is the
number density of baselines per d’u, conventionally normalized to



integrate to the number of antenna pairs. The upper x-axis shows
what k modes these baselines map to. Recalling that the noise scales
as the inverse of the baseline density (see Appendix A), we see that
an HIRAX-like experiment is sensitive to a broad range of k scales
well suited to the detection of voids and protoclusters.

2.3 Noise for 21 cm experiments

The major difficulty facing upcoming 21 cm experiments is astro-
physical foregrounds (e.g. Furlanetto, Oh & Briggs 2006; Shaw
et al. 2014, 2015; Pober 2015; Seo & Hirata 2016). Foregrounds
have been extensively studied in the context of (high z) epoch of
re-ionization studies, i.e. at lower frequencies than of direct interest
here. However the amplitudes of the signal and foreground scale in
a roughly similar manner with frequency, so many of the lessons
hold in our case (see Pober 2015, for a recent discussion). Since
the main (Galactic) foregrounds are relatively smooth in frequency,
their removal impacts primarily the slowly varying modes along the
line of sight, i.e. the low k; modes. However since the foregrounds
are very bright (compared to the signal) and no instrument can be
characterized perfectly, there is also some leaking of foreground
power into other parts of the k; — kj plane.

The precise range of scales accessible to 21 cm experiments after
foreground removal is currently a source of debate. We do not
attempt to model foreground subtraction explicitly, but take into
account its effects by restricting the range of the k; — k| plane we
use.

There are two regions of this plane we could lose to foreground
removal. The first is low k; modes, i.e. modes close to transverse to
the line of sight. This boundary is slightly fuzzy and not well known.
For instance, Shaw etal. (2014, 2015) claim that foreground removal
leaves modes with k; > 0.02 A-Mpc ™~ available for cosmological use,
while Pober (2015) claims k; < 0.1 "Mpc™' modes are unusable.
We shall consider the impact of a k; cut within this range and we
will see that our ability to find voids is quite sensitive to this cut.

In addition to low k;, non-idealities in the instrument lead to
leakage of foreground information into higher k; — k; modes. This
is usually phrased in terms of a foreground ‘wedge’ (for recent
discussions, see Pober 2015; Shaw et al. 2015; Cohn et al. 2016;
Seo & Hirata 2016, and references therein). The wedge does not
form a hard boundary, but delineates a region where modes far from
the line-of-sight direction can become increasingly contaminated.
For a spatially flat Universe we can define the wedge geometrically
as (Cohn et al. 2016; Seo & Hirata 2016)

R x H :E(z) dz’v 5)
c(l+z) 14z Jo E@)

where E(z) = H(z)/H, is the evolution parameter, and we assume
we cannot access the signal in modes with |ky|/k; < R or

Ik | R

k Mmin = m ~ 0.6 (6)
with the last step being for z = 1. It is worth emphasizing that
this foreground ‘wedge’ does not represent a fundamental loss of
information, and may be mitigated with an improved model of the
instrument (ideally the wedge can be reduced by sin ®, where © is
the field of view; Liu, Zhang & Parsons 2016). We bracket these
cases by considering cases with and without the foreground wedge,
and discuss the impact on our void finder.

Finally we must contend with shot noise and receiver noise in
the instrument. Castorina & Villaescusa-Navarro (2016) argue that
shot noise is sub-dominant to receiver noise for upcoming surveys,

Matched filtering with 21 cm 1169

so we shall neglect it in what follows (see also Cohn et al. 2016).
To simplify our presentation, we shall treat the receiver noise as
uncorrelated between visibilities and constant for all pairs of re-
ceivers. The noise thus scales with the number of baselines that
probe a particular scale, and only an overall scaling is required. If
the noise is uncorrelated from frequency channel to frequency chan-
nel, and only slowly varying with frequency, then the noise level
is independent of k. It is convenient to quote the thermal noise
power in terms of the linear theory power spectrum, P;, in much
the same way as galaxy surveys specify their shot noise by giving
in P at some fiducial scale. Since one of the design goals of all of
these surveys is a measurement of the baryon acoustic oscillation
(BAO) scale, we follow the standard practice and specify the re-
ceiver noise as a fraction of Py atk; 50 =0.2h Mpc~'. The surveys
should achieve Py /Ppoise > 1 at k49 and we shall explore a range
of values (see Appendix A). Once Py /Pyise > 3, the results become
very insensitive to the precise value.

2.4 Matched filters

A matched filter is a convenient means of finding a signal of known
shape in a noisy data set. If we write the the data as an amplitude
times a template plus Gaussian noise (d = At + n), the maximum-
likelihood estimate of A and its scatter is given by

-1
A= M, o 2=1tN'. @)
NIt
We take the ‘noise’ covariance to include both instrument noise
and non-template cosmological signal and shall assume throughout
that this noise is diagonal in k-space. The main feature of this
expression is that areas of the k-plane that are not sampled or are
lost to foregrounds receive zero weight (N~! = 0).

We find that our ability to isolate voids is very insensitive to
the exact profile chosen for 7. In fact, even a top-hat profile pro-
duces a highly pure and complete void catalog for low noise and
good k-space sampling. Similarly the performance is not particu-
larly sensitive to the particular choice for N(k), but rather to the
larger questions of whether there are significant regions of k-space
where N~! = 0 or very uneven sensitivity of the instrument due to
the spacing of the feeds.

We shall use N-body simulations for our signal, and work with
a periodic, cubic box. In such situations, given a 3D density field,
8(x), and a template, 7(x), we can implement the flat-sky version of
the matched filter very efficiently using FFTs if the noise is diagonal
in k-space. Recalling that a shift in configuration space amounts to
multiplication by a phase in Fourier space, the matched filter for a
void centred at a is

o ika To(k)8* (k)
TN de;e NG (3

where 7 is the template for a void centred at the origin. The sum
is simply an (inverse) Fourier transform, so we can test for all
a at once. A similar set of steps can be used for the denominator
TN~''z, allowing a fast computation of S/N for any position, a. Thus
with forward Fourier transforms of the template and data and one
inverse transform, we can compute the matched filter amplitude, A,
everywhere in space and hence its (volume weighted) distribution
at random locations and at the positions of voids.

There is, in principle, no reason why the matched filter cannot be
modified to remove spectrally smooth foregrounds, at the same time
as searching for voids or protoclusters. We choose not to implement

MNRAS 471, 1167-1180 (2017)
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Figure 2. Slices through one of our N-body simulations at z = 1. Each panel shows the projected, redshift-space density field, on an arcsinh scale saturating
at 10 p, with a (line-of-sight) depth of +20/~! Mpc and transverse dimensions £50 2~ Mpc. The panels in the top row are centred on voids, with the void
centre marked with a dot and the radius with a dashed circle. Those in the bottom row are centred on (randomly selected) massive protoclusters.

this approach, preferring instead to set N~' = 0 for modes that we
deem unusable due to foregrounds.

3 SIMULATIONS

3.1 N-body

To illustrate our ideas, we make use of several N-body simulations,
each of the ACDM family. Specifically we use the z = 1 outputs
of 10 simulations run with the TreePM code described in White
(2002). This code has been extensively compared to other N-body
codes in Heitmann et al. (2008), and these simulations have been
previously used (and described) in Reid et al. (2014) and White et al.
(2015). Each run utilized 2048° particles in a periodic box of side
1380 47! Mpc to model a cosmology with €2, =0.292, h = 0.69 and
o5 = 0.82. This gives a particle mass of m, = 2.5 x 10" 1™ M.
Slices of the redshift-space density field at z = 1 from one of the
simulations are shown in Fig. 2, to illustrate the types of structures
we are searching for. There are spatially coherent regions of over- or
underdensity with scales of O(10 Mpc) clearly visible in the figure.

Properly modelling the distribution of HI at z =1-2 is beyond
the scope of this paper. Our simulations would need much higher
resolution, to resolve the haloes likely to host neutral hydrogen at
z = 1-2, and the halo occupancy is anyway highly uncertain (see
discussion in e.g. Castorina & Villaescusa-Navarro 2016; Seehars
etal.2016). Instead we assume that the HI is an unbiased tracer of the
matter field, and simply use the dark matter density. In Appendix C
we use a halo model of HI in a higher resolution (but smaller volume)
simulation to show that this is a conservative approximation for
the purposes of establishing how well 21 cm experiments can find
voids.
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3.2 Voids in the simulations

We define voids through a spherical underdensity algorithm (for a
comparison with other void finders, see Stark et al. 2015b, and for
a general comparison of void finders, see Colberg et al. 2008). The
dark matter particles are binned on to a regular, Cartesian grid of
1380° points. Around each density minimum with 1 + § < 0.2, we
grow a sphere until the mean enclosed density is 1 + § < 0.4. Visu-
ally such an underdensity gives voids that match expectations (see
Fig. 2). The voids are then ordered by their radius Ry and overlap-
ping voids with smaller radii are removed from the list. As is the case
for the large overdensities (protoclusters), these large underdensities
(voids) are very rare, necessitating surveys of large volumes. The
number density of redshift-space voids at z = 1 is 107> h~3 Mpc?
for10 <R, < 15h ! Mpcand 6 x 1077 for20 < R, < 25h~! Mpc
and falls quickly with redshift.

The matched filter essentially performs a ‘weighted convolution’
of the density field with a profile, and thus requires some knowledge
of the shape of the object it is trying to ‘match’. While the perfor-
mance of the filter is relatively insensitive to the precise profile we
use, we describe the choices we have made based on the N-body
simulations described above.

To begin, we note that a void has an extent O(10Mpc) and
thus covers only a small region of sky (<1 arcminute) and a small
portion of the frequency coverage of the telescope. We are thus
justified in treating the sky as locally flat and the k, coverage as
approximately wavelength independent.! We expect the profile to
have a significant power at k ~ 0.1 2 Mpc~!, well within the band of

! Recall that the conversion from u to k| depends on the frequency of the
observation.



0.0}

0.2}

—0.6]

= m N-body
— Fit

10 5 10 15 20 25
r  [h~'*Mpc]

Figure 3. Real-space profile of voids in our simulation. Squares show the

average profile measured from the N-body simulations described in the text

for voids with radii 10 < R, < 15 h! Mpc at z = 1. The solid line is the

analytic fit of equation 9 with ry = 12.5h~! Mpc.

sensitivity of 21 cm interferometers aimed at large-scale structure
observations (see Fig. 1 before).

Fig. 3 shows the averaged real space profile of voids with
10 < Ry < 15 h~! Mpc in our N-body simulations at z = 1. There
are numerous analytic void profiles in the literature (e.g. Hamaus
et al. 2014; Hawken et al. 2016, for recent examples). Most of these
do not fit our N-body results particularly well, which is most likely
due to the different choices of void finder employed. In particu-
lar, our void profile approaches 0 smoothly from below at large
radius, i.e. we do not find a prominent ‘compensation wall’ at the
void edge. This echoes the findings of Cai et al. (2016), who also
found no compensation wall for voids that are not part of a larger
overdensity.

A simple, 2-parameter form that does provide a good fit to our
N-body data is

f
1+ /r)®
where 8 and r, are the interior underdensity and void scale radius,

respectively. This is shown in Fig. 3 as the solid line. In Fourier
space, this profile becomes

®

(k) = 47 / r2dr 8(r) jo(kr) (10)

2, /2 [« .
:Téor;e” [e « +«/§smy—cosy], 11
K

where k = kr, and y = +/3k/2. For large k the profile is ex-
ponentially suppressed. Since the profile is not compensated,
Tk < 1) >~ 21 /3)(1 — k?/3 + - )8or? does not go to zero as
k — 0. This is clearly only an approximation, since on sufficiently
large scales the profile must go to zero due to mass conservation,
but it does not seem to adversely affect our filter. We remind the
reader that it is this Fourier space form that is input into the matched
filter.

The above was all in real space. An analytic model for a void
in redshift space could simply use the linear theory analysis of
Kaiser (1987). A better alternative would be to make use of the
Gaussian streaming model (Reid & White 2011). Hamaus et al.
(2015) have shown that this model works well if linear theory ex-
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Figure 4. The (stacked) profile in Fourier space for voids with radii
10 < Ry < 15h~" Mpc from our N-body simulations in redshift space
atz=1.

pressions for the mean pairwise velocity and dispersion are com-
puted from the assumed profile. We have taken a simpler approach,
using the simulations to measure the anisotropy. Fig. 4 shows the
Fourier transform of the same voids shown in Fig. 3, except now
in redshift space. Material that is outflowing causes the void to ap-
pear deeper and wider in the line-of-sight direction (Kaiser 1987),
enhancing the profile along k. In principle, this makes the redshift-
space profile less sensitive to loss of modes in the ‘wedge’ than
would be anticipated from the real-space profile (though the filter
will tend to downweight the line-of-sight modes more due to the
enhanced cosmic clustering close to the line of sight).

However, for intermediate scales k ~ 0.2AMpc~!, the void pro-
files are remarkably close to spherical, with only a very mild
quadrupole. Given this small anisotropy, we shall continue to use
a spherically symmetric void profile even in redshift space. This
choice was motivated purely for the simplicity of the presentation
and does not represent a limitation of the method, and we expect
these choices to be revisited in future work.

4 RESULTS

4.1 Filter amplitude distributions

We now turn to the performance of the matched filter. Recall that
we can evaluate the matched filter at an arbitrary point — ideally
positions centred on voids would have significantly larger values
of A than a randomly chosen point.2 The left-hand panel of Fig. 5
plots the distribution of A in the ideal case of an effectively noise-
less 1 P = 10 survey. The distribution is close to Gaussian with a
width of 0.86; this compares with the analytically predicted value
(equation 7) of 0.90. The Gaussianity of this distribution is easily
understood by observing that the matched filter simply smoothes the
(configuration space) density field with a kernel that is O(10) Mpc
wide; on these scales, the density field is very close to Gaussian.
We do see evidence of non-Gaussianity from collapsed objects in
a slight skew towards negative values of A. Although the matched
filter has the void radius as an input parameter, we find that the
shapes of the distributions (after scaling out the variance) are very

2 Since our input void profile has a negative central underdensity, we expect
voids to have positive values of A.

MNRAS 471, 1167-1180 (2017)
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Figure 5. The (normalized) distribution of matched filter amplitude, A, at the locations of voids (dashed) compared to the full (volume weighted) distribution
(solid) for voids of radius 10-154~! Mpc (thick, blue) and 20-25 2~ Mpc (thin, red). In each panel the dotted (black) line shows a unit-variance Gaussian
for reference. The left panel shows void recovery for perfect sampling of the k; plane with minimal noise (we have quoted the noise as 7P = 10 at
kg = 0.2 hMpc™!, in analogy with galaxy surveys but recall 7 is in reality thermal noise as a function of &, ). The middle panel shows a baseline distribution
for a HIRAX-like telescope with 7P = 3 and the right-hand panel shows the additional effects of removing modes with k| < 0.05 hMpc~! and py < 0.56.
The horizontal dotted lines in each panel mark the 10" and 90™ percentiles for reference.

similar. We therefore simply standardize all our distributions by the
appropriate variance.

We can now compare the above distribution with the matched
filter evaluated at void centres. We consider two sets of voids:
10 < Ry < 15h7 " Mpc and 20 < Ry < 25h~! Mpc and we set
the filter radius to 12.54~" Mpc and 22.5/h~' Mpc, respectively.
We find that the distribution of A evaluated at the void centres is
clearly separated from the full distribution of the matched filter.
Approximately 80 per cent of the smaller voids are detected at > 1o
from zero while ~90 per cent of the larger voids are detected at
>1.50. It is also worth noting that our reference distribution in-
cludes points that are in voids. Indeed ~8 per cent of the simulation
volume is contained in voids larger than 10 2~! Mpc, which would
correspond to a threshold choice of ~1o. Note that this is somewhat
different from the Gaussian expectation of ~1.5¢; this difference
can be traced to non-Gaussianity in the tails of the distribution
of A.

‘We now consider how survey non-idealities impact the efficiency
of the matched filter. There are two aspects relevant to the 21 cm
interferometer case. The first is that the instrument only samples
particular k-modes and that this sampling is modulated by the num-
ber of baselines in the interferometer. The second is that, as dis-
cussed in Section 2.3, astrophysical foregrounds and instrumental
imperfections can contaminate both low kj; modes and the so-called
‘wedge’, further restricting the accessible k-space. The impact of
these is summarized in the middle and right-hand panels of Fig. 5.
The relatively wide and dense coverage in k-space of our HIRAX-
like survey implies that the filter’s performance does not degrade
significantly compared to the ideal case. Removing modes contam-
inated by foregrounds has a more significant effect. While we still
see a separation between voids and randomly chosen points, only
50percent of the voids are now above the thresholds discussed
above.

While the detailed performance of the void finder will depend
on the details of the interferometer, the principal conclusion of the
above discussion is that for the designs that are being considered
voids are relatively easily detected in the absence of foregrounds but
the loss of low k; modes is a serious matter and some foreground
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mitigation strategy is necessary. Fig. 6 shows similar performance
plots for an idealization of the CHIME experiment (see Appendix B
for details). As with our HIRAX example, we find a clear separation
between the distribution of voids and random points with similar
recovered fractions of voids for the cases without any foregrounds,
and a loss of separation when foregrounds become important.

As with all matched filter applications, there are a number of input
choices. The choice of the void profile is the most notable example
in this case. We experimented with different choices of void shapes
and sizes and find that the results above are quite robust. A different
complication arises from the fact that our void profiles are estimated
from the dark matter. Appendix C explores the shapes of voids with
a more realistic modelling of the 21 cm density field. We find
that shapes of the voids here are very similar (and possibly more
pronounced) to those in the dark matter. We therefore expect our
results to be qualitatively unchanged with more realistic modelling
of the 21 cm field.

Another choice in our matched filter is the power spectrum used
in the noise covariance matrix to account for large-scale structure
noise. While different choices here change the exact width of the
distribution of A, it does not change our basic result that voids are
detected with very high significance in the absence of foregrounds.

4.2 An example application: a void catalog

As an example application, we discuss how to use such a matched
filter to construct a void catalog. Our intention here is not to attempt
to quantify (or optimize) the purity and completeness of such an al-
gorithm, since this will be data and instrument specific and so much
depends upon the manner in which foregrounds are subtracted. In-
stead, we outline the steps of a possible algorithm and perform some
simple calculations with it, and defer detailed discussions to future
work.

For this demonstration, we choose a single simulation box from
our suite of 10 simulations. We run the matched filter on this box
with the void radius Ry varying from 33.3 /! Mpc to 204~ Mpc
in 10 per cent steps. We keep a list of all points where the matched
filter amplitude, A, exceeds 2 o. Starting from the largest void(s)
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Figure 6. As in Fig. 5 but for an idealization of the CHIME telescope.
The top panel shows the impact of the CHIME baseline distribution with a
noise level appropriate for a BAO detection, while the lower panel shows the
additional impact of removing modes with kj < 0.05 Mpc~! and y < 0.56.

and working down in radius, we eliminate any voids that overlap.
If two overlapping voids have the same radius, the one with the
smallest A is removed. The result of this procedure is our ‘void
catalog’.

In a single 1380 2~' Mpc box the largest 1000 voids have radius
above about 20 4~! Mpc. With full u — v coverage and low noise
we find that all but 1 of the 32 largest ‘true’ voids contain a match in
our catalog within 0.75 Ry and these matches are all in the upper 5%
percentile of the A distribution. Just under half of them (14 of the 32
voids) show significant (>Ry/3) mis-centring, i.e. the detected void
centre is >Ry/3 away from the centre of the closest true void. For the
u — v coverage of our HIRAX-like experiment, and 71 P = 3, four
of the 32 largest ‘true’ voids do not have a match within 0.75 Ry and
again all are highly significant. The situation changes dramatically
as we include a kj min and p cut. For kj min = O.OShMpc*l and
© > 0.56, we find only 5 of the top 32 voids in our catalog, though
these voids are in the extreme tails of the A distribution. Most of this
effectis driven by the k| cut. If we relax the cut t0 0.02 s Mpc ™!, then
we recover 10 of the 32 largest voids and for a cut of 0.01 2 Mpc™!
we recover 20 of them.

We can recast the results of this and the previous section into the
more traditional forms of the completeness and purity of the sample.
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Figure 7. Redshift-space density profile stacked around the 1000 voids in
our ‘candidate catalog’, as described in the text. Black squares show the
stacked profile assuming perfect u — v coverage and no noise. Clearly, in
the absence of foregrounds, our candidates correspond to large, coherent
underdensities. Compared to Fig. 3, the shallower profile at small radius is
due to the miscentering described in the text. The lines are all for the HIRAX
u — v coverage with 7P = 3, and show the impact of losing modes at low
k) and in the wedge. The legend gives the cuts as k||, min and p pairs.

In the absence of foregrounds, our detected void catalog is both pure
(only ~10 per cent of detected voids do not correspond to true voids)
and complete (>90 per cent of true voids are detected at better than
1.50) for large (~20 h~! Mpc) voids. However, both of these num-
bers are sensitive to foregrounds. For our most conservative case of
foregrounds contaminating all modes with k;; < 0.05 h"Mpc~' and
© < 0.56, the majority of the most prominent detections do not
correspond to true underlying voids and only ~50 per cent of true
voids are detected at high significance.

It is possible that some of the low k; information lost to the inter-
ferometer by foregrounds could be replaced by another experiment.
As an example, modern photometric surveys can achieve high pho-
tometric redshift precision for certain types of galaxies, and thus
can map the low k; modes of the 3D density field. In fact, such
surveys have been used to search for voids (Sdnchez et al. 2017).
Including the photometric survey in our matched filter presents no
problem in principle — one simply augments the data vector and
includes a model for the void in configuration space — but could be
difficult in practice. Assuming the combination recovers all of the
k range, we recover our no-foreground forecasts. If there is a gap
in coverage, the results are adversely affected. To take a pessimistic
example: if we lose modes 0.02 < k; < 0.05/Mpc~!, we are able
to recover 12 of our top 32 voids. For 0.03 < kj < 0.05hMpc ! it
is half of our top 32 voids.

These lost k; modes potentially could be reconstructed from
higher-point information in the 21cm field itself (Zhu et al. 2016).
There is considerable interest in developing these reconstruction
schemes for 21 cm surveys to enable cross-correlations with photo-
metric surveys or CMB lensing maps. Initial results (Zhu et al. 2016)
suggest that modes k; < 0.01 AMpc~! and k; < 0.05 AMpc~! could
be recovered. As with the example above, the efficiency of the
void finder will depend on the details of the performance of these
reconstructions.

We can visualize this information in another way. Fig. 7 shows
the stacked matter profile around our top 1000 void candidates for
various choices of k| min and pyin. With full u — v coverage, there
is a clear, coherent underdensity at the locations of the void can-
didates. The shallower inner profile in Fig. 7, when compared to
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Figure 8. An example of a detected void in our catalog, for the case of no
foregrounds. The image shows the matter distribution centred around a Ry
~ 30k~ Mpc void (bounded by the dashed line). The slice is 100 2~ Mpc
wide and 202~ Mpc thick. The squares show significant matched filter
detections, with the filled, magenta, diamond being the most significant
detection (as determined by our pruning algorithm). We see that, while the
void centre is detected by the matched filter, it happens not to be the most
significant detection, resulting in a mis-centred void.

Fig. 3, arises due to mis-centring. While some voids were well
centred, a significant fraction had offsets. After visually inspecting
these voids, we find that, in most cases, the true void centre was a
significant detection in the matched filter, but happened not to be
the most significant detection and was removed by our relatively
simple pruning algorithm. Fig. 8 shows an example of such a case.
Both the fraction of found voids and the degree of mis-centring
get worse when modes are lost to foregrounds, as the other curves
in Fig. 7 show. For our pessimistic scenario of k; > 0.05 2 Mpc™!
and p > 0.56 there is barely any underdensity detected at all. This
suggests that doing science with voids selected via 21 cm experi-
ments will be difficult unless the foregrounds can be brought under
control. We however note that the algorithm used to construct our
void catalog is relatively simple; e.g. a more robust algorithm might
use multi-scale information to get more robust measurements and
there is significant potential for complementarity between optical
imaging surveys and 21 cm measurements.

5 CONCLUSIONS

Recent advances in technology have made it feasible to study the
21 cm emission from objects at cosmological distances. A new gen-
eration of telescopes is being designed and built, which aims to
survey enormous volumes of the Universe with modest resolution
at redshifts z ~1-2. A primary focus of these facilities is the mea-
surement of the power spectrum of large-scale structure, as traced
by neutral hydrogen, which will hopefully improve constraints on
our cosmological model. While these instruments do not have suf-
ficient angular resolution to resolve the emission from individual
objects, we point out that they should be able to make catalogs of
the largest members of the cosmic web — protoclusters and voids —
if they are able to control foregrounds sufficiently.

MNRAS 471, 1167-1180 (2017)

We have considered instruments that measure the sky interfer-
ometrically, which means they naturally operate in Fourier space.
The finite sampling of the Fourier plane and the loss of sensitivity
in some modes due to foregrounds make it difficult to generate a
real-space, 3D map from the data and hence to search for exotica
whose properties are not known in advance. However, our under-
standing of the cosmic web allows us to specify in advance what
sort of objects we are interested in finding and searches for objects
of known shape do not need to go through the map-making step: a
matched filter provides a natural method for finding such objects.
The matched filter formalism also allows us to mix multiple data
sets, each of which is provided in its own domain.

The cosmic web contains voids on a variety of scales, and voids
that touch or merge. We have only studied the simplest matched
filter. The algorithm can be modified to iteratively add voids to an
existing catalog, always adding the void, which leads to the largest
increase in the likelihood given the already-found voids (see e.g.
Kochanek et al. 2003; Dong et al. 2008). This involves a scan over
void (or protocluster) sizes, and increases the complexity of the
algorithm. A multi-probe approach could use deep, optical imaging
data in conjunction with 21 cm data in much the same way as multi-
frequency information is sometimes used for cluster finding (e.g.
Melin, Bartlett & Delabrouille 2006; Rykoff et al. 2014). As our
main aim was to assess the feasibility of void detection with 21 cm
surveys, we defer further consideration of such a process to future
work.

Throughout we have focused our discussion on voids as exem-
plars of large structures in the cosmic web. Of course, the matched
filter algorithm is more general and the huge volume and sensitivity
of upcoming experiments can be used to search for a number of ex-
otic objects. At the other end of the density distribution from voids
are the large, coherent overdensities associated with protoclusters.

Despite keen interest in the community in how clusters form and
evolve, and years of observational and numerical efforts, the study of
early cluster formation (at high z) remains observationally limited.
Protoclusters are rare, present only modest overdensities and lack
many of the features used to discover clusters (e.g. a hot ICM or a
red sequence). Observations of protoclusters at high z would provide
important clues into cluster assembly and the processes of galaxy
formation (Overzier 2016). Given the diversity of protoclusters,
having large samples with well-understood selection is important.
Like voids, protoclusters form large coherent structures amenable
to discovery in upcoming 21 cm experiments. Assuming a mean
interior density of 200 times the background, the linear size of the
mean-density region from which material accretes into a present-
day cluster is several (comoving) Mpc. The progenitors of large
clusters should thus be identifiable in relatively low-resolution maps
that can cover large volumes (see e.g. Overzier 2016, and Fig. 2).

Slices through the density field in one of our simulations are
shown in Fig. 2, where the large extended mass profile of the proto-
clusters is evident. In fact, the most massive clusters in the mature
Universe form not from the most overdense regions at high z but
from large, possibly only moderately overdense regions such as
shown in Fig. 2 (Overzier 2016). While we do not show it here,
the typical protocluster covers a larger volume at z ~ 2, rendering
it potentially easier to see while still being well within the redshift
reach of HIRAX or CHIME.

The abundance of such protoclusters is identical to the abundance
of the clusters at z = 0: for a mass threshold of 3 x 10 z~! Mg,
itis 4 x 107° 4> Mpc~3. This emphasizes the need for a survey to
cover a large volume in order to properly sample the heterogeneous
population of protoclusters. As an example, if it covered 15 000 deg?



between z = 1 and 2 HIRAX would survey 50(2~! Gpc)® encom-
passing ~200 000 protoclusters.> CHIME is anticipated to cover a
similar volume in the Northern hemisphere. In some models the
star formation associated with haloes in protoclusters makes up a
significant fraction of the ionizing photon budget for re-ionization
(Chiang et al. 2017) at z ~ 6-7. If foregrounds could be controlled,
using interferometers designed for studying re-ionization to search
for protoclusters could provide an interesting synergy.
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APPENDIX A: SIGNAL-TO-NOISE RATIO

We present a self-contained derivation of the instrument noise power
spectrum, converted to cosmological units. Our derivation is similar
to that in Alonso et al. (2017), but related expressions have also
appeared in White et al. (1999), Zaldarriaga, Furlanetto & Hernquist
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(2004), McQuinn et al. (2006), Seo et al. (2010), Bull et al. (2015),
Seo & Hirata (2016) and Wolz, Blake & Wyithe (2017).

The brightness temperature, 7}, is defined in terms of the intensity
at frequency v as I, = 2kgT,(v/c)> = 2k T),/ A%. We begin by noting
that if we normalize our visibilities in terms of temperature (rather
than intensity) the power can be written in terms of the brightness
temperature power spectrum and window function as

(IViP?) = /dzu Pr(u)W(u) ~ Pr(u)/d2M W (u) (A1)

with the last approximation holding if the window function is com-
pact and Py is smooth. Conventionally the beam is normalized to
unity at peak, so its area in the # — v plane integrates to unity and
thus the window function integrates to the inverse area

1
2
which gives
Pr(u)
Vi) ~ . A3
(Vil) ~ —4, (A3)

It may be helpful to derive equation (A3) differently. If we treat
the visibility as measuring a single Fourier mode of the 2D bright-
ness temperature field, we can relate this to the 2D power spectrum
of this field

Pr(u)

(V@OV*@)) = 2n)*s" (@ — €)Pr(& = 2ru) ~ 5@,@

)

(A4)

where 82K are the Dirac and Kronecker § functions. The above

equation explicitly relates u to the 2D wavevector £, and the last ap-
proximation comes from assuming a discretized set of wavevectors.*

In the same units the visibility noise is diagonal (Thompson
et al. 2017)

T St I 7 R L
' A2 A, Avt, A, Avt,
(AS)

per baseline. Here Ty is the system temperature, A. the effective
area of the telescope (equal to the aperture efficiency times the
physical area), Av is the bandwidth, #, is the observing time per
pointing and we have assumed a single polarization.

The above is all that is needed to implement a matched filter on
the data, where we can work at the level of the visibilities. It is
however useful to translate this into the cosmological units used in
the paper. We start by defining the number of baselines per unit area
in the u — v plane, n(u), normalized such that

Na(Na - 1)
5
where N, is the number of antennas and Npr is the number of
pairs (i.e. instantaneous baselines). Averaging over the number of
baselines, the noise becomes (Nl.z) /(n(w)d*u). Using equation (A3),
we obtain

/dzu n(u) - Npairs = (A6)

A2T?

sys

A

1 47 foy

I’l(ll) AV fops '
(A7)

n(u) Avt, -

MNT]? 1 1
A

Py(u) = [

The last equality follows from N, 2, = 47 fqy, where N, = tops /1,
is the number of pointings and .y is the total observing time. The

4 For instance, this is exactly what happens on an FFT grid in a simulation.
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area covered by each pointing €2, is approximately given by A%/A..
Physically, the above equations assume that each pointing yield a
disjoint set of modes.

To convert this visibility noise into a cosmological power spec-
trum, we divide by the mean cosmological brightness temperature
(Seo et al. 2010)

xm(2)Q2p 0h(1 + 2)?
H(z)/Hy

with xy; the neutral hydrogen fraction, and convert from u to k| in
comoving coordinates and similarly for frequency to k; to obtain

b (T AN Anfa, &V (A9)
MEAT A ) tonen(u) dQdv’

T =188

K, (A8)

where in a spatially flat model

V. _ adxd ety
dQdv dz dv H(z) vy

with vy = 1420 MHz. Unfortunately the value of Qg ¢ & is quite
uncertain and it enters quadratically in the noise power spectrum.
Rao, Turnshek & Nestor (2006) measure 103SZH,0 ~0.9 £+ 0.3 at
z &~ 1 through the abundance of damped Lyman-o systems (see
also the compilations of data in Crighton et al. 2015; Padmanabhan,
Choudhury & Refregier 2015). The measurement of Q25 b through
21 cm auto-correlations by Switzer et al. (2013) has a similar value
and fractional error. We will consider the range (0.6-1.2)x 103 or
Qu 0 h=(4-9)x 10~*. For Qy o h =4 x 10~* and the HIRAX-like
interferometer described in the text operating for 3 yr we obtain Py
A~ 600h3Mpc’ atz=1and k; =0.2h~" Mpc. Comparing to the
linear matter spectrum, and assuming b = 1, we have (P./Py)(k,)
~1.If Quoh=9 x 107*, we obtain Py &~ 150 h=3 Mpc? and have
(PL/Pn)(kL) ~ 4.

While this is similar in spirit to nP in galaxy surveys, it is worth
emphasizing that this quantity is intrisincally 2D, while nP is spher-
ically symmetric. In particular, at fixed k, the average value of &, is
( /4)k.

(A10)

APPENDIX B: TRANSIT TELESCOPES AND
THE m-MODE FORMALISM

The interferometers for 21 cm intensity mapping experiments are
designed to be transit telescopes, using the Earth’s rotation to map
large areas of the sky. This mapping process simultaneously per-
forms two operations that are traditionally treated separately — filling
in the u — v plane,’ and improving the resolution in the u — v plane®
by ‘mosaicking’. Furthermore, some upcoming experiments, no-
tably CHIME’ and Tianlai,® use a close-packed array of cylinders
rather than traditional dishes. In the CHIME configuration, four
cylinders (each 20 m in diameter and ~100 m long, oriented north—
south) are placed adjacent in the east—west direction (Vanderlinde &

5 As we discuss later in this section, a more appropriate basis for discussing
these telescopes are spherical harmonics. We use the u — v plane here to
mean an appropriate ‘Fourier’ transform of the sky.

6 Recall that a single visibility measurement is smeared in the ‘u — v’ plane
by the Fourier transform of the primary beam and ‘mosaicking’ combines
observations of different areas of the sky to make this window function more
compact.

7 http://chime.phas.ubc.ca/

8 http://tianlai.bao.ac.cn



Chime Collaboration 2014). The primary beam from such a config-
uration is highly extended in the north—south direction, while being
focused by the cylinders in the east—west direction.

Both of these features naturally cover large angles on the sky. The
natural basis for describing these telescopes is not the usual Fourier
basis, but rather spherical harmonics. However, most astrophysical
signals (including the voids discussed here) cover small areas in
the sky and are easily described in a flat-sky limit. The goal of this
Appendix is to make the connection between the wide-angle and
flat sky formalism explicit.

We start with a review of the m-mode formalism, following Shaw
et al. (2014, 2015), who state the fundamental visibility measure-
ments in a spherical harmonic basis. We then take the flat-sky limit
of this result and show that we recover the traditional u — v plane
interpretation. Making this connection also allows us to explicitly
see how the Earth’s rotation fills in the u — v plane. We then de-
velop the matched filter formalism in this basis. We conclude with a
worked example of the m-mode formalism, to help build intuition.

B1 Review of the m-mode formalism

Following Shaw et al. (2014, 2015), if the beam transfer function
pointed at azimuth ¢ is

Bij(R; ¢) oc A*(f; ¢) exp [27ti i - u;j()] (B1)
then
Vii(¢) = / di T(R)B;;(7; ¢) (B2)

(plus noise, of course). We remind the reader to distinguish between
the pointing centre of the beam (the azimuth of which is ¢) and the
coordinate that integrates over the beam (iz). Expanding 7 and B;;(¢)
into spherical harmonics

T@) = aun Yin(R) (B3)
Im
By ¢) =) By, Y}, () (B4)
tm
we obtain
Vii(¢) =Y _ Bi"(@)ai - (BS)

tm

The rotation of the Earth in ¢ causes the beam to transform as
B'(¢) = B“"(0)e™?. Defining

d¢ —im¢
v =/§e V(). (B6)
we obtain
V=" Baw, (B7)

€

where ij’” without an explicit argument is understood to be at ¢ =0
(the phase factor cancels out its conjugate in the definition of V/}'.)
These V,;" (or their Fourier conjugate Vj(¢) are the fundamental
observables of the telescope.

B2 The Flat-Sky Approximation

It is illuminating to show that the above expression recovers the
usual flat-sky Fourier representation for small areas of the sky. We
will use £ to represent the 2D Fourier wavevector, with magnitude
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¢ and polar angle ¢, (not to be confused with the pointing centre
¢). The correspondence between ay,,, and a(£) is (White et al. 1999;
Datta, Choudhury & Bharadwaj 2007)

4 .
a® =\ 35 : =i g™ (BS)
and
2041 d .
m =1/ 4; i’"/%a(l)e”mw. (B9)

with a similar expansion for ij’". Substituting into the visibility
equation, V;;(¢) = Zém ij’”(¢)am, we obtain, for large ¢,

1 )
Vi1~ s Y [ dodgn ta@B@ 9 B10)
tm

where £ and £ have the same magnitude. Doing the sum over m
yields a §-function that collapses one of the azimuthal integrals to
yield

V(@) ~ / ¢ éeﬁ‘;‘f‘ a®B(, ), B11)
where we have approximated the sum over £ by an integral. The
above shows that the visibilities approximately measure a mode £,
smeared by the Fourier transform of the beam function.

We can use the above results to understand how the rotation of
the Earth fills in the # — v plane. In the flat-sky limit, the Fourier
transform of the beam is B(£) ~ >, i~ By, exp[img;]. Rotating
about the z-axis by « scales the By, by exp [ima], which is clearly
equivalent to rotating £ by «. The u — v coverage of the telescope
traces out circles in the u — v plane as the Earth rotates. We note
that this is different from the usual result for interferometers, and
reflects the transit nature of these telescopes.

B3 Matched filters

In order to define the matched filter, we need to express the signal
in terms of the observable quantities, in this case the visibilities.
Since all of the objects of interest in this study are O(10 Mpc) in
size, at a distance of >1 Gpc, they subtend small angles on the sky,
allowing us to express the signal using the same flat-sky Fourier
representation used in the main paper.

To begin, consider a single frequency, corresponding to a fixed
redshift or (redshift-space) distance. Suppose our template, t, is
centred at 6 = 0, is ¢-independent and non-zero only when 6 < 1.
We expand

T (@) = /dft Y5, (@) T(0) (B12)

= 2715,’;0,/%/d(cosem(cose)r(e) (B13)
~ 8K, 1/% {271/5)@ Jo(d) T(@)| , (B14)

where in the last line we have defined @ = 2 sin(6/2) >~ 6 and used
Py(cos8) ~ Jy(£0) for & < 1. The /(2€ + 1)/47 is just Yy(2). If
we extend the upper limit of &-integration to infinity, we recognize
in the brackets on the last line the Hankel transform of 7 or the
2D Fourier transform of t with spherical symmetry (e.g. Bond &
Efstathiou 1987).
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Now we can rotate the template from the north pole (Z) to an
arbitrary A using Wigner functions, D!, . However, in our case

Tom X 8,’;0 and Y, o« Df)m so that the spherical harmonic coeffi-
cients for a template centred on 72 are

R [ 4n . A R
Ty (it) = m Y, () t0(2) (B15)

= {27: / & dé JO(E&))r(&))} Y}, () (B16)

(with no implied sum over £). These 7, can now be inserted into
our formula for the m-mode visibility to obtain

Vii(f) = Z Bf/-’” Y, (it) {Zn/cbdcb Jold) T(@)| - (B17)
¢
This is the central relation needed for the matched filter, as it ex-
presses a linear relationship between the observable and the tem-
plate. We recognize the combination ijf” Y}, as the beam transfer
function, B;;(it; ¢), evaluated at the position of the object but now
modulated by the Fourier transform of 7.

The above expressions are all for a single frequency. If we now
perform the Fourier transform in frequency, the term in square
brackets becomes the 3D Fourier transform for an azimuthally sym-
metric function in cylindrical coordinates: 7(k,, k) with £ >~ |k, |.
For a narrow range of frequencies (corresponding to an astrophysi-
cal object such as a void or protocluster, for example) the k; probed
by the interferometer are almost constant. For a wide range of fre-
quencies, one must account for the shifting of u;;, and £, with
wavelength at fixed baseline separation. This represents no diffi-
culty in principle, since we need only evaluate our template where
there are data, but it formally breaks the Fourier transform property.
It is important to note that this Fourier transform is not necessary
for the matched filter, which can be written in visibility-frequency

space.
As before, the matched filter is defined by

N VAN~V (R

A(it) J ;) (B18)

T VI@N-VI @)

where the noise covariance matrix both includes the visibility noise
and projects out contaminated modes. There are a few practical dif-
ferences between this treatment and the flat-sky Fourier version we
discuss in the main text. In the simplified flat sky treatment, shifting
the matched filter to an arbitrary position x was simply a multipli-
cation of A by exp(ikr), which allowed us to efficiently evaluate
the matched filter at all possible void positions with inverse FFTs.
In particular, the denominator of A is translation-invariant. While
these simplifications remain true in the azimuthal direction, they no
longer hold for the polar or radial directions. Therefore, one must
explicitly evaluate the matched filter at all possible void positions.
It may be possible to reduce the computational burden by using the
Fourier versions of the expressions about more sparsely sampled
central void positions. Since the precise implementation will be
survey dependent, we do not pursue more detailed implementations
here.

B4 A worked example

We conclude with an analytic example to make this formalism
more concrete. Our discussion here parallels that in Bunn &
White (2007). Consider the interferometer situated at the equator
6y = 1/2, ¢po = 0) and looking directly overhead. The baselines,

MNRAS 471, 1167-1180 (2017)

u;;, lie in the y — z plane. We will consider two cases, a north—south
baseline (# = uZ) and an east-west baseline (# = uy). For a small
field of view, we approximate the sky as flat with Cartesian coor-
dinates ¢, §, where § = 71/2 — 0 is the latitude. A Gaussian beam,
normalized to unit peak, then has
¢2 + 82

202

exp[2miug] for y(EW)
X

exp[2miud] for Z(NS),

B(ft) = B(¢, ) = exp {—
(B19)

where we have suppressed the ij indices labeling the visibility for
convenience.
The visibility for this baseline is

V(i) = /dﬁ BT (#). (B20)

Instead of immediately going to the spherical harmonic expansion,
it is algebraicly illuminating and amusing to imagine the sky as a
torus. The appropriate orthogonal basis is then the usual Fourier
basis

V= /dﬁ Z Bnmeiinseiimlﬁ Z Tn/m’ei”/seim/d)v (B21)

which collapses to

V" =210 BunTum, (B22)
nm

where we have also implicitly gone to the m-mode basis (to account
for the Earth’s rotation). This expression is analogous to the spheri-
cal harmonic version. The beam multipole moments are then given
by

d¢ dé
) @ny
Since we assume the beams are compact in both ¢ and §, we are free
to extend the limits of integration to £oo. For the specific case of

our Gaussian beam, these integrals are then just Gaussian integrals
and can be easily evaluated. For an EW baseline, we get

B B(¢, §) eeim?, (B23)

o*n? o%(m £ 2mu)?
B, ocexp |— exp | ————— (B24)
2 2
while for the NS baseline, we find
2 + 92 2 2.2
B, o exp {—70 n 5 ) ] exp {—U e } , (B25)

where the £ cases come from the two possible choices for the sign
of u. These have a clear physical interpretation — the EW baseline
probes modes centred around (n = 0, m = 27tu) while the NS
baseline is centred on (n = 27tu, m = 0). Note that these expres-
sions indicate that it is the baseline distribution and the primary
beam that delineate the range of (¢m) modes which need to be kept
in the sums of the previous section.

Returning to a spherical sky, we will adopt a similar strategy to
understand what modes a given baseline probes. Since the beam is
compact, we will approximate the spherical harmonics by a Fourier
series, in which case the algebra proceeds as in the case of the
torus. All that will remain will be to understand the correspondence
between mode coefficients n on the torus and (£, 7) on the sphere.”

9 Note that in the ¢ direction, both the sphere and the torus have Fourier
expansions.



For our specific case, the multipole moments then become

By, = /dd)dsinS Yo (% —5,4)) B(¢, ) (B26)
~ [T apasv, (T —s.0) Bo.5 B27
= [ awar v, (5 -5.0) 5.9, (B27)

where we assume § < 1 in the second line. Near the equator, we
have!®

N img cos ny,, 6 for £ + m even
Yon = Neme { —sinng,d forf +modd ’ (B28)
where Ny, is a constant and
0 for £ + m even
2 2
on = EE+ 1) —m { 1 for¢ +modd * (B29)

Since we have reduced the problem to the toroidal sky case,
we proceed as before and find that EW baselines measure modes
centred on (ny,, = 0, m = 27tu). In the limit that £ >> 1, this im-
plies that these baselines measure modes with m ~ 2mu, € ~ m.
As one might expect, £ and m are coupled together by the spher-
ical geometry. For NS baselines, the m-mode visibilities probe
(ngm =2mu, m = 0) or £ ~ 27tu, m ~ (. The azimuthal symmetry
of the baseline configuration is reflected in the visibilities isolating
the m ~ 0 modes. These two cases represent the two limiting cases;
baselines with components in both the EW and NS directions will
probe more general £, m modes.

For this particular case, this also completes the correspondence
with the usual flat-sky treatment where a baseline measures a partic-
ular £ Fourier mode. Here, the visibility m modes measure particular
£, m modes.

APPENDIX C: MODELING THE 21 CM SIGNAL

In the main text we have assumed that neutral hydrogen traces
the mass field in an unbiased manner for the purposes of testing
our matched filter on simulations. In this appendix we present a
more refined model and argue that this assumption is conservative
(for our purposes).

At low z most of the hydrogen in the Universe is ionized, and
the 21 cm signal comes only from self-shielded regions such as
galaxies.!! Unfortunately there are not many observational con-
straints on the manner in which HI traces galaxies and haloes in the
high-z Universe. There have been a large number of approaches to
modelling this uncertain signal. Some approaches work directly at
the level of the density field. For example, Shaw et al. (2014, 2015)
use Gaussian density fields. Bull et al. (2015) assume a constant
bias times the matter power spectrum (this is implicitly what we do
in the main text, with b = 1). The CRIME code by Alonso, Ferreira
& Santos (2014) uses lognormal realizations. Bagla & White (2003)
selected dark matter particles based on a density threshold to mock
up self-shielded regions.

10 The approximation agrees to the first two terms in the Taylor series. For
completeness, we note that

201 [ (t—m)! 1
_2”1 . B3
N “F¢ \/(e )l 1 <z+m))r<1+ufm>> (B30)
2 2 2

1T Most likely between the outskirts of discs until where the gas becomes
molecular within star-forming regions.
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An alternative is to use a halo-based approach, specifying the
mass of HI to assign to a dark matter halo of a given mass, M. A
popular model was introduced by Bagla, Khandai & Datta (2010),
which populated haloes with circular velocities above 30 km/s with
HI such that the HI mass saturates at high halo mass. A similar
model was proposed by Barnes & Haehnelt (2010, 2014), who
modelled the low-M cut-off as an exponential. Marin et al. (2010)
use abundance matching between blue galaxies in the HI mass
function at z & 0. Gong et al. (2011) employ a double power-law
model. Seehars et al. (2016) propose a form with an exponential cut-
off at both low and high halo masses. Padmanabhan & Refregier
(2017) allow a non-unity slope in addition to the high and low
mass cut-offs. The model we shall follow is due to Castorina &
Villaescusa-Navarro (2016), which assumes

My Mf,( e Meu/My (CDh

with the constant of proportionality adjusted to match the observed
value of Qy;. Aside from the normalization, this model has two free
parameters, « and M., which control the behaviour at high and low
halo masses. There is evidence from simulations that « < 1 (e.g.
Davé et al. 2013; Villaescusa-Navarro et al. 2016) with o« =~ 3/4 a
reasonable estimate. We shall use this value. Note that in contrast to
some of the other models this assumption puts significant HI mass
in higher mass haloes. There is some evidence at z >~ 0 that HI is
depleted in galaxies within clusters (e.g. Solanes et al. 2001), but
the behaviour at z ~ 1 is unknown. In the simulations of Castorina
& Villaescusa-Navarro (2016), the trend of My with M), is different
at high and low redshifts. The remaining free parameter, M, then
adjusts the bias'? of the HI. While a range of values is allowed within
the observational constraints, typical values for the low-mass cut-
off, My, are around 10'! 1~! Mg . We shall explore a range around
this value (IgM. = 10.5, 11 and 11.5 with masses in 4~ Mgp) to
illustrate the effects.

The simulations used in the main body of this paper do not have
sufficient resolution to track the haloes expected to host much of the
HI at z ~ 1. Thus, in this appendix we use a different simulation,
run with the same code, which employed 2560° particles in a box
of side 256 h~! Mpc. This is the same simulation as used in Stark
et al. (2015a,b), to which the reader is referred for more details.
We generate a mock HI field from the z >~ 1 halo catalog using the
mapping of equation (C1).

We find voids in this simulation using the same technique as
described in the main text. For completeness we also find proto-
clusters, in a manner similar to that of Stark et al. (2015a): starting
from a friends-of-friends halo catalog (with a linking length of
0.168 times the mean interparticle spacing), we select each z = 0
halo more massive than 10'* h~' M. We then track the particles
within a few hundred kpc of the most bound particle back to z = 1.
The centre of mass of these is taken to be the protocluster position
atz=1.

A comparison of the (real-space) profiles of protoclusters and
voids in the dark matter and mock HI at z ~ 1 is shown in Fig. C1
for three values of M.,,. The curves are noisier than from the larger
volume simulations, due to the poorer statistics, however we see
that the protoclusters in the HI have just as much broad, distributed

12 For o = 3/4 at z &~ 1 the bias ranges from 1.4 to 1.7 as 1gMcy runs from
10.5to 11.5in ™! M units. This is consistent with the amplitude of the
measured clustering at z ~ 1 by Chang et al. (2010); Switzer et al. (2013)
but those measurements are not precise enough to place strong limits on the
bias.
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Figure C1. The (real-space) profiles of voids and protoclusters at z > 1, as
in Fig. 3. The upper panel shows the M > 10" ! M protocluster profile
in the mass and in the HI for three values of the cut-off mass in equation
(C1), specified as logjo of the mass in h! Mgp. The lower panel shows the
same comparison for voids of 10 < ry < 15h71 Mpc.
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emission as the matter profiles. The voids in the HI have a quali-
tatively similar ‘bucket shaped’ profile to the mass density, but are
notably more empty. As noted by Tinker & Conroy (2009), the halo
mass function shifts dramatically to lower masses in underdense
regions. Thus we expect to see voids in the massive halo and HI
distributions be ‘more empty’ than in the mass. Given the greater
contrast in HI than in the matter, our approximation in the main text
is conservative from the point of view of finding protoclusters and
voids with 21 cm experiments.

This paper has been typeset from a TEX/I&TEX file prepared by the author.



