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ABSTRACT

A new generation of interferometric instruments is emerging, which aims to use intensity

mapping of redshifted 21 cm radiation to measure the large-scale structure of the Universe at

z � 1–2 over wide areas of the sky. While these instruments typically have limited angular

resolution, they cover huge volumes and thus can be used to provide large samples of rare

objects. In this paper we study how well such instruments could find spatially extended large-

scale structures, such as cosmic voids, using a matched filter formalism. Such a formalism

allows us to work in Fourier space, the natural space for interferometers, and to study the

impact of finite u − v coverage, noise and foregrounds on our ability to recover voids. We

find that in the absence of foregrounds, such instruments would provide enormous catalogs of

voids, with high completeness, but that control of foregrounds is key to realizing this goal.

Key words: gravitation – galaxies: haloes – galaxies: statistics – cosmological parameters –

large-scale structure of Universe.

1 IN T RO D U C T I O N

Intensity mapping with radio interferometers has emerged as a po-

tentially powerful means of efficiently mapping large volumes of

the Universe, albeit at low spatial resolution. Several groups are

fielding 21 cm intensity mapping experiments using a variety of

technical designs (Ansari et al. 2012; Chen 2012; Pober et al. 2013;

Ali & Bharadwaj 2014; Vanderlinde & Chime Collaboration 2014;

Newburgh et al. 2016). Even though such instruments do not have

the angular resolution to see individual galaxies, or even large clus-

ters, they are capable of mapping the larger elements of the cosmic

web (e.g. protoclusters and cosmic voids). Protoclusters are the

progenitors of the most massive systems in the Universe today

(Overzier 2016). Cosmic voids make up most of the Universe, by

volume (Rood 1988; van de Weygaert & Platen 2011). As we shall

show, in each case the system size is sufficiently large that they can

be reliably found with upcoming intensity mapping experiments if

foregrounds can be controlled sufficiently well.

Cosmic voids, regions almost devoid of galaxies, are intrinsically

interesting as the major constituent of the cosmic web by volume,

and as an extreme environment for galaxy evolution (Rood 1988;

van de Weygaert & Platen 2011). They may be an excellent labo-

ratory for studying material that clusters weakly like dark energy

(Lee & Park 2009; Lavaux & Wandelt 2012) or neutrinos (Banerjee

& Dalal 2016)) or for testing modified gravity (Clampitt, Cai &

Li 2013; Hamaus, Sutter & Wandelt 2014; Cai, Padilla & Li 2015;

Hamaus et al. 2015; Cai et al. 2016; Falck et al. 2017; Hamaus
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et al. 2017). In this paper we show that 21 cm instruments aimed

at measuring the large-scale power spectrum, either proposed or

under construction, should enable a search of enormous cosmic

volumes at high redshift for these rare objects, which are large

enough to be detected at high significance (see also Battye, Davies

& Weller 2004).

Voids and protoclusters are inherently ‘configuration space ob-

jects’, in the sense of being highly coherent under- or overdensities

in the matter field in configuration space. However, most future

21 cm experiments are interferometers that naturally work in Fourier

space. We will use a matched filter formalism to allow us to work in

the interferometer’s natural space, where the noise and sampling are

easy to understand. This formalism also provides a natural way to

combine data sets that live in different domains, e.g. optical imaging

data with 21 cm interferometry.

We will illustrate our ideas by focusing on cosmic voids, though

much of what we say could be applied to protoclusters as well.

Our goal in this paper will thus be the detection of voids, and the

challenges associated with this. We assume that these candidate

voids will be appropriately analysed or followed up for different

science applications. It is worth keeping in mind that for certain

applications, the intermediate step of constructing an explicit void

catalog and characterizing its purity and completeness may not

be necessary. One might be able to construct estimators of the

quantities of interest directly from the visibilities. We shall not

consider such approaches in this paper.

The outline of the paper is as follows. In Section 2 we estab-

lish our notation and provide some background on interferometry,

foregrounds for 21 cm experiments and matched filters. Section 3

describes the numerical simulations that we use to test our matched
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Table 1. Useful quantities and conversion factors as a function of redshift,

z, assuming a flat �CDM model with �m = 0.3. These are (a) the observing

frequency, ν, in MHz for 21 cm radiation emitted at z, (b) the comoving

distance to z, χ , in h−1 Mpc, (c) the foreground wedge angle [equation 6]

(d) the k mode that which a 10 m baseline maps to at redshift z and (e) the

differential conversion from frequency (in MHz) to comoving distance (in

h−1 Mpc).

z ν χ μ k/D10 |dχ/dν|
[MHz] [h−1 Mpc] [hMpc−1] [h−1 Mpc MHz−1]

0.50 947 1322 0.359 0.1509 3.630

0.75 811 1854 0.473 0.0922 4.256

1.00 710 2313 0.562 0.0647 4.796

1.25 631 2709 0.632 0.0491 5.267

1.50 568 3055 0.687 0.0392 5.685

1.75 516 3358 0.732 0.0324 6.061

2.00 473 3626 0.767 0.0275 6.405

2.25 437 3865 0.796 0.0238 6.724

2.50 406 4079 0.820 0.0210 7.023

filter and the profiles of voids in those simulations. Our main results

are given in Section 4, and we present our conclusions in Section 5.

We relegate a number of technical details to a series of appendices.

In particular Appendix A discusses instrument noise for an inter-

ferometer in the cosmological context, Appendix B describes the

formalism of transiting telescopes (including cylinder telescopes)

and the flat-sky limit and Appendix C discusses the manner in

which neutral hydrogen might be expected to trace the matter field

at intermediate redshift.

2 BAC K G RO U N D A N D R E V I E W

In this section we provide some background information, to set

notation and provide an easy reference for our later derivations.

2.1 Visibilities

In an interferometer the fundamental datum is the correlation be-

tween two feeds (or antennas), known as a visibility. For an intensity

measurement the visibility is (Thompson, Moran & Swenson 2017)

Vij ∝
∫

d2n A2(n̂)T (n̂) e2πin̂·uij , (1)

where T (n̂) is the brightness temperature in the sky direction n̂, A(n̂)

is the primary beam (assumed the same for all feeds) and uij is the

difference in position vectors of the ith and jth feeds in units of the

observing wavelength. It is common to normalize the visibilities so

that they return brightness temperature. We convert from brightness

temperature to cosmological overdensity throughout, so we omit the

exact normalization here. We will work in visibility space, since this

is the natural space for the interferometer and has the simplest noise

properties. Some useful conversions between common quantities

are given in Table 1.

Visibilities are measured over a range of frequencies, and we

shall follow the common procedure in 21 cm studies of Fourier

transforming in the frequency direction to obtain a data cube in 3D

Fourier space, k. The conversion from frequency to distance (and

hence Fourier mode) is
∣

∣

∣

∣

dχ

dν

∣

∣

∣

∣

=
c

H (z)

(1 + z)2

ν0

(2)

with ν0 = 1420 MHz.

Figure 1. The circularly averaged baseline distribution for an HIRAX-like

experiment. The lower axis shows the length baseline separation in units of

the wavelength for λ = 42 cm (i.e. z = 1) while the upper axis converts to

k⊥ in h Mpc−1. The distribution is normalized to integrate to the number of

antenna pairs.

For small sky areas, the visibility thus measures the Fourier

transform of the sky signal, apodized by the primary beam.

Approximating the sky as flat and assuming the signal of interest,

τ , is azimuthally symmetric (see Appendix B)

τ (k) = 2π

∫

ω̃ dω̃ J0(k ω̃) τ (ω̃), (3)

where ω̃ is an angular, radial coordinate and

Vij ∝ [τ � B] (2πuij ) (4)

with the � representing a convolution and τ and B being the Fourier

transforms of τ (n̂) and A2(n̂), respectively. The surveys of interest

to us here will cover large sky areas. The (very correlated) visi-

bilities from the different pointings can be combined to produce

higher resolution in the u − v plane (a process known as mosaick-

ing), entirely analogously to the manner in which the many slits in

a diffraction grating sharpen the transmitted lines (e.g. Thompson

et al. 2017, or see the discussion in White et al. 1999 for the cos-

mological context). In such a case, the effective B is determined by

the survey area rather than the primary beam (analogous to a survey

window in a galaxy survey) and will be very small. Combined with

the fact that our signals will be very smooth in u − v, this allows

us to neglect B to simplify our presentation. Reinstating it does not

change any of our conclusions.

2.2 21 cm interferometers

We shall start by considering an interferometer consisting of an

array of dishes (the interesting case of transiting, cylinder tele-

scopes presents only technical modifications and is described in

Appendix B). As a concrete example, we use the HIRAX experiment

(Newburgh et al. 2016). HIRAX will use 1024 6 m parabolic dishes

in a compact grid covering the frequency range 400 < ν < 800 MHz

(i.e. 0.8 < z < 2.5 for 21 cm radiation). HIRAX is a transit telescope:

all dishes will be pointed at the meridian with a given declination,

and the sky will rotate overhead in a constant drift-scan. Each dec-

lination pointing will give access to a 6◦ wide stripe of the sky and

the complete survey will cover 15 000 square degrees.

Fig. 1 plots the circularly averaged distribution of baselines at

z = 1, given our assumptions for HIRAX. The x-axis is the baseline

separation in units of the wavelength, |u|, while the y-axis is the

number density of baselines per d2u, conventionally normalized to
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integrate to the number of antenna pairs. The upper x-axis shows

what k modes these baselines map to. Recalling that the noise scales

as the inverse of the baseline density (see Appendix A), we see that

an HIRAX-like experiment is sensitive to a broad range of k scales

well suited to the detection of voids and protoclusters.

2.3 Noise for 21 cm experiments

The major difficulty facing upcoming 21 cm experiments is astro-

physical foregrounds (e.g. Furlanetto, Oh & Briggs 2006; Shaw

et al. 2014, 2015; Pober 2015; Seo & Hirata 2016). Foregrounds

have been extensively studied in the context of (high z) epoch of

re-ionization studies, i.e. at lower frequencies than of direct interest

here. However the amplitudes of the signal and foreground scale in

a roughly similar manner with frequency, so many of the lessons

hold in our case (see Pober 2015, for a recent discussion). Since

the main (Galactic) foregrounds are relatively smooth in frequency,

their removal impacts primarily the slowly varying modes along the

line of sight, i.e. the low k‖ modes. However since the foregrounds

are very bright (compared to the signal) and no instrument can be

characterized perfectly, there is also some leaking of foreground

power into other parts of the k⊥ − k‖ plane.

The precise range of scales accessible to 21 cm experiments after

foreground removal is currently a source of debate. We do not

attempt to model foreground subtraction explicitly, but take into

account its effects by restricting the range of the k⊥ − k‖ plane we

use.

There are two regions of this plane we could lose to foreground

removal. The first is low k‖ modes, i.e. modes close to transverse to

the line of sight. This boundary is slightly fuzzy and not well known.

For instance, Shaw et al. (2014, 2015) claim that foreground removal

leaves modes with k‖ > 0.02 hMpc−1 available for cosmological use,

while Pober (2015) claims k‖ < 0.1 hMpc−1 modes are unusable.

We shall consider the impact of a k‖ cut within this range and we

will see that our ability to find voids is quite sensitive to this cut.

In addition to low k‖, non-idealities in the instrument lead to

leakage of foreground information into higher k‖ − k⊥ modes. This

is usually phrased in terms of a foreground ‘wedge’ (for recent

discussions, see Pober 2015; Shaw et al. 2015; Cohn et al. 2016;

Seo & Hirata 2016, and references therein). The wedge does not

form a hard boundary, but delineates a region where modes far from

the line-of-sight direction can become increasingly contaminated.

For a spatially flat Universe we can define the wedge geometrically

as (Cohn et al. 2016; Seo & Hirata 2016)

R =
χ H

c(1 + z)
=

E(z)

1 + z

∫ z

0

dz′

E(z′)
, (5)

where E(z) = H(z)/H0 is the evolution parameter, and we assume

we cannot access the signal in modes with |k‖|/k⊥ < R or

|k‖|
k

< μmin =
R

√
1 + R2

≈ 0.6 (6)

with the last step being for z = 1. It is worth emphasizing that

this foreground ‘wedge’ does not represent a fundamental loss of

information, and may be mitigated with an improved model of the

instrument (ideally the wedge can be reduced by sin 
, where 
 is

the field of view; Liu, Zhang & Parsons 2016). We bracket these

cases by considering cases with and without the foreground wedge,

and discuss the impact on our void finder.

Finally we must contend with shot noise and receiver noise in

the instrument. Castorina & Villaescusa-Navarro (2016) argue that

shot noise is sub-dominant to receiver noise for upcoming surveys,

so we shall neglect it in what follows (see also Cohn et al. 2016).

To simplify our presentation, we shall treat the receiver noise as

uncorrelated between visibilities and constant for all pairs of re-

ceivers. The noise thus scales with the number of baselines that

probe a particular scale, and only an overall scaling is required. If

the noise is uncorrelated from frequency channel to frequency chan-

nel, and only slowly varying with frequency, then the noise level

is independent of k‖. It is convenient to quote the thermal noise

power in terms of the linear theory power spectrum, PL, in much

the same way as galaxy surveys specify their shot noise by giving

n̄P at some fiducial scale. Since one of the design goals of all of

these surveys is a measurement of the baryon acoustic oscillation

(BAO) scale, we follow the standard practice and specify the re-

ceiver noise as a fraction of PL at k⊥, fid = 0.2 h Mpc−1. The surveys

should achieve PL/Pnoise > 1 at k⊥, fid and we shall explore a range

of values (see Appendix A). Once PL/Pnoise > 3, the results become

very insensitive to the precise value.

2.4 Matched filters

A matched filter is a convenient means of finding a signal of known

shape in a noisy data set. If we write the the data as an amplitude

times a template plus Gaussian noise (d = Aτ + n), the maximum-

likelihood estimate of A and its scatter is given by

Â =
τN−1d

τN−1τ
, σ−2 = τN−1τ. (7)

We take the ‘noise’ covariance to include both instrument noise

and non-template cosmological signal and shall assume throughout

that this noise is diagonal in k-space. The main feature of this

expression is that areas of the k-plane that are not sampled or are

lost to foregrounds receive zero weight (N−1 = 0).

We find that our ability to isolate voids is very insensitive to

the exact profile chosen for τ . In fact, even a top-hat profile pro-

duces a highly pure and complete void catalog for low noise and

good k-space sampling. Similarly the performance is not particu-

larly sensitive to the particular choice for N(k), but rather to the

larger questions of whether there are significant regions of k-space

where N−1 = 0 or very uneven sensitivity of the instrument due to

the spacing of the feeds.

We shall use N-body simulations for our signal, and work with

a periodic, cubic box. In such situations, given a 3D density field,

δ(x), and a template, τ (x), we can implement the flat-sky version of

the matched filter very efficiently using FFTs if the noise is diagonal

in k-space. Recalling that a shift in configuration space amounts to

multiplication by a phase in Fourier space, the matched filter for a

void centred at a is

τN−1d →
∑

k

eik·a τ0(k)δ�(k)

N (k)
, (8)

where τ 0 is the template for a void centred at the origin. The sum

is simply an (inverse) Fourier transform, so we can test for all

a at once. A similar set of steps can be used for the denominator

τN−1τ , allowing a fast computation of S/N for any position, a. Thus

with forward Fourier transforms of the template and data and one

inverse transform, we can compute the matched filter amplitude, A,

everywhere in space and hence its (volume weighted) distribution

at random locations and at the positions of voids.

There is, in principle, no reason why the matched filter cannot be

modified to remove spectrally smooth foregrounds, at the same time

as searching for voids or protoclusters. We choose not to implement
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Figure 2. Slices through one of our N-body simulations at z = 1. Each panel shows the projected, redshift-space density field, on an arcsinh scale saturating

at 10 ρ̄, with a (line-of-sight) depth of ±20 h−1 Mpc and transverse dimensions ±50 h−1 Mpc. The panels in the top row are centred on voids, with the void

centre marked with a dot and the radius with a dashed circle. Those in the bottom row are centred on (randomly selected) massive protoclusters.

this approach, preferring instead to set N−1 = 0 for modes that we

deem unusable due to foregrounds.

3 SI M U L AT I O N S

3.1 N-body

To illustrate our ideas, we make use of several N-body simulations,

each of the �CDM family. Specifically we use the z = 1 outputs

of 10 simulations run with the TreePM code described in White

(2002). This code has been extensively compared to other N-body

codes in Heitmann et al. (2008), and these simulations have been

previously used (and described) in Reid et al. (2014) and White et al.

(2015). Each run utilized 20483 particles in a periodic box of side

1380 h−1 Mpc to model a cosmology with �m = 0.292, h = 0.69 and

σ 8 = 0.82. This gives a particle mass of mp = 2.5 × 1010 h−1 M�.

Slices of the redshift-space density field at z = 1 from one of the

simulations are shown in Fig. 2, to illustrate the types of structures

we are searching for. There are spatially coherent regions of over- or

underdensity with scales of O(10 Mpc) clearly visible in the figure.

Properly modelling the distribution of HI at z =1–2 is beyond

the scope of this paper. Our simulations would need much higher

resolution, to resolve the haloes likely to host neutral hydrogen at

z = 1–2, and the halo occupancy is anyway highly uncertain (see

discussion in e.g. Castorina & Villaescusa-Navarro 2016; Seehars

et al. 2016). Instead we assume that the HI is an unbiased tracer of the

matter field, and simply use the dark matter density. In Appendix C

we use a halo model of HI in a higher resolution (but smaller volume)

simulation to show that this is a conservative approximation for

the purposes of establishing how well 21 cm experiments can find

voids.

3.2 Voids in the simulations

We define voids through a spherical underdensity algorithm (for a

comparison with other void finders, see Stark et al. 2015b, and for

a general comparison of void finders, see Colberg et al. 2008). The

dark matter particles are binned on to a regular, Cartesian grid of

13803 points. Around each density minimum with 1 + δ < 0.2, we

grow a sphere until the mean enclosed density is 1 + δ̄ < 0.4. Visu-

ally such an underdensity gives voids that match expectations (see

Fig. 2). The voids are then ordered by their radius RV and overlap-

ping voids with smaller radii are removed from the list. As is the case

for the large overdensities (protoclusters), these large underdensities

(voids) are very rare, necessitating surveys of large volumes. The

number density of redshift-space voids at z = 1 is 10−5 h−3 Mpc3

for 10 < Rv < 15 h−1 Mpc and 6 × 10−7 for 20 < Rv < 25 h−1 Mpc

and falls quickly with redshift.

The matched filter essentially performs a ‘weighted convolution’

of the density field with a profile, and thus requires some knowledge

of the shape of the object it is trying to ‘match’. While the perfor-

mance of the filter is relatively insensitive to the precise profile we

use, we describe the choices we have made based on the N-body

simulations described above.

To begin, we note that a void has an extent O(10 Mpc) and

thus covers only a small region of sky (<1 arcminute) and a small

portion of the frequency coverage of the telescope. We are thus

justified in treating the sky as locally flat and the k⊥ coverage as

approximately wavelength independent.1 We expect the profile to

have a significant power at k ∼ 0.1 h Mpc−1, well within the band of

1 Recall that the conversion from u to k⊥ depends on the frequency of the

observation.
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Figure 3. Real-space profile of voids in our simulation. Squares show the

average profile measured from the N-body simulations described in the text

for voids with radii 10 < Rv < 15 h−1 Mpc at z = 1. The solid line is the

analytic fit of equation 9 with rs = 12.5 h−1 Mpc.

sensitivity of 21 cm interferometers aimed at large-scale structure

observations (see Fig. 1 before).

Fig. 3 shows the averaged real space profile of voids with

10 < RV < 15 h−1 Mpc in our N-body simulations at z = 1. There

are numerous analytic void profiles in the literature (e.g. Hamaus

et al. 2014; Hawken et al. 2016, for recent examples). Most of these

do not fit our N-body results particularly well, which is most likely

due to the different choices of void finder employed. In particu-

lar, our void profile approaches 0 smoothly from below at large

radius, i.e. we do not find a prominent ‘compensation wall’ at the

void edge. This echoes the findings of Cai et al. (2016), who also

found no compensation wall for voids that are not part of a larger

overdensity.

A simple, 2-parameter form that does provide a good fit to our

N-body data is

δ =
δ0

1 + (r/rs)6
, (9)

where δ0 and rs are the interior underdensity and void scale radius,

respectively. This is shown in Fig. 3 as the solid line. In Fourier

space, this profile becomes

τ (k) = 4π

∫

r2 dr δ(r) j0(kr) (10)

=
2π

2

3 κ
δ0 r3

s e−κ/2
[

e−κ/2 +
√

3 sin y − cos y
]

, (11)

where κ = k rs and y =
√

3 κ/2. For large k the profile is ex-

ponentially suppressed. Since the profile is not compensated,

τ (k � 1) � (2π
2/3)(1 − κ2/3 + · · ·)δ0r

3
s does not go to zero as

k → 0. This is clearly only an approximation, since on sufficiently

large scales the profile must go to zero due to mass conservation,

but it does not seem to adversely affect our filter. We remind the

reader that it is this Fourier space form that is input into the matched

filter.

The above was all in real space. An analytic model for a void

in redshift space could simply use the linear theory analysis of

Kaiser (1987). A better alternative would be to make use of the

Gaussian streaming model (Reid & White 2011). Hamaus et al.

(2015) have shown that this model works well if linear theory ex-

Figure 4. The (stacked) profile in Fourier space for voids with radii

10 < Rv < 15 h−1 Mpc from our N-body simulations in redshift space

at z = 1.

pressions for the mean pairwise velocity and dispersion are com-

puted from the assumed profile. We have taken a simpler approach,

using the simulations to measure the anisotropy. Fig. 4 shows the

Fourier transform of the same voids shown in Fig. 3, except now

in redshift space. Material that is outflowing causes the void to ap-

pear deeper and wider in the line-of-sight direction (Kaiser 1987),

enhancing the profile along k‖. In principle, this makes the redshift-

space profile less sensitive to loss of modes in the ‘wedge’ than

would be anticipated from the real-space profile (though the filter

will tend to downweight the line-of-sight modes more due to the

enhanced cosmic clustering close to the line of sight).

However, for intermediate scales k ∼ 0.2hMpc−1, the void pro-

files are remarkably close to spherical, with only a very mild

quadrupole. Given this small anisotropy, we shall continue to use

a spherically symmetric void profile even in redshift space. This

choice was motivated purely for the simplicity of the presentation

and does not represent a limitation of the method, and we expect

these choices to be revisited in future work.

4 R ESULTS

4.1 Filter amplitude distributions

We now turn to the performance of the matched filter. Recall that

we can evaluate the matched filter at an arbitrary point – ideally

positions centred on voids would have significantly larger values

of Â than a randomly chosen point.2 The left-hand panel of Fig. 5

plots the distribution of Â in the ideal case of an effectively noise-

less n̄P = 10 survey. The distribution is close to Gaussian with a

width of 0.86; this compares with the analytically predicted value

(equation 7) of 0.90. The Gaussianity of this distribution is easily

understood by observing that the matched filter simply smoothes the

(configuration space) density field with a kernel that is O(10) Mpc

wide; on these scales, the density field is very close to Gaussian.

We do see evidence of non-Gaussianity from collapsed objects in

a slight skew towards negative values of Â. Although the matched

filter has the void radius as an input parameter, we find that the

shapes of the distributions (after scaling out the variance) are very

2 Since our input void profile has a negative central underdensity, we expect

voids to have positive values of Â.
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Figure 5. The (normalized) distribution of matched filter amplitude, A, at the locations of voids (dashed) compared to the full (volume weighted) distribution

(solid) for voids of radius 10–15 h−1 Mpc (thick, blue) and 20–25 h−1 Mpc (thin, red). In each panel the dotted (black) line shows a unit-variance Gaussian

for reference. The left panel shows void recovery for perfect sampling of the k⊥ plane with minimal noise (we have quoted the noise as n̄P = 10 at

kfid = 0.2 h Mpc−1, in analogy with galaxy surveys but recall n̄ is in reality thermal noise as a function of k⊥). The middle panel shows a baseline distribution

for a HIRAX-like telescope with n̄P = 3 and the right-hand panel shows the additional effects of removing modes with k‖ < 0.05 h Mpc−1 and μk < 0.56.

The horizontal dotted lines in each panel mark the 10th and 90th percentiles for reference.

similar. We therefore simply standardize all our distributions by the

appropriate variance.

We can now compare the above distribution with the matched

filter evaluated at void centres. We consider two sets of voids:

10 < RV < 15 h−1 Mpc and 20 < RV < 25 h−1 Mpc and we set

the filter radius to 12.5 h−1 Mpc and 22.5 h−1 Mpc, respectively.

We find that the distribution of Â evaluated at the void centres is

clearly separated from the full distribution of the matched filter.

Approximately 80 per cent of the smaller voids are detected at >1σ

from zero while ∼90 per cent of the larger voids are detected at

>1.5σ . It is also worth noting that our reference distribution in-

cludes points that are in voids. Indeed ∼8 per cent of the simulation

volume is contained in voids larger than 10 h−1 Mpc, which would

correspond to a threshold choice of ∼1σ . Note that this is somewhat

different from the Gaussian expectation of ∼1.5σ ; this difference

can be traced to non-Gaussianity in the tails of the distribution

of Â.

We now consider how survey non-idealities impact the efficiency

of the matched filter. There are two aspects relevant to the 21 cm

interferometer case. The first is that the instrument only samples

particular k-modes and that this sampling is modulated by the num-

ber of baselines in the interferometer. The second is that, as dis-

cussed in Section 2.3, astrophysical foregrounds and instrumental

imperfections can contaminate both low k|| modes and the so-called

‘wedge’, further restricting the accessible k-space. The impact of

these is summarized in the middle and right-hand panels of Fig. 5.

The relatively wide and dense coverage in k-space of our HIRAX-

like survey implies that the filter’s performance does not degrade

significantly compared to the ideal case. Removing modes contam-

inated by foregrounds has a more significant effect. While we still

see a separation between voids and randomly chosen points, only

50 per cent of the voids are now above the thresholds discussed

above.

While the detailed performance of the void finder will depend

on the details of the interferometer, the principal conclusion of the

above discussion is that for the designs that are being considered

voids are relatively easily detected in the absence of foregrounds but

the loss of low k‖ modes is a serious matter and some foreground

mitigation strategy is necessary. Fig. 6 shows similar performance

plots for an idealization of the CHIME experiment (see Appendix B

for details). As with our HIRAX example, we find a clear separation

between the distribution of voids and random points with similar

recovered fractions of voids for the cases without any foregrounds,

and a loss of separation when foregrounds become important.

As with all matched filter applications, there are a number of input

choices. The choice of the void profile is the most notable example

in this case. We experimented with different choices of void shapes

and sizes and find that the results above are quite robust. A different

complication arises from the fact that our void profiles are estimated

from the dark matter. Appendix C explores the shapes of voids with

a more realistic modelling of the 21 cm density field. We find

that shapes of the voids here are very similar (and possibly more

pronounced) to those in the dark matter. We therefore expect our

results to be qualitatively unchanged with more realistic modelling

of the 21 cm field.

Another choice in our matched filter is the power spectrum used

in the noise covariance matrix to account for large-scale structure

noise. While different choices here change the exact width of the

distribution of Â, it does not change our basic result that voids are

detected with very high significance in the absence of foregrounds.

4.2 An example application: a void catalog

As an example application, we discuss how to use such a matched

filter to construct a void catalog. Our intention here is not to attempt

to quantify (or optimize) the purity and completeness of such an al-

gorithm, since this will be data and instrument specific and so much

depends upon the manner in which foregrounds are subtracted. In-

stead, we outline the steps of a possible algorithm and perform some

simple calculations with it, and defer detailed discussions to future

work.

For this demonstration, we choose a single simulation box from

our suite of 10 simulations. We run the matched filter on this box

with the void radius RV varying from 33.3 h−1 Mpc to 20 h−1 Mpc

in 10 per cent steps. We keep a list of all points where the matched

filter amplitude, A, exceeds 2 σ . Starting from the largest void(s)
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Figure 6. As in Fig. 5 but for an idealization of the CHIME telescope.

The top panel shows the impact of the CHIME baseline distribution with a

noise level appropriate for a BAO detection, while the lower panel shows the

additional impact of removing modes with k‖ < 0.05 h Mpc−1 and μk < 0.56.

and working down in radius, we eliminate any voids that overlap.

If two overlapping voids have the same radius, the one with the

smallest A is removed. The result of this procedure is our ‘void

catalog’.

In a single 1380 h−1 Mpc box the largest 1000 voids have radius

above about 20 h−1 Mpc. With full u − v coverage and low noise

we find that all but 1 of the 32 largest ‘true’ voids contain a match in

our catalog within 0.75 RV and these matches are all in the upper 5th

percentile of the A distribution. Just under half of them (14 of the 32

voids) show significant (>RV/3) mis-centring, i.e. the detected void

centre is >RV/3 away from the centre of the closest true void. For the

u − v coverage of our HIRAX-like experiment, and n̄P = 3, four

of the 32 largest ‘true’ voids do not have a match within 0.75 RV and

again all are highly significant. The situation changes dramatically

as we include a k‖, min and μ cut. For k‖, min = 0.05 h Mpc−1 and

μ > 0.56, we find only 5 of the top 32 voids in our catalog, though

these voids are in the extreme tails of the A distribution. Most of this

effect is driven by the k‖ cut. If we relax the cut to 0.02 h Mpc−1, then

we recover 10 of the 32 largest voids and for a cut of 0.01 h Mpc−1

we recover 20 of them.

We can recast the results of this and the previous section into the

more traditional forms of the completeness and purity of the sample.

Figure 7. Redshift-space density profile stacked around the 1000 voids in

our ‘candidate catalog’, as described in the text. Black squares show the

stacked profile assuming perfect u − v coverage and no noise. Clearly, in

the absence of foregrounds, our candidates correspond to large, coherent

underdensities. Compared to Fig. 3, the shallower profile at small radius is

due to the miscentering described in the text. The lines are all for the HIRAX

u − v coverage with n̄P = 3, and show the impact of losing modes at low

k‖ and in the wedge. The legend gives the cuts as k‖, min and μ pairs.

In the absence of foregrounds, our detected void catalog is both pure

(only ∼10 per cent of detected voids do not correspond to true voids)

and complete (>90 per cent of true voids are detected at better than

1.5σ ) for large (∼20 h−1 Mpc) voids. However, both of these num-

bers are sensitive to foregrounds. For our most conservative case of

foregrounds contaminating all modes with k|| < 0.05 hMpc−1 and

μ < 0.56, the majority of the most prominent detections do not

correspond to true underlying voids and only ∼50 per cent of true

voids are detected at high significance.

It is possible that some of the low k‖ information lost to the inter-

ferometer by foregrounds could be replaced by another experiment.

As an example, modern photometric surveys can achieve high pho-

tometric redshift precision for certain types of galaxies, and thus

can map the low k‖ modes of the 3D density field. In fact, such

surveys have been used to search for voids (Sánchez et al. 2017).

Including the photometric survey in our matched filter presents no

problem in principle – one simply augments the data vector and

includes a model for the void in configuration space – but could be

difficult in practice. Assuming the combination recovers all of the

k‖ range, we recover our no-foreground forecasts. If there is a gap

in coverage, the results are adversely affected. To take a pessimistic

example: if we lose modes 0.02 < k‖ < 0.05 h Mpc−1, we are able

to recover 12 of our top 32 voids. For 0.03 < k‖ < 0.05 h Mpc−1 it

is half of our top 32 voids.

These lost k‖ modes potentially could be reconstructed from

higher-point information in the 21cm field itself (Zhu et al. 2016).

There is considerable interest in developing these reconstruction

schemes for 21 cm surveys to enable cross-correlations with photo-

metric surveys or CMB lensing maps. Initial results (Zhu et al. 2016)

suggest that modes k‖ < 0.01 hMpc−1 and k⊥ < 0.05 hMpc−1 could

be recovered. As with the example above, the efficiency of the

void finder will depend on the details of the performance of these

reconstructions.

We can visualize this information in another way. Fig. 7 shows

the stacked matter profile around our top 1000 void candidates for

various choices of k‖, min and μmin. With full u − v coverage, there

is a clear, coherent underdensity at the locations of the void can-

didates. The shallower inner profile in Fig. 7, when compared to
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Figure 8. An example of a detected void in our catalog, for the case of no

foregrounds. The image shows the matter distribution centred around a RV

� 30 h−1 Mpc void (bounded by the dashed line). The slice is 100 h−1 Mpc

wide and 20 h−1 Mpc thick. The squares show significant matched filter

detections, with the filled, magenta, diamond being the most significant

detection (as determined by our pruning algorithm). We see that, while the

void centre is detected by the matched filter, it happens not to be the most

significant detection, resulting in a mis-centred void.

Fig. 3, arises due to mis-centring. While some voids were well

centred, a significant fraction had offsets. After visually inspecting

these voids, we find that, in most cases, the true void centre was a

significant detection in the matched filter, but happened not to be

the most significant detection and was removed by our relatively

simple pruning algorithm. Fig. 8 shows an example of such a case.

Both the fraction of found voids and the degree of mis-centring

get worse when modes are lost to foregrounds, as the other curves

in Fig. 7 show. For our pessimistic scenario of k‖ > 0.05 h Mpc−1

and μ > 0.56 there is barely any underdensity detected at all. This

suggests that doing science with voids selected via 21 cm experi-

ments will be difficult unless the foregrounds can be brought under

control. We however note that the algorithm used to construct our

void catalog is relatively simple; e.g. a more robust algorithm might

use multi-scale information to get more robust measurements and

there is significant potential for complementarity between optical

imaging surveys and 21 cm measurements.

5 C O N C L U S I O N S

Recent advances in technology have made it feasible to study the

21 cm emission from objects at cosmological distances. A new gen-

eration of telescopes is being designed and built, which aims to

survey enormous volumes of the Universe with modest resolution

at redshifts z �1–2. A primary focus of these facilities is the mea-

surement of the power spectrum of large-scale structure, as traced

by neutral hydrogen, which will hopefully improve constraints on

our cosmological model. While these instruments do not have suf-

ficient angular resolution to resolve the emission from individual

objects, we point out that they should be able to make catalogs of

the largest members of the cosmic web – protoclusters and voids –

if they are able to control foregrounds sufficiently.

We have considered instruments that measure the sky interfer-

ometrically, which means they naturally operate in Fourier space.

The finite sampling of the Fourier plane and the loss of sensitivity

in some modes due to foregrounds make it difficult to generate a

real-space, 3D map from the data and hence to search for exotica

whose properties are not known in advance. However, our under-

standing of the cosmic web allows us to specify in advance what

sort of objects we are interested in finding and searches for objects

of known shape do not need to go through the map-making step: a

matched filter provides a natural method for finding such objects.

The matched filter formalism also allows us to mix multiple data

sets, each of which is provided in its own domain.

The cosmic web contains voids on a variety of scales, and voids

that touch or merge. We have only studied the simplest matched

filter. The algorithm can be modified to iteratively add voids to an

existing catalog, always adding the void, which leads to the largest

increase in the likelihood given the already-found voids (see e.g.

Kochanek et al. 2003; Dong et al. 2008). This involves a scan over

void (or protocluster) sizes, and increases the complexity of the

algorithm. A multi-probe approach could use deep, optical imaging

data in conjunction with 21 cm data in much the same way as multi-

frequency information is sometimes used for cluster finding (e.g.

Melin, Bartlett & Delabrouille 2006; Rykoff et al. 2014). As our

main aim was to assess the feasibility of void detection with 21 cm

surveys, we defer further consideration of such a process to future

work.

Throughout we have focused our discussion on voids as exem-

plars of large structures in the cosmic web. Of course, the matched

filter algorithm is more general and the huge volume and sensitivity

of upcoming experiments can be used to search for a number of ex-

otic objects. At the other end of the density distribution from voids

are the large, coherent overdensities associated with protoclusters.

Despite keen interest in the community in how clusters form and

evolve, and years of observational and numerical efforts, the study of

early cluster formation (at high z) remains observationally limited.

Protoclusters are rare, present only modest overdensities and lack

many of the features used to discover clusters (e.g. a hot ICM or a

red sequence). Observations of protoclusters at high z would provide

important clues into cluster assembly and the processes of galaxy

formation (Overzier 2016). Given the diversity of protoclusters,

having large samples with well-understood selection is important.

Like voids, protoclusters form large coherent structures amenable

to discovery in upcoming 21 cm experiments. Assuming a mean

interior density of 200 times the background, the linear size of the

mean-density region from which material accretes into a present-

day cluster is several (comoving) Mpc. The progenitors of large

clusters should thus be identifiable in relatively low-resolution maps

that can cover large volumes (see e.g. Overzier 2016, and Fig. 2).

Slices through the density field in one of our simulations are

shown in Fig. 2, where the large extended mass profile of the proto-

clusters is evident. In fact, the most massive clusters in the mature

Universe form not from the most overdense regions at high z but

from large, possibly only moderately overdense regions such as

shown in Fig. 2 (Overzier 2016). While we do not show it here,

the typical protocluster covers a larger volume at z � 2, rendering

it potentially easier to see while still being well within the redshift

reach of HIRAX or CHIME.

The abundance of such protoclusters is identical to the abundance

of the clusters at z = 0: for a mass threshold of 3 × 1014 h−1 M�,

it is 4 × 10−6 h3 Mpc−3. This emphasizes the need for a survey to

cover a large volume in order to properly sample the heterogeneous

population of protoclusters. As an example, if it covered 15 000 deg2
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between z = 1 and 2 HIRAX would survey 50(h−1 Gpc)3 encom-

passing ∼200 000 protoclusters.3 CHIME is anticipated to cover a

similar volume in the Northern hemisphere. In some models the

star formation associated with haloes in protoclusters makes up a

significant fraction of the ionizing photon budget for re-ionization

(Chiang et al. 2017) at z � 6–7. If foregrounds could be controlled,

using interferometers designed for studying re-ionization to search

for protoclusters could provide an interesting synergy.

AC K N OW L E D G E M E N T S

We thank Emanuele Castorina and Richard Shaw for useful discus-

sions and comments on an early version of this paper. N.P. thanks

Laura Newburgh for useful conversations. We thank the referee

for detailed comments on the paper. M.W. is supported by DOE.

N.P. is supported in part by DOE DE-SC0008080. This work made

extensive use of the NASA Astrophysics Data System and of the

astro-ph preprint archive at arXiv.org. The analysis made

use of the computing resources of the National Energy Research

Scientific Computing Center.

R E F E R E N C E S

Ali S. S., Bharadwaj S., 2014, J. Astrophys. Astron. 35, 157

Alonso D., Ferreira P. G., Santos M. G., 2014, MNRAS, 444, 3183

Alonso D., Ferreira P. G., Jarvis M. J., Moodley K., 2017, preprint

(arXiv:1704.01941)

Ansari R. et al., 2012, A&A, 540, A129

Bagla J. S., White M., 2003, in Ikeuchi S., Hearnshaw J., Hanawa T., eds,

ASP Conf. Ser. Vol. 289, The Proceedings of the IAU 8th Asian-Pacific

Regional Meeting, Vol. 1, pp. 251–254 (astro-ph/0212228)

Bagla J. S., Khandai N., Datta K. K., 2010, MNRAS, 407, 567

Banerjee A., Dalal N., 2016, J. Cosmology Astropart. Phys., 11, 015

Barnes L. A., Haehnelt M. G., 2010, MNRAS, 403, 870

Barnes L. A., Haehnelt M. G., 2014, MNRAS, 440, 2313

Battye R. A., Davies R. D., Weller J., 2004, MNRAS, 355, 1339

Bond J. R., Efstathiou G., 1987, MNRAS, 226, 655

Bull P., Ferreira P. G., Patel P., Santos M. G., 2015, ApJ, 803, 21

Bunn E. F., White M., 2007, ApJ, 655, 21

Cai Y.-C., Padilla N., Li B., 2015, MNRAS, 451, 1036

Cai Y.-C., Taylor A., Peacock J. A., Padilla N., 2016, MNRAS, 462, 2465

Castorina E., Villaescusa-Navarro F., 2016, preprint (arXiv:1609.05157)

Chang T.-C., Pen U.-L., Bandura K., Peterson J. B., 2010, Nature, 466, 463

Chen X., 2012, in Int. J. Mod. Phys. Conf. Ser. pp. 256–263, preprint

(arXiv:1212.6278)

Chiang Y.-K., Overzier R. A., Gebhardt K., Henriques B., 2017, preprint

(arXiv:1705.01634)

Clampitt J., Cai Y.-C., Li B., 2013, MNRAS, 431, 749

Cohn J. D., White M., Chang T.-C., Holder G., Padmanabhan N., Doré O.,
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APPENDI X A : SI GNA L-TO -NOI SE RATI O

We present a self-contained derivation of the instrument noise power

spectrum, converted to cosmological units. Our derivation is similar

to that in Alonso et al. (2017), but related expressions have also

appeared in White et al. (1999), Zaldarriaga, Furlanetto & Hernquist
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(2004), McQuinn et al. (2006), Seo et al. (2010), Bull et al. (2015),

Seo & Hirata (2016) and Wolz, Blake & Wyithe (2017).

The brightness temperature, Tb, is defined in terms of the intensity

at frequency ν as Iν = 2kBTb(ν/c)2 = 2kBTb/λ
2. We begin by noting

that if we normalize our visibilities in terms of temperature (rather

than intensity) the power can be written in terms of the brightness

temperature power spectrum and window function as

〈

|Vi |2
〉

=
∫

d2u PT (u)W (u) ≈ PT (u)

∫

d2u W (u) (A1)

with the last approximation holding if the window function is com-

pact and PT is smooth. Conventionally the beam is normalized to

unity at peak, so its area in the u − v plane integrates to unity and

thus the window function integrates to the inverse area
∫

d2u W (u) ∼
1

d2u
, (A2)

which gives

〈

|Vi |2
〉

≈
PT (u)

d2u
. (A3)

It may be helpful to derive equation (A3) differently. If we treat

the visibility as measuring a single Fourier mode of the 2D bright-

ness temperature field, we can relate this to the 2D power spectrum

of this field

〈V (�)V �(�′)〉 = (2π)2δD(� − �
′)PT (� = 2πu) ≈ δK

�,�′
PT (u)

d2u
,

(A4)

where δD, K are the Dirac and Kronecker δ functions. The above

equation explicitly relates u to the 2D wavevector �, and the last ap-

proximation comes from assuming a discretized set of wavevectors.4

In the same units the visibility noise is diagonal (Thompson

et al. 2017)

〈

|Ni |2
〉

=
[

2kB

λ2

]−2 [

2kBTsys

Ae

]2
1

�ν tp
=

[

λ2 Tsys

Ae

]2
1

�ν tp

(A5)

per baseline. Here Tsys is the system temperature, Ae the effective

area of the telescope (equal to the aperture efficiency times the

physical area), �ν is the bandwidth, tp is the observing time per

pointing and we have assumed a single polarization.

The above is all that is needed to implement a matched filter on

the data, where we can work at the level of the visibilities. It is

however useful to translate this into the cosmological units used in

the paper. We start by defining the number of baselines per unit area

in the u − v plane, n(u), normalized such that
∫

d2u n(u) = Npairs =
Na(Na − 1)

2
, (A6)

where Na is the number of antennas and Npairs is the number of

pairs (i.e. instantaneous baselines). Averaging over the number of

baselines, the noise becomes 〈N2
i 〉/(n(u)d2u). Using equation (A3),

we obtain

PN (u) =
[

λ2 Tsys

Ae

]2
1

n(u)

1

�ν tp
=

[

λ2 T 2
sys

Ae

]

1

n(u)

4πfsky

�ν tobs

.

(A7)

The last equality follows from Np�p = 4πfsky, where Np = tobs/tp

is the number of pointings and tobs is the total observing time. The

4 For instance, this is exactly what happens on an FFT grid in a simulation.

area covered by each pointing �p is approximately given by λ2/Ae.

Physically, the above equations assume that each pointing yield a

disjoint set of modes.

To convert this visibility noise into a cosmological power spec-

trum, we divide by the mean cosmological brightness temperature

(Seo et al. 2010)

T̄ = 188
xHI(z)�H,0h(1 + z)2

H (z)/H0

mK , (A8)

with xHI the neutral hydrogen fraction, and convert from u to k⊥ in

comoving coordinates and similarly for frequency to k‖ to obtain

PN =
(

Tsys

T̄

)2 (

λ2

Ae

)

4πfsky

tobsn(u)

d2V

d� dν
, (A9)

where in a spatially flat model

d2V

d� dν
= χ2 dχ

dz

dz

dν
= χ2 c (1 + z)2

H (z) ν0

(A10)

with ν0 = 1420 MHz. Unfortunately the value of �H, 0 h is quite

uncertain and it enters quadratically in the noise power spectrum.

Rao, Turnshek & Nestor (2006) measure 103�H, 0 � 0.9 ± 0.3 at

z ≈ 1 through the abundance of damped Lyman-α systems (see

also the compilations of data in Crighton et al. 2015; Padmanabhan,

Choudhury & Refregier 2015). The measurement of �H, 0b through

21 cm auto-correlations by Switzer et al. (2013) has a similar value

and fractional error. We will consider the range (0.6–1.2)× 10−3 or

�H, 0 h=(4–9)× 10−4. For �H, 0 h = 4 × 10−4 and the HIRAX-like

interferometer described in the text operating for 3 yr we obtain PN

≈ 600 h−3 Mpc3 at z = 1 and k⊥ = 0.2 h−1 Mpc. Comparing to the

linear matter spectrum, and assuming b = 1, we have (PL/PN)(k⊥)

≈ 1. If �H, 0 h = 9 × 10−4, we obtain PN ≈ 150 h−3 Mpc3 and have

(PL/PN)(k⊥) ≈ 4.

While this is similar in spirit to nP in galaxy surveys, it is worth

emphasizing that this quantity is intrisincally 2D, while nP is spher-

ically symmetric. In particular, at fixed k, the average value of k⊥ is

(π/4)k.

APPENDI X B: TRANSI T TELESCOPES AND

T H E m-MODE FORMALI SM

The interferometers for 21 cm intensity mapping experiments are

designed to be transit telescopes, using the Earth’s rotation to map

large areas of the sky. This mapping process simultaneously per-

forms two operations that are traditionally treated separately – filling

in the u − v plane,5 and improving the resolution in the u − v plane6

by ‘mosaicking’. Furthermore, some upcoming experiments, no-

tably CHIME7 and Tianlai,8 use a close-packed array of cylinders

rather than traditional dishes. In the CHIME configuration, four

cylinders (each 20 m in diameter and ∼100 m long, oriented north–

south) are placed adjacent in the east–west direction (Vanderlinde &

5 As we discuss later in this section, a more appropriate basis for discussing

these telescopes are spherical harmonics. We use the u − v plane here to

mean an appropriate ‘Fourier’ transform of the sky.
6 Recall that a single visibility measurement is smeared in the ‘u − v’ plane

by the Fourier transform of the primary beam and ‘mosaicking’ combines

observations of different areas of the sky to make this window function more

compact.
7 http://chime.phas.ubc.ca/
8 http://tianlai.bao.ac.cn
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Chime Collaboration 2014). The primary beam from such a config-

uration is highly extended in the north–south direction, while being

focused by the cylinders in the east–west direction.

Both of these features naturally cover large angles on the sky. The

natural basis for describing these telescopes is not the usual Fourier

basis, but rather spherical harmonics. However, most astrophysical

signals (including the voids discussed here) cover small areas in

the sky and are easily described in a flat-sky limit. The goal of this

Appendix is to make the connection between the wide-angle and

flat sky formalism explicit.

We start with a review of the m-mode formalism, following Shaw

et al. (2014, 2015), who state the fundamental visibility measure-

ments in a spherical harmonic basis. We then take the flat-sky limit

of this result and show that we recover the traditional u − v plane

interpretation. Making this connection also allows us to explicitly

see how the Earth’s rotation fills in the u − v plane. We then de-

velop the matched filter formalism in this basis. We conclude with a

worked example of the m-mode formalism, to help build intuition.

B1 Review of the m-mode formalism

Following Shaw et al. (2014, 2015), if the beam transfer function

pointed at azimuth φ is

Bij (n̂; φ) ∝ A2(n̂; φ) exp
[

2πi n̂ · uij (φ)
]

(B1)

then

Vij (φ) =
∫

dn̂ T (n̂)Bij (n̂; φ) (B2)

(plus noise, of course). We remind the reader to distinguish between

the pointing centre of the beam (the azimuth of which is φ) and the

coordinate that integrates over the beam (n̂). Expanding T and Bij(φ)

into spherical harmonics

T (n̂) =
∑

�m

a�m Y�m(n̂) (B3)

Bij (n̂; φ) =
∑

�m

B
ij

�m Y �
�m(n̂) (B4)

we obtain

Vij (φ) =
∑

�m

B�m
ij (φ)alm . (B5)

The rotation of the Earth in φ causes the beam to transform as

B�m(φ) = B�m(0)eimφ . Defining

V m
ij =

∫

dφ

2π
e−imφVij (φ), (B6)

we obtain

V m
ij =

∑

�

B�m
ij a�m, (B7)

where B�m
ij without an explicit argument is understood to be at φ = 0

(the phase factor cancels out its conjugate in the definition of V m
ij .)

These V m
ij (or their Fourier conjugate Vij(φ) are the fundamental

observables of the telescope.

B2 The Flat-Sky Approximation

It is illuminating to show that the above expression recovers the

usual flat-sky Fourier representation for small areas of the sky. We

will use � to represent the 2D Fourier wavevector, with magnitude

� and polar angle ϕ� (not to be confused with the pointing centre

φ). The correspondence between a�m and a(�) is (White et al. 1999;

Datta, Choudhury & Bharadwaj 2007)

a(�) =
√

4π

2� + 1

∑

m

i−ma�meimϕ� (B8)

and

a�m =
√

2� + 1

4π

im

∫

dϕ�

2π

a(�) e−imϕ� . (B9)

with a similar expansion for B�m
ij . Substituting into the visibility

equation, Vij (φ) =
∑

�m B�m
ij (φ)a�m, we obtain, for large �,

Vij (φ) ≈
1

(2π)3

∑

�m

∫

dϕ�dϕ�′ �a(�)B(�′, φ)eim(ϕ�−ϕ�′ ) , (B10)

where � and �
′ have the same magnitude. Doing the sum over m

yields a δ-function that collapses one of the azimuthal integrals to

yield

Vij (φ) ≈
∫

� d� dϕ�

(2π)2
a(�)B(�, φ), (B11)

where we have approximated the sum over � by an integral. The

above shows that the visibilities approximately measure a mode �,

smeared by the Fourier transform of the beam function.

We can use the above results to understand how the rotation of

the Earth fills in the u − v plane. In the flat-sky limit, the Fourier

transform of the beam is B(�) ∼
∑

m i−mB�m exp[imϕ�]. Rotating

about the z-axis by α scales the B�m by exp [imα], which is clearly

equivalent to rotating � by α. The u − v coverage of the telescope

traces out circles in the u − v plane as the Earth rotates. We note

that this is different from the usual result for interferometers, and

reflects the transit nature of these telescopes.

B3 Matched filters

In order to define the matched filter, we need to express the signal

in terms of the observable quantities, in this case the visibilities.

Since all of the objects of interest in this study are O(10 Mpc) in

size, at a distance of >1 Gpc, they subtend small angles on the sky,

allowing us to express the signal using the same flat-sky Fourier

representation used in the main paper.

To begin, consider a single frequency, corresponding to a fixed

redshift or (redshift-space) distance. Suppose our template, τ , is

centred at θ = 0, is φ-independent and non-zero only when θ � 1.

We expand

τ�m( ẑ) =
∫

dn̂ Y �
�m(n̂) τ (θ ) (B12)

= 2π δK
m0

√

2� + 1

4π

∫

d(cos θ )P�(cos θ ) τ (θ ) (B13)

� δK
m0

√

2� + 1

4π

[

2π

∫

ω̃ dω̃ J0(�ω̃) τ (ω̃)

]

, (B14)

where in the last line we have defined ω̃ = 2 sin(θ/2) � θ and used

P�(cos θ ) ≈ J0(�θ ) for θ � 1. The
√

(2� + 1)/4π is just Y�0( ẑ). If

we extend the upper limit of ω̃-integration to infinity, we recognize

in the brackets on the last line the Hankel transform of τ or the

2D Fourier transform of τ with spherical symmetry (e.g. Bond &

Efstathiou 1987).
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Now we can rotate the template from the north pole ( ẑ) to an

arbitrary n̂ using Wigner functions, D�
m′m. However, in our case

τ�m ∝ δK
m0 and Y�m ∝ D

�
0m so that the spherical harmonic coeffi-

cients for a template centred on n̂ are

τ�m(n̂) =
√

4π

2� + 1
Y �

�m(n̂) τ�0( ẑ) (B15)

=
[

2π

∫

ω̃ dω̃ J0(�ω̃) τ (ω̃)

]

Y �
�m(n̂) (B16)

(with no implied sum over �). These τ �m can now be inserted into

our formula for the m-mode visibility to obtain

V
m
ij (n̂) =

∑

�

B�m
ij Y �

�m(n̂)

[

2π

∫

ω̃ dω̃ J0(�ω̃) τ (ω̃)

]

. (B17)

This is the central relation needed for the matched filter, as it ex-

presses a linear relationship between the observable and the tem-

plate. We recognize the combination B�m
ij Y �

�m as the beam transfer

function, Bij (n̂; φ), evaluated at the position of the object but now

modulated by the Fourier transform of τ .

The above expressions are all for a single frequency. If we now

perform the Fourier transform in frequency, the term in square

brackets becomes the 3D Fourier transform for an azimuthally sym-

metric function in cylindrical coordinates: τ (k⊥, k‖) with � � |k⊥|.
For a narrow range of frequencies (corresponding to an astrophysi-

cal object such as a void or protocluster, for example) the k⊥ probed

by the interferometer are almost constant. For a wide range of fre-

quencies, one must account for the shifting of uij , and �, with

wavelength at fixed baseline separation. This represents no diffi-

culty in principle, since we need only evaluate our template where

there are data, but it formally breaks the Fourier transform property.

It is important to note that this Fourier transform is not necessary

for the matched filter, which can be written in visibility-frequency

space.

As before, the matched filter is defined by

Â(n̂) =
V m

ij N−1V
m
ij (n̂)

V
m
ij (n̂)N−1V

m
ij (n̂)

, (B18)

where the noise covariance matrix both includes the visibility noise

and projects out contaminated modes. There are a few practical dif-

ferences between this treatment and the flat-sky Fourier version we

discuss in the main text. In the simplified flat sky treatment, shifting

the matched filter to an arbitrary position x was simply a multipli-

cation of Â by exp(ikr), which allowed us to efficiently evaluate

the matched filter at all possible void positions with inverse FFTs.

In particular, the denominator of Â is translation-invariant. While

these simplifications remain true in the azimuthal direction, they no

longer hold for the polar or radial directions. Therefore, one must

explicitly evaluate the matched filter at all possible void positions.

It may be possible to reduce the computational burden by using the

Fourier versions of the expressions about more sparsely sampled

central void positions. Since the precise implementation will be

survey dependent, we do not pursue more detailed implementations

here.

B4 A worked example

We conclude with an analytic example to make this formalism

more concrete. Our discussion here parallels that in Bunn &

White (2007). Consider the interferometer situated at the equator

(θ0 = π/2, φ0 = 0) and looking directly overhead. The baselines,

uij , lie in the y − z plane. We will consider two cases, a north–south

baseline (u = u ẑ) and an east–west baseline (u = u ŷ). For a small

field of view, we approximate the sky as flat with Cartesian coor-

dinates φ, δ, where δ ≡ π/2 − θ is the latitude. A Gaussian beam,

normalized to unit peak, then has

B(n̂) = B(φ, δ) = exp

[

−
φ2 + δ2

2σ 2

]

×

{

exp[2πiuφ] for ŷ( EW)

exp[2πiuδ] for ẑ( NS),
(B19)

where we have suppressed the ij indices labeling the visibility for

convenience.

The visibility for this baseline is

V (n̂) =
∫

dn̂ B(n̂)T (n̂) . (B20)

Instead of immediately going to the spherical harmonic expansion,

it is algebraicly illuminating and amusing to imagine the sky as a

torus. The appropriate orthogonal basis is then the usual Fourier

basis

V =
∫

dn̂
∑

Bnme−inδe−imφ
∑

Tn′m′ ein′δeim′φ, (B21)

which collapses to

V m = (2π)2
∑

nm

BnmTnm, (B22)

where we have also implicitly gone to the m-mode basis (to account

for the Earth’s rotation). This expression is analogous to the spheri-

cal harmonic version. The beam multipole moments are then given

by

Bnm =
∫

dφ dδ

(2π )2
B(φ, δ) einδeimφ . (B23)

Since we assume the beams are compact in both φ and δ, we are free

to extend the limits of integration to ±∞. For the specific case of

our Gaussian beam, these integrals are then just Gaussian integrals

and can be easily evaluated. For an EW baseline, we get

Bnm ∝ exp

[

−
σ 2n2

2

]

exp

[

−
σ 2(m ± 2πu)2

2

]

(B24)

while for the NS baseline, we find

Bnm ∝ exp

[

−
σ 2(n ± 2πu)2

2

]

exp

[

−
σ 2m2

2

]

, (B25)

where the ± cases come from the two possible choices for the sign

of u. These have a clear physical interpretation – the EW baseline

probes modes centred around (n = 0, m = ±2πu) while the NS

baseline is centred on (n = 2πu, m = 0). Note that these expres-

sions indicate that it is the baseline distribution and the primary

beam that delineate the range of (�m) modes which need to be kept

in the sums of the previous section.

Returning to a spherical sky, we will adopt a similar strategy to

understand what modes a given baseline probes. Since the beam is

compact, we will approximate the spherical harmonics by a Fourier

series, in which case the algebra proceeds as in the case of the

torus. All that will remain will be to understand the correspondence

between mode coefficients n on the torus and (�, m) on the sphere.9

9 Note that in the φ direction, both the sphere and the torus have Fourier

expansions.
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For our specific case, the multipole moments then become

B�m =
∫

dφ d sin δ Y�m

(π

2
− δ, φ

)

B(φ, δ) (B26)

�
∫ ∞

−∞
dφ dδ Y�m

(

π

2
− δ, φ

)

B(φ, δ), (B27)

where we assume δ � 1 in the second line. Near the equator, we

have10

Y�m � N�meimφ

{

cos n�mδ for � + m even

− sin n�mδ for � + m odd
, (B28)

where N�m is a constant and

n2
�m = �(� + 1) − m2 −

{

0 for � + m even

1 for � + m odd
. (B29)

Since we have reduced the problem to the toroidal sky case,

we proceed as before and find that EW baselines measure modes

centred on (n�m = 0, m = 2πu). In the limit that � � 1, this im-

plies that these baselines measure modes with m ∼ 2πu, � ∼ m.

As one might expect, � and m are coupled together by the spher-

ical geometry. For NS baselines, the m-mode visibilities probe

(n�m = 2πu, m = 0) or � ∼ 2πu, m ∼ 0. The azimuthal symmetry

of the baseline configuration is reflected in the visibilities isolating

the m ∼ 0 modes. These two cases represent the two limiting cases;

baselines with components in both the EW and NS directions will

probe more general �, m modes.

For this particular case, this also completes the correspondence

with the usual flat-sky treatment where a baseline measures a partic-

ular � Fourier mode. Here, the visibility m modes measure particular

�, m modes.

A P P E N D I X C : M O D E L I N G T H E 2 1 C M SI G NA L

In the main text we have assumed that neutral hydrogen traces

the mass field in an unbiased manner for the purposes of testing

our matched filter on simulations. In this appendix we present a

more refined model and argue that this assumption is conservative

(for our purposes).

At low z most of the hydrogen in the Universe is ionized, and

the 21 cm signal comes only from self-shielded regions such as

galaxies.11 Unfortunately there are not many observational con-

straints on the manner in which HI traces galaxies and haloes in the

high-z Universe. There have been a large number of approaches to

modelling this uncertain signal. Some approaches work directly at

the level of the density field. For example, Shaw et al. (2014, 2015)

use Gaussian density fields. Bull et al. (2015) assume a constant

bias times the matter power spectrum (this is implicitly what we do

in the main text, with b = 1). The CRIME code by Alonso, Ferreira

& Santos (2014) uses lognormal realizations. Bagla & White (2003)

selected dark matter particles based on a density threshold to mock

up self-shielded regions.

10 The approximation agrees to the first two terms in the Taylor series. For

completeness, we note that

N�m =2m
√

π

√

2�+1

4π

√

(�−m)!

(� + m)!

1

�
(

1
2
− (l+m)

2

)

�
(

1 + (l−m)
2

) . (B30)

11 Most likely between the outskirts of discs until where the gas becomes

molecular within star-forming regions.

An alternative is to use a halo-based approach, specifying the

mass of HI to assign to a dark matter halo of a given mass, Mh. A

popular model was introduced by Bagla, Khandai & Datta (2010),

which populated haloes with circular velocities above 30 km/s with

HI such that the HI mass saturates at high halo mass. A similar

model was proposed by Barnes & Haehnelt (2010, 2014), who

modelled the low-M cut-off as an exponential. Marı́n et al. (2010)

use abundance matching between blue galaxies in the HI mass

function at z ≈ 0. Gong et al. (2011) employ a double power-law

model. Seehars et al. (2016) propose a form with an exponential cut-

off at both low and high halo masses. Padmanabhan & Refregier

(2017) allow a non-unity slope in addition to the high and low

mass cut-offs. The model we shall follow is due to Castorina &

Villaescusa-Navarro (2016), which assumes

MHI ∝ Mα
h e−Mcut/Mh (C1)

with the constant of proportionality adjusted to match the observed

value of �HI. Aside from the normalization, this model has two free

parameters, α and Mcut, which control the behaviour at high and low

halo masses. There is evidence from simulations that α < 1 (e.g.

Davé et al. 2013; Villaescusa-Navarro et al. 2016) with α ≈ 3/4 a

reasonable estimate. We shall use this value. Note that in contrast to

some of the other models this assumption puts significant HI mass

in higher mass haloes. There is some evidence at z � 0 that HI is

depleted in galaxies within clusters (e.g. Solanes et al. 2001), but

the behaviour at z ∼ 1 is unknown. In the simulations of Castorina

& Villaescusa-Navarro (2016), the trend of MHI with Mh is different

at high and low redshifts. The remaining free parameter, Mcut, then

adjusts the bias12 of the HI. While a range of values is allowed within

the observational constraints, typical values for the low-mass cut-

off, Mcut, are around 1011 h−1 M�. We shall explore a range around

this value (lgMcut = 10.5, 11 and 11.5 with masses in h−1 M�) to

illustrate the effects.

The simulations used in the main body of this paper do not have

sufficient resolution to track the haloes expected to host much of the

HI at z ∼ 1. Thus, in this appendix we use a different simulation,

run with the same code, which employed 25603 particles in a box

of side 256 h−1 Mpc. This is the same simulation as used in Stark

et al. (2015a,b), to which the reader is referred for more details.

We generate a mock HI field from the z � 1 halo catalog using the

mapping of equation (C1).

We find voids in this simulation using the same technique as

described in the main text. For completeness we also find proto-

clusters, in a manner similar to that of Stark et al. (2015a): starting

from a friends-of-friends halo catalog (with a linking length of

0.168 times the mean interparticle spacing), we select each z = 0

halo more massive than 1014 h−1 M�. We then track the particles

within a few hundred kpc of the most bound particle back to z = 1.

The centre of mass of these is taken to be the protocluster position

at z = 1.

A comparison of the (real-space) profiles of protoclusters and

voids in the dark matter and mock HI at z � 1 is shown in Fig. C1

for three values of Mcut. The curves are noisier than from the larger

volume simulations, due to the poorer statistics, however we see

that the protoclusters in the HI have just as much broad, distributed

12 For α = 3/4 at z ≈ 1 the bias ranges from 1.4 to 1.7 as lgMcut runs from

10.5 to 11.5 in h−1 M� units. This is consistent with the amplitude of the

measured clustering at z ∼ 1 by Chang et al. (2010); Switzer et al. (2013)

but those measurements are not precise enough to place strong limits on the

bias.
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Figure C1. The (real-space) profiles of voids and protoclusters at z � 1, as

in Fig. 3. The upper panel shows the M > 1014 h−1 M� protocluster profile

in the mass and in the HI for three values of the cut-off mass in equation

(C1), specified as log10 of the mass in h−1 M�. The lower panel shows the

same comparison for voids of 10 < rs < 15 h−1 Mpc.

emission as the matter profiles. The voids in the HI have a quali-

tatively similar ‘bucket shaped’ profile to the mass density, but are

notably more empty. As noted by Tinker & Conroy (2009), the halo

mass function shifts dramatically to lower masses in underdense

regions. Thus we expect to see voids in the massive halo and HI

distributions be ‘more empty’ than in the mass. Given the greater

contrast in HI than in the matter, our approximation in the main text

is conservative from the point of view of finding protoclusters and

voids with 21 cm experiments.
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